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Abstract. We consider a model of viscoresistive incompressible magnetohydro-
dynamics in a periodic cylinder, with boundary conditions meant to idealize in
a tractable way those of a laboratory plasma. The resistivity is described by a
tensor presenting a field-dependent anisotropic part suggested by kinetic theory,
controlled by a certain anisotropy parameter. An explicit analytical description
of the corresponding axisymmetric zero-flow equilibria is given, and it is shown
how tokamak-like or paramagnetic-pinch-like field profiles are obtained as the
anisotropy parameter is changed. The study of the stability properties of such
equilibria is deferred to a later paper.

1. Introduction
A familiar approach in fusion plasma theory has been to seek solutions of the
governing dynamical equations and then to study their stability properties. One
of the main activities of fusion plasma theory has been to seek stationary states
that represent as well as possible the experimental conditions that will prevail under
thermonuclear conditions. Even treatments of turbulence, disruptions, crashes, and
so on have often started from steady states, or ‘equilibria’, which satisfy to some
approximation dynamical systems such as the equations of magnetohydrodynamics
(MHD).

Most often, ideal or non-dissipative MHD steady states have been chosen as start-
ing points (e.g. Freidberg 1987; Goldston and Rutherford 1995). Here, we seek one
of a considerably more complicated class of MHD steady states, and work at the
level of viscoresistive MHD, neglecting electron inertia so that the only velocity
field that enters the description is the fluid velocity field v. We utilize, in particular,
an anisotropic tensor resistivity with a variable degree of anisotropy. The transport
coefficients, strictly speaking, should be calculated self-consistently, depending as
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they do on such spatially variable fields as the density and temperature (e.g. Brag-
inskii 1965; Balescu 1988). This procedure introduces an energy or temperature
equation as well as an equation of motion, and has been pursued by Goodman
(1992, 1993, 1998), but leads to calculations of great complexity. Here, we remain
at a level where the transport coefficients (in particular the tensor resistivity) are
treated as prescribed functions of space that reflect what are believed to be quali-
tatively correct spatial temperature profiles. A similar program has been described
by, for example, Montgomery et al. (1999) for toroidal resistive equilibria with scalar
resistivity (see also Kamp et al. 1998; Bates and Montgomery 1998). This choice is
motivated by the need for tractability and the urge to produce specific solutions.

In the present paper, we are concerned with the problem of finding a family
of axisymmetric zero-flow (v = 0) equilibria in a straight periodic cylinder with
boundary conditions chosen to approximate as well as possible, though imperfectly,
those of a real confining chamber. We intend in a later paper to discuss the stability
of the equilibria described here. One of our main present conclusions is that the
resulting equilibrium profiles are strongly dependent upon the degree of anisotropy
chosen for the resistivity. The equilibria are obtained in analytical form in terms
of transcendental functions. By varying the available free parameters, we can test
the physical consistency of all the relevant quantities except the density (which will
be assumed to be spatially uniform). The magnetic field, current density, pressure,
safety factor, and the like, are all explicitly calculable, given the resistivity profile.
The equilibria found range from tokamak-like ones to paramagnetic pinch configur-
ations. The latter are of some interest in their own right, and exhibit some features
that are close to those configurations achieved in reversed field pinches (RFPs)
before spontaneous field reversal sets in (Bodin and Newton 1980) – though, in
the absence of flow velocity, we do not find field reversal itself among our class of
possible steady states.

The main result of this paper may be said to be the explicit determination of
axisymmetric resistive steady states without flow in a straight cylinder with a
realistic-looking anisotropic tensor resistivity. As will be seen, this turns out to be
algebraically more demanding than one might have guessed. As far as we know, such
MHD steady states have not been previously reported, though some toroidal states
involving anisotropic resistivity have been calculated by van der Woude (2000).

The paper is organized as follows: Sec. 2 is a summary of the mathematical
description used and the assumptions made, including a discussion of boundary
conditions; Sec. 3 describes in detail the solutions found and their resulting profiles;
a brief summary of the conclusions appears in Sec. 4.

2. The model
2.1. The MHD equations

We consider a globally neutral plasma with time-constant uniform density ρ0, char-
acterized by an isotropic scalar kinematic viscosity ν and a suitable resistivity ten-
sor η to be discussed below, in the standard approximation in which the displace-
ment current is neglected in Maxwell’s equations, so that the electric field actually
behaves as a decoupled quantity. Thus, it is assumed that the plasma (center-of-
mass) velocity v evolves according to the magnetically driven Navier–Stokes (NS)
equation, the magnetic field B evolves according to the Faraday–Ohm (FO) law,
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while the current density J is ‘defined’ by Ampere’s law. The equations for the
fields v, B, J and the pressure p (in SI units) are then

∂v
∂t

= −v ·∇v− 1
ρ0
∇p +

1
ρ0

J× B + ν∇2v, (1)

∂B
∂t

=∇×
(

v× B− M

ρ0e
J× B− η · J

)
, (2)

µ0J =∇× B, (3)

∇ · v = 0, ∇ · B = 0, (4)

where M is the ion mass, −e the electron charge and µ0 the vacuum magnetic
permeability; see for example Woods (1987) or Goldston and Rutherford (1995).

The resistivity tensor η appearing in (2) will be assumed to have the form

η = η(r)[I− (1− γ)bb], 0 6 γ 6 1, (5)

where I is the identity tensor, b ≡ B/|B| denotes the unit vector in the direction of
the magnetic field B, while the ‘resistivity profile’ η(r) is assumed to be a positive
function of the distance r from the axis of the cylinder modeling the ‘chamber’
containing the plasma. Such a resistivity profile will turn out to play a relevant
role, and its properties will be discussed in the next section.

Actually, we might have taken a resistivity tensor of a little more general form
suggested by kinetic theory (Braginskii 1965; Woods 1987; Balescu 1988), namely
η = η‖(x)bb + η⊥(x)(I− bb), which involves two independent resistivities η‖ and η⊥
(parallel and orthogonal to b respectively) and makes no assumption of cylindrical
symmetry. However, the simpler form (5), which is obtained from the latter one by
setting η‖ = γη⊥ (with η⊥ ≡ η) and by assuming cylindrical symmetry, seems to
be of a sufficiently general character. So the model is defined by the form of the
resistivity profile η(r) and the anisotropy parameter γ. Concerning such a parameter
γ = η‖/η⊥, let us recall that, by kinetic theory, the value γ = 0.5 is predicted for
high-magnetic-field and/or high-temperature regimes, while an isotropic tensor, i.e.
γ = 1, is predicted in the opposite regime. The choice made here, of considering γ
as a free parameter, allows us to deal with different physical situations in a simple
way. The range of γ suggested by kinetic theory is actually 0.5 6 γ 6 1; we chose
instead to consider the enlarged interval 0 < γ 6 1, because small values of γ might
be of interest in mimicking noncollisional transport phenomena.

Concerning the FO law (2), notice that no pressure gradient has been included
in the right-hand side, due to the assumption of incompressibility. Indeed Ohm’s
law is nothing but the equation of motion of the electron fluid in which inertia
(acceleration) terms have been neglected, namely

E = −
(

v− J
n0e

)
× B− 1

n0e
∇pe + η · J . (6)

where v− J/n0e ≡ ve is the electron fluid velocity, n0 = ρ0/M the number density
of ions and/or electrons (we think of hydrogen plasmas, say) and pe the electron
pressure; thus, for a uniform n0 the pressure term becomes curl-free, making no
contribution to Faraday’s law ∂B/∂t = −∇× E.

Finally, concerning the plasma pressure p, notice that incompressibility implies it
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to be a ‘slave’ variable. Indeed, by taking the divergence of (1), the Poisson equation

∇2p =∇ · (−ρ0v ·∇v + J× B + ρ0ν∇2v) (7)

is obtained, from which p is determined, up to a constant, with suitable bound-
ary conditions (e.g. Landau and Lifshitz 1987). A detailed discussion concerning
the necessity and the role of boundary conditions in determining pressure can be
found in Kress and Montgomery (2000). So the pressure term in the Navier–Stokes
equation can be formally rewritten as

−∇p = −∇∆−1[∇ · (−ρ0v ·∇v + J× B + ρ0ν∇2v)], (8)

∆−1 denoting the inverse of the Laplacian, and thus eliminated (Doering and Gibbon
1995).

2.2. Geometry and boundary conditions

As a model for the ‘chamber’ containing the plasma, for the sake of simplicity we
take the so-called ‘straightened torus’, namely the cylinder

Ω ≡ {(r, θ, z) | 0 6 r 6 a, 0 6 θ < 2π, 0 6 z 6 L},
with periodic boundary conditions on the variable z, i.e. with

ψ(r, θ, z) = ψ(r, θ, z + L) ∀z ∈ Ω

being assumed to hold for any generic field component ψ. This should be thought of
as a mathematically simplified model for an actual physical torus of minor radius
a and major radius R if one takes L = 2πR, an approximation that should be
good enough for large-aspect-ratio (R/a) devices. With regard to the boundary ∂Ω
(i.e. the subset of Ω with r = a), as is usual for idealized two-dimensional surfaces
modeling physical walls, we will have to deal with cases of functions that possibly
have discontinuities through it. In this connection, the convention will be made
that for a generic function f the value f |∂Ω(θ, z) denotes the ‘internal limit’, i.e.

f |∂Ω(θ, z) = lim
r→a−

f (r, θ, z),

while the ‘external limit’ will be denoted by f ext(θ, z).
We first settle down an ‘internal’ boundary condition for the resistivity profile

η(r), which is a quantity entering the definition itself of the model, namely

lim
r→a−

η(r) = +∞. (9)

This is due to the fact that we want to model a confined plasma, which does not
touch the wall of the vessel, so that the temperature at the wall should be negligible
with respect to the temperature on the axis; this can be simply modeled by assuming
a vanishing temperature at the wall. So (9) follows from Spitzer’s law η ∼ T−3/2

(Spitzer 1956). In the discussion to be given below, we will have to make use of a
further condition related to the assumed absence of plasma at the wall and involving
the electron pressure pe, namely

er ×∇pe|∂Ω = 0. (10)

We now come to the boundary conditions for the fields entering the MHD equations,
namely v, p, B and J. In fact, a boundary condition is also required for the electric
field E, inasmuch as it enters Faraday’s law ∂B/∂t = −∇×E; indeed, while inside
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the chamber the electric field E is assumed to be given by (6), outside the chamber
it is instead controlled as an independent quantity, as also are the magnetic field
and the currents. Actually, we model the action of the external coils controlling
the plasma current and the toroidal magnetic field by means of a constant surface
current density K flowing on the boundary of the cylinder, and of a constant axial
electric field E0ez at the wall (er, eθ and ez denoting, as usual, the unit vectors in
the radial, poloidal and axial directions, respectively). In a real device, the surface
current Kθ is provided by the toroidal field coils placed around the chamber in the
poloidal direction; if there are NT such coils, each carrying a current IT , then a
suitable estimate is given by Kθ = NT IT /L. The surface current Kz could instead
be provided by a set of poloidal field coils rolling up the chamber in the toroidal
direction.

The physical situation of interest for laboratory plasmas should take into account
what occurs on the outer side of ∂Ω; we assume

vext = 0, pext = 0, Jext = 0, Bext = 0, (11)

and

Eext = E0ez, pext
e = 0. (12)

Indeed, the first three conditions of (11) are just due to the fact that outside Ω there
is no plasma at all. With regard to Bext = 0, its radial component, Bext

r = 0, just
follows from the standard settings of the external coils, while the vanishing of the
tangential components corresponds to considering an ideal, magnetically screened
system. Finally, concerning the conditions (12), the first was just discussed above,
while the latter corresponds to the absence of plasma outside Ω.

Such external conditions now allow one, through the standard ‘jump’ or conti-
nuity conditions, to deduce the relevant ‘internal’ boundary conditions for the fields
entering the MHD equations. These turn out to be

v|∂Ω = 0, (13)

Br|∂Ω = 0, er × B|∂Ω = −µ0K, (14)

η · J|∂Ω = E0ez, (15)

where K is the surface current density flowing on the wall, which is assumed to be a
given constant vector. Notice that, from the proof of (15), to be given below, it also
follows that J|∂Ω = 0. In turn, from such a condition together with the condition
(13), through (1) one obtains for the ‘slave’ variable p the Neumann boundary
condition

dp

dr

∣∣∣∣
∂Ω

= ρ0ν[∇2v] · er. (16)

The proof is as follows. The conditions vr|∂Ω = 0 and Br|∂Ω = 0 follow, as usual,
from the vanishing of the corresponding quantities outside Ω, making use of the
solenoidal character of v and B, while the ‘no-slip’ boundary condition er×v|∂Ω = 0
is the usual one of viscous hydrodynamics. With regard to the tangential component
of B at the wall, i.e. the second equation of (14), this is nothing but the standard
jump condition

er × (Bext − B|∂Ω) = µ0K, (17)

with the above assumption Bext = 0.
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Finally, we come to the last internal condition (15), which follows by taking the
limit r → a− in the relation (6) defining the electric field inside the chamber. First
of all, notice that Jr|∂Ω = 0 follows from the fact that J is a solenoidal vector field
and Jext = 0. Moreover, the tangential component too vanishes. Indeed, by the
continuity of the tangential component of the electric field E through ∂Ω, the left-
hand side of (6) is known to have a finite limit, namely E0ez. On the other hand, η is
assumed to diverge at the wall (the condition (9)), so that from the right-hand side
one deduces that the tangential component of J|∂Ω vanishes, i.e. J|∂Ω = 0. Thus,
by (13), the first term on the right-hand side also vanishes at the wall, while the
second vanishes by the assumption (10), which was made above in connection with
the absence of plasma at the wall.

As a final comment on the geometry and the boundary conditions, we point
out that, with regard to the magnetic helicity of the system, the correct quantity
according to the prescriptions of Moffatt (1969) and Taylor (1986) is the ‘effective’
magnetic helicity, which is discussed in Appendix A.

2.3. Relevant quantities: axial magnetic flux, plasma current, pinch ratio and field
parameter

Given a transverse section Σ0 of Ω, i.e. the subset defined by z = z0, with boundary
∂Σ0 ⊂ ∂Ω, the axial magnetic flux

Φ(t) ≡
∫

Σ0

Bz d
2x (18)

is defined; by Gauss’ theorem, Φ is independent of z0, and in fact one has Φ =
πa2〈Bz〉Ω, where 〈·〉Ω denotes the volume average in Ω. The flux Φ is easily seen
to be an integral of motion, i.e. to satisfy Φ(t) = Φ(0). Indeed, from (2) and the
boundary condition (15), by Stokes’ theorem one obtains

d

dt
Φ(t) =

∮
∂Σ0

(
v× B− M

ρ0e
J× B− E0ez

)
· eθa dθ,

and the assertion follows because the assumed boundary condition (13) v|∂Ω = 0
and the property J|∂Ω = 0 insure that the ‘dynamo’ electric field component −v×B
and the Hall electric field component (M/ρ0e)J× B vanish at the boundary.

The total axial current Ip supported by the plasma is defined as

Ip(t) ≡
∫

Σ0

Jz d
2x =

1
µ0

∮
∂Σ0

Bθa dθ, (19)

the second equality following from Stokes’ theorem; by Gauss’ theorem Ip too does
not depend on z0.

Notice that, at variance with the axial flux Φ, the value of which is determined
by the initial data, the plasma current Ip is determined by the boundary conditions
through the value Bθ|∂Ω, i.e. of Kz. So, in our case, it turns out to be constant too,
but just because constant boundary conditions for Bθ were assumed.

Let us recall that from the three quantities Φ, 〈Bz〉∂Ω, and 〈Bθ〉∂Ω, two relevant
quantities are obtained (Ortolani and Schnack 1993), namely the pinch ratio

Θ ≡ 〈Bθ〉∂Ω

〈Bz〉Ω =
Bθ|∂Ω

Φ/πa2 =
µ0a

2
Ip
Φ

(20)
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and the field parameter

F ≡ 〈Bz〉∂Ω

〈Bz〉Ω =
Bz|∂Ω

Φ/πa2 . (21)

The latter is well known to be a fundamental parameter in fusion plasma physics,
since it measures how strong the pinch effect on the toroidal field lines is. For
tokamaks, one has F ' 1, since Bz has an almost-constant, uniform profile, while
RFPs are characterized by a negative F . The pinch ratio Θ measures instead how
much field is ‘produced’ by the externally driven current. In RFPs, Θ is of order
one, while in tokamaks, in general, it is about one order of magnitude lower.

In our model, the quantities Θ and F turn out to be constant, their values being
determined both by the constant boundary data Bz|∂Ω, Bθ|∂Ω (or Ip) and by the
initial data entering the constant of motion Φ.

3. One-dimensional (axisymmetric) steady states
3.1. General properties

Given the equations (1)–(5) with the boundary conditions (13)–(15), let us now look
for a zero-flow equilibrium, namely a stationary solution B0, J0, p0, with the plasma
at rest, i.e. with v = 0. Then one gets the system

J0 × B0 =∇p0, (22a)

∇× (η · J0) = 0, (22b)

together with µ0J0 =∇× B0 and ∇ · B0 = 0. Notice that, at equilibrium, the Hall
electric field (M/ρ0e)J0 × B0 make no contribution to the FO equation, since the
Lorentz force J0 × B0 is curl-free. So, the Hall term makes no contribution in deter-
mining zero-flow, Ohmic equilibria, although, as will be shown in the forthcoming
paper, the Hall effect strongly affects the stability properties of such equilibria.

We now look for solutions of the system (22) in axial symmetry, i.e. with each
field, as well as η, depending on the coordinate r only. The equation∇× (η ·J0) = 0
can be immediately integrated, giving

η

[
J0 − (1− γ)

J0 · B0

|B0|2 B0

]
= −er

dφ

dr
+ Cez,

where C and φ(r) are a constant and a radial function to be determined, respectively;
indeed, under the requirement of axial symmetry, the right-hand side of the above
relation represents the most general curl-free expression in cylindrical coordinates.
Now, using the boundary condition (15) and remembering that B0r and J0r vanish
identically due to the assumed axial symmetry, one gets φ = const and C = E0,
where E0 is the axial constant electric field at the wall. So, recalling that

J0θ = − 1
µ0

dB0z

dr
, J0z =

1
µ0r

d

dr
(rB0θ), (23)

(22b) reduces to a system of two first-order differential equations:

dB0z

dr
= −µ0E0

η

1− γ
γ

B0zB0θ

|B0|2 , (24a)

1
r

d

dr
(rB0θ) =

µ0E0

η

(
1 +

1− γ
γ

B2
0z

|B0|2
)
, (24b)
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with boundary conditions

B0z(a) = Bz|∂Ω, B0θ(a) = Bθ|∂Ω. (25)

In axial symmetry, (22a) just reduces to dp0/dr = J0θB0z−J0zB0θ, which, making
use of (24), gives an explicit expression for p0 in terms of B0θ, namely

p0(r) = p0(a) +
∫ a

r

E0

η(s)
B0θ(s) ds. (26)

Thus, in axial symmetry, the equilibrium system (22) just reduces to (24). This
constitutes a system of two first-order differential equations that, for a given re-
sistivity profile η(r), can in principle be solved, or at least integrated by standard
numerical methods. Let us stress two important properties of such a system and of
the relation (26):

(i) p0(r) is a monotonically decreasing function of r.

(ii) In the anisotropic case γ < 1, B0z(r) is a monotonically decreasing function
of r; in particular, B0z(a) > 0; for γ = 1, i.e. for isotropic resistivities, one has
B0z(r) = B0z(a), i.e. the equilibrium axial magnetic field has a flat, uniform
profile.

The first of these is proved as follows. By integrating (24b) between 0 and r and
supposing B0θ to be regular at r = 0 (in fact, it must vanish there, as will be shown
below), one gets

B0θ(r) =
1
r

∫ r

0

µ0E0

η(s)

[
1 +

1− γ
γ

B2
0z(s)
|B0(s)|2

]
s ds,

which, by virtue of γ 6 1, gives B0θ(r) > 0; the assertion then follows from (26).
Analogously, (ii) follows by integrating (24a), which gives

B0z(r) = B0z(0) exp
[
−
∫ r

0

µ0E0

η(s)
1− γ
γ

B0θ(s)
|B0(s)|2 ds

]
.

Since the argument of the exponential function is positive for γ < 1, one concludes
that in such a case B0z(r) is a monotonically decreasing function of its argument; in
particular B0z(r) can never pass through zero and Bz(a) > 0. The relation B0z(r) =
B0z(a) for γ = 1 also follows from the above expression for B0z(r). Thus one sees
that for γ < 1, the system (24) admits solutions only if Bz|∂Ω > 0, corresponding
to a positive field parameter. Under the assumptions stated, there are no RFP
solutions without flow; the ‘reversed state’ found by Taylor (1974), for example,
does not satisfy Ohm’s law and cannot be made to do so for any value of γ.

Let us recall that an axisymmetric equilibrium satisfying the above two proper-
ties with γ < 1 is a paramagnetic pinch, since B0z and p0 are both monotonically
decreasing functions of r and thus the axial magnetic field is higher where the pres-
sure is. The isotropic limit case γ = 1 presents a vanishing poloidal component of the
current density (J0θ = 0); this is a kind of ‘resistive Z-pinch’ equilibrium configura-
tion that, once supplied with a strong axial uniform magnetic fieldB0z = Bz|∂Ω > 0,
represents a crude starting point to approach tokamaks.

Notice that, since we are supposing that η(r) diverges at the wall with a finite
value of B0θ(a), (26) yields dp0/dr(a) = 0, which is consistent with the Neumann
boundary condition (16) in the case v = 0.
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3.2. Analytic solution via the self-consistency method

The system (24) is a rather complicated nonlinear one that, if the resistivity profile
η(r) were given a priori, could be solved by standard numerical methods. But it
turns out that physics requires some kind of functional dependence of the resistivity
profile on the magnetic field, and so one is confronted with a problem of ‘closure’.
This problem is dealt with here by taking inspiration from the self-consistency
method, which, for example, is applied by Freidberg (1987) to the so-called force-
free paramagnetic model.

The method proceeds as follows. In place of η, as an assigned function defining
the model, one takes the auxiliary function

ψ(x) ≡ aµ0E0

η(x)
B0θ(x)
|B0(x)|2 , x ≡ r

a
. (27)

which is in one-to-one correspondence with it, once a solution is given (notice that
ψ is positive, since B0θ is). The consideration of such a function ψ(x) is suggested
by the form itself of the system (24a), because the change of variables

X(x) = B0z(x), Y (x) = [xB0θ(x)]2,

brings it into the form

X ′(x) = −1− γ
γ

ψ(x)X(x), (28a)

Y ′(x) = 2ψ(x)Y (x) +
2
γ
x2ψ(x)X2(x) (28b)

(the prime denoting the derivative with respect to x), in which the unknown X(x)
decouples away and satisfies a linear equation if the function ψ(x) is assumed to be
a given one. The equivalent integral form of (28) is

X(x) = Xw exp
[

1− γ
γ

Ψ(x)
]
, (29a)

Y (x) = exp[−2Ψ(x)]
(
Yw +X2

w

{
1− x2 exp

[
2
γ

Ψ(x)
]

−2
∫ 1

x

exp
[

2
γ

Ψ(s)
]
s ds

})
, (29b)

where

Ψ(x) ≡
∫ 1

x

ψ(s) ds,

and the ‘initial data’ at x = 1 were taken as required by (25), namely X(1) ≡ Xw

and Y (1) ≡ Yw; correspondingly, the resistivity profile is then given by the formula

η(x) =
aµ0E0

ψ(x)
x
√
Y (x)

x2X2(x) + Y (x)
. (30)

Now, the system (29) is completely equivalent to the original one, being nothing but
a transcription of it in the form of a system of integral equations, with the function
Ψ still depending on the unknowns X and Y themselves. The idea of the method
consists in taking ψ (and thus Ψ) as an assigned function of x, i.e. in letting the
resistivity profile η depend on the fields themselves through the relation (30) with an
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assigned ψ(x); indeed, in such a way (29) no longer appears as an integral equation,
but just as an explicit expression of the solution. Obviously, this makes sense only
if the functional dependence of η on the fields as given by (30) is reasonable, and
the problem is then reduced to that of finding physically reasonable conditions
determining the analytical form of the auxliliary function ψ.

To this end, one starts by noticing that the condition B0θ(0) = 0 has to be
satisfied, and this entails the constraint

lim
x→0+

Y (x)
x2 = 0, (31)

which requires the necessary condition Y (0) = 0. Now, by (29b), the condition
Y (0) = 0 takes the form

Yw
X2
w

≡ B2
0θ(a)

B2
0z(a)

=
∫ 1

0
exp

[
2
γ

Ψ(s)
]
d(s2)− 1; (32)

this in turn can always be satisfied because of the relation∫ 1

x

s2 d

ds

{
exp

[
2
γ

Ψ(s)
]}

ds = 1− x2 exp
[

2
γ

Ψ(x)
]
−
∫ 1

x

exp
[

2
γ

Ψ(s)
]
d(s2) < 0,

which holds since ψ(s) = −dΨ/ds is a non-negative function. In particular, the
relation (32) allows one to rewrite the solution (29) in the more manageable form

X(x) = Xw exp
[

1− γ
γ

Ψ(x)
]
, (33a)

Y (x) = X2
w exp[−2Ψ(x)]

{∫ x

0
exp

[
2
γ

Ψ(s)
]

2s ds− x2 exp
[

2
γ

Ψ(x)
]}

. (33b)

In determining the form of the auxiliary function ψ, one should take into account
that, as is easily seen, (30) implies for η the two limiting behaviors

η(0) =
aµ0E0

X(0)
1√
ψ′(0)

and

η(x) ∼ 1
ψ(x)

as x→ 1.

It is thus clear that the auxiliary function ψ should be chosen in such a way that:

(i) the condition (31) is guaranteed;

(ii) ψ′(0)� 0;

(iii) ψ vanishes at x = 1, in such a way that a suitable divergence for η is guaranteed.

A convenient choice turns out to be the function

ψ(x) = (2δ + 2)αx(1− x2)δ, α > 0, δ > 0, (34)

which depends on the two positive parameters α and δ. Correspondingly, one has
Ψ(x) = α(1− x2)δ+1, and furthermore one finds (see Appendix B)∫ 1

x

exp
[

2
γ

Ψ(s)
]

2s ds = (1− x2) Kδ

[
2α
γ

(1− x2)δ+1
]

(35)

where Kδ(z) is a shorthand notation for the Kummer confluent hypergeometric
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function with indices 1/(1 + δ) and (2 + δ)/(1 + δ); this is defined as the solution of
the second-order differential equation

z
d2K

dz2 +
(

2 + δ

1 + δ
− z
)
dK

dz
− K

1 + δ
= 0, (36)

which is regular at the origin and satisfies the boundary condition K(0) = 1
(Abramowitz and Stegun 1965). We thank Sergio Cacciatori (Milan University)
for kindly pointing this out to us.

The regularity condition Y (0) = 0 now reads

B2
0θ(a)

B2
0z(a)

=
∫ 1

0
exp

[
2α
γ

(1− y)3/2
]
dy − 1 = Kδ

(
2α
γ

)
− 1. (37)

This finally allows us to give the analytical solutions for the poloidal and the axial
components B0θ and B0z of the magnetic field, namely

B0θ(r) =
aB0z(a)

r
exp

[
−α

(
1− r2

a2

)δ+1
]{

Kδ

(
2α
γ

)
− r2

a2 exp

[
2α
γ

(
1− r2

a2

)δ+1
]

−
(

1− r2

a2

)
Kδ

[
2α
γ

(
1− r2

a2

)δ+1
]}1/2

, (38)

B0z(r) = B0z(a) exp

[
α

1− γ
γ

(
1− r2

a2

)δ+1
]
. (39)

As expected, in the isotropic case γ = 1, one has a uniform axial profile, i.e. B0z(r) =
B0z(a), while for γ < 1, the field B0z presents a monotonically decreasing profile.
It can easily be checked that, with the above choice for ψ, one has the asymptotic
behaviors B0θ(r) ∼ r for r/a� 1 and B0θ(r) ∼ 1/r for r ' a, as should be expected
from a physical point of view; in particular, the first of these properties insures that
condition (31) is satisfied, since Y (x) is of order x4 as x→ 0. The resistivity profile
turns out to be given by

η(r) =
aµ0E0

ψ(r/a)
B0θ(r)

B2
0θ(r) +B2

0z(r)
, (40)

with B0θ and B0z given by (38) and (39); it is easily seen to present the limiting
behaviors

η(r) ∼ 1
[1− (r/a)]δ

, r ' a (41)

η(0) ' aµ0E0

B0z(0)
, r → 0.

As shown in Fig. 3, the resistivity profiles look quite reasonable from a physical
point of view, for any value of γ. Having assigned the parameters γ and a entering
the model, the parameter E0 through the boundary conditions, and the parameter
Φ0 depending on the initial data (the value of the pressure at the wall, p0(a), is
arbitrary because for incompressible fluids the pressure is determined up to an
additive constant), the equilibrium solution is determined for any choice of the free
parameters α and δ defining the auxiliary function ψ given in (34). One then gets
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Figure 1. Profiles of the magnetic field components: Bθ (dashed lines) and Bz (solid lines):
(a) γ = 1; (b) γ = 0.5; (c) γ = 0.1.

as output the equilibrium values of the field parameter and of the pinch ratio,

F0 =
1

Kδ

(
α

1− γ
γ

) , Θ0 =

√
Kδ

(
2α
γ

)
− 1

Kδ

(
α

1− γ
γ

) , (42)

from which the boundary values of the magnetic field components

B0θ(a) =
Φ0

πa2 Θ0, B0z(a) =
Φ0

πa2F0 (43)

are computed (as well as the value of the total plasma current, namely I0p =
2πaB0θ(a)/µ0). So, if one assumes that the boundary values B0θ(a) and B0z(a) are
assigned as well, the free parameters α and δ are to be adjusted in order to match
them. Such a procedure was found to work for all the cases that were considered.

3.3. Field profiles

We illustrate now the explicit solutions of the axisymmetric zero-flow equilibrium
problem. Three values of the anisotropy parameter γ are considered, namely γ = 1,
corresponding to the isotropic case, γ = 0.5, which is the value predicted by kinetic
theory for fusion plasmas, and γ = 0.1. Figures 1–6 display, respectively, magnetic
field components, current density components, resistivity profile, pressure, align-
ment cosine and safety factor plotted versus r/a, the normalized radial coordinate.
Figure 7 shows the (F, Θ) diagrams. In each figure, three plots are given, corre-
sponding to the three considered values of γ.

We recall that the alignment cosine, denoted by cos{J,B} and defined as the
cosine of the angle between J0 and B0, measures the extent to which and where
the equilibrium configuration at hand is approximately force-free; the well-known
safety factor is defined as q ≡ rB0z/RB0θ, where R = L/2π is the major radius
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Figure 2. Profiles of the current density components: Jθ (dashed lines) and Jz (solid lines):
(a) γ = 1; (b) γ = 0.5; (c) γ = 0.1. Notice that for γ = 1, one has Jθ ≡ 0.
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Figure 3. Profiles of the (orthogonal) resistivity: (a) γ = 1; (b) γ = 0.5; (c) γ = 0.1.

of the equivalent straightened torus. The pressure profiles, given by (26), are in
practice obtained by numerical integration of the differential equation

d

dr
p0(r) = − E0

η(r)
B0θ(r),

with the ‘arbitrary’ boundary condition p0(a) = 0. The (F, Θ) diagrams are ob-
tained from (42) by fixing (in addition to γ) a value for δ, which produces a plain
curve with parametric representation F0(α), Θ0(α). It can be shown that the curves
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Figure 5. Profiles of the alignment cosine: (a) γ = 1; (b) γ = 0.5; (c) γ = 0.1.

shown in Fig. 7 are nearly independent of the particular value of the parameter δ
chosen in a reasonable range.

All the plots are for a cylinder of minor radius a = 0.5 m and length L = 4πm;
the externally applied toroidal loop voltage is fixed to Vloop = 12πV, corresponding
to a driving axial field E0 = Vloop/L = 3 V m−1. Different values of the bias field
〈B0z〉Ω = Φ0/πa

2 and of the boundary conditions are instead considered for each
value of γ. In particular, we have chosen 〈B0z〉Ω = 4 T for γ = 1 and 〈B0z〉Ω = 0.5 T
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for γ = 0.5 and γ = 0.1. The different boundary conditions chosen can be seen by
inspection from Fig. 1.

The main feature that seems to come out even from a quick inspection of the
figures is the relevance of the role of the anisotropy parameter γ. Indeed, while
resistivity (Fig. 3) and pressure (Fig. 4) are essentially insensitive to it, the other
quantities exhibit a rather strong, physically meaningful dependence. The most
paradigmatic case is that of the field Bz (Fig. 1), which is completely flat in the
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isotropic case, while exhibiting a pinch-like effect that increases with anisotropy.
Alignment too is seen to be strongly influenced (see Fig. 5): the plasma configuration
is everywhere almost force-free inside the chamber for γ = 1, and it continues to be
so only in a central region in the anisotropic case, while at the wall the alignment
decreases as the anisotropy increases. The role of γ in connection with the current
seems to be particularly interesting (Fig. 2). Indeed, here too the pinch effect is
made evident, with the current channel tending to be localized near the axis as the
anisotropy increases. This, in fact, was to be expected, because, by the definition
of γ = η‖/η⊥, it is clear that in the limit case γ� 1 the equilibrium magnetic field
lines become nearly perfectly conducting. It is just the relevance of such a limit
case that induced us to consider for the anisotropy parameter γ the extended range
0 < γ 6 1.

Concerning the safety factor (q) profiles (Fig. 6), notice that they should not be
interpreted in the way familiar in ideal MHD, because the role of q with respect to
the stability properties of the equilibria might a priori be different when resistivity
is taken into account.

As far as the (F, Θ) diagrams (Fig. 7) are concerned, they display the qualita-
tively expected behaviour at low Θ, but not at higher values. This makes it clear
how different a laboratory RFP state (Bodin and Newton 1980) must be from those
obtained in the present paper.

Notice that the main feature pointed out above concerning the dependence of
the physically relevant effects (pinch effect and alignment) on anisotropy does not
depend on the particular choice made for the bias field 〈B0z〉Ω and for the boundary
conditions. Indeed, the fact that the isotropic case necessarily leads to a flat axial
magnetic field profile was explicitly proven in Sec. 3.1, together with the general
properties concerning paramagnetic pinches in the anisotropic cases. The choice of
the parameters in the figures was just made in order to obtain physically interesting
field profiles.

4. Conclusions
One-dimensional resistive MHD equilibria, with field variables depending only upon
radius and with no fluid velocity, have been investigated analytically for the per-
iodic cylinder. An attempt has been made to make the enforced (non-ideal) bound-
ary conditions as realistic as possible. The resistivity tensor has been characterized
as having proportional, spatially variable, components parallel and perpendicular
to the local magnetic field, with an anisotropy parameter that can be varied be-
tween wholly isotropic and highly anisotropic limits. The emphasis has been upon
determining the effect of an anisotropic resistivity on the allowed profiles.

The principal result of the calculation has been to show that anisotropic resistiv-
ity strongly affects the allowed profiles of current, magnetic field, pressure, etc. This
has been possible because the modeling of the resistivity has been simple enough to
make explicit analytical calculations possible. Several of the features found are not
inconsistent with the numerically computed profiles of Goodman (1993, 1998) re-
sulting from a considerably more complicated and less transparent model involving
a temperature equation.

A final remark is in order concerning the ‘straight-cylinder’ approximation used
in the present paper. The effects of toroidal curvature on zero-flow equilibria were
shown by Montgomery et al. (1997) to be significant for resistive equilbria with only
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a scalar resistivity. Zero-flow equilibria could be found only by choosing a some-
what artificial, and likely unphysical, spatial profile for that resistivity; otherwise,
velocity fields were required. Similar results were found by van der Woude (2000)
for the toroidal case using anisotropic resistivity. Whether zero-flow equilibria are
possible in the toroidal case purely as a consequence of anisotropic resistivity may
still be regarded as an open question worthy of further investigation – one to which
we hope to return in a later paper. We also defer until later a consideration of the
possible stability of the straight-cylinder equilibria found here.

Appendix A. The effective magnetic helicity
An important quantity to be considered is the total magnetic helicity

HΩ(t) =
∫

Ω
A · B d3x; (A 1)

this involves the vector potential A, which is defined, up to a gauge transformation
A→ A+∇χ, by B =∇×A, but is in fact gauge-invariant by virtue of the boundary
condition Br|∂Ω = 0.

Let us compute the time derivative of HΩ. Choosing the Coulomb gauge for the
vector potential, i.e. ∇ · A = 0, (2) can be integrated, giving

∂A
∂t

= v× B− M

ρ0e
J× B− η · J−∇φ, (A 2)

where φ is a ‘gauge’ potential, which can be determined by taking the divergence
of (A 2) and solving a Poisson equation. One then computes

d

dt
HΩ =

∫
Ω

(
B · ∂A

∂t
+ A · ∂B

∂t

)
d3x

= −2
∫

Ω
B · η · J d3x +

∫
∂Ω

(A× η · J) · er d2x,

where standard vector identities have been used. The first term on the right-hand
side in the second line represents Ohmic dissipation, and nothing more can be said
about it in general. The second one term be evaluated using the boundary conditions
(13)–(15); this gives∫

∂Ω
(A× η · J) · er d2x =

∫
∂Ω
AθE0 d

2x = (E0L)a
∫ 2π

0
Aθ(a, θ, z) dθ,

the last integral being nothing but the (time-constant) axial magnetic flux Φ. The
factor E0L is also easily interpreted. Indeed, E0L = E02πR ≡ Vloop is nothing
but the toroidal loop voltage applied by the external coils to the plasma; in real
experiments, it is produced by inducing a variation of the magnetic flux through
the hole of the toroidal chamber. Moreover, one easily finds that

Vloop = − d

dt
Φhole(t),

with Φhole defined by

Φhole(t) =
∫ L

0
Az(a, θ, z) dz,

which is independent of θ. Notice that, by Stokes’ theorem, Φhole represents just the
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flux induced through the hole of the physical ‘curved’ torus of major radius R =
L/2π. Notice that the gauge potential φ appearing in (A 2) makes no contribution
to the time derivative of Φhole, due to the periodicity in θ and z. So, finally, making
use of the explicit expression (5) for the resistivity tensor, one obtains

d

dt
Heff = −2γ

∫
Ω
ηB · Jd3x. (A 3)

with the effective magnetic helicity, Heff , being defined by

Heff = HΩ + ΦholeΦ. (A 4)

This is indeed the interesting quantity to be considered, because it takes into ac-
count the additional contribution to the helicity due to the linkage of the magnetic
field lines residing inside the chamber (which, being flux-preserving, constitutes a
magnetic flux tube) with those passing through the hole of the physical torus.

From (A 3), one sees that the magnetic helicityHeff , (A 4), is an integral of motion
not only in the ideal limit (infinite conductivity), but also in the limit case γ = 0,
i.e. for perfectly conducting magnetic field lines.

Appendix B. The integral (35)
Here we want to prove (35). Let us denote by I(x) the integral appearing in the
left-hand side of this formula, i.e.

I(x) ≡
∫ 1

x

exp
[

2α
γ

(1− s2)δ+1
]
d(s2);

by the change of variables

ξ(s) =
2α
γ

(1− s2)δ+1, (B 1)

one gets

I(x) = G[ξ(x)] ≡ 1
δ + 1

( γ
2α

)1/(δ+1)
∫ ξ(x)

0
ett−δ/(δ+1) dt, (B 2)

Now, it is easily shown that the function G(z) defined above is such that

lim
z→0+

G(z)
(zγ/2α)1/(δ+1)

= 1,

and, as a consequence, is of the form

G(z) =
( zγ

2α

)1/(δ+1)
H(z), (B 3)

with H satisfying H(0) = 1. Exploiting the definition (B 2), one easily checks that
G satisfies the differential equation

d2

dz2G(z) =
(

1− δ

δ + 1
1
z

)
d

dz
G(z). (B 4)

Taking (B 3) into account, one easily gets from (B 4) the differential equation sat-
isfied by H, namely

z
d2

dz2H(z) +
(
δ + 2
δ + 1

− z
)
d

dz
H(z)− 1

δ + 1
H(z) = 0. (B 5)
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As is well known (see Abramowitz and Stegun 1965), the solution of such an equa-
tion, regular at the origin and satisfying the condition H(0) = 1, is the Kummer
confluent hypergeometric function with indices 1/(δ + 1) and (δ + 2)/(δ + 1). Let
us denote by Kδ(z) this function. Thus, making use of (B 2), (B 3) and (B 1), one
finally gets

I(x) = G[ξ(x)] =
(
ξ(x)γ

2α

)1/(δ+1)

Kδ[ξ(x)] = (1− x2)Kδ

[
2α
γ

(1− x2)δ+1
]
,

i.e. just the formula (35).
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