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Abstract
Validation of risk models is required by regulators and demanded by management and shareholders.
Those models rely in practice heavily on Monte Carlo (MC) simulations. Given their complexity, the
convergence of the MC algorithm is difficult to prove mathematically. To circumvent this problem
and nevertheless explore the conditions of convergence, we suggest an analytical approach. Con-
sidering standard models, we compute, via mixing techniques, closed form formulas for risk mea-
sures as Value-at-Risk (VaR) VaR or Tail Value-at-Risk (TVaR) TVaR on a portfolio of risks, and
consequently for the associated diversification benefit. The numerical convergence of MC simula-
tions of those various quantities is then tested against their analytical evaluations. The speed of
convergence appears to depend on the fatness of the tail of the marginal distributions; the higher the
tail index, the faster the convergence. We also explore the behaviour of the diversification benefit
with various dependence structures and marginals (heavy and light tails). As expected, it varies
heavily with the type of dependence between aggregated risks. The diversification benefit is also
studied as a function of the risk measure, VaR or TVaR.
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1. Introduction

Risk and capital considerations are becoming central to the risk management of (re)insurance. In
particular, the advent of risk-based solvency regulation like Solvency 2 in the European Union or the
Swiss Solvency Test is bringing along many new requirements that push the industry in this direction.
For instance, Solvency 2 Directive requires from (re)insurance companies to assess the capital needed
to ensure their solvency. It is defined as the Value-at-Risk (VaR) of the own funds (the aggregated
asset and liability risks) at a 1-year horizon subject to a confidence level of 99.5% over a 1-year
period. The validation of this assessment is also required by the Directive and necessary for
management to use the models for strategic decisions. It is not straightforward to validate results
computed at such high threshold. Therefore, it should be tackled indirectly with various techniques.
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This paper is a step in this direction, proposing ways to check both the convergence of Monte Carlo
(MC) algorithm and the behaviour of diversification benefit.

Understanding the diversification benefit is essential to the business model of reinsurance companies.
Diversification is at the heart of efficient risk management, capital optimisation and competitive
pricing. Internal models are considered as the best solution to monitor the risk within the
(re)insurer’s portfolio and to compute the Solvency Capital Requirements, provided that the models
are approved by the regulators. However, the authorities demand a validation of the whole
modelling process and in particular of the techniques used. This implies thorough mathematical and
best practice justifications of the choice of each distribution, assumption, parameter estimation, risk
aggregation technique and so on (see Dacorogna, 2017). Most models are based on MC simulations
of a large number of dependent risks. The convergence of such models is hard to prove mathema-
tically and their stability, as a function of the number of simulations, is difficult to assess. The
analytical approach is a way to measure the performance of the MC method, and potentially to
replace it in some cases. Here, we propose this approach to improve our understanding and test the
validity of model results.

Using standard models of the literature, we provide explicit expressions for the probability density
function (pdf) of aggregated dependent risks, allowing to compute analytically risk measures as VaR or
Tail Value-at-Risk (TVaR), and consequently the diversification benefit. This can be considered as a step
towards the development of methods for model validation. To achieve this, we use mixing techniques
(see Marshall & Olkin, 1988; Oakes, 1989) over risk parameter values. It is a standard tool in
credibility theory, but less explored for actuarial dependent risks modelling. Whereas it has been used in
ruin theory (see Albrecher et al., 2011), we introduce it for risk measures and diversification benefit.
We could have used an alternative technique that has been proposed in Constantinescu et al. (2011) and
Hashorva & Ji (2014), where conditional models are seen as simple random scaling models.
But our purpose here is to concentrate on the numerical analysis in order to test the performance of the
MC method.

On the same line of research, we use explicit formulas for the diversification benefit to explore its
behaviour as a function of the aggregation factor and the risk measures through models examples
exhibiting dependence or independence, and light or heavy tailed marginals.

The paper is organised as follows. We describe in section 2 the framework of constructing Archimedean
copulas using the mixing techniques, deriving analytical expressions for risk measures and diversifi-
cation benefit for two combinations of dependence structure and marginal distributions (Pareto–
Clayton and Weibull–Gumbel). Note that special efforts have been put in presenting in a consistent and
clear way the mixing techniques approach. In section 3, the numerical convergence of MC simulations
of risk measures and diversification benefit is tested against the analytical results for those two
dependent models, Pareto–Clayton andWeibull–Gumbel. In section 4, we compare the behaviour of the
diversification benefit of models, from independence to various dependence forms. We study it as a
function of risk measures and aggregation factors. General conclusions follow in the last section 5.

2. Analytical Results Via the Mixing Techniques

A general method for constructing multivariate Archimedean copulas has been introduced by Oakes
(1989) in the bivariate case and extended in the multivariate case by Marshall & Olkin (1988).
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The idea behind this method is to use the mixing technique over a latent variable as a tool for
dependence modelling. Introducing a latent variable to transform dependent variables into con-
ditionally independent ones, allows to express the dependence between the variables as an Archi-
medean survival copula with parameter the latent variable, and to obtain the marginal distributions
depending on this parameter. Namely, we have

The Oakes–Marshall–Olkin Theorem1

Let Θ be a positive random variable (rv) with cumulative distribution function (cdf) FΘ and Xk, k≥1,
be rvs such that

P X1 > x1; :::;Xn > xn j Θ= θð Þ=
Yn
k=1

H xkð Þθ (1)

H being a positive function. The dependence model specified by (1) is a variant of the structure
dependence generated by an Archimedean survival copula with generator ϕ= L�1Θ , where LΘ denotes
the Laplace transform of FΘ:

P X1 > x1; ¼ ;Xn > xn½ �=LΘ
Xn
i=1

L�1Θ FiðxiÞ
� � !

(2)

where the marginal distributions Fi of Xi, i=1,… , n, are defined by

FiðxÞ : = 1�FiðxÞ=LΘ �lnHðxÞð Þ (3)

By means of this mixing technique, we can provide an explicit formula for the pdf of aggregated risks
Xi, i=1,… , n, of a dependence model. Finding the appropriate choice of the function H and the
mixing parameter Θ to fit the marginals and the dependence model is the key step to derive via the
Oakes–Marshall–Olkin theorem an explicit formula for the pdf.

With the explicit pdf fSn of the aggregate risk Sn : =
Pn

i=1 Xi, denoted by fn when no possible
confusion, we can derive the formulas for the risk measures and the diversification benefit. Recall
that the diversification performance of a portfolio Sn is measured on the gain of capital when
considering a portfolio instead of a sum of standalone risks. The capital is defined by the deviation to
the expectation, and the diversification benefit (Bürgi et al., 2008) at a threshold κ (0< κ< 1), by

DκðSnÞ=1� ρκðSnÞ�EðSnÞPn
i= 1

ρκðXiÞ�EðXiÞð Þ
=1� ρκðSnÞ�EðSnÞPn

i= 1
ρκðXiÞ�EðSnÞ

(4)

where ρκ denotes a risk measure at threshold κ. This indicator helps determining the optimal port-
folio of the company since diversification reduces the risk and thus enhances the performance. By
making sure that the diversification benefit is maximal, the company obtains the best performance
for the lowest risk. However, it is important to note that Dκ(Sn) is not a universal measure and
depends on the number of risks undertaken and the chosen risk measure.

We will consider two examples of dependent models, presented in Marshall & Olkin (1988) (and,
since, considered in various papers, as, e.g., in Albrecher et al., 2011), that are useful in the

1 Note that we choose to denote this result as the Oakes–Marshall–Olkin Theorem. It has been introduced
and developed by Oakes for the bivariate case (see Oakes, 1989) and generalised for any n by Marshall & Olkin
(1988).
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reinsurance context. The first model is with Pareto marginals and a Clayton structure of dependence,
which is standard in reinsurance context as it captures the dependence in the tail. The second one
considers Weibull marginals and a Gumbel copula; it is an interesting alternative since it combines
tail dependence with thin tail distributions. Note that further examples have been considered in a
recent preprint (Sarabia et al., 2017).

Throughout the paper, we will assume the same threshold κ for any quantity defined w.r.t. this
threshold, hence we will omit it in the notation of those quantities.

2.1. Pareto marginals with Clayton survival copula

In this example, we consider a dependent model X= (X1,… , Xn) with marginals Fi (i= 1,… , n)
(α, β)-Pareto (also called Pareto Lomax) distributed with α> 1, β>0, i.e. such that

FiðxÞ : =1�FiðxÞ= 1 +
x
β

� ��α
; 8x> 0; i= 1; ¼ ; n (5)

If β= 1, we simplify the notation writing α-Pareto.

Recall that the quantile q1 of order κ of a (α, β)-Pareto cdf is given by

q1 =VaRðκÞ= β 1�κð Þ�1 = α�1
� �

(6)

The dependence structure of the model is chosen as a survival copula Cθ of Clayton form with
parameter θ>0, defined on [0,1]n by

Cθ u1; � � � ; unð Þ=φ�1θ

Xn
i=1

φθðuiÞ
 !

=
Xn
i=1

u�θi �ðn�1Þ
 !�1 = θ

with its generator φ (invariant to multiplication of the argument by a positive constant) given by

φθðtÞ= t�θ�1; t 2 ½0 ; 1� (7)

First we need to compute the pdf of the aggregate risk Sn =
Pn

i=1 Xi to evaluate the risk measures
VaR and TVaR of Sn, then deduce the associated diversification benefit. Computing directly the pdf
of Sn associated to our dependent model may be a difficult task, hence the choice of using the mixing
technique to work with conditional independence. Assuming θ= 1/α to ease the computation, we
obtain the following result.

Proposition 2.1 Consider the dependent model X= (X1,… , Xn) with marginals Fi (i=1,… , n)
(α, β)-Pareto distributed (defined in (5)), α> 1, β>0, and Clayton survival copula defined in (7) with
parameter θ= 1/α>0. Then the pdf fn of the aggregate risk Sn =

Pn
i=1

Xi is compound Gamma (or β of
the second kind with parameters (n, α)) given, for s>0, by

fnðsÞ= βα

Bðα; nÞ ´
sn�1

β + sð Þα + n (8)

B denoting the β function.

The choice θ=1/α is a constraint of this model. However, it can be generalised to separate the
dependence from the tail index. This is the subject of a forthcoming paper.
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Having an explicit formula (8) for the pdf fn of Sn, we can deduce its cdf FSn integrating fn, and any
risk measure based on FSn .

The value-at-risk of n at threshold κ, denoted qκ, n or qn, is obtained via:

qn =VaRκðSnÞ= F Sn ðκÞ (9)

F Sn denoting the inverse of FSn . Note that using the relation between a β distribution of second kind
and a β distribution, qn may also be expressed in terms of the quantile of the β distribution with the
same parameters, B(n, α),

qn =
VaRκ Bðn; αÞð Þ

1�VaRκ Bðn; αÞð Þ
The TVaR of Sn at threshold κ, defined by

TVaRn =TVaRκ Snð Þ=E Sn j Sn ≥ qn½ �
(FSn being continuous), can be computed explicitly in terms of qn, as done in the proposition below.

For completeness, let us compute the TVaR at threshold κ for a (α, β)-Pareto cdf, assuming α>1
(for the existence of the TVaR) and β>0. We obtain

TVaR1 : =TVaRκ Xð Þ= βα

1�κð Þ α�1ð Þ ´
αq1 + β
q1 + βð Þα ; whereq1 is given in ð6Þ;

i:e: TVaR1 = β 1
1�1 = αð Þ 1�κð Þ1 = α�1

� � (10)

Theorem 2.1 Considering the dependent Pareto–Clayton model X given in Proposition 2.1, the
TVaR of the aggregate risk Sn =

Pn
i=1 Xi at a threshold κ, 0< κ< 1, is given by

TVaRn =
β

1�κð ÞB α; nð ÞB 1 +
qn
β

� ��1
; α�1; n + 1

 !
(11)

where B(x; a, b) denotes the incomplete β function defined by

B x ; a; bð Þ=
ðx
0
ua�1 1�uð Þb�1du

If the shape parameter α of the Pareto margin is such that α 2 N n f0; 1g, then TVaRn simplifies to

TVaRn = n β
ð1�κÞðα�1Þ 1�Pα�2

j=0

n + α�1
j

 !
pjn 1�pnð Þn+ α�1�j

 !
; where pn : = 1 + qn

β

� ��1
;

i:e: TVaRn =
n β

1�κð Þ α�1ð ÞP Y > α�2½ �
(12)

where Y follows a Binomial distribution B n + α�1; pnð Þ:

In the bivariate case n=2, (11) can be simplified as:

TVaR2 =
βα

1�κð Þ α�1ð Þ ´
α 1 + αð Þq22 + 2β 1 + αð Þq2 + 2β2

q2 + βð Þ1+ α (13)

Note that formulas (11) and (12) also hold for n=1, resulting in (10).

Now we can deduce an explicit formula of the diversification benefit associated to our model, defined
in (4), and denoted by Dn when choosing TVaR as risk measure, and D�n for VaR.
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Corollary 2.1 Consider the dependent Pareto–Clayton model X= (Xi, i≥1) given in Proposition
2.1. Then the diversification benefit of the aggregate risk Sn =

Pn
i= 1

Xi at a threshold κ, 0< κ<1, and
associated to the risk measure ρ, can be expressed as:

(i) For ρ=VaR:

D�n =1� qn�n E Xð Þð Þ
n q1�E Xð Þð Þ = 1�

1
nβ qn� 1

α�1
1�κð Þ�1 = α� α

α�1
(14)

q1 being defined in (6) and qn in (9).

(ii) For ρ=TVaR:

Dn = 1�
α�1ð Þ

n 1�κð ÞB α;nð Þ B 1 + qn
β

� ��1
; α�1; n + 1

� �
�1

α 1�κð Þ�1 = α�1
� � (15)

which simplifies, for n=2, to

D2 = 1�
βα�1

2 1�κð Þ ´
α 1+ αð Þ q22 +2β 1 + αð Þ q2 +2β2

q2 + βð Þ1 + α �1
α 1�κð Þ�1 = α�1
� � (16)

2.2. Weibull marginals with Gumbel survival copula

We focus now our attention to another type of distribution associated with a different copula:
Weibull marginals with Gumbel dependence. Gumbel dependence is also an Archimedean survival
copula presenting asymmetric dependence with strong tail dependence although less asymmetric
than the Clayton survival copula. The Weibull distribution is also used in insurance particularly for
survival analysis or large claim occurrences, but the tail is usually less heavy than with certain Pareto
distributions.

Consider a dependent model X= (X1,… , Xn) with marginals Fi (i= 1,… , n) (c, τ)-Weibull dis-
tributed (with c> 0, τ>0), i.e. such that, for all x≥ 0,

Fi xð Þ : = 1�Fi xð Þ= e�cx
τ

(17)

When c= 1, it is called τ-Weibull.

Recall that the quantile q1 of order κ (0< κ< 1) of a (c, τ)-Weibull cdf is given by

q1 =VaRðκÞ= � ln 1�κð Þ
c

� �1 = τ

(18)

The dependence structure of the model is chosen as the survival copula of Gumbel form, with
parameter θ≥1, and generator φ defined by

φθ tð Þ= � ln tð Þð Þθ (19)

For simplicity of computations, we fix most parameters of the models, namely τ=1/2 and θ= 1/τ.
Nevertheless, extension to θ= 1/τ (but still with θ= 1/τ) has been recently developed in Sarabia et al.
(2017).
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Proposition 2.2 Consider the dependent model X= (X1,… , Xn) with marginals Fi (i= 1,… , n)
(c, τ)-Weibull distributed with c> 0 and τ=1/2, and Gumbel survival copula with parameter θ=1/τ.
Then the pdf fn of the aggregate risk Sn =

Pn
i=1

Xi at a threshold κ, 0< κ< 1, n≥1, is given, for s>0, by

fn sð Þ= c
2
ffiffiffi
π
p Γ n� 1

2

� �
Γ nð Þ s�

1
2e�c

ffiffi
s
p

1F1 1�n; 2�2n ; 2c ffiffi
s
p� �

(20)

where 1F1(a, b; x) is the Kummer confluent hypergeometric function defined on R, with real
parameters a, b, by 1F1 a; b ; zð Þ= P1k=0

ðaÞk
ðbÞk

zk
k ! where að Þk = Γ a +kð Þ

Γ að Þ (see, e.g., Gradshteyn, 1988: 958
and Koll and Mohl 2011).

In particular, for n= 2, (20) simplifies to

f2 sð Þ= c
4

1ffiffi
s
p + c
� �

e�c
ffiffi
s
p
; s> 0 (21)

The pdf of Sn being now explicit, we can compute the expressions of the TVaR and the diversification
benefit associated to our model for n risks.

Theorem 2.2 Consider the dependent Weibull–Gumbel model X= (Xi, i≥1) given in Proposition
2.2. Then the TVaR of the aggregate risk Sn =

Pn
i=1 Xi at a threshold κ, 0< κ< 1, can be expressed,

for n≥ 1, as:

TVaRn =
2n e�c

ffiffiffiffi
qn
p

1�κð Þc2 1 + c q1 = 2n +
c2qn
2

+
c3 q3 = 2n

4
ffiffiffi
π
p

Xn
k=2

Γ k� 3
2

� �
k ! 1F1 2�k; 4�2k ; 2c ffiffiffiffiffi

qn
pð Þ

 !
(22)

with qn = F Sn ðκÞ, FSn being defined in (20).

In particular we have, for n= 1,

TVaR1 =
2
c2

1�ln 1�κð Þ + 1
2

ln 1�κð Þð Þ2
� �

(23)

and, for n= 2,

TVaR2 =
4e�c

ffiffiffiffi
q2
p

1�κð Þc2 1 + c q1 = 22 +
c2q2
2

+
c3q3 = 22

8

 !
(24)

Corollary 2.2 Consider the dependent Weibull–Gumbel model X= (Xi, i≥1) given in Proposition
2.2. Then the diversification benefit of the aggregate risk Sn =

Pn
i=1

Xi at a threshold κ (0< κ<1),
associated with the risk measure ρ, can be expressed as:

(i) For ρ=VaR, D�n =1� qn�nEðXÞ
nq1�nEðXÞ = 1� c2ðqn�2ncÞ

n ln 1�κð Þð Þ2�2c3ð Þ
(ii) For ρ=TVaR,

Dn = 1�
e�c

ffiffiffiffi
qn
p

1 + cq1 = 2n + c2
2 qn + c3

4
ffiffi
π
p q3 = 2n

Pn
k=2

Γ k�3
2ð Þ

k ! 1F1 2�k; 4�2k ; 2c
ffiffiffiffiffi
qn
p� � !

�c3ð1�κÞ

1�κð Þ 1�c3�ln 1�κð Þ + 1
2 ln 1�κð Þð Þ2

� � (25)
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which simplifies, for n=2, to:

D2 =1�
e�c

ffiffiffiffi
q2
p

1 + cq1 = 22 + c2
2 q2 + c3

8 q3 = 22

� �
�c3ð1�κÞ

ð1�κÞ 1�c3�ln 1�κð Þ + 1
2 ln 1�κð Þð Þ2

� � (26)

3. Testing the Quality of the Estimations Obtained Via MC simulations

The main benefit of explicit formulas is to provide exact answers for the risk measures and the
diversification benefit, which are often estimated through MC simulations, which convergence is not
well known. With explicit formulas, it is thus easy to check the quality of the estimations using MC.
We do it on the two previous examples and proceed as follows.

On one hand, using the analytical expressions obtained in the previous section, we compute the
TVaR and the diversification benefit for various values of the aggregation factor n, namely 2, 10 and
100 as illustrations. Those numbers will give us a benchmark for the MC simulations.

On the other hand, we run ten sets of simulations (changing the seed of the random generator) for
each of the model parameters varying the number of simulations per run from 10,000 to 10 million.
We report the average value over the ten sets of simulations and check that the standard deviation of
those sets decreases, as expected, with the number of simulations.

Finally we compare those average values with the benchmark obtained with analytical formulas.

3.1. Pareto marginals with Clayton survival copula

We compute the TVaR and the diversification benefit (via Theorem 2.1 and Corollary 2.1)
for various values of the aggregation factor n (2, 10, 100) and for a limited set of parameters. For the
(α, β)-Pareto marginals, we fix β= 1.

Using the analytical expression (11) (and (12) when α is an integer ≠ 0, 1) as benchmark, we check
the convergence of the simulated TVaR, varying the parameter α of the tail index and the aggre-
gation factor n. For the parameters, we are limited here to one free (α), as the Clayton survival copula
parameter θ relates directly to the tail index α with α=1/θ.

First, we explore a case with very heavy tail, α= 1.1, which corresponds to tails seen for earthquake
distributions, and a relatively strong dependence (θ≈0.91). Then we look at the case α=2 with
moderate heavy tail, followed by that of a moderate tail α=3, which also means here a moderate
dependence θ= 1/3. We run ten sets of simulations (changing the seed of the random generator) for
each of these parameters varying the number of simulations per run from 10,000 to 10 millions. We
report here the average value over the ten sets of simulations. It is worth noticing that the standard
deviation of those sets decreases, as expected, with the number of simulations. For the TVaR
computed for n=2, the standard deviation of the ten sets varies from 32% to 4% for α=3 and from
57,968% to 247% for α=1.1 going from 100,000 to 10 millions simulations (except for n=100,
where we stop at one million due to computer limitations). As expected, the convergence is much
slower in the case of a fatter tail. Moreover, for extremely fat tail (α close to one), it does not
converge even for ten millions simulations. A similar behaviour can be observed for n=10. Beside
the gain in precision, the analytical formula can be numerically evaluated 40 times faster,
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respectively, 580 times faster (for α= 2 and n=10, respectively, n=100 for one million simulation)
than the estimation given by MC simulations.

For comparability reasons, we present in Figure 1 the normalised TVaR, TVaRn / n, for the various
n’s. On the figure, we see that:

∙ The normalised TVAR of Sn, TVaRn / n, decreases as n increases

∙ The TVaR decreases as α increases

∙ The rate of convergence of TVaRn / n increases with n

∙ The heavier the tail, the slower the convergence

∙ In the case of very heavy tail and strong dependence (α= 1.1 and θ=0.91), we do not see any
satisfactory convergence, even with ten million simulations, and for any n. At ten million
simulations, the value of TVaR is still 24% lower than the theoretical value.

∙ When α=2, 3, the convergence is good from one million, 100,000 simulations onwards,
respectively.

In Table 1, we note that the convergence of the TVaR of Sn for the Pareto parameter α= 2 is good,
with a relative error going from 0.38% to 0.05% when n goes from 2 to 100, and for one million
simulations. Similar relative errors are obtained for α=3. At ten million simulations, for α=1.1 and
n= 10, the TVaR is still underestimated by 25%, which is unacceptable for an evaluation of the
solvency capital. It seems clear that MC will not give satisfactory answers with reasonable number of
simulations. The way out is to resort to explicit formula as derived in this paper to obtain credible
values for the capital. However, increasing the number of aggregation improves the convergence.
Measuring the changes with 1 million simulations, we see that from n=2, we have an under-
estimation of 50% that decreases to 27% for n= 10 and n= 100.

Figure 1. Convergence of the TVaR of Sn at 99.5% for α=1.1, 2, 3 from left to right, for an
aggregation factor n= 2, 10, 100 from up to down. The purple line corresponds to the analytical
value and the green plots are the average values obtained from the Monte Carlo (MC)
simulations. The y-scale gives the normalised TVaR (TVaRn/n) and is the same for each column.
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Let us now analyse the diversification benefit Dκ(Sn) associated with TVaR, denoted by Dn. We use
the results (16) and (15) to compute it explicitly and then check the convergence of the MC. The
same parameter set and the same simulations are used to produce the numbers displayed in Figure 2.
As expected, the convergence of the diversification benefit follows a similar pattern as for the TVaR.
Indeed, we see in Figure 2 that:

∙ The diversification benefit Dn of Sn increases with n

∙ Dn increases with α

∙ The rate of convergence of Dn increases with n

∙ The heavier the tail, the slower the convergence

Table 1. Relative errors (when comparing results obtained by Monte Carlo and analytical
ones) of the TVaRn and the diversification benefitDn for Sn, at 99.5% and for various α, as a
function of the aggregation factor n computed with one million simulations.

n= 2 (%) n=10 (%) n= 100 (%)

α=1.1
TVaRn −33.3 −27.3 −26.9
Dn 1,786 742 653

α=2
TVaRn 0.38 0.14 0.05
Dn −2.61 −0.44 −0.14

α=3
TVaRn 0.30 0.14 −0.10
Dn −1.30 −0.25 0.15

Figure 2. Convergence of the diversification benefit of Sn (associated with TVaR at 99.5%) for
α=1.1, 2, 3 (from left to right), for an aggregation factor n=2, 10, 100 (from up to down). The
purple lines are for the analytical values and the green ones are the average values obtained from the
Monte Carlo (MC) simulations. The y-scale is the same for all the graphs, for fair comparison.
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∙ In the case of very heavy tail and strong dependence (α= 1.1 and θ=0.91), we do not see any
satisfactory convergence, even with ten million simulations, and for any n

∙ When α=2, 3, the convergence is good from one million, 100,000 simulations onwards,
respectively.

For α=1.1, the convergence is poor. In this case, we see an overestimation of the diversification
benefit that is above 600% for all aggregation factors including n=100 (see Table 1). This significant
overestimation may seem high, however, the impact is not material since we are talking here of very
small diversification benefit of the order of a few percents (3.6% for n= 10, for instance). We see in
Figure 2 that the diversification benefit does not converge in all cases. Obviously, ten millions
simulations are not sufficient to ensure a good convergence. The reason is that MC samples the space
evenly, whereas, in this case, we would need much more points in the tails to see a good convergence.

In Table 1, we present the results of a convergence study as a function of the aggregation factor. The
number of simulations is fixed at one million and we vary the aggregation factor n. We see a
decreasing estimation error by MC when increasing the aggregation factor, with small errors for
α=3 and 2 and substantial errors for very fat tails and strong dependence. In the latter, we also see a
systematic underestimation of the TVaR and an overestimation of the diversification benefit,
whatever the aggregation factor. Such a fact is not surprising for very fat tails (α close to 1). With the
thinner tails and lower dependence, MC has a tendency to overestimate the TVaR and underestimate
the diversification benefit except for n=100. Note that the error decrease is large between 2 and 10,
but much smaller afterwards.

3.2. Weibull marginals with Gumbel survival copula

Here we use Theorem 2.2 and Corollary 2.2 to compute the TVaR and the diversification benefit, for
various values of the aggregation factor n (2, 10, 100). Recall that in this example, θ= 2= 1/τ, which
means that the tail index is fixed to α=2. Only the scaling parameter c of the Weibull marginals
might be modified, but for the sake of simplicity, we fix it to 1.

As in the previous example, we compare the values obtained analytically with those obtained via MC
simulations, considering ten sets of simulations for our set of parameters, varying the number of
simulations per run from 10,000 to ten millions (except for n=100, where we stop at one million
due to computer limitations). We report here the average values of the ten sets and verify that the
standard deviation is decreasing with the number of simulations.

We present in Figure 3 the normalised TVaR, TVaRn / n (as we do it for Pareto–Clayton), for the
three cases n=2, 10, 100. We observe that:

∙ TVaRn / n decreases with n.

∙ TVaRn / n decreases faster between n=2 and n= 10 (−29%) than between n=10 and n= 100
(−12%).

∙ The rate of convergence is good in all the cases and the deviation reaches <1% already with
100,000 simulations.

On the figure, the convergence is very clear. The absolute value of the relative error is <2% for both
risk measures and for all n’s. The convergence, reached already with 100,000 simulations, is faster
than the one obtained with the Pareto–Clayton model. This is explained by the fact that, for
0< τ<1, the Weibull marginals are moderately heavy tailed and the Gumbel survival copula has a
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much weaker dependence in the tail compared to the Clayton survival copula; indeed recall that a
Clayton copula has lower tail dependence (hence the flipped Clayton copula, as here, will exhibit only
upper tail dependence), whereas the Gumbel one has upper tail dependence (the survival copula of
Gumbel form will then exhibit only lower tail dependence). Thus, the simulation requires less points to
model accurately the behaviour in the tails. Increasing the number of aggregation improves the con-
vergence. Indeed, when measuring the variation with one million simulation for the TVaR, we see that
for n=2 we have an underestimation of 0.65%, which decreases to 0.18% for n=100. Beside the gain
in precision, the analytical formula can be numerically evaluated 65 times faster, respectively, 75 times
faster (for n=10, respectively, n=100 for one million simulation), than the estimation given by MC
method. Moreover, MC method cannot be used for higher number of aggregation (i.e. n=10,000) due
to lack of system memory, while it is of course feasible for the analytical formula.

In Figure 4, we present the results for the diversification benefit Dn, when choosing TVaR as risk
measure. Similar comments hold for Dn as for TVaRn / n. The convergence is already very good for
10,000 simulations. We also observe, as expected, that Dn increases with n, as it is the case for the
Pareto–Clayton model.

4. Diversification Benefit as a Function of the Aggregation Factor and the Risk
Measures, for Various Types of Models

The diversification benefit is an important parameter for determining the efficiency of the use of
capital of an insurance company. It plays a crucial role in the new risk disclosure of companies.
Unfortunately, it is a quantity that has attracted little attention of researchers because it is not a
universal measure: it depends on the number of underlying risks in the definition, as well as on the
choice of the underlying risk measure (see Emmer et al., 2015). However, this parameter can be

Figure 3. Convergence of the normalised TVaR of Sn, TVaRn / n, at 99.5% for c= 1, τ= 1
2 and

θ= 2, for an aggregation factor n=2, 10, 100 from left to right. The purple line corresponds to
the analytical value and the green plots are the average values obtained from the Monte Carlo
(MC) simulations. The y-axis is the same for the three plots.

Figure 4. Convergence of the diversification benefit Dn of Sn (associated with TVaR at 99.5%)
for c=1, τ= 1

2 and θ= 2, for an aggregation factor n=2, 10, 100 from left to right. The purple
lines are for the analytical values and the green ones are the average values obtained from the
Monte Carlo (MC) simulations. The y-axis is the same for the three plots, for fair comparison.
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studied as a function of the number of risks, as well as of the risk measure. It is what we aim at doing
here, addressing in particular the question of the impact of the existence of dependence among risks
on the behaviour of the diversification benefit. In a previous paper (see Busse et al., 2014), we
explored analytically the limit of diversification when introducing a systematic risk in the model
through a latent rv common to all risks in the portfolio. Here we tackle again the problem, but in a
different way, using various dependence models and, as in Busse et al. (2014), comparing it to the
independent case. We also study the effect of light and heavy tailed marginals.

When assuming dependence, we consider our two previous models, Pareto–Clayton and Weibull–
Gumbel. We add two cases, one with independent Pareto rv’s, to evaluate the impact of the dependence,
and one considering a multivariate Gaussian model to evaluate the impact of the tail thickness.

All chosen examples share the existence of anaytical expressions for the risk measures and, as
consequence, for the diversification benefit. We can then compare the behaviour of the diversification
benefit as a function of the aggregation factor n (from n= 2 to 10,000) and the risk measures, TVaR
and VaR. Since both are used in practice, it is interesting to see if the choice of risk measure has an
influence on the diversification benefit.

Note that for comparison purpose, we choose the Pareto–Clayton case with α=2, since it corre-
sponds to the tail index of the Weibull–Gumbel model. For completness, we also recall briefly the
evaluation of the diversification benefit in the two additional examples, independent Pareto and
mutivariate Gaussian risks.

4.1. Independent Pareto rv’s case with asymptotic threshold κ% 1ð Þ
To avoid computations, we are going to look only for approximations when considering extreme
quantiles (i.e. when the threshold κ tends to 1), for which Feller’s result (see Feller, 1966) is available.
For sharper and not necessarily asymptotic results, computations could be done using the Normex
method (see Kratz, 2014).

Feller has shown that the tail distribution of the sum of independent rv’s with regularly varying (RVα) tail
distribution is asymptotically RVα. Applying this result when considering iid Pareto-(α, β) rv’s provides

qn =VaRκ Snð Þ= F Sn κð Þ �
κ!1

β
1�κ
n

� ��1 = α
�1

 !
(27)

and

TVaRκðSnÞ �
κ!1

n βα

1�κð Þ α�1ð Þ ´
αqn + β
qn + βð Þα �κ!1

β
α

α�1
1�κ
n

� ��1 = α
�1

 !
(28)

It gives back the well known asymptotic relation TVaRκ /VaRκ → α/(α − 1) as κ → 1.

Now let us look at the diversification benefit for high threshold κ. When choosing the VaR as risk
measure (q1 satisfying (6)), we have

D�n κð Þ= 1� qn� nβ
α�1

n q1� β
α�1

� � �
κ!1

1� n
1
α�1 1�κð Þ�1 =α� 1

n� 1
α�1

1�κð Þ�1 = α�1� 1
α�1

(29)
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and for the TVaR,

Dn κð Þ �
κ!1

1�
α

α�1 n
1
α�1 1�κð Þ�1 = α� 1

n� 1
α�1

α
α�1 1�κð Þ�1 =α�1� 1

α�1
(30)

from which we deduce the asymptotic limit as κ → 1, which is the same for both risk measures, as
expected:

lim
κ!1

D�n κð Þ= lim
κ!1

Dn κð Þ= 1�n�ð1�1 = αÞ (31)

which tends to 1 as n → ∞.

Note that in the Gaussian case, Dn (or D�n), converges also to 1 as n → ∞ with a rate of convergence
of n1/2, and not only for high threshold κ.

4.2. Multivariate Gaussian distribution

Consider the Gaussian vector (Xi)i= 1,… , n with expectation vector (μi)i= 1,… , n, μi= μ, and (non-
negative definite) covariance matrix Γ= (γij)1≤ i, j≤ n such that γii= σ2, ∀ i. Then Sn =

Pn
i=1 Xi is

normally distributed with mean nμ and variance nσ2 + 2
P

1≤ i< j≤n γij. Hence, with the notation
rij= corr(Xi, Xj) and ϕ, Φ, for the standard normal pdf, cdf, respectively, we can write

qn =VaRκ Snð Þ= nμ +Φ�1 κð Þ ffiffiffinp σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

2
n

X
1≤ i< j≤n

rij

s
≤ n μ +Φ�1 κð Þ σ� �

= nq1

whereas, for the TVaR,

TVaRκðSnÞ= nμ +
ϕ Φ�1 κð Þ� �

1�κ
ffiffiffi
n
p

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

2
n

X
1≤ i< j≤ n

rij

s
≤ n μ +

ϕ Φ�1 κð Þ� �
1�κ σ

 !
= nTVaRκ Xð Þ

We deduce that

Dn =D�n = 1� 1ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

2
n

X
1≤ i< j≤ n

rij

s
≥0ð Þ

The diversification benefit can tend to any constant between 0 and 1, as n → ∞, whenever there
exists a linear dependence between the components. For instance, if rij= r≠ 0, ∀ i≠ j, the diversifi-
cation benefit reduces to

Dn =D�n = 1� 1ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + n�1ð Þ r

p
when r= 1 (full comonotonicity), Dn =D�n =0, whereas for r=0 (independent case), we obtain
Dn =D�n =1�n�1 = 2, which is also the limit (as κ → 1) of the diversification benefit given in (31) for
independent α-Pareto rv’s with α=2.

Let us compare the diversification benefit as a function of n, for both TVAR and VaR, for high
threshold κ=99.5%, considering the following cases: (i) independent α-Pareto with α=2,
(ii) α-Pareto margins and survival Clayton (θ) copula (Pareto–Clayton) with α=2=1/θ, (iii) Gaus-
sian margins and Gaussian copula (Gaussian–Gaussian) with (linear) correlation r= 0.42 estimated
on the previous Pareto–Clayton model, (iv) τ-Weibull margins and Gumbel (θ) copula
(Weibull–Gumbel) with θ= 2= 1/τ and (v) Gaussian–Gaussian with correlation r=0.39 estimated on
the Weibull–Gumbel model.
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Note that the linear correlation coefficients r are estimated from the realisation of the simulated
model. Moreover, the number of simulations is chosen such that the Kendall-τ estimate corresponds
to the theoretical one. Recall that the theoretical value of τ, as a function of the θ parameter of the
copula, is known for both Clayton, with τ= θ

θ +2, and Gumbel, with 1� 1
θ. The convergence is then

reached with 100,000 simulations.

In Table 2, we present the results obtained on Dn and D�n using analytical formulas for all of them,
and not simulations. Note that it completes the numerical application for the analytical diversifi-
cation benefit done in the previous sections with the TVaR only. Moreover, the functions D�n of n are
plotted in Figure 5 for the various models.

Table 2. Analytical diversification benefit of Sn, Dn and D�n, at 99.5% as a function of the
risk measures TVaR and VaR, respectively, and of the aggregation factor n.

n= 2 (%) n= 10 (%) n=100 (%) n=1,000 (%) n=10,000 (%)

Independent Pareto
Dn=D�n 29.3 68.4 90.0 96.8 99.0

Pareto–Clayton
Dn 13.2 25.5 28.6 29.0 29.0
D�n 12.9 25.2 28.3 28.6 28.7
Dn =D�n 1.021 1.014 1.012 1.012 1.012

Gaussian–Gaussian
r=0.42 (Clayton)
Dn=D�n 15.7 30.9 34.7 35.1 35.2

Weibull–Gumbel
Dn 23.1 47.0 54.1 54.8 54.9
D�n 19.6 40.4 46.5 47.2 47.2
Dn =D�n 1.179 1.162 1.163 1.163 1.163

Gaussian–Gaussian
r=0.39 (Gumbel)
Dn=D�n 16.6 32.8 37.1 37.5 37.5

Note: Tail index α= 2, survival Clayton parameter θ=1/2, Weibull τ=1/2, Gumbel para-
meter θ=2.

100.0%

80.0%

60.0%

40.0%

20.0%

0.0%
1 10 100 1’000 10’000

Figure 5. Plot of the diversification benefit D�n (y-axis) as a function of n (x-axis), for VaRκ with
κ=99.5%. The curves from bottom to up correspond, respectively, to Pareto (α= 2)-Clayton
(θ=1/2), Gauss-Gauss (Clayton; r= 0.42), Gauss-Gauss (Gumbel; r=0.39), Weibulll (τ= 1/2)-
Gumbel (θ=2), independent Pareto (α=2) and Gauss models.
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We show in Table 2 and Figure 5 that:

∙ The dependence has a significant impact on the evolution of the diversification benefit with n, as
expected. In the case of dependence, the diversification benefit levels off rapidly, already at
n=100, while for the independence case, it still increases from n= 100 to n= 10,000.

∙ The evolution of the diversification benefit is similar for the two underlying structures, increasing
and levelling off with n, for both. For example, in the dependent case, from n= 2 to 10, it increases
approximately by a factor 2 (1.9 for Pareto–Clayton and 2.0 for Weibull–Gumbel), regardless of
the risk measure used to compute the diversification benefit.

∙ Although both evolutions are the same from n=2 to 100, the Pareto–Clayton model exhibits a
stronger tail dependence and a fatter tail than the Weibull–Gumbel one. This appears through the
difference of the diversification benefit between the two models, almost twice bigger for the second.

∙ We see in the table that the diversification benefit computed with the VaR is always lower than the one
computed with the TVaR. This is to be expected, since the latter risk measure takes into account the
whole distribution beyond a fixed threshold (for instance, 99.5% in this case), whereas the VaR only
looks at one point of the distribution. However, the difference is more pronounced for the Weibull–
Gumbel model than the Pareto–Clayton one, with a ratio of the order of 1.2 instead of 1.01, respectively.

∙ The ratio Dn /Dn
* stabilises from n= 10 onwards, with 1.012 for Pareto–Clayton and 1.163 for

Weibull–Gumbel. Starting at n= 100, the diversification benefit does not change anymore. It is
interesting to note that the more dependence in the tails (Clayton copula), the less difference
between the diversification benefit measured with TVaR or VaR. Nevertheless, this difference is
never very large (<20%).

∙ Comparing the results obtained with the Pareto–Clayton model and the corresponding Gaussian–
Gaussian one, emphasises that the tail dependence associated with a fat tail limits the
diversification benefit. The diversification benefit limit is 35.2% for the Gaussian case, while it
is only 29% in the Pareto–Clayton case.

∙ The comparison leads to a different result in the Weibull–Gumbel case and the Gaussian one. Here
we see much stronger diversification benefit for the Weibull–Gumbel model than for the Gaussian–
Gaussian one. The intuition to explain this observation being less obvious than with the previous
model, varying the parameters (as in Sarabia et al., 2017) would help to analyse this effect. Let us
just note that the linear correlation implied by θ=2 is quite high in this case.

∙ As expected, 100% diversification benefit is reached in the independent case only.

5. Conclusion

The purpose of this study is to explore new ways of validating internal models. As mentioned in the
introduction, it is not possible to validate statistically a VaR at a threshold of 99.5%, which
represents a probability of 1 over 200 years. Thus, we need to resort to indirect ways, testing various
aspects of the model. Here we test the convergence of MC algorithms for aggregated risks in presence
of both heavy tailed marginals and non-linear dependence in the tails. We also explore the behaviour
of the diversification benefit as a function of: the number of risks, the type of marginal distributions,
the dependence structure and the choice of risk measure used to evaluate it. This is done after having
derived explicit formulas for both the risk measures and the diversification benefit.

To test the MC algorithm, we consider two standard examples of dependence structure and marginal
distributions, Pareto–Clayton and Weibull–Gumbel. We obtain via mixing techniques explicit
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formula for the aggregated pdf for both examples. By varying the number of simulations from
10,000 to 10 millions, we observe that for Pareto(α) – Clayton(1/α), a minimum of 100,000 simu-
lations is needed to obtain a good convergence for moderately heavy tails and moderate tail
dependence (α= 2 or 3). For very heavy tails and moderate tail dependence (e.g. α=1.1), we do not
reach convergence, even with ten millions simulations, showing that the results obtained by MC
method for this kind of distributions must be considered carefully. The second case is more limited
since the Gumbel copula parameter is fixed to θ=2. However, we can conclude that the convergence
with a Gumbel copula is faster than with a Clayton survival copula, since 100,000 simulations are
enough for moderate heavy tailed Weibull marginal distribution.

When studying the behaviour of the analytical diversification benefit of Sn as a function of the
aggregation factor n, we observe that the dependence structure matters more for the diversification
benefit than the type of marginals do. It is interesting to note that in the independent case, the
diversification benefit is identical in the limit, when the threshold tends to 1, for Pareto with α= 2 or
Gaussian risks, despite the fact that Pareto has a heavier tail. We see that Gaussian marginals with
Clayton or Gumbel copula have a lower diversification benefit than independent Pareto risks, or than
Weibull marginals with Gumbel copula. With n= 100, the diversification benefit saturates in all the
cases except for independent Gaussian (or Pareto α= 2) risks; in this latter case, it gets close to 100%
only when n> 10,000. Another interesting effect is that the diversification benefit depends little on
the choice of risk measure for Pareto–Clayton (change around 2%), while in the Weibull–Gumbel
case, the change can go up to 20%. It is a question we will explore further when considering α and θ

independently.

Replacing MC simulations by explicit expressions is a considerable gain in precision and time.
Indeed, the analytical formulas are estimated to be 40–500 times faster than MC method, with the
time difference increasing with increasing number of aggregated variables. Moreover, with the
analytical formula, we can estimate the TVaR even for very heavy tailed distributions whenever MC
method fails even for ten millions simulations. Explicit formulas allow us to explore the aggregation
behaviour of the risk measures and the diversification benefit. It is a precious tool for validating
results of internal models, which are based on MC simulations. This study is a first step towards a
general approach where we could choose the tail index and the copula parameter independently. It
will be the object of further investigation.
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Appendix

We provide the proofs of the analytical results given in section 2. For further details, we refer to
Dacorogna et al. (2015–2016).

A. Proofs of the results given for the Pareto–Clayton model

∙ Proof of Proposition 2.1

The proof relies mainly on the application of the Oakes–Marshall–Olkin Theorem, which makes the
computations of fn easier.

As given in Marshall & Olkin (1988), choosingH(x)= e−x for x>0, and the latent rv Θ a Gamma Γ(α;
β) rv with shape parameter α>0 and rate parameter β>0 (or scale parameter 1/β) with pdf
fΘðxÞ= βα

Γ αð Þ x
α�1e�βxx≥0ð Þ, allows to check that the model defined by (2) and (3), which corresponds to our

model, satisfies (1) by the Oakes–Marshall–Olkin Theorem (see Dacorogna et al., 2015–2016).

Since conditioning X by Θ transforms the dependent risks into independent conditional ones, we write
the pdf fn of Sn as

fn sð Þ=
ð1
0
fSn jΘ sð ÞfΘ θð Þdθ
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With the choice ofH and Θ, our model satisfies (1), hence the conditional rv’s Xi |Θ= θ, i=1,… , n, are
i.i.d. exponentially distributed with parameter θ. We deduce that their conditional sum
Sn =

Pn
i=1 Xi j Θ= θ is Γ(n, θ)-distributed. So we obtain immediately that the pdf of Sn is the one of

a compound γ distribution and is given by

fn sð Þ= sn�1

Γ nð Þ
ð1
0
θn e�sθ

βα

Γ αð Þ θ
α�1e�βθdθ=

Γ α + nð Þ
Γ αð ÞΓ nð Þ ´

βα sn�1

β + sð Þα + n

hence the result (8).

∙ Proof of Theorem 2.1

Using the definition of TVaR and Proposition 2.1, we obtain

TVaRn =
1

1�κ
ð1
qn
s fn sð Þds= β

1�κð ÞB α; nð Þ
ð1

qn
β

sn 1 + sð Þ�α�n ds (32)

The change of variables u= (1 + s) −1 in (32) gives (11).

Using the definition of TVaR and Proposition 2.1 with n= 2, gives

TVaR2 =
α 1 + αð Þβα

1�κ
ð1
q2

s2

β + sð Þα + 2 ds

from which (13) follows, via the change of variables u= s/β.

Now let us assume that α 2 N n f0; 1g. We prove (12) by induction on α.

For α=2, computing (11) provides

TVaRn =
β

1�κð ÞB 2; nð Þ B pn ; 1; n + 1ð Þ= βn n + 1ð Þ
1�κ ´

1� 1�pnð Þn +1
n + 1

=
n β
1�κ 1� 1�pnð Þn +1

� �
which corresponds to (12) when replacing α by 2.

Assume now that (12) is satisfied for any 2≤ α≤ k (and for any n≥ 1). Let us prove that it holds
for α=k +1. It comes back to prove the induction on the following expression of the incomplete
β function:

B pn ; k; n + 1ð Þ= k�1ð Þ ! n !
n + k�1ð Þ ! B pn ; 1; n + kð Þ�

Xk�1
j=1

k�1ð Þ ! n !
n + k�jð Þ ! j ! pjn 1�pnð Þn+ k�j

But, since B pn ; 1; n + kð Þ= 1
n +k 1� 1�pnð Þn +k
� �

;

B pn ; k; n + 1ð Þ= k�1ð Þ ! n !
n + kð Þ ! �

Xk�1
j= 0

k�1ð Þ ! n !
n + k�jð Þ ! j ! p

j
nð1�pnÞn +k�j (33)

It is immediate to check that (33) is satisfied for k= 2. Then, assuming that (33) holds for
k 2 N n f0; 1g (and any n≥1), we check that it remains true for k +1. An integration by part gives

B pn ; k + 1; n + 1ð Þ=� 1
n + 1

pkn 1�pnð Þn +1 + k
n + 1

B pn ; k; n + 2ð Þ

Under the inductive assumption, we can apply (33) to express B(pn ; k, n+ 2); replacing it in the
previous equation provides that B(pn ; k+ 1, n+ 1) satisfies (33). Hence the result.
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∙ Proof of Corollary 2.1

i. It is immediate knowing the fact that E Xð Þ= β
α�1 for X (α, β)-Pareto distributed.

ii. Combining (10) with (11) in the definition of Dn gives (15).
For the case n= 2, (16) can be directly deduced from (15). An alternative, with simpler
computation, is to deduce (16) from (13) and the definition (4) of the diversification benefit.

B. Proofs of the results given for the Weibull–Gumbel model

∙ Proof of Proposition 2.2

The proof of this proposition is based on mixing techniques and on the following technical lemma.

Lemma B.1 For n≥1, we have

∂ns e�c
ffiffi
s
p� �

=
c �1ð ÞnΓ n� 1

2

� �
2
ffiffiffi
π
p s

1
2�n e�c

ffiffi
s
p

1F1 1�n; 2�2n ; 2c ffiffi
s
p� �

where ∂s denotes the partial derivative w.r.t. s.

Proof of Lemma B.1. We proceed by induction.

For n=1, Lemma B.1 is well satisfied since ∂s e�c
ffiffi
s
p� �

=� c
2 s
�1 = 2 e�c

ffiffi
s
p
, Γ 1 =2ð Þ= ffiffiffi

π
p

, and

1F1(0, 0; z)= 1, for all real z. Suppose now that Lemma B.1 is true for n≥ 1 and let us check it for
n +1. Under the induction assumption, we have

∂n+ 1s e�c
ffiffi
s
p� �

=
c �1ð ÞnΓ n� 1

2

� �
2
ffiffiffi
π
p ∂s s

1
2�n e�c

ffiffi
s
p

1F1 1�n; 2�2n ; 2c ffiffi
s
p� �� �

Let us compute An sð Þ : = ∂s s
1
2�n e�c

ffiffi
s
p

1F1 1�n; 2�2n ; 2c ffiffi
s
pð Þ

� �
, using the following properties of

hypergeometric functions (see, e.g. Gradshteyn, 1988):

i. ∂z 1F1 a; b ; zð Þð Þ= a
b 1 F1 a + 1; b + 1 ; zð Þ

ii. 1F1 a; 2a ; zð Þ= ez = 2 0F1 a + 1
2 ; z2

16

� �
iii. 1F1 a; 2a�1 ; zð Þ= 1

4 ez =2 4 0F1 a� 1
2 ; z2

16

� �
+ z

Γ a�1
2ð Þ

Γ a + 1
2ð Þ 0F1 a + 1

2 ;
z2
16

� �� �
iv. 0F1 a ; zð Þ= e�2

ffiffi
z
p

1F1 a� 1
2 ; 2a�1 ; 4

ffiffiffi
z
p� �

where 0F1(a; x) is the confluent hypergeometric function defined by 0F1ða ; zÞ= P1k=0
1
að Þk

zk
k !

with að Þk = Γða +kÞ
Γ að Þ

We have

An sð Þ= 1
2
s�ne�c

ffiffi
s
p

c 1F1 2�n; 3�2n ; 2c
ffiffi
s
p� �� c + 2n�1ð Þs�1 =2

� �
1F1 1�n; 2�2n ; 2c

ffiffi
s
p� �h i

=
1
2

1�2nð Þ s�n�1 = 2 0F1
1
2
�n ; c2s

4

� �
=
1
2

1�2nð Þ s�n�1 = 2 e�c
ffiffi
s
p

1F1 �n; �2n ; 2c
ffiffi
s
p� �

using (i) in the first equality, then both (ii) and (iii) in the second one, and (iv) in the last one. We can
conclude that Lemma B.1 is satisfied for n +1. □

To prove Proposition 2.2, we will also need the following relation.
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For n≥ 0 and a; b 2 R (see, e.g. Albano et al., 2011), we have

In;b að Þ=
ð1
0
xn�1 = 2e�ax�b =xdx= �1ð Þn∂na I0;b að Þ� �

with I0;b að Þ=
ð1
0
x�1 = 2e�ax�b=x dx=

ffiffiffi
π

a

r
e�2

ffiffiffiffi
ab
p

ð34Þ

when differentiating In,b(a) with respect to the parameter a.

Let us prove now Proposition 2.2. As given in Marshall & Olkin (1988), it is enough to choose
H(x)= e −x (x> 0) and Θ a Lévy-distributed (0, c2/2) positive rv with c> 0, and pdf fΘ xð Þ= c

2
ffiffiffiffiffiffi
πx3
p e�

c2
4x,

for x≥ 0, then to apply the Oakes–Marshall–Olkin theorem.

Computing the Laplace transform of Θ via the change of variables u= θ− 1, gives

LΘ tð Þ=
ð1
0
e�θtfΘ θð Þ dθ= I0;t c2 = 4

� �
= e�c

ffiffi
t
p

So, with this choice of H, the marginal distribution defined in (3) satisfies LΘð�lnHðxÞÞ= e�c
ffiffi
x
p

. It
corresponds on (0, ∞) to the survival cdf of a Weibull (c, 1/2) defined in (17). Hence we obtain the
marginal distributions of our model.

Now, since the generator of the Archimedean survival copula defined in (2), is given by

ϕ tð Þ=LΘ tð Þ�1 = 1
c2
� ln tð Þð Þ2

we deduce the structure of dependence assumed in our model, namely (19) when taking the para-
meter θ=2.

For the 2nd part of the proof, we can write, as in the proof of Proposition 2.1,

fn sð Þ=
ð1
0
fSn jΘ sð Þ fΘ θð Þdθ= c sn�1

2
ffiffiffi
π
p

Γ nð Þ
ð1
0
θ n�1ð Þ�1 = 2 e�sθ�

c2
4θ dθ (35)

Therefore, using (34) provides

fn sð Þ= c sn�1

2
ffiffiffi
π
p

Γ nð Þ �1ð Þn�1 ffiffiffi
π
p

∂n�1s s�1 = 2e�c
ffiffi
s
p� �

=
sn�1

Γ nð Þ �1ð Þn∂ns e�c
ffiffi
s
p� �

Applying Lemma B.1 allows to conclude.

∙ Proof of Theorem 2.2
By definition of the TVaR, we can write, using the expression (35) for fn

TVaRn =
1

1�κ
ð1
qn
s fnðsÞds= c

2
ffiffiffi
π
p

1�κð ÞΓ nð Þ
ð1
0
θn�3 = 2 e�

c2
4θ

ð1
qn
sn e�sθ ds dθ

But we have, by the change of variable t= sθ

ð1
qn
sn e�sθ ds=

1

θn +1
Γ n + 1 ; θ qnð Þ= n ! e�θ qn

θn +1

Xn
k=0

θ qnð Þk
k !
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Γ(s; x) denoting the incomplete γ function defined by
Ð1
x ts�1e�tdt that can be expressed as a

discrete sum (see Gradshteyn, 1988).
So we deduce that

TVaRn =
c n

2 1�κð Þ ffiffiffi
π
p

ð1
0

1 + θqnð Þ θ�5 = 2 e� c2
4θ � θ qndθ +

Xn
k=2

qkn
k !

Ik�2;c2 = 4 qnð Þ
 !

=
c n

2 1�κð Þ ffiffiffi
π
p I1;qn c2 = 4

� �
+ qnI0;qn c2 = 4

� �
+
Xn
k=2

qkn
k !

Ik�2;c2 =4 qnð Þ
 !

using the definition (34) in the first equation, and the change of variable θ=u −1 to compute the
integral, in the second one.

On one hand, we have I0;qn c2 = 4
� �

= 2
ffiffi
π
p
c e�c

ffiffiffiffi
qn
p

; on the other hand, a straightforward computation
gives I1;qn c2 =4

� �
= 4

ffiffi
π
p
c3 e�c

ffiffiffiffi
qn
p

1 + c
ffiffiffiffiffi
qn
p� �

. Moreover, we can write, using once again (34)

Ik�2;c2 =4 qnð Þ= �1ð Þk∂k�2qn I0;c2 = 4 qnð Þ
� �

= �1ð Þk�12
ffiffiffi
π
p
c

∂k�1qn e�c
ffiffiffiffi
qn
p� �

from which we deduce, applying Lemma B.1, that

Xn
k=2

qkn
k !

Ik�2;c2 = 4 qnð Þ= q3 =2n e�c
ffiffiffiffi
qn
p Xn

k=2

Γ k� 3
2

� �
k ! 1 F1 2�k; 4�2k ; 2c

ffiffiffiffiffi
qn
pð Þ

Combining these results provide (22).

Applying (22) with n=1 provides TVaR1 = 2 e�c
ffiffiffi
q1
p

1�κð Þc2 1 + c q1 = 21 + c2q1
2

� �
, from which (23) follows since

q1 = ðlnð1�κÞÞ2=c2. For n=2, (24) is a direct application of (22).

∙ Proof of Corollary 2.2

i. It is immediate knowing that E Xð Þ= cΓ 1 + 1
τ

� �
= 2c when X is (c, τ)-Weibull distributed.

ii. Combining (22), (24), respectively, with (23) in the definition of the diversification benefit (4)
gives the results.
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