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In the asymptotic theory of interaction noise from contra-rotating propellers with many
blades, previous work in the frequency domain has shown that, for each combination
mode/tone, the critical points that dominate the acoustic radiation can be linked to two
criteria (sonic and normal-edge) and to a radial event line that spins around the annulus
at the same speed as the mode. Thus the speed is different for each combination tone.
In real time, however, the interactions precess around the annulus at a single speed,
governed by the ‘firing order’ of the interactions, with that speed being (in general)
considerably different from that of either the front or rear blade rows. The precession
of the interaction is described here in detail and then demonstrated by application to three
relevant architectures, including a rotor—stator configuration. The paper then considers
how the blade leading-edge design affects the radial variation in the interaction location
and analyses the interactions from the viewpoint of a far-field observer. The paper also
connects previous time- and frequency-domain results by showing that the sonic and
normal-edge criteria can be derived in the time domain using the precession speed. The
case of equal blade numbers is also included, for which the precession speed becomes
infinite but for which, nonetheless, the sonic and normal-edge criteria still apply.

Key words: wakes, aeroacoustics

1. Introduction

There has been an increasing body of work on the use of high-blade-number asymptotic
approaches to study propeller noise and, perhaps more importantly, understand the physics
underlying the source generation mechanisms. The initial work focused on single-rotating
propellers. The far-field radiation can be calculated, numerically, from the analytic
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‘frequency-domain’ solutions of Hanson (1983) and Parry (1988). However, these methods
involve, for each individual tone, a double integration over the blade planform area
(chord and span) in which the integrand includes Bessel functions and complex phase
terms. Using a frequency-domain approach, Parry & Crighton (1986, 1989a) showed that
subsonic propeller noise could be predicted using a simplified formula that removed the
need for an integration over the blade span and showed how the noise is dominated by
radiation from the blade tips, with the result linked precisely to the tip geometry. Crighton
& Parry (1991, 1992) applied the approach to supersonic propellers where the noise is
dominated to leading order by radiation from a sonic radius with a lower-order term arising
from the blade tips. For both the subsonic and supersonic cases, the asymptotic approach
produced closed-form algebraic results in the form of simple algebraic expressions, which
were, nonetheless, still accurate and showed how the noise was related to the geometry
and aerodynamics of a particular propeller radius.

In a novel time-domain analysis of the thickness noise of supersonic single-rotating
propellers, Amiet (1988) showed that the sound radiated to the far field was dominated
by regions of the blade that satisfied two criteria. First, that the Mach number of
the blade at that location was precisely unity when resolved in the direction of the
observer and, second, that the leading edge of the propeller blade was normal to a line
drawn between it and the observer. We will refer to these criteria as the ‘sonic’ and
‘normal-edge’ conditions, respectively. Amiet argued that a time-domain analysis, rather
than a frequency-domain approach, was essential to properly understand the underlying
physics and to obtain the dominant source locations. Parry (1995) showed that Amiet’s
criteria could be obtained in the frequency domain. For other work on asymptotic analyses
of single-rotating propeller noise, we refer the reader to the discussions in Kingan & Parry
(2019) and Parry & Kingan (2019).

There has been little work on the application of asymptotic analyses to contra-rotating
propellers. From the numerical point of view, Envia (2015) extended previous work on
single-rotating propellers to the contra-rotating case, with the radiation expressions, as
before, requiring a high-fidelity calculation of the local source region. For analytical and/or
semi-numerical approaches, Kingan & Parry (2019) used the framework provided by the
frequency-domain description of Hanson (1985), Parry (1988, 1997) and Parry & Crighton
(1989b), regarding convected wake interactions, and extended the two-dimensional surface
asymptotic approach of Parry (1995) to contra-rotating propellers, including the effects of
blade sweep, quasi-three-dimensional blade unsteady response and sub- or supercritical
wake—blade interactions. The analyses once again produced simplified, largely algebraic,
results and showed that the noise is dominated in most cases by localised critical points
on the surface of revolution described by the rear blade leading edges. In certain cases —
dependent on blade sweep and the order of the circumferential spinning mode — radial or
azimuthal one-dimensional continuums of critical points can be present or, exceptionally,
a two-dimensional continuum of critical points.

Kingan & Parry (2019) validated their asymptotic approach extensively by comparing
their results with full numerical calculations — of a real engineering test case — over a range
of combination frequencies and azimuthal modes, including the zero-mode case, and for
both straight and swept propeller blades. For all cases, there was good agreement between
the asymptotic results and the numerical calculations (that had, themselves, been validated
via many previous comparisons with a wide range of experimental data), showing that the
asymptotics could be applied to prediction and design (see Kingan & Parry, 2020a).

Parry & Kingan (2019) explored the underlying physics and showed that, in the
frequency domain, the locations of the interaction sources for each combination tone can
be described by an ‘event line’ — where the phrase ‘event” was taken from the paper of
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Tyler & Sofrin (1962) on rotor—stator interaction — which represents the source locations
at a fixed reception time and spins around the annulus at the speed of the acoustic mode
(associated with the combination tone). Parry & Kingan (2019) explained that, at the
critical source locations, this event line has a resolved Mach number of unity in the
direction of the far-field observer and is normal to a line drawn between it and the observer,
i.e. the event line (for each individual combination tone) satisfies the two criteria of Amiet
(1988). Indeed, perhaps surprisingly, Parry & Kingan (2019) showed that the two criteria
are still satisfied even when the relevant acoustic mode number is zero and the event line
spins around the annulus at infinite speed.

Regarding analytical work on contra-rotating propeller noise in the time domain, the
authors are aware only of the work of Kingan & Parry (2020b), who considered the
interactions between convected wakes from the front propeller and a blade of the rear
contra-rotating row. Kingan & Parry (2020b) hypothesised that the sharp peaks in the
radiated acoustic waveform would be significantly enhanced when the reception time, for
a particular wake—blade interaction, became stationary in terms of radius. They showed
that, at such a radius, the local trace velocity was precisely sonic when resolved in the
direction of the observer.

Here, our aim is to understand the physics of convected wake interactions on
contra-rotating propellers in the time domain, rather than just for individual frequencies.
In particular, we focus on the location and motion of the interaction ‘events’ as a function
of time and space, both radially and circumferentially. We emphasise that the analytical
framework for contra-rotating propeller noise that underpins the analysis — namely that
of Hanson (1985), Parry (1988, 1997) and Parry & Crighton (1989b) — has been well
validated against a range of experimental data. Nonetheless, from the point of view of
steady and unsteady aerodynamics, it is important to point out that the general approach
neglects a number of effects such as the presence of swirling or radial flow between the
two blade rows, the mutual interference that occurs between the vortical and potential
fields generated by the front and rear blade rows, the end effects (at the hub and tip)
that contribute to the unsteady response, and the thickness and camber of the blades.
Most of these effects could be included through extensions to the approach. Despite these
limitations, there are detailed discussions of the experimental validation cases in Kingan &
Parry (2019) as well as of validation of the asymptotic approach via comparisons with full
numerical calculations. To demonstrate the accuracy of the asymptotic (or many-bladed)
approach, one of the comparisons from that paper is shown here, in figure 1, for the first
interaction tone produced by a contra-rotating propeller with front and rear blade numbers
of 12 and 9, respectively.

The paper is laid out as follows. In §2 we present the three-dimensional coordinate
system and the aerodynamic and acoustic parameters. The locations of the convected wake
interactions are discussed in § 3 in terms of the ‘firing order’ as a function of time and
circumferential location; examples are discussed for various blade number combinations
and architectures; then, we analyse the variation in interaction location with radius. In § 4
the interactions are discussed relative to a far-field observer.

2. Coordinate system

In order to allow comparison with the results of Kingan & Parry (2019, 2020a,b) and
Parry & Kingan (2019) we will use their notation where possible, though we will define
the parameters here explicitly because of some differences between the frequency-domain
and time-domain publications. The architecture involves two rotating frames, and one
absolute frame, as well as important reference points such as the front rotor wake, the
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Figure 1. Plot of sound pressure level (SPL) versus 6 for the first interaction tone. The solid black line denotes
numerical solutions whilst interior stationary point solutions are denoted by the blue dash-dotted lines and
boundary critical point solutions are denoted by the red dotted line. The shaded regions correspond to locations
where no critical points exist, and the grey dashed lines denote interpolated levels within the exclusion zones.
(From Kingan & Parry, 2019.).

Observer

Figure 2. Propeller coordinate system.

rear blade leading edge and the two propeller pitch change axes, and it will be necessary
to use all of these frames and locations. The analysis uses a cylindrical coordinate system,
(x, 7, ¢), where x is the axial coordinate, which is parallel to the propeller axis, r is the
radial coordinate and ¢ is the azimuthal angle. The coordinate system is shown in figure 2.
Subscripts 1 and 2 denote parameters associated with the upstream and downstream rotors,
respectively, and subscripts x,  and r are used for the Mach numbers in the axial, rotational
(at the tip radius) and helical (at radius r) directions, respectively. In particular, the rotors
move with Mach number M, in the positive x direction; the upstream and downstream
rotors rotate in the negative and positive ¢ directions with tip rotational Mach numbers
M;, and M,,, respectively.

The effect of the flow induced by the rotors is neglected (which is entirely in keeping
with the helicoidal surface theory of Hanson (1983)) so that the stagger angle, «;, i = 1, 2,

of each blade is defined by tano; = rM; /M, and, for each row, My, = \/M2 + rM} is

the section relative, or helicoidal, Mach number. The propeller blades have leading-edge
sweep s(r) measured from the pitch change axis and each propeller has B; blades with front
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and rear pitch change axes separated by a distance g in the axial direction. The observer
lies in the ¢ = 0 plane at polar angle 6 from the x axis. For convenience, distances have
been normalised on the tip radius R, velocities on the speed of sound c( and time on R/cg.
The hub radius is ;. For a contra-rotating propeller, the radiated tones can be described
as a double Fourier series of combination tones (np, n2) at frequencies n = n1B1M;, +
naByM;, and with azimuthal order v = ny By — n1Bj. Source time is denoted by t and the
specific times at which the wake centreline of the front reference blade interacts with the
rear reference blade are given by 7y where, in the general case of swept blades, 19 = 7o(7).
We suppose that the pitch change axis of the rear row reference blade lies at ¢ = 0 when
T = 0. It is also convenient to introduce the term S(r) = s(r)/M,, (7).

3. Physics of the interaction in the time domain
3.1. Precession of the interaction

In this section we consider the interactions between specific blades on the rear rows and the
wakes from specific blades of the front row. Here, an interaction occurs when the centreline
of the wake from an upstream blade impinges on the leading edge of a downstream blade.
In reality, of course, since the wake and blade leading edge are of finite thickness, this
interaction occurs over a finite time. Tyler & Sofrin (1962) refer to these interactions as
blade—vane events or, more simply, just as ‘events’. In the general case, the wakes from
the front propeller do not all interact simultaneously with the rear propeller blades for the
simple reason that the number of wakes, Bj, is not the same as the number of blades,
B>, on the rear row. In the time domain, the interactions can be viewed as occurring
at locations that ‘jump’ around the circumference, sometimes by considerable distances.
For rotor—stator interactions, Tyler & Sofrin (1962) referred to this effect as the ‘firing
order’. Here we will suppose that this sequence of events represents the precession of the
interaction around the circumference and consider it in detail.

In order to determine the speed at which the individual interactions precess around the
circumference, we start by assuming that, in figure 3, the blades are numbered in the
positive ¢ direction on each row and that the interaction between blade 0 on the front
row and blade O on the rear row occurs at source time v = 0. For the purposes of the
analysis that follows, we assume that the blade numbers By and B, are relatively prime. If
B1 and B; have a common factor then there will be more than one interaction occurring
simultaneously and the analysis applies over an appropriate subsection of the annulus, with
the results then repeating over each subsection. Of course, the blades chosen as the zeroth
blades on each row are arbitrary. The pitch is given by P = 27r/B; and P, = 2ntr/B, on
the front and rear row, respectively, so that the azimuthal gap between blade j; on the front
row and blade j, on the rear row is

Pr Py (j1iB2—j2B1)

A i =1 — — jp— =2 3.1
¢11,12 Jlr ]2r b BB, (3.1)

As, with our normalisation, the relative angular speed is (M;, + M,,), the time it takes
from the interaction between the datum blades to that of the interaction between blade j;
on the front row and blade j, on the rear row is

Agjj,  2m(jiB2 — jaB1)
(Mtl +M12) BIBZ(Mtl "JI_MIZ).

Afjl,jz = (3.2)

In that time, the interaction has moved from ¢, = 0 to ¢ = 27jp /B>, where ¢ = ¢ —
M;, T is the azimuthal angle in the frame of reference of the rear row, so we can deduce that
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Figure 3. Two-dimensional cascade definition.

the effective speed with which the interaction has moved in the absolute frame is M;, ;, =
M;, + (2mj2 /B2 At j,). Then, after using (3.2), we obtain the effective interaction speed
and interaction location as

_ 2BiMy +j1BoM;, 2n(j2BiMy, +j1B2My,)

g = : i = . (3.3a,b)
J1:J2 J]B2 _JZBI J1:J2 B]Bz(Mtl+Mt2)

The result for interaction speed in (3.3a,b) is very familiar and, suitably normalised,
looks like the standard relationship for circumferential mode-phase speed n/v in
turbomachinery (see e.g. Tyler & Sofrin, 1962) in terms of an angular frequency
n = nBiM;, +nyByM;, and mode number v = ny;B, — nB;. However, the standard
relationship applies to the frequency domain and to a range of different combination tones
(n1, np) each of which has its own frequency and azimuthal order so that every one rotates
at a different speed. Here it is important to realise that (3.3a,b) is a time-domain result and
that (1, j2) is used to refer to interactions between specific blades with the fixed values j
and j, being determined by the blade numbers. In order to determine which interactions
occur in which order, it follows from (3.1) and (3.2) that, after the 0-0 front and rear blades
interact, the next interaction occurs a short time At later where

21
= X min {j1B2 — j2B1}, (3.4)
BBy (My, + My,) 0<ji<B|—1

0<ja=<Br—1
J1B2—j2B1>0

AT

so that At is the time taken between successive wake interactions (and it is important to
note that those interactions do not necessarily occur between adjacent blades). The values
(j1,J2) that are obtained as the solution to (3.4) are related to the blade numbers By and
B> and can be treated as fixed for that blade number combination.

By considering the blade row speeds and blade spacings, and using a little simple
arithmetic, it is easy to show that the next interaction will occur between blades (21, 2j2)
at azimuthal location ¢»j, 2j, = 4 (j2B1M;, + j1B2My,) /[B1B2(My, + My,)], and so on,
so that the effective speed at which the interaction location moves — or precesses — is
continuous around the annulus. If we suppose that / and m are the values of j; and j, that
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Figure 4. The pressure field radiated from r = 0.7 for a straight propeller, plotted in terms of leading-edge
source time .

are required in (3.4), then the speed (or tip Mach number) at which the interaction events
precess around the annulus is
_ mBlMtl + lB2Mt2

= 3.5
P IB, — mB; (3-5)

In practice, the interactions are discrete but the idea that the interactions are moving
continuously becomes more acceptable for higher blade numbers. Indeed, the assumption
of a continuum of interactions is completely consistent with the many-bladed asymptotic
approach, used in the frequency-domain analyses of Kingan & Parry (2019, 2020a) and
Parry & Kingan (2019), in which the blade numbers By — oo, B — oo because then the
time interval between interactions At — 0.

3.2. Examples

We will consider a few simple examples to illustrate the values of / and m. Note first,
though, that the integers / and m can be negative, where negative values are obtained if the
blades are counted in the opposite (or negative ¢) direction, provided that we still maintain
[By — mB1 > 0 to ensure that we are moving forwards in time. Of course, the interactions
occur in the same ‘firing order’ in both forward and reverse cases; the point is that the
interaction disturbances can merely be viewed as moving in either the positive or negative
direction.

First, we examine the contra-rotating propeller studied by Kingan & Parry (2020b) in
their time-domain analysis. The propeller had 10 blades on the front row and a single
blade on the rear row, and tip rotational Mach numbers M, = M;, = 0.7. That case is
straightforward, as all the interactions (events) must occur at the leading edge of the same
rear blade so that m = 0; the interactions must also be caused by the wakes from successive
blades on the front row so that / = 1 and M, = M;,. We emphasise that the interactions
are not continuous; from (3.4) they occur discretely at source time intervals of At =
2n/B1(M;, +M;,) = /7, given as the period T by Kingan & Parry (2020b). In order
to demonstrate the effect of the source we show, in figure 4, a full numerical calculation
for this contra-rotating propeller, in the time domain, with the pressure per unit span, P,
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radiated from the mid-span (r = 0.7) of the blade. Figure 4 has been recalculated and is
plotted here in terms of (leading-edge) source time 7 rather than reception time ¢ (as it
was in figure 5(a) of Kingan & Parry (2020b)). The source period is normalised on T
so that pulses occur at multiples of 7/T = 1, precisely as expected. The calculation also
serves to demonstrate the sharpness of the interaction impulses in a practical wake—blade
interaction case. For this configuration, the interactions can be considered to be rotating
with the rear blade leading edge and at the speed of the rear blade row.

Second, we consider the examples used by Kingan & Parry (2019) in demonstrating
the accuracy of their asymptotic, frequency-domain analysis of contra-rotating propellers.
Whilst their example architectures had different degrees of sweep, they all had 12 blades
on the front row and 9 blades on the rear row. In a fixed reference frame, the front blades
are thus 30° apart and the rear blades are 40° apart. Assuming that the zeroth front and
rear blades are aligned at T = 0 then, taking into account the direction of motion of the
two blade rows, a little arithmetic can be used to show that the next interaction will occur
between the third blade of the front row and the second blade of the rear row. (Of course,
since for this case there is a common factor of 3 in the blade numbers, the interactions
repeat spatially every 120°.) The relevant values are thus / = 3 and m = 2, and we obtain
the precession speed of M, = 8M;, + 9M,, (which is much faster than that of the case
with a single-bladed rear row) and the time interval of At = 21/36(M;, + M;,) between
interaction events. By counting blades in the opposite direction, an alternative solution is
also obtained with / = —1 and m = —1 for which the interactions precess in the reverse
direction at M), = —(4M;, + 3M;,), which is less than half that of the precession speed in
the forward (or positive ¢) direction. The interval between interaction events is the same
as that of the forward propagating sequence of interactions.

Purely for completeness, we will also consider a third case relating to a rotor—stator
interaction. For such architectures, the stator numbers are usually selected to be more than
twice the number of rotors in order to ensure the first interaction tone cannot propagate. We
thus pick the numbers B; = 18 and B, = 40. In a fixed reference frame, the rotors are thus
20° apart and the stators are 9° apart. Once again, we assume that the zeroth front and rear
blades are aligned at T = 0. The next interaction is then easily shown to occur between the
fifth blade of the front row and the eleventh blade of the rear row. (Of course, since for this
case there is a common factor of 2 in the blade numbers, the interactions repeat spatially
every 180°.) The relevant values are thus / = 5 and m = 11, and we obtain the precession
speed of M, = 220M;, and the time interval of At = 2m/360M;, between interaction
events. Alternatively, we can use /| = —4 and m = —9 and obtain M, = —81M;, and the
same value of At.

3.3. Interaction location as a function of radius

The analysis of Kingan & Parry (2020b) showed that the front and rear reference blades,
on a contra-rotating propeller, interact at source times that vary across the blade span
due to the effect of blade sweep. Their derivation (given as (2.11) in Kingan & Parry
(20200)) is straightforward, as it is based solely on blade geometry and speed. With
our normalised parameters and definition of 7 = 0, the expression simplifies and the
reference blade interaction source times are 7o(r) = S(r), where both 19 and S are zero at
the hub: r = ry,.

The precession speed is given by (3.5), so that the azimuthal location at which the
interactions take place can be expressed as ¢., = M,(t — 79), where we have used the
subscript ‘ev’ to reflect the fact that the wake-blade interactions are referred to by
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Tyler & Sofrin (1962) as ‘events’. We will require the radial derivative of ¢, in the
following section and we get

d¢ev
dr

= M. (3.6)

4. Interactions as viewed by the observer

For the observer-based analysis, we follow much of the approach given in §4 of Parry
& Kingan (2019) except, crucially, for the fact that the Mach number of the interaction
disturbance, or event, is dependent not on the front and rear propeller blade Fourier
harmonics (n1, np) but on a precession speed that is fixed for a given propeller architecture
and is given here by (3.5). As the propeller is advancing with Mach number M,, and
the disturbance rotates (or precesses) around the annulus with Mach number M, the
combined Mach number M, of an ‘event’ at radius r towards an observer in the far field
at polar angle 6 can be obtained, using simple geometry, as M,ps = My cos 0 — M, where
M = rM), sin 0 sin ¢, is the resolved component of the rotating disturbance’s precession
speed towards the observer. The combined speed of the disturbance, in the direction of the

observer, is thus sonic when Ml = —(1 — M, cos6) or
. (1 =M cos9)
= 4.1
Si0 Peu rM,, sin 6 “.)

The location of an interaction event, at the leading edge of a propeller blade, is given by
Xev = —MyS + MyT,  yey = 1 COS ey, (4.2a,b)

where x and y are Cartesian coordinates in the horizontal plane in figure 2. For an observer
in the far field, the dot product of the tangent vector to the event line with the position
vector of the event location, relative to the observer, is given by

dyey
cos 6
+ d

dr r

ev

0=

sin@, (4.3)

and we find, after differentiating (4.2a,b) with respect to the radius r, and also using (3.6)
and (4.1), that £ = 0, and the event line is normal to the line between it and the far-field
observer, when

Sin @ cos ¢ey

ds/dr

In their time-domain analysis, Kingan & Parry (20200) (see (4.6) and (4.7) and the
accompanying discussion therein) showed that the term on the left-hand side of (4.4)
represented the Mach number of the wake centreline/leading-edge impingement point (or
trace Mach number along the reference blade’s leading edge) resolved in the direction of
the observer. (They used a fixed coordinate system so their Mach number was defined
relative to the fluid. That is not the case here.) For a swept blade, the Kingan & Parry
(2020b) analysis showed, further, that the condition (4.4) — representing a trace Mach
number of unity towards the observer — occurred when the reception times were stationary
with respect to the radius r and, as a consequence, it coincided with an enhanced
accumulation of noise from across the blade span and to strong peaks in the resultant noise
waveform received by the observer. In the time domain, therefore, (4.4) can be viewed as
a condition, or requirement, for enhanced peaks in the radiated sound field.

We have thus shown that this enhanced noise radiation in the time domain corresponds,
not just to a wake/blade leading-edge trace Mach number of unity, resolved in the direction
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of the observer, but also to the criteria of Amiet (1988), which relate to the shape and
motion of the disturbance event line that precesses around the circumference. The first of
these criteria is the sonic condition, in which the disturbance moves at a Mach number of
unity in the direction of the observer. Note that this Mach number relates to that of the
event line and not of the impingement point along the reference blade’s leading edge. The
second criterion is the normal-edge condition, in which the tangent to the event line is
normal to a line drawn between it and the observer.

For the case in which the two blade rows have equal numbers (B} = Bj), the interactions
occur simultaneously at all the rear blade leading-edge locations. To understand this case,
we must proceed with care and consider the limit as the two blade numbers approach each
other. Formally, at each radial station, we consider the interactions between two cascades
translating in opposite directions with speeds My, and M;,. This approach is completely
in keeping with that taken in the strip-theory model used for aerodynamic interactions by
Parry & Crighton (1989b), Parry (1997) and Kingan & Parry (2019, 2020a,b). Specifically,
we suppose that the cascade pitches are P = P 4+ 8P, P, = Pand P = O(B™"), with § P =
O(B~2), B — oco. (Here we have specified the magnitude of § P for definiteness but, in fact,
we merely require SP = o(B~").) Then, we find that / = m = 1 and, as might be expected,
the precession speed M), = (M;, + M;,)P/6P — oo as 8P — 0 (or B — 00). Despite the
fact that the precession speed is infinite, we also find from (4.1) that, provided the observer
is not positioned on the propeller axis (i.e. 6 #0), the sonic condition is still satisfied
when ¢., = 0,  (and the event line passes through the x—y plane) and, from (4.4), that
the normal-edge condition is then satisfied at observer locations § = + sin~! dS/dr. When
the observer is positioned on the propeller axis (6 = 0), ¢,, is indeterminate and we thus
find that the two criteria are satisfied at all azimuthal locations provided that dS/dr = 0.
For swept propellers, the enhanced noise thus comes from locations distributed around
a ring (or rings), at a radius (or radii) satisfying dS/dr = 0 and, for straight propellers
(for which dS/dr = 0 everywhere), it comes from the entire nominal propeller disk. These
time-domain results echo completely those found in the frequency domain by Parry &
Kingan (2019) for the zero mode case.

5. Conclusions

This paper has discussed the location of convected-wake interactions on a contra-rotating
propeller in real time. In the general case, these interactions occur at discrete, and equal,
time intervals at different locations around the circumference. However, as the blade
numbers tend to infinity, the process tends to a continuum of interactions. In this limit,
we showed how the interaction location precesses around the circumference at a speed
different from that of the front or rear blades and given by a combination of the two blade
numbers and the two tip speeds. The relevance of the calculation has been demonstrated by
application to recent frequency- and time-domain work on contra-rotating propellers and
also to a rotor—stator type configuration. We have exploited previous time-domain work on
the radial variation in the location of the wake interactions on contra-rotating propellers
to produce a complete (radial and azimuthal) space—time expression for the interaction
location. The radial variation in this location can be considered as a time-domain version
of an event line. An analysis from the viewpoint of a far-field observer showed that the
sonic and normal-edge conditions are satisfied by the time-domain event line at locations
in the nominal propeller disk corresponding precisely to those found in the far field, by
Kingan & Parry (2020b), to have stationary reception times relative to the radius r and,
thereby, to produce enhanced peaks in the radiated waveform.
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The paper thus shows that, for a contra-rotating propeller in the time domain, as well
as the frequency domain, the dominant noise generation regions are given, once again, by
the sonic and normal-edge criteria. Those criteria were first discovered by Amiet (1988) in
a time-domain analysis of the thickness noise from a single-rotating propeller. There the
criteria applied along the line defined by the propeller’s leading edge. We have shown the
criteria apply equally well to wake interactions on a contra-rotating propeller — provided
that the source line can be suitably defined. That line is the time-domain event line which
spins around the annulus at a speed given by the precession speed of the interactions.

Throughout, our aim has been to ensure that the time-domain and frequency-domain
analyses are completely consistent and that the physics underlying the noise generation are
fully understood, particularly in relation to the dominant source locations.
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