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Impulse and conformal mapping of vortex flows

By T.W.G. DE LAAT
Netherlands Defence Academy, PO Box 90 002, 4800 PA Breda, The Netherlands

(Received 31 May 2005 and in revised form 17 November 2005)

The concept of impulse is employed with conformal mapping to yield relatively simple
relations for the force exerted on a two-dimensional stationary object by an incom-
pressible irrotational and unsteady flow with moving vortices. An explicit relation for
symmetric vortex flows is found, involving the vortex strength and the first and second
derivatives of the mapping function evaluated at the vortex position. Furthermore
an expression for not-necessarily symmetric vortex flows is derived, containing vortex
strength, the first derivative of the mapping function evaluated at the vortex position,
and the vortex velocity.

1. Introduction
The evaluation of the force on a body due to an unsteady flow field is generally

a laborious process of integration of the unsteady pressure. Such a flow field is
especially unsteady when moving vortices are present. From Helmholtz’s vorticity
laws, e.g. Batchelor (1967, p. 274) or Saffman (1995, p. 10), it is known that in inviscid
flow these vortices move with the local flow velocity. In the present paper it is shown
that employing the concept of the impulse of a two-dimensional incompressible
irrotational and unsteady flow field with (moving) point vortices, combined with
conformal mapping, leads to relatively simple relations to calculate the force on a
stationary object.

The impulse of a velocity field u within volume V bounded by surface S is defined
by the time integral of the impulsive force F, which must be applied on the flow
during a short time τ to generate the velocity field from rest, e.g. Lighthill (1996,
p. 80). The force can be imagined to be the result of an impulsive pressure distribution
p applied on the bounding surface. The impulse exerted on the flow from rest equals
the volume integral of the momentum of the flow field, e.g. Milne-Thomson (1967,
p. 91), for incompressible flow, so we can write

I =

∫ τ

0

F dt = −
∫ τ

0

∫
S

pn dS dt = ρ

∫
V

u dV, (1.1)

with n the unit normal at surface S directed out of the fluid and ρ the density of
the fluid. For irrotational flow a velocity potential φ can be defined with u = ∇φ.
Substitution in (1.1) yields, after applying the divergence theorem

I =

∫ τ

0

F dt = −
∫ τ

0

∫
S

pn dS dt = ρ

∫
S

φn dS. (1.2)

From this equation it follows that the integral of the impulsive pressure p over the
bounding surface needed to generate the motion from rest in short time τ equals
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400 T. W. G. de Laat

the integral of −ρφ over that surface. It is noted by Lamb (1932, p. 161)† that
this definition of impulse was first used by Lord Kelvin and that the calculation
of the momentum of the system (1.1) generally leads to indeterminate integrals. For
rectilinear vortices or point vortices in a plane the impulse can be calculated, however.
Lamb (1932) describes the application of the concept of impulse for vortex pairs in
two-dimensional flow. In the present paper the impulse of a two-dimensional vortex
pair is employed in combination with conformal mapping.

The surface integral of φ (1.2) has been applied by various authors to different
surfaces with various names. The impulse of part of a fluid system is sometimes called
the Kelvin impulse, which was the case for the application of the integral of φ over the
surface of a cavity in a flow by Best & Blake (1994). Saffman (1995, p. 74) named the
surface integral of φ (1.2) over the surface S of a body moving through an inviscid
incompressible fluid, the virtual momentum of that body. Lighthill (1996, p. 135) took
integral (1.2) over the surface surrounding the entire fluid as the total impulse acting
on the fluid. This is the definition applicable in the present paper.

We now consider a stationary object. The virtual momentum or Kelvin impulse
of such an object remains zero, e.g. Saffman (1995, p. 51). Furthermore, due to the
conservation of momentum, the force acting on a stationary object in a flow field,
which requires a reaction force to keep the body in place, equals the opposite of the
time rate of change of the impulse of the flow field. If the flow contains vortices,
which are known to move with the flow from Helmholtz’s vortex laws, the motion of
the vortices is the source of unsteadiness. The velocity potential φ is then implicitly
time dependent through the motion of the vortices and from (1.2) it follows that the
impulse varies with time, which results in a force on the stationary object.

For two-dimensional applications (1.2) can be calculated in the complex plane,
analogous to the derivation of Blasius’ theorem, e.g. Milne-Thomson (1967, pp. 173–
174). For a complex potential χ = φ + iψ , with φ the velocity potential and ψ the
streamfunction, we have for the integral along a streamline ψ = constant= c(t), and
consequently χ =φ + ic(t). The integral of ψ on a closed streamline yields zero, so
we may write (1.2) in complex form, and defining I ≡ Ix + iIy , as

I ≡ Ix + iIy = iρ

∫
C

χ(z) dz, (1.3)

with z = x + iy and C a closed streamline surrounding the entire fluid. Such a stream-
line surrounding the entire fluid may in general not be feasible. In the case of point
vortices which we will be evaluating, integral (1.3), however, only yields non-zero
values if a singularity representing a point vortex is enclosed within a contour.
Furthermore it is generally possible to divide the fluid into regions bounded by
streamlines with and without singularities. The regions with singularities yield non-
zero values from Cauchy’s residue theorem, e.g. Milne-Thomson (1967, p. 138),
whereas the contour integrals of the remaining regions yield zero.

We now consider the flow field of a point vortex of strength Γ on z = z1. This flow
field has the complex potential

χ(z; z1) = − iΓ

2π
ln(z − z1). (1.4)

† Lamb (1932) used the definition of velocity potential with minus sign: u = −∇φ, so he reported
the impulsive pressure +ρφ.
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Substitution into (1.3) yields

I ≡ Ix + iIy = ρ
Γ

2π

∫
C

ln(z − z1) dz,

which we can write as

I ≡ Ix + iIy = ρ
Γ

2π

∫
C

ln z + ln

(
1 − z1

z

)
dz.

For z → ∞ we can apply the series representation for the logarithm, upon which we
obtain

I ≡ Ix + iIy = ρ
Γ

2π

∫
C

ln z − z1

z
− 1

2

(
z1

z

)2

− O

((
z1

z

)3)
dz.

Application of Cauchy’s residue theorem yields

I ≡ Ix + iIy = ρ
Γ

2π
2πi(−z1) = −iρΓ z1. (1.5)

The impulse can also be formulated utilizing the concept of vorticity ω instead of
(1.2). This is treated in e.g. Batchelor (1967, p. 519), Saffman (1995, p. 50) or Lighthill
(1996, p. 213), and leads to volume integral

I =
1

2
ρ

∫
V

x × ω dV, (1.6)

with x being the position vector from the origin. This expression is also given in Lamb
(1932, p. 215), though written in three separate components. Lamb (1932, p. 229) gives
the two-dimensional expressions per unit depth for vortex pairs, where the factor 1

2
has vanished. The two-dimensional impulse (Lamb 1932, p. 229) per unit depth can
be written in complex formulation as two-dimensional surface integral

I ≡ Ix + iIy = −iρ

∫
S

zω dS. (1.7)

If an amount of vorticity is assumed to be concentrated at point z = z1 and we
substitute ω dS =Γ into (1.7) we again obtain (1.5).

As we know from Helmholtz’s vortex laws, a vortex always appears in a closed
filament (or ends on a boundary surface). In two-dimensional flow with the vortices
perpendicular to the plane of the flow, we thus generally deal with vortex pairs consist-
ing of two vortices with vortex strength of equal magnitude but opposite direction.
The impulse of such a vortex pair is then easily found with equation (1.5).

As stated above, in the case that the body is stationary the impulse of the body
itself remains zero, so the integral of the entire flow field then equals the impulse of
the outer flow field. The force acting on the stationary body, which we indicate as
F ≡ Fx + iFy , equals the negative of the time rate of change of the impulse of the
outer flow field, which we thus express by

F = −dI/dt. (1.8)

We will now first consider the force on a symmetric body in uniform flow with a
symmetric vortex pair and subsequently the force on an arbitrary body in uniform
flow with a single vortex. Three examples are given to demonstrate the application of
the expressions obtained.
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Figure 1. Transformation of a vortex pair in uniform flow to a vortex pair near a contour,
symmetric with respect to the uniform flow; ζ = ξ + iη and z = x + iy.

2. The force on a symmetric body in uniform flow with a symmetric vortex pair
We start with the impulse of a vortex pair consisting of two point vortices with

vortex strength of equal magnitude but opposite direction, as shown in the ζ -plane
of figure 1. The impulse of this vortex pair follows from equation (1.5). As the vortex
pair in the ζ -plane of figure 1 consists of vortices with strength −Γ at ζ1 and Γ at
ζ2 = ζ 1, the impulse of that vortex pair equals

I = Iξ (ζ1, ζ 1) = iρΓ {ζ1 − ζ 1}, (2.1)

with I ≡ Iξ + iIη and ζ 1 indicating the complex conjugate of ζ1. Due to the symmetry
with respect to the ξ -axis the impulse has a component in the ξ -direction only. An
expression for the force on the object in the z-plane will now be formulated by em-
ploying a conformal transformation to the flow field of this vortex pair in the ζ -plane,
and using the implicit time dependence of the flow through the motion of the vortices.

Let ζ (z) be a conformal mapping function, which transforms the flow field in the
ζ -plane, as shown in figure 1, to the flow field in the z-plane, which is symmetric
with respect to the x-axis. It is assumed that the conformal mapping function has
real coefficients, implying ζ (z) = ζ (z), and that it keeps the vortices symmetric and
outside the contour. We consider the flow field of figure 1 in the ζ -plane, which
is a uniform flow combined with a free vortex pair symmetric with respect to the
direction of the uniform flow. The flow in the z-plane is the physical flow, in which
we want to calculate the force on the body. It can be obtained from the flow in the
ζ -plane through the substitution of the appropriate conformal transformation ζ (z).
The force can be calculated from (1.8), using the implicit time dependence of the
impulse resulting from the motion of the vortices, by

F = − d

dt
I(z1(t), z1(t)) = −∂I

∂z1

dz1

dt
− ∂I

∂z1

dz1

dt
. (2.2)

With conformal transformation z = z(ζ ) we have, introducing χ∗ as the transformed
potential function,

χ(z; z1, z1) = χ(z(ζ ); z1(ζ1), z1(ζ 1)) = χ∗(ζ ; ζ1, ζ 1), (2.3)

and thus for the impulse of the entire flow field (1.3):

I(z1, z1) ≡ Ix + iIy = iρ

∫
χ(z; z1, z1) dz. (2.4)
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With conformal transformation z = z(ζ ) we have, introducing I∗ as the transformed
impulse,

I(z1, z1) = I(z1(ζ1), z1(ζ 1)) = I∗(ζ1, ζ 1). (2.5)

The impulse can be calculated in the ζ -plane from

I∗(ζ1, ζ 1) ≡ Iξ + iIη = iρ

∫
χ∗(ζ ; ζ1, ζ 1)

dz

dζ
dζ. (2.6)

We now use the impulse transformation (2.5) to calculate the force on the stationary
object in the physical z-plane from the simple flow field in the ζ -plane from the rate
of change in time of the impulse (2.2), by

F = −dI
dt

= − d

dt
I∗(ζ1(z1(t)), ζ 1(z1(t))) = −∂I∗

∂ζ1

dζ1

dz1

dz1

dt
− ∂I∗

∂ζ 1

dζ 1

dz1

dz1

dt
. (2.7)

Substitution of the impulse of the vortex pair (2.1), which is now indicated as
I∗(ζ1, ζ 1), into (2.7) yields

F = −iρΓ

(
dζ1

dz1

dz1

dt
− dζ 1

dz1

dz1

dt

)
. (2.8)

For the transformation ζ (z) with real coefficients, (2.8) can be written as

F = 2ρΓ Im

{
dζ1

dz1

dz1

dt

}
, (2.9)

with Im indicating the imaginary part of a complex variable. The vortex velocity
in the z-plane, dz1/dt , is related to the vortex velocity in the ζ -plane. However, the
vortex velocity does not simply transform with the conformal mapping. It changes
according to the change of the path function described by Routh’s correction, see e.g.
Lugt (1996, p. 162), which in integral form is known as Routh’s theorem, e.g. Milne-
Thomson (1967, p. 372). The vortex velocity in the physical z-plane can be calculated
using the complex velocity potential in the ζ -plane, using Routh’s correction, by

dz1

dt
=

dx1

dt
− i

dy1

dt
=

(
dχ∗

dζ
− iΓ

2π

1

ζ − ζ1

)
ζ=ζ1

ζ ′
1 +

iΓ

4π

(
ζ ′′
1

ζ ′
1

)
, (2.10)

with ζ ′
1 ≡ (dζ/dz)z=z1

and ζ ′′
1 ≡ (d2ζ/dz2)z=z1

. Substitution of the complex conjugate of
(2.10) into (2.9) and utilization of dζ1/dz1 = (dζ/dz)z=z1

, yields

F = Fx = 2ρΓ Im

{(
dχ∗

dζ
− iΓ

2π

1

ζ − ζ1

)
ζ=ζ1

|ζ ′
1|2

}
− ρΓ 2

2π
Re

{
ζ ′′
1

ζ ′
1

ζ ′
1

}
,

with Re indicating the real part of a complex variable. The first term is proportional
to the imaginary part of the vortex velocity in the ζ -plane, which equals zero, so there
only remains

F = Fx = −ρΓ 2

2π
Re

{
ζ ′′
1

ζ ′
1

ζ ′
1

}
. (2.11)

Now we have an expression (2.11) for the force on the contour due to the symmetric
vortex pair in terms of its strength and the derivatives of the transformation.
Compliance with the boundary condition on the contour is assured by the conformal
mapping. It is interesting to note that this force is invariant to the strength of the
uniform flow V∞. We will now consider the special case of a circular cylinder in
uniform flow with a symmetric vortex pair as in figure 2.
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Figure 2. Joukowski transformation ζ = z + a2/z of a symmetric vortex pair in a uniform
flow to a symmetric vortex pair near a circle in uniform flow.

2.1. Force on a circular cylinder in uniform flow with a symmetric vortex pair

To demonstrate the application of relation (2.11), the force on a circular cylinder in
the flow field of the right-hand side of figure 2 will now be calculated. Equilibrium
positions where the vortex velocity equals zero were first calculated by L. Föppl, e.g.
Milne-Thomson (1967, p. 370). The force on the cylinder was first reported correctly
by Bickley (1928) and Tomotika & Sugawara (1938), carrying out the laborious integ-
ration of the unsteady pressure distribution. Sarpkaya (1963) showed that this force is
more efficiently evaluated using an extension of Lagally’s theorem combined with the
vortex velocities. The force on the cylinder as a function of vortex strength and position
can, however, more simply be obtained through the use of relation (2.11). Substitution
of the Joukowski transformation ζ = z + a2/z (figure 2), which gives the contour of a
circle with radius a in the z-plane, into (2.11) yields after some simplification

Fx = −ρΓ 2

π

a2

r2
1

Re

{
z2

1 − a2

z1

(
z2

1 − a2
)
}

, (2.12)

with r1 = |z1|. Substitution of polar coordinates z1 ≡ r1(cos θ1 + i sin θ1) yields

Fx =
ρΓ 2

π

a2

r3
1

cos θ1

{
4r2

1 sin2 θ1 −
(
r1 − a2/r1

)2

4a2 sin2 θ1 +
(
r1 − a2/r1

)2

}
. (2.13)

This relation represents the unsteady force (including the ρ∂φ/∂t-term) of a
symmetric vortex pair moving with the local velocity in the neighbourhood of a circle
in a uniform flow, as a function of the vortex position, which was found through a
laborious unsteady pressure integration by Bickley (1928) and Tomotika & Sugawara
(1938). In de Laat & Coene (2002) this case is further discussed and a contour plot
of the force is produced.

3. The force on an arbitrary two-dimensional body in uniform flow with a
single vortex

To obtain the force exerted by a single vortex on an arbitrary two-dimensional
stationary body in uniform flow, we use the flow field of a vortex near a circular
cylinder in uniform flow. Using conformal mapping from this flow field we can obtain
an arbitrary non-symmetric flow as depicted in figure 3, as opposed to the symmetric
flow fields of § 2. The force can now be obtained by evaluation of the impulse of the
vortex pair formed by the free vortex and its well-known mirror image in the circle,
e.g. Saffman (1995, p. 42). A vortex may be added in the centre of the circle.
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Γ
Γ

x

y

1
1

a

zζ

w∞w∞

ξ

η

θ1

r1

Figure 3. Conformal transformation of the non-symmetric flow field with one vortex in
uniform flow near a circle to the flow field of a general contour in uniform flow.

Sacks (1955) applied such a conformal mapping to the flow of vortices near a circle
to calculate the force on an arbitrary contour. He investigated the development of a
vortex along a slender body at an incidence angle in oncoming flow. Evaluating the
pressure integrals in the transformed circle plane of the two-dimensional crossflow, he
found a proportionality between the lateral force on a wing–body and the impulse of
the vortex pair consisting of the free vortex and its mirror-image in the transformed
circle plane at the trailing edge of the slender body. He did not evaluate time-
dependent flows, though he considered the vortices to change strength and position
in the crossflow when travelling in the longitudinal direction from the origin to the
trailing edge of a wing. The results can be interpreted as the rate of change (when
travelling in the longitudinal direction) of the crossflow vortex strength and position.
The crossflow impulse thus has a rate of change (in the longitudinal direction) which
yields the force on the three-dimensional object in the crossflow direction. As the
impulses of the physical and transformed planes are related via the transformation,
the impulse of the free vortices and their mirror images inside the transformed circle
result from the pressure integrals.

The concept of impulse as applied in § 2 can also be used for the unsteady two-
dimensional non-symmetric flow field of a vortex near a stationary object in uniform
flow. We now derive the expression for the force using the impulse of the free vortex
and its image inside the circle, combined with the conformal transformation function
and the vortex velocity in the physical z-plane.

Let ζ (z) be a conformal mapping function, transforming the flow field around a
circle with a vortex in the ζ -plane to a flow field around a contour in the z-plane,
see figure 3, while keeping the vortex outside that contour. Equation (2.7) gives the
relation between the rate of change in time of the impulse in the transformed ζ -plane
and the force in the physical z-plane. The impulse in the transformed ζ -plane of
figure 3, of the entire flow field represented by a free vortex at ζ = ζ1 = r1 eiθ1 and its
mirror image, e.g. Saffman (1995, p. 42), can be written, using the relation for the
impulse of a vortex pair given in § 2, in complex notation as

I∗ ≡ Iξ + iIη = ρΓ

(
r1 − a2

r1

)
ei(θ1−π/2) = −iρΓ

(
ζ1 − a2

ζ 1

)
. (3.1)

The impulse of the uniform flow around the circular cylinder is assumed steady, so it
does not directly contribute to the rate of change of impulse of the flow. The uniform
flow field, however, does contribute to the vortex velocity and consequently has an
influence on the rate of change in time of the impulse of the vortex pair. The impulse
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of the vortex pair which consists of a free vortex and its forced mirror image inside
the circle, which is placed there to maintain the boundary condition on the circle, does
change in time as a result of the motion of the free vortex and the related motion of
the mirror vortex. Substitution of impulse (3.1) into (2.7) yields for the force on the
body in the z-plane

F ≡ Fx + iFy = iρΓ

{
dζ1

dz1

dz1

dt
+

a2

ζ
2

1

dζ 1

dz1

dz1

dt

}
. (3.2)

It is noted that the vortex pair in the circle plane of figure 3 could have been
obtained from a Möbius transformation from the vortex pair on the left-hand side of
figure 2, but the uniform flow would then have been deformed. The flow of the circle
plane of figure 3, however, is also simple and therefore a suitable reference flow to be
transformed into a flow field with a complicated contour.

We now consider an example of the application of (3.2), after first evaluating the
force on the circular cylinder in uniform upwash and a single vortex filament, as
shown in the ζ -plane of figure 3.

3.1. Force of a vortex near a circular cylinder in upwash

When investigating the force on the body in the z-plane it is of interest to know the
force on the circular contour in the ζ -plane, see figure 3. This force is found from
(3.2), without transformation, or by putting ζ1 = z1. The vortex velocity is obtained
from the complex velocity potential by dz1/dt = (dχ/dz)z=z1

, omitting the infinite
self-induced vortex velocity, with the flow field in the ζ -plane being described by the
complex potential χ∗:

χ∗(ζ ; ζ1, ζ 1) =
iΓ

2π
ln

(
ζ − a2/ζ1

ζ − ζ1

)
− iw∞

(
ζ − a2

ζ

)
. (3.3)

The vortex velocity is substituted into (3.2), which yields, with ζ1 = z1 and upon
making the force dimensionless,

Cx + iCy ≡ Fx + iFy

1
2
ρw2

∞2a
= 2πG

{
a4

z2
1z

2
1

+ G
a

z1

− 1

}
, (3.4)

with G ≡ Γ/(2πaw∞). Contour plots of the dimensionless force components in the
x- and y-direction for G = 1 are depicted in figure 4. The force component Cx has
extreme values on the real axis of Cx = −2πG((3/16)(2G)4/3 + 1) at x/a = −(4/G)1/3

and Cx = 2πG2 at x/a = 1. The component Cy has extreme values on the y-axis
of Cy =2πG2 at y/a = 1 and Cy = −2πG2 at y/a = −1. In figure 4(c) a point with
|Cx + iCy| =0 is indicated, which relates to the equilibrium point, where the vortex
velocity equals zero. The positive-force and negative-force areas are interesting features
of the flow in view of potential applications of such a vortex flow.

3.2. Force of a vortex on a wing–body combination in upwash

A single vortex above a wing–body configuration arises from the slender body approxi-
mation of an airplane with a vortex over the wing. Such a vortex may be formed by the
forebody, a sharp edge or a control surface, or might come from another aircraft. Flow
fields of this kind were studied by Sacks (1955) and Nielsen (1960) for multiple vortex
pairs, though without evaluating the ρ∂φ/∂t-part. Nielsen (1960, p. 100) further-
more used the approximation that dz/dζ = 1. We will now use conformal mapping to
transform a simple wing–body combination to a circle, by combining two transforma-
tions as depicted in figure 5. We have the same transformation as in Sacks (1955) and
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Figure 4. Force of a vortex near a circular cylinder in upwash for G ≡ Γ/(2πaw∞) = 1, areas
in grey have negative values. (a) Contour plot of Cx . (b) Contour plot of Cy . (c) Contour plot
of |Cx + iCy |.

de Laat & Coene (1995), with ζ ∗ = ζ + a2/ζ and ζ ∗ = z + c2/z (with ζ = ξ + iη and
z = x + iy). Elimination of ζ ∗ and expressing ζ in terms of z, we have

ζ =
1

2

(
z +

c2

z
+

√(
z +

c2

z

)2

− 4a2

)
, (3.5)

from which it follows that we have semi-span s = a +
√

a2 − c2 in the z-plane of
figure 5.

To calculate the force using (3.2), the vortex velocities are easily determined with
complex potential (3.3), transformation (3.5) and Routh’s correction (2.10), with the re-
verse sign of the subtracted vortex and Routh’s correction, as vortex 1 in the ζ -plane of
figure 5 has the reverse sign of vortex 1 of the ζ -plane of figure 2. The force com-
ponents in the x- and y-direction exerted on the wing–body combination are made
dimensionless to obtain Cx ≡ Fx/(

1
2
ρw2

∞2c) and Cy ≡ Fy/(
1
2
ρw2

∞2c). These components
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Figure 5. Transformation of the non-symmetric flow field with one vortex near a circle in
uniform flow to the flow field of a wing–body combination.
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Figure 6. Force of a vortex near the wing–body combination of figure 5 for a/c = 2 (so
s/c = 3.73) and Γ/(2πcw∞) = 1, areas in grey have negative values. (a) Contour plot of Cx .
(b) Contour plot of Cy . (c) Contour plot of |Cx + iCy |.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

98
40

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006009840


Impulse and conformal mapping of vortex flows 409

are plotted in figure 6 as a function of the position. The regions with negative values
are indicated in grey. The magnitude and direction of the force are obviously very
important when evaluating flows with vortices near aircraft or missile surfaces. The
case with two vortices of opposite strength is discussed in de Laat & Coene (2002).

4. Conclusions
The application of the concept of impulse combined with conformal mapping yields

relatively simple relations to calculate the force on a two-dimensional stationary object
due to an incompressible irrotational flow field with (moving) vortices. For symmetric
flow fields a simple expression is obtained, employing the vortex strength and the
first and second derivatives of the transformation function evaluated at the vortex
position. It is the result of Routh’s correction, which appears in the vortex velocity
when applying a conformal transformation. The well-known force of a symmetric
vortex pair behind a circular cylinder is simply obtained with this relation. The
concept of impulse and conformal mapping is also applied to (non-)symmetric flow
fields by transformation of the impulse of a vortex near a circle and its mirror image,
yielding a simple relation requiring the strength, position and velocity of the vortex
in the physical plane and the first derivative of the mapping function. This relation
is applied to a single vortex near a cylinder and a simple wing–body configuration
in upwash, thus demonstrating the efficient application of the relations obtained. For
two examples, interesting areas of vortex positions are identified, at the boundaries
of which the vortex force changes direction.

I am grateful to R. Coene, retired from the University of Delft, the Netherlands,
and H. W.M. Hoeijmakers of the University of Twente, the Netherlands, for many
fruitful discussions on this subject. I am also grateful for two referee’s comments
regarding the vorticity formulation of the impulse and the potential application of a
Möbius transform.
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