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A description of turbulent wall-flow vorticity
consistent with mean dynamics

J. C. Klewicki†

Department of Mechanical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA

(Received 18 September 2012; revised 7 October 2013; accepted 22 October 2013;
first published online 20 November 2013)

A depiction of the mean and fluctuating vorticity structure in turbulent wall flows is
presented and described within the context of the self-similar properties admitted by
the mean dynamical equation. Data from a relatively wide range of numerical and
physical experiments are used to explore and clarify the structure postulated. The mean
vorticity indicator for the onset of the four-layer regime of the mean dynamics is
revealed. With increasing Reynolds number, the mean vorticity is shown to segregate
into two increasingly well-defined domains. Half of the mean vorticity concentrates
into a near-wall region of width (relative to the overall flow width) that diminishes
proportionally to the inverse square root of Reynolds number. The remainder of
the mean vorticity is spread, with diminishing amplitude, over an outer domain that
approaches the overall flow width at high Reynolds number. Vorticity stretching and
reorientation are surmised to be the characteristic mechanisms accounting for the
inner domain behaviour of both the mean and fluctuating vorticity. Vorticity dispersion
via advective transport is surmised to be the characteristic mechanism in the outer
domain. In this domain, the fluctuating enstrophy approaches that of the instantaneous
enstrophy with increasing Reynolds number. This underpins an emerging self-similarity
between the mean and r.m.s. vorticity in the domain where the mean velocity profile
is logarithmic. The Reynolds number dependence of a number of properties associated
with the vorticity field is explored and quantified. The study closes with brief account
of the combined vortical and mean dynamical structure of turbulent wall flows.

Key words: turbulence theory, turbulent flows, turbulent boundary layers

1. Introduction
The condition of non-zero vorticity is a definitional feature of wall-bounded

flows. For this reason, vorticity has long been purported to be the natural variable
for studying these flows, e.g. Lighthill (1963). In the turbulent wall flows under
investigation, the component of vorticity parallel to the wall and perpendicular to the
direction of the main flow (hereafter, called the spanwise component) is the only one
with a non-negligible mean value. This mean vorticity is well-approximated by the
wall-normal derivative of the mean velocity, and thus describes the increments in mean
velocity (circulation per unit length, Γ ) required to reconcile the free-stream flow with
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a no-slip wall. Such properties connect the structure of the vorticity and momentum
fields.

Recent studies reveal that the mean dynamical equations for the canonical wall
flows admit an invariant form (Wei et al. 2005; Fife et al. 2005a; Fife, Klewicki &
Wei 2009; Klewicki, Fife & Wei 2009). This underlies a similarity solution to these
equations over a well-defined interior domain (Klewicki 2013a). Herein, turbulent
wall-flow vorticity characteristics are described in a manner that is consistent with this
similarity solution, and other properties admitted by the mean momentum equation.

We consider statistically stationary, fully developed, incompressible turbulent flow in
pressure-driven pipes and planar channels, and in the developing zero-pressure-gradient
boundary layer. The main flow is in the x-direction, with the wall-normal direction
denoted by y (=δ − r in the pipe, where δ denotes the pipe radius). Upper-case
letters or angle brackets denote time-averaged quantities. Lower-case letters indicate
fluctuations about the mean, and instantaneous quantities are denoted by a tilde.
The x, y and z (x, r, θ) velocity components are given by variants of u, v and w
respectively. Vorticity component directions are denoted by their subscript, and δ is
used to indicate the boundary layer thickness, pipe radius, or half channel height. A
superscript ‘+’ denotes normalization by the kinematic viscosity, ν, and the friction
velocity, uτ = √τw/ρ, where ρ and τw are the mass density, and mean wall shear
stress, respectively. The Reynolds number is given by δ+ = δuτ/ν = 1/ε2. The value
of the circulation per unit length integrated to the free stream or centreline is denoted
by Γe.

1.1. Transitional regime
Fully developed laminar Poiseuille flows are dynamically characterized by a balance
between a driving pressure force and a retarding viscous force. The dynamics of the
laminar boundary layer are dictated by a retarding viscous force that affects a time
rate of change of streamwise momentum. At sufficiently high Reynolds numbers, these
flows develop instabilities, and the inertia of the turbulence becomes significant, both
instantaneously and as a mean dynamical effect. In the transitional regime turbulent
inertia drives the rapid redistribution of the mean momentum. During this process,
the relative magnitudes of the terms in the mean dynamical equation qualitatively
change (Elsnab et al. 2011; Klewicki, Ebner & Wu 2011; Klewicki et al. 2012; Sayadi,
Hamman & Moin 2013), culminating with the establishment of the four-layer structure
first revealed by Wei et al. (2005). In the pipe and channel, δ+ ' 180 marks the onset
of the four-layer regime, while this onset occurs at δ+ ' 370 in the boundary layer
(Elsnab et al. 2011; Klewicki et al. 2011, 2012). Properties of the four layers are
summarized in table 1.

In each of the subject flows the mean vorticity, Ωz, undergoes developments
commensurate with the dynamical processes just described. Wallward momentum
transport occurs simultaneously with outward vorticity transport, as these are governed
by the same physical mechanisms (Klewicki et al. 2007; Eyink 2008). Self-sustaining
vorticity stretching and reorientation mechanisms initiate and intensify during the
transitional regime. These lead to the concentration of ∼1/2 of the total Ωz within a
region adjacent to the surface that has a width that decreases relative to δ like 1/

√
δ+

(Wei et al. 2005; Klewicki et al. 2007; Elsnab et al. 2011; Klewicki et al. 2011, 2012).
The remainder of the Ωz is then spread over a domain whose width approaches δ
as δ+→∞. These mechanisms, which are responsible for the eventual development
of a logarithmic mean velocity profile, initiate during the transitional regime. Morrill-
Winter & Klewicki (2013) also provide evidence that these two regions of the Ωz
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Physical
layer

Magnitude
ordering

(pipe & channel)

Magnitude
ordering

(boundary layer)

1y
increment

|1Γ |
increment

I |PG| ' |VF| � |TI| |MI| ' |VF| � |TI| O(ν/uτ ) (63) O(uτ ) (63)

II |VF| ' |TI| � |PG| |VF| ' |TI| � |MI| O
(√
νδ/uτ

)
('1.6) O(Ue) ('0.5)

III |PG| ' |VF| ' |TI| |MI| ' |VF| ' |TI| O
(√
νδ/uτ

)
('1.0) O(uτ ) ('1)

IV |PG| ' |TI| � |VF| |MI| ' |TI| � |VF| O(δ) (→1) O(Ue) (→0.5)

TABLE 1. Magnitude ordering and scaling behaviours associated with the four layer
structure of (1.1). Note that Ue equals U∞ in the boundary layer and Uc in the pipe and
channel (Wei et al. 2005; Fife et al. 2009). PG,VF,MI and TI respectively refer to the
mean pressure gradient, mean viscous force, mean flow inertia and mean effect of the
turbulent inertia terms in the mean momentum equation.

profile are associated with two different mechanisms for scale separation between the
sizes of the motions characteristic of the velocity and vorticity fields, respectively.
Here we show that the outer region mechanism becomes distinct at the onset of the
four-layer regime, and provide evidence that it gives rise to an outer flow comprised
of approximately uniform-momentum zones as first revealed by Meinhart & Adrian
(1995), segregated by narrow strips of elevated vorticity that Priyadarshana et al.
(2007) called vortical fissures, also see Adrian, Meinhart & Tomkins (2000) and
Morris et al. (2007).

1.2. Four-layer regime
In the four-layer regime, the mean dynamical equations admit invariant forms
that determine the scaling behaviours of their solutions. With increasing δ+, these
scaling behaviours become increasingly well-established (Wei et al. 2005; Fife et al.
2005a, 2009; Klewicki et al. 2009; Klewicki 2013a). Consider, for example, the
inner-normalized mean momentum equation for the turbulent boundary layer,(

U+
∂U+

∂x+
+ V+

∂U+

∂y+

)
− ∂T+

∂y+
= ∂

2U+

∂y+2
, (1.1)

where T+ = −〈uv〉+. Mean inertia (MI) is represented by the terms involving mean
velocity on the left. The remaining term on the left is the mean effect of turbulent
inertia (TI). The term on the right of (1.1) is the mean viscous force (VF). The
corresponding pipe and channel flow equations are similar, but the MI term is replaced
by a mean pressure gradient term, PG, that at any given δ+ is everywhere equal
to 1/δ+ = ε2. Given the mean momentum equation, remarkably little else is required
to analytically determine the layer scaling properties, to within O(1) coefficients,
indicated in table 1. The existence and properties of layer I are derivable from a Taylor
series at the wall. The properties of layers II–IV require the existence of a region
away from the wall where the leading-order balance is MI − TI = 0, and a region near
the wall where TI + VF = 0. All the rest is determinable from analysis of the mean
momentum equation and its boundary conditions, e.g. Fife et al. (2005a, 2009).

Note also that

TI = ∂T+

∂y+
=−∂〈uv〉

+

∂y+
= 〈vωz〉+ − 〈wωy〉+ + ∂

∂x+
(〈v2〉+ + 〈w2〉+ − 〈u2〉+) . (1.2)
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FIGURE 1. (a) Distribution W+(y+) for pipe, channel, and boundary layer flows: pipe flow
DNS of Wu & Moin (2008) at δ+ = 1142 (- - -); boundary layer DNS of Schlatter & Orlu
(2010) at δ+ = 1245 (——); channel flow DNS of Abe, Kawamura & Matsuo (2004) at
δ+ = 1020 (– – –); channel flow DNS of Hoyas & Jimenez (2006) at δ+ = 2004 (· · · · ·).
Vertical lines denoting the beginning and end of layer III are computed for δ+ = 1000 (see
table 1). (b) Distributions of T+ = −uv+ and W+dT+/dy+ versus y+ for pipe, channel and
boundary layer flows. Vertical lines are associated with the pipe and channel (dotted) and
boundary layer (dashed) profiles, respectively. Pre-multiplication of dT+/dy+ by W+ reveals
the mean source/sink balance associated with TI. Note that W attains its minimum and
maximum at y= ypi and y= ypo, respectively. Line styles are the same as in (a).

The last term in (1.2) is identically zero in channel and pipe flow, and negligible
under the boundary layer approximation. Thus, the TI term is well-approximated by
the difference of the indicated velocity–vorticity correlations, especially as δ+→∞.

The mean momentum equations for the canonical turbulent wall flows, including
(1.1), admit similarity solutions (Klewicki 2013a). Accordingly, a coordinate stretching
function ensures that a single self-similar solution holds as δ+ is varied. This
coordinate stretching function is denoted by φ, and is defined by

dW

dy
= φ−1, (1.3)

where W+(y+) (shown for different δ+ wall flows in figure 1a) is the continuous
distribution of widths of a hierarchy of scaling layers called the Lβ hierarchy, e.g.
Fife et al. (2009) and Klewicki (2013a). W+(y+) is formally related to the decay
rate of the TI term in (1.1). Generally, however, W+ is most accurately computed
using W+ = (−∂2U+/∂y+2)

−1/2. Physically, at any location on the Lβ hierarchy W
is the mean length scale of the inertial turbulent motions that transport momentum.
Conceptually, W is similar to von Kármán’s representation of Prandtl’s mixing length
(von Kármán 1930). His formulation, however, stems from an intuited similarity
hypothesis, while the properties of W(y) are determined from an analysis of the mean
dynamical equation. Specifically, normalization of the mean momentum equation using
uτ and W formally yields a single invariant form that holds over the domain where
the TI term is a decreasing function of y, i.e. on the domain of the Lβ hierarchy. This
domain extends from y+ = y+pi ' 7 to y/δ = ypo/δ ' 0.5, or equivalently between the
peak momentum source and sink locations in figure 1(b) (Fife et al. 2009; Klewicki
et al. 2011).

The position, y+m , where T+ = −〈uv〉+ attains its maximum (zero crossing of TI) is
always located in layer III. Across layer III, the layer II mean force balance is broken,
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and exchanged for the balance that emerges in layer IV (table 1). The analysis shows
that this same balance breaking and exchange of mean forces is replicated across every
layer (of width W(y)) of the Lβ hierarchy, and thus occurs as a function of y. The
cumulative effect of these processes on the hierarchy give rise to the layer structure
listed in table 1. Layer III is therefore appropriately viewed as the central layer in the
hierarchy, since, in fact, its scaling properties derive from the underlying ensemble of
layers. For this reason y+m is well-approximated by (y+piy

+
po)

1/2 (figure 1b).
The function φ describes the rate at which y varies relative to the local mean size of

the inertial motions responsible for turbulent momentum transport. This is exemplified
by figure 1(b), which shows that when the TI term in (1.1) is weighted by W+(y+)
and plotted on a log scale, its source and sink contributions become symmetrically
distributed about its zero-crossing (maximum in T+). This is a consequence of the
turbulent motions increasing in scale approximately in proportion to y, as reflected by
the W+ profile (figure 1a). The decay rate of the TI function between ypi and ypo

determines the behaviour of W+ (Fife et al. 2005b, 2009).
The framework used herein derives from the magnitude ordering of terms in (1.1).

From the resulting four-layer structure (table 1), it is apparent that the coordinate
stretching, φ, is operative over regions of the flow where the mean dynamics are
governed by differing sets of leading-order terms. Specifically, the VF term loses
leading-order across layer III, and here there is also a corresponding change in the
qualitative behaviour of φ. As depicted in figure 1(a), φ is well-approximated by a
non-constant O(1) function of y+ on the wallward side of layer III. Beyond layer III,
φ is increasingly well-approximated by an O(1) constant, φ = φc, as δ+→∞. The
relative simplicity of the outer (φ = φc) self-similarity leads to an explicit closure of
(1.1) on a subdomain between the outer edge of layer III and ypo/δ ' 0.5 (Klewicki
2013a). By exploiting the invariant form of (1.1), one can develop an independent
differential relationship between U+ and T+ (Fife et al. 2005b, 2009; Klewicki et al.
2009; Klewicki 2013a). As δ+→∞, the outer similarity solution emerges in concert
with the more slowly developing inner self-similarity (φ 6= const.) that is operative
between y+pi ' 7 and the outer edge of layer III (y+ ' 2.6

√
δ+, or equivalently,

εy+ = 2.6). These behaviours exist for all of the canonical wall flows (Klewicki
2013a).

As shown in figure 2, the inner and outer self-similar domains respectively
coincide with where the 〈wωy〉 contribution to TI becomes dominant over 〈vωz〉
(y < ym), and where the 〈vωz〉 contribution becomes dominant over 〈wωy〉 (y > ym).
These contributions are associated with the spatial confinement and spatial dispersion
mechanisms of scale separation described by Morrill-Winter & Klewicki (2013) and
depicted in figure 3.

1.3. Physical model
The primary aim of this study is to describe and explain a body of results that
collectively support the depiction of the turbulent wall-flow vorticity field given in
figure 3. Figure 3 was constructed by considering what the momentum equation
analyses just described indicate about the structure and scaling properties of the
vorticity field, as well as the physical mechanisms that underlie this structure.

The singular limit of the boundary layer is often conceptualized as a differentially
thin vortex sheet that has a circulation per unit length of Γe. For both laminar and
turbulent boundary layers, this limit is approached because the relative size of the
domain where the viscous force has leading order diminishes as δ+→∞. For fixed
ν, the limit δ+→∞ can generically be obtained by two separate means: |Γe| →∞
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FIGURE 2. Ratios of the velocity vorticity correlations in (1.2) versus y+. Vertical dashed
lines denote the boundaries of layers I–IV. Vertical dotted lines denote the upper and lower
boundaries of the self-similar regions associated with the coordinate stretching function φ,
and the geometric centre, y+m , which is also the zero-crossing of TI. Data are from the
δ+ = 2004 channel flow DNS of Hoyas & Jimenez (2006).

Scale separation via
spatial confinement

Scale separation via
spatial dispersion

I II III IVVorticity
stretching and advection

Vorticity
advection and stretching

Advecting
vortical fissures

FIGURE 3. Schematic depiction of the vorticity field attributes in turbulent wall flows. The
dominant processes responsible for scale separation between the velocity and vorticity fields
change across layer III. The velocity field motions (light grey) are space-filling throughout the
flow. The vorticity field motions (hatched regions) are confined to a sub-volume near the wall
via vorticity stretching, and then the resulting thin regions of concentrated vorticity, vortical
fissures, are dispersed by advective transport over the volume of layer IV. Note that for clarity
the horizontal scale is stretched, e.g. layer II is actually only ∼1.6 times wider than layer III,
see table 1.
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for fixed δ, and δ→∞ for fixed |Γe|. In the first case, the domain size is fixed and
the region of non-negligible viscous force diminishes in physical space. In the second
case, both the overall domain size and the viscous region increase in physical space,
but the growth of the domain size out-paces that of the viscous region. By definition,
a similarity solution results from a parameter-free invariant form of the governing
equation. Thus, for example, φ is analogous to the y/x ∼ Re−1/2

x coordinate stretching
associated with the similarity solution of the laminar boundary layer equation, as
both describe the rate at which the region of non-negligible viscous force diminishes
relative to the overall size of the flow domain (Klewicki 2013b).

In reference to the momentum transport associated with the vortical fissures
of figure 3, Priyadarshana et al. (2007) revealed that the cospectral contributions
underlying 〈vωz〉 are associated with scale selections. Here the predominant
contributions to the cospectra are centred about the peak in the v spectra, or the
peak in the ωz spectra, or both, in contrast to concentrating in the wavenumber range
where the two spectra overlap. The scale selection about the peak in the ωz spectrum
is readily conceptualized as pertaining to the velocity fluctuations local to an intense
vortical motion. In the context of the structure revealed by Meinhart & Adrian (1995),
Priyadarshana et al. (2007) postulated that the scale selection associated with v derives
from the advective meandering of the vortical fissures through the low-level vorticity
of the uniform-momentum zones. Consistent with the depiction of figure 3, Morrill-
Winter & Klewicki (2013) found that for 1500 . δ+ . 890 000 the v scale selection
dominates the cospectrum starting near the outer edge of layer III, while both v and ωz

scale selections are present in layer II.
Morrill-Winter & Klewicki (2013) also provide evidence that the physical processes

underlying the two δ+→∞ limits described above act in concert to attain the overall
scale separation, δ+ = δ/(ν/uτ ), in turbulent wall flows. These are the mechanisms
of spatial confinement (associated with vorticity stretching) and spatial dispersion
(associated with advective transport) depicted in figure 3. The present results are
concerned with where Ωz is apportioned as δ+ increases, and why, as δ+→∞, the
rate at which both Γ +II and Γ +IV increase is proportional to φc (Klewicki 2013a). In
accord with the observations first made by Meinhart & Adrian (1995), figure 3 also
depicts how the two self-similar domains described by φ relate to an average snapshot
of the instantaneous vorticity field. The Reynolds number scaling behaviours of the
features are noted on the figure, as is the domain of the Lβ layer hierarchy.

In conceptualizing figure 3, and for later reference, it is also useful to recall that
vorticity is invariant under Galilean transformation. Thus, relative to the mean, the
amplitudes of the vorticity fluctuations in the vortical fissures are large, independent
of whether the wall is moving through a stationary fluid or the fluid is moving over a
stationary wall. (This is not the case for the velocity fluctuations.) Note further that the
enstrophy equation,

ω̃ ·
∂ω̃

∂t
=−ω̃ ·∇ × (ω̃ × Ṽ)+ νω̃ ·∇2ω̃, (1.4)

indicates that there are only three mechanisms that can affect a time rate of change at
a point. These relate to vorticity advection, vorticity stretching/reorientation (hereafter
just called stretching) and viscous diffusion. Furthermore, because pressure does not
explicitly appear in the vorticity transport equation, the stretching mechanism is
the only one that can cause inter-component exchanges between ω̃x, ω̃y and ω̃z, or
relative to the Reynolds decomposition, exchanges between the mean and fluctuating
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Study Flow configuration Reynolds number, δ+

Elsnab et al. (2011) Channel expt 53, 58, 71, 82, 88, 98
Monty (2005) Channel expt 1453, 1723, 2427, 3118, 3941
Laadhari (2002) Channel DNS 72, 90, 120
Abe et al. (2004) Channel DNS 640, 1020
Hoyas & Jimenez (2006) Channel DNS 186, 547, 934, 2004
McKeon (2003) Pipe expt 1800. δ+ . 530 000 (18 values)
Cheng (2011) Pipe DNS 91, 111, 157, 171, 314, 500, 1000
Wu & Moin (2008) Pipe DNS 1142
Klewicki & Falco (1990) TBL expt 375, 970, 1500
Nagib, Chauhan &
Monkewitz (2007)

TBL expt (NDF) 5406, 12 007, 18 758

Nagib et al. (2007) TBL expt (MTL) 5391, 7556, 10 815
Hutchins et al. (2009) TBL expt 2476, 3433, 6445, 11 958, 16 708
Oweis et al. (2010) TBL expt 17 000, 32 000, 47 000
Priyadarshana & Klewicki
(2004)

TBL expt
(SLTEST)

890 000

Wu & Moin (2009) TBL DNS 53, 85, 145, 211, 273, 327, 368, 396
Schlatter & Orlu (2010) TBL DNS 357, 671, 1034, 1245

TABLE 2. Investigation, flow configuration, and Reynolds numbers of the primary data
sets employed herein. Note that NDF and MTL denote data originating from the National
Diagnostic Facility and Minimum Turbulence Level wind tunnels, respectively. SLTEST
denotes measurements acquired in the atmospheric surface layer over the salt playa of
Utah’s western desert. All δ+ values for the boundary layer data use δ99.

enstrophy. Herein we demonstrate that in the domain where φ = φc (i.e. the log layer)
〈ω̃2〉 → 〈ω2〉 as δ+ →∞. This naturally leads one to surmise that the properties
of the mean vorticity and its integral, U, increasingly stem from the much larger
vorticity amplitudes internal to the fissures depicted in figure 3. Lastly, note that the
velocity–vorticity products in (1.2) appear in the first term on the right of (1.4), which
contains the stretching and advection terms.

In what follows, we first examine the mean vorticity properties within the context
of figure 3 and the mean dynamical structure described in § 1.2, followed by those
associated with the vorticity fluctuations. References to figure 3 are made throughout.

2. Data sets
The stated aims are advanced by exploring vorticity properties using a number of

data sets. The data come from both physical and numerical experiments. Table 2 lists
most of the data sets used herein, and for each study indicates their Reynolds numbers.

3. Results
This section provides evidence supporting the vorticity field depiction of figure 3.

Evidence from only one of the canonical flows is typically used to exemplify the given
result, with the other results given in the supplemental materials (SM) accompanying
this paper available online at http://dx.doi.org/10.1017/jfm.2013.565. We conclude
with a brief synopsis of how the present vorticity field results connect to the mean
dynamical structure.
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3.1. Mean vorticity organization at the onset of the four-layer regime
The magnitude orderings of the terms in the mean momentum equation (table 1)
become well-approximated at the close of the transitional regime. That is where
this equation begins to admit the self-similar behaviours described by the coordinate
stretching function φ. Thus, insights are gained by clarifying integral properties of the
mean vorticity distribution through the transitional regime, and how these properties
qualitatively change in the four-layer regime.

As described by Lighthill (1963), increases in δ+ through the transitional regime are
at first accompanied by the rapid wallward concentration of Ωz (Elsnab et al. 2011;
Klewicki et al. 2011). This occurs in concert with the emergence of a low-amplitude
and relatively slowly attenuating (with increasing y+) outer region Ωz profile. This
outward spreading of the low-level Ωz tail underlies the eventual development of a
logarithmic mean velocity profile (Elsnab et al. 2011; Klewicki et al. 2011, 2012).

The displacement thickness, δ∗, provides a useful measure of these flow field
developments. Typically, δ∗ is found by equating the mass flux integral that extends
from the surface to δ in an actual wall flow to the mass flux integral associated with a
uniform flow at U∞ (or Uc) that extends from δ to a position y = δ∗ from the surface.
For rectangular geometries this equality leads to the familiar expression,

δ∗ =
∫ δ

0

(
1− U

Ue

)
dy, (3.1)

where Ue refers to U∞ in the boundary layer and Uc in the channel.
A circular geometry renders the pipe flow calculation somewhat more complicated.

The definitional expression,∫ R

0
U(r)2πr dr =

∫ R−δ∗

0
Uc2πr dr, (3.2)

can, however, be rearranged into the quadratic form,(
δ∗

δ

)2

− 2
(
δ∗

δ

)
+ I

δ2
= 0, (3.3)

where,

I =
∫ δ

0

(
1− U(r)

Uc

)
2r dr. (3.4)

Lighthill (1958) suggested that a more rigorous definition of δ∗ involves representing
the layer of Ωz that resides between 06 y6 δ with a single vortex sheet of equivalent
Γe that also satisfies U = 0 at y= 0. To within an error of order (δ/`)2 (where ` is the
flow development length), the position of this vortex sheet is given by

δ∗ =

∫ δ

0
yΩz dy∫ δ

0
Ωz dy

=

∫ δ

0
(Ue − U(y)) dy

Ue
, (3.5)

where (3.5) employs the boundary layer approximation, |Ωz| = |∂U/∂y| � |∂V/∂x|,
but is exact in channel flow. It shows that δ∗ physically locates the centroid of the
mean vorticity (Lighthill 1958).
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TBL
4-layer
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4-layer
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102 103 104 105 106

FIGURE 4. Ratio of the displacement thickness to the thickness of layer II versus δ+:
boundary layer data (H); channel flow data (�); pipe flow data (�); boundary layer
δ∗/(∆II +∆III) (O)

The evolution of δ∗/δ with increasing δ+ is presented in the SM, along with an
analysis of the contributions from layers I–IV to δ∗ for increasing δ+. Here we focus
on the characteristics of δ∗ relative to the emergence of the four-layer structure.

The thickness of layer II (table 1) decreases relative to δ like 1/
√
δ+, while the

ratio of the layer II circulation to Γe remains '1/2 independent of δ+. Relative to δ,
δ∗ rapidly migrates toward the surface with increasing δ+ in the transitional regime,
but once in the four-layer regime this wallward trend slows abruptly. In the four-layer
regime the position where Γ = Γe/2 is located at the outer edge of layer II (table 1).
Thus, δ∗/∆II is the ratio of the Ωz profile centroid to the position where its integral is
1/2 of its total.

Profiles of δ∗/∆II versus δ+ for channel, pipe, and boundary layer flow are shown in
figure 4. A number of features are evident. Within the laminar and transitional regimes,
the centroid of the mean vorticity lies interior to the position where Γ = Γe/2, and
thus δ∗/∆II < 1.0. With increasing δ+, this ratio crosses through 1.0. The pipe and
channel data first exceed 1.0 at δ+ ' 180. This position closely coincides with the
onset of the four-layer regime as determined using a magnitude ordering analysis
of the mean momentum equation (Elsnab et al. 2011; Klewicki et al. 2012). The
boundary layer δ∗/∆II data cross close to but slightly before its similarly estimated
start of the four-layer regime (Klewicki et al. 2011). It is observed, however, that the
ratio δ∗/(∆II + ∆III) for the boundary layer data crosses unity almost exactly at the
four-layer onset, and shows much closer agreement with the channel and pipe data
at higher δ+. This may have a connection to the absence of a mean surface vorticity
flux and outer region mean vorticity annihilation process in the boundary layer, as both
exist in the channel and pipe. Regardless, the boundary layer data indicate that both
δ∗/∆II and δ∗/(∆II + ∆III) increase rapidly at the close of the transitional regime, and
then abruptly change slope at the start of the four-layer regime.

The results of figure 4 show that δ∗/∆II > 1 is the mean vorticity indicator for
the beginning of the four-layer regime. The four-layer onset also corresponds to
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when the hierarchy length scale distribution, W+(y+), first begins to exhibit a short
segment of approximately linear dependence on y+. This linear dependence initiates
near y+ = 2.6

√
δ+, and grows like d∆+IV/dδ

+ ' 1 − 1.3/
√
δ+ (Klewicki 2013a). It

coincides with an emerging logarithmic-like dependence in the mean velocity profile
(Fife et al. 2009; Klewicki et al. 2011; Klewicki 2013a).

The behaviours in figure 4 are associated with the formation of the low-level outer
tail of mean vorticity discussed above. Morrill-Winter & Klewicki (2013) surmise
that this arises in concert with a scale separation that physically results from
motions bearing concentrated vorticity being intermittently dispersed over layer IV.
Consistently, figure 3 depicts large-scale zones of increasingly uniform momentum (as
δ+→∞) that are segregated by the vortical fissures. These vortical fissures begin to
spatially disperse at the start of the four-layer regime, as reflected by δ∗/∆II exceeding
unity. This process underlies the skewing of the weight in the Ωz distribution that
inherently causes its centroid to reside at an increasingly greater y location than its
midpoint.

The four-layer regime pipe flow profile of figure 4 (which covers the largest δ+

range) exhibits what appears to be a series of dwells in slope at about one decade
intervals in δ+. This behaviour is made apparent by the series of power function
curve-fits beginning near δ+ = 180. In accord with the known behaviours of δ∗/δ and
∆II/δ (table 1), each of these curve-fits has a slope of ∼1/2 (0.5± 0.02). Examination
of the channel and boundary layer profiles in figure 4 reveal that, at a minimum, they
also undergo the first dwell. The physical significance of these regular changes in the
observed slope is currently unknown.

3.2. Mean vorticity field scaling and development
Some elements of the momentum equation analyses concern directly the scaling
properties of the mean vorticity distribution, as depicted in figure 3. Testing the results
of these analyses with wall-flow data exposes the properties of the mean vorticity
distribution relative to the layer boundaries of table 1, and clarifies the self-similar
behaviours that underlie the emergence of a logarithmic mean velocity profile.

The analysis of Fife et al. yields order-of-magnitude estimates describing the decay
rate of dU+/dy+ from layer I to layer III (Fife et al. 2005b, 2009),

y+ = O(1/ε), |Ω+z | =
dU+

dy+
= O(ε). (3.6)

Similarly, by the upper end of the hierarchy, η = y/δ ' 0.5,

|Ω+z | =
dU+

dy+
> O(ε2),

dU+

dη
> O(1), (3.7)

see Wei et al. (2005) and Fife et al. (2005a). Together, (3.6) and (3.7) prescribe the
behaviours sketched in figure 5. |Ωz| retains its maximal value of uτ/(ν/uτ ) = u2

τ/ν

from the wall out to y . 3ν/uτ (outer edge of layer I). It then drops to a value that is
O(uτ/

√
νδ/uτ ) = O(

√
u3
τ/νδ) by y = O(

√
νδ/uτ ), i.e. in or near layer III. From there

it subsequently decreases much more slowly to values approaching O(uτ/δ) near the
upper end of the hierarchy. Thus, |Ωz| is approximately equal to uτ divided by ν/uτ at
the lower boundary of the hierarchy (y+ ' 7), and is approximately equal to uτ divided
by δ at the upper end of the hierarchy. The full span of the length scale variation is
given by the ratio δ/(ν/uτ )= δ+ = ε−2. This overall scale separation is segregated into
two parts: (i) from the wall to the position where |Ωz| = O(ε), with the corresponding
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I II III IV

FIGURE 5. Sketch of the mean vorticity profile indicating the rate of decay of |Ωz| with
distance from the wall as indicated by the theory (Wei et al. 2005; Fife et al. 2009; Klewicki
2013a).

variation in length scale described by the ratio

O

(√
νδ/uτ
ν/uτ

)
= O(ε−1), (3.8)

and (ii) from this position to the upper end of the hierarchy, with the corresponding
variation in length scale described by the ratio

O

(
δ√
νδ/uτ

)
= O(ε−1). (3.9)

Equations (3.8) and (3.9) specify the length scale variations associated with the
increments of U+ in the two regions of the Lβ hierarchy depicted in figures 1 and
2, and with the regions of vorticity stretching and dispersion in figure 3. These regions
are dynamically distinct; on the former domain the VF term in (1.1) is leading order,
and on the latter domain it is not.

Data from the studies of table 2 were used to test the veracity of (3.6) and (3.7).
Figure 6 presents results for pipe flow, while the boundary layer and channel results
are presented in the SM. The decay rate of |Ωz| across layer II is explored via the
quantity y+ε , defined as the y+ position where |Ω+z | equals ε = 1/

√
δ+. This quantity

is plotted relative to the vertical axis on the left of figure 6. The value of |Ωz| at the
position of Wmax (upper end point of the Lβ hierarchy, y/δ = ypo/δ ' 0.5, see figure 1)
is given by the outer-normalized magnitude of the mean vorticity at η = y/δ = 0.5,
dU+/dη|Wmax . Similarly, the net mean circulation (per unit length) in the remainder of
the layer (η > 0.5) is quantified by U+c −U+Wmax . Both dU+/dη|Wmax and U+c −U+Wmax are
referenced to the vertical axis on the right of the figure.

The analysis predicts that y+ε should vary like ξ
√
δ+, where ξ is an O(1) constant.

Accordingly, curve-fits of the y+ε data were constrained to adhere to a
√
δ+ dependence.

Under this constraint, ξ was found to equal 2.48, 2.61 and 2.53 for the channel,
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FIGURE 6. Pipe flow mean vorticity profile properties versus δ+: y+ε = y+ position where
dU/dy= uτ/

√
νδ/uτ (•); U+c − U+(y/δ = 0.5) (�); dU+/dη(y/δ = 0.5) (�); y+ε = 2.61

√
δ+

(—–); U+c −U+ = 2.03− (6.82× 10−8)y+ (– – –); dU+/dη = 7.15− (6.38× 10−8)y+ (- - - -).
Estimated δ+ for the onset of the four-layer regime is based upon the study of Klewicki et al.
(2012).

Flow ξ γ α U+e − U+Wmax dU+/dη|Wmax

Channel 2.48 1.54 0.563 1.75 6.24
Pipe 2.61 1.51 0.547 2.03 7.15
Boundary layer 2.53 2.11 0.522 2.66 9.86

TABLE 3. Summary of mean circulation and mean vorticity analysis. Fit parameters
for y+ε = ξε−1 = ξ(δ+)0.5 and y+ε = γ (δ+)α . Constant terms in the straight line fits to
U+e − U+Wmax and dU+/dη|Wmax .

pipe and boundary layer, respectively (table 3). Thus, these findings support the
conclusion that y+ε is consistently located near the outer edge of layer III. The
same data were also fitted according to the more general relation, y+ε = γ y+α. As
summarized in table 3, these curve-fits yield α values between 0.522 and 0.563 with
the corresponding γ values ranging between 2.11 and 1.51. From visual comparisons
of these curve-fits (not shown), it is not apparent that those for which both γ and α
are allowed to vary provide characterizations of the data trends superior to those for
which γ is constrained to equal 0.5. In either case, these results are deemed to be
well-aligned with the analytical predictions.

For sufficiently high Reynolds numbers, the behaviours of dU+/dη|Wmax and
U+c − U+Wmax exhibit similar agreement with the analytical estimates. From (3.7) it
is expected that dU+/dη|Wmax will approach an essentially constant value having
magnitude not less than O(1). For each of the three flows, a linear curve-fit of
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the dU+/dη|Wmax data has negligible slope, with the constant term ranging from 6.24
to 9.86 (table 3). The U+c − U+Wmax data also develop constant values of ∼1.75, 2.03,
and 2.66 for the channel, pipe, and boundary layer, respectively. The U+c − U+Wmax
behaviours are similar to those exhibited by the parameter Π in the Coles (1956) wake
model. Overall, the dU+/dη|Wmax and U+c −U+Wmax results reveal that the boundary layer
contains the largest amount of outer region vorticity (both in an integral sense and at
η = 0.5), followed by the pipe, and then the channel. Other differences between the
pipe, channel and boundary layer are discussed in the SM.

Expressions (3.6) and (3.7), as tested above, provide insight into the Ωz profile
development. By the close of the transitional regime, wall-flow dynamics are acting
to concentrate about half of the total Ωz into a near-wall domain that, relative to
δ, is shrinking like ε = 1/

√
δ+. The remainder of the Ωz is spread over a layer IV

domain of size that is approaching δ at a rate approximated by 1− 1.3/
√
δ+ (Klewicki

2013a). Transitional flow studies indicate that this occurs owing to the spread of
turbulent inertia from near the initial peak in the T+ (= −〈uv〉+) profile toward the
periphery of the flow (Elsnab et al. 2011; Klewicki et al. 2011, 2012). Near the close
of the transitional regime, the minimum and maximum length scales of the motions
associated with TI become constrained by the boundary conditions. This marks when
ν/uτ and δ become parameters relevant to scaling the properties of the four-layer
regime, as it also marks when the end points of the Lβ hierarchy become fixed at
y+ = y+pi ' 7 and y/δ = ypo/δ ' 0.5, respectively, see figure 1(b) and Klewicki et al.
(2011). As implied by the depiction of figure 3, this same process continues in the
four-layer regime, since with each increment in δ+ the layer hierarchy expands to fill
the domain between ypi and ypo.

These findings collectively indicate that the limiting values of the mean vorticity
profile can be made the same at any given δ+ by multiplying Ω+z by ε−1 = √δ+,
and multiplying y+ by ε. When these quantities are plotted on linear axes, the profile
rapidly becomes characterized by two ‘δ-functions’ (spikes) of magnitude ε−1 that,
with increasing δ+, increasingly become more adjacent to the plot axes. For example,
for δ+ & 10 000 these inner and outer spikes characterizing the profile become
indistinguishable from the vertical and horizontal axes, respectively. The transition
between the two spikes begins near the outer edge of layer II, and is completed
near the outer edge of layer III (εy+ ' 2.6), which also corresponds to y+ε (table 3).
The region interior to the transition is where vorticity stretching is indicated to be
most important in figure 3, while the region beyond the transition is characterized by
advective transport. These regions also correspond to layers II and IV, respectively, see
table 1.

Boundary layer profiles of |Ω+z |ε−1 versus εy+ are shown in figure 7, while those
for the channel and pipe are given in the SM. Here it is useful to note that under inner
normalization the |Ωz| profiles from all of the canonical wall flows are observed to
be invariant for y+ . 40, see the SM. This observation allows the profiles of figure 7
to be extended to the wall using the DNS profile for y+ . 40. The data of figure 7
support the analytical predictions, and agree with the empirical observations from
channels and pipes reported in the SM.

For each of the canonical flows, the |Ω+z |ε−1 profiles convincingly merge beginning
near εy+ = 2.6, and for greater εy+ adhere to a power law consistent with a
logarithmic mean velocity profile. Recent high-Reynolds-number pipe and boundary
layer data provide compelling support for the logarithmic layer beginning near
εy+ = 2.6 (Marusic et al. 2013). Aligning the profiles about y+ε at each δ+ has
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FIGURE 7. Mean vorticity profiles in turbulent boundary layer flow, meso-normalized and
plotted on logarithmic axes. Solid lines are from the experiments of Hutchins et al. (2009).
Dashed lines are from the δ+ = 671, 1034, and 1245 simulations of Schlatter & Orlu (2010).
Dotted lines are DNS profiles that have been transformed to correspond to the δ+ of the
experimental profiles.

significance in describing the development of the mean momentum profile, since,
regardless of δ+, the normalized position where the VF term loses leading order
remains fixed. That is, while both the present and classical (overlap layer based)
formulations include the existence of an asymptotically logarithmic U+ versus y+

profile, the classical formulation prescribes an O(ν/uτ ) wall-normal extent for the
region where viscous effects are leading order, e.g. Yajnik (1970), Mellor (1972) and
Wosnik, Castillo & George (2000). A preponderance of evidence, however, indicates
that the VF term retains leading order to y = O(

√
νδ/uτ ), and more specifically to

εy+ ' 2.6 (Wei et al. 2005; Fife et al. 2005a, 2009; Klewicki 2010).
The above scaling behaviours are more comprehensively understood by recognizing

that W+(y+) is the natural length scale of the TI term in (1.1) (Fife et al. 2005a, 2009).
For this reason, the emerging constancy of dW+/dy+ = φ−1

c beyond εy+ ' 2.6 is
accurately characterized as the origin of the distance from the wall scaling. This
attribute of turbulent wall flows is clarified in figure 8(a,b), where |Ω+z | is made
dimensionless using W(y+) and uτ . (Note that W+|Ω+z | =W|Ωz|/uτ .)

Figure 8(a) shows channel data over the range 186 6 δ+ 6 2004. Under this
normalization, the three higher-δ+ profiles fall on a single curve interior to y+ ' 40,
while the profile at the very onset of the four-layer regime (δ+ = 186) deviates
slightly. Beyond y+ ' 40, each profile reaches a plateau, and the width of this plateau
broadens and flattens with increasing δ+. The vertical dotted lines on this figure denote
εy+ = 2.6 at each δ+. Each profile consistently breaks away from the δ+ = 2004
profile near εy+ = 2.6, while the δ+ = 2004 profile begins its plateau at this location.
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FIGURE 8. Mean spanwise vorticity profiles normalized by uτ and W(y+) and plotted versus
y+. (a) Channel flow DNS of Hoyas & Jimenez (2006): δ+ = 186 (- - -); δ+ = 547 (– – –);
δ+ = 934 (— — —); and δ+ = 2004 (——). Vertical dotted lines denote outer edge of layer
III for each respective flow. Horizontal dotted line denotes a curve-fit of the δ+ = 2004 data
and is equal to 1.72. (b) Pipe flow DNS of Wu & Moin (2008) at δ+ = 1142 (- - -); boundary
layer DNS of Schlatter & Orlu (2010) at δ+ = 1245 (——); channel flow DNS of Abe et al.
(2004) at δ+ = 1020 (– – –); channel flow DNS of Hoyas & Jimenez (2006) at δ+ = 2004
(· · · · ·).

At δ+ = 186 the outer edge of layer III lies interior to y+ = 40, i.e. there is negligible
spatial separation between the near-wall processes that occur in the region y+ . 40
and the inertial mean dynamics of layer IV. Thus, the plateau region at δ+ = 186 is
non-existent.

The development of the profiles in figure 8(a) with increasing δ+ is anticipated from
analysis of the mean momentum equation (Fife et al. 2009). The emergence of the
increasingly well-defined plateau reflects the increasingly self-similar mean dynamics
on the φ = φc portion of the Lβ hierarchy. This is the region where advective transport
becomes largest in figure 3. The analysis that results in the logarithmic mean profile
equation,

U+ = φ2
c ln(y+ − C)+ D, (3.10)

stems from

dU+

dy+
= φ2

c

(y+ − C)
, (3.11)

where the constant, C, is the predicted offset (Fife et al. 2009; Klewicki 2013a).
Accordingly, W+(y+) is increasingly well-approximated by the linear function,

W+(y+)= y+

φc
+ B, (3.12)

on this portion of the hierarchy. Analysis of the δ+ = 2004 channel flow yields the
estimates φc ' 1.6 and B ' 5.6 (Klewicki et al. 2009). Owing to (3.12), (3.11) can be
written as

(W+ − B)
dU+

dy+
= y+φc

(y+ − C)
(3.13)
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on this portion of the hierarchy. Equation (3.13) shows that the effects of the constants
B and C diminish as δ+→∞, i.e.

W|Ωz|/uτ → constant= φc. (3.14)

The horizontal line fit to the δ+ = 2004 profile in figure 8(a) has a value of 1.72,
whereas a fit that includes the constant, B, levels off at 1.66. Use of these values
and φc ' 1.6 in (3.13) yields an estimate for the offset of C ' 9, which nominally
agrees with the theoretical prediction of ∼7 and the value of 8 empirically estimated
by Wosnik et al. (2000). The use of W(y+) and uτ to normalize the mean vorticity is
similar to the so-called indicator function, Ξ = y+dU+/dy+, that is often used to detect
the existence of logarithmic dependence, and in fact the two measures become exactly
proportional as δ+→∞. Normalization using W and uτ is, however, related to the
emergence of the φ = φc self-similarity, as admitted by the mean momentum equation.

Figure 8(b) shows δ+ ' 1000 profiles of W|Ωz|/uτ versus y+ from channel, pipe,
and boundary layer flows. For comparison, this figure also shows the channel profile
at δ+ = 2004. For y+ . 40 all of the data follow the same profile. At y+ ' 40
these profiles attain their minimum value, after which they begin to exhibit small but
discernible differences out to the outer edge of layer III (83 . y+ . 92, depending on
the flow). These slight deviations are consistent with |Ω+z | versus y+ exhibiting a weak
Reynolds number dependence in the region 40 . y+ . 2.6

√
δ+ (Klewicki 2013a). Into

layer IV, the profiles exhibit dramatic differences. From these data it is clear that the
pipe and boundary layer develop a constant plateau more slowly than in the channel.
This correlates with these flows having a higher accumulation of mean vorticity in the
outer part of layer IV. The boundary layer profile exhibits the greatest outer region
peak, while the pipe profile proportionally exhibits the most weight closest to y/δ = 1.

3.3. Fluctuating vorticity field development and scaling
Analyses employing the methods of Fife et al. (2005b) have yet to be conducted on
the equations that describe the vorticity variances. The discussion of (1.4) leads one
to suspect, however, that the mean and fluctuating fields will develop self-similarly.
Beyond εy+ ' 2.6, advective transport via 〈vωz〉 is the largest contributor to the TI
term in (1.1), see figure 2. Furthermore, the dominance of the vorticity fluctuation
amplitudes relative to the mean on this domain is verified in figure 10 below.
These features are consistently depicted in figure 3, where the layer IV structure is
characterized by narrow fissures of elevated vorticity immersed within a much lower-
vorticity background flow. We now explore whether the distributions of the mean and
fluctuating vorticity exhibit self-similarity with distance from the wall and Reynolds
number (as implied by the depiction of figure 3), and clarify how the velocity–vorticity
correlations in (1.2) contribute to the distribution of the TI term given in figure 1(b).

The results of § 3.2 naturally lead to consideration of ω′z normalized by W(y+)
and uτ . Figure 9(a,b) shows these profiles for channel and boundary layer flows,
respectively. Both plots reveal that these profiles rapidly approximate an invariant
function of y+ out to near layer III. From there they provide evidence of an emerging
self-similar structure at greater y+ for increasing δ+. For reference, in the channel
y+ ' 2.6

√
δ+ moves from y+ ' 36 at δ+ = 186 to y+ ' 116 at δ+ = 2004. Over the

domain where φ = φc, the δ+ = 2004 profile of figure 9(a) convincingly develops a
region of constant slope, with the equation for the curve-fit indicated on the graph.
This curve-fit was made over the domain 115 . y+ . 500, which coincides with that
used by Klewicki et al. (2009) to estimate the value of φc for this flow. (Plotting these
data on a semi-logarithmic axes, not shown, also reveals evidence of a constant slope
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(a)
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(b)
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FIGURE 9. Spanwise vorticity intensity profiles normalized by uτ and W(y+) and plotted
versus y+. (a) Channel flow DNS of Hoyas & Jimenez (2006): δ+ = 186 (- - -); δ+ = 547
(– – –); δ+ = 934 (— — —); and δ+ = 2004 (——). (b) Boundary layer DNS of Schlatter &
Orlu (2010): δ+ = 359 (· · ·); δ+ = 830 (- - -); δ+ = 974 (– – –); δ+ = 1145 (— — —); and
δ+ = 1271 (——).

II III IV

Vortical
fissure

formation

100

101

10–1

101 102 103

Vorticity
stretching

Vorticity
dispersion

FIGURE 10. Spanwise vorticity intensity profiles from the channel flow DNS of Hoyas &
Jimenez (2006), normalized by |Ωz| and plotted versus y+. Profile line styles are the same as
in figure 9(a). The vertical dotted line indicates y+ = 40. The vertical dashed lines indicate the
inner and outer boundaries of layer III at δ+ = 2004. Arrows indicate the position of Wmax in
each of the profiles. Curve-fit in layer II is given by ω′z/|Ωz| = 0.027(y+)1.21. Curve-fit in layer
IV is given by ω′z/|Ωz| = 0.626(y+)0.38.

in the domain where φ = φc.) For greater y+, the data are somewhat more scattered,
but essentially follow the same trend out to the upper limit of the Lβ hierarchy, i.e.
a curve-fit out to y+ ' 1000 yields a slope of 0.41. Higher-Reynolds-number data are
needed ascertain if this region of constant slope persistently extends to the top of the
hierarchy (y/δ ' 0.5). The boundary layer profiles of figure 9(b) exhibit a similarly
emerging constant slope region, but also reinforce that the channel approaches the
high-δ+ self-similar state more quickly that the pipe, and especially the boundary
layer.

Figures 8 and 9 provide evidence that, with increasing δ+, both the Ωz and ω′z
profiles increasingly scale when made dimensionless using uτ and W(y+). Thus, they
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also develop similarly relative to each other, as demonstrated in figure 10. Interior
to the start of the Lβ hierarchy (y+ = y+pi ' 7), the ω′z/|Ωz| profile is nearly constant
'0.4. Close examination reveals a weak δ+ dependence that is consistent with that
exhibited by the wall value of ω′+z (Klewicki 2010). This near-constancy also reflects
the fact that the ωz fluctuations and the instantaneous total spanwise vorticity, ω̃z, are
highly correlated owing to the no-slip wall. Beyond y+ = y+pi ' 7, all of the profiles
in figure 10 rapidly rise, and over the domain 13 . y+ . 37 exhibit a nearly constant
slope of ∼1.21. Once again, the δ+ = 186 profile deviates slightly from the others.

For y+ & 40 (vertical dotted line), the profiles in figure 10 begin to transition to
a different slope. This transition culminates near εy+ = 2.6, beyond which the slope
regains approximate constancy. The y+ extent of this layer IV constant slope region
increases with increasing δ+, and coincides with the region of φ = φc similarity. This
is most apparent in the δ+ = 2004 profile. The persistence of this constant slope region
requires verification at higher δ+. The curve-fit on the graph was determined over the
same domain as the curve-fit in figure 9(a). It has a slope of 0.38. For δ+ = 2004,
ω′z exceeds |Ωz| by a factor of ∼3.75 (or 〈ω2

z 〉/〈Ω2
z 〉 & 14) at y+ = 2.6

√
δ+. Thus,

on the domain of advective transport in figure 3 the fluctuations about the mean are
increasingly indicative of ω̃z.

All of the profiles in figure 10 exhibit a region of constant plateau prior to the
upper end of the hierarchy. The location of Wmax is indicated on each profile by the
arrow. The position where the δ+ = 2004 profile breaks from its upward constant slope
correlates with where the mean profile similarity solution begins to detectably deviate
from the DNS solution (Klewicki 2013a). It also corresponds closely with the position
where the 〈wωy〉 correlation changes sign in figures 2 and 13. The boundary layer
profiles shown in the SM exhibit similar properties as described for the channel, but
like in figure 8 are less well-developed.

Features of figure 10 are relevant to figure 3. The near-wall region of constant slope
in figure 10 is predominantly associated with the physical mechanism of vorticity
stretching, which accounts for an exchange from Ωz to ωz, and the inter-component
exchanges between ωz, ωx, and ωy. The vortical motions resulting from this mechanism
continue to stretch in the region 40 . y+ . 2.6

√
δ+ as they organize into the vortical

fissures first observed by Meinhart & Adrian (1995). In this region, the mean viscous
force (VF) term in (1.1) retains leading order, and the inertial contributions are
characterized by a decreasing influence of vorticity stretching. Figure 10 indicates
that the layer IV vorticity field is dominated by the fluctuations and increasingly so
as δ+→∞. The layer IV region of constant slope coincides with a mean momentum
balance whose dominant terms are inertial, and this slope is predominantly associated
with the advective spatial dispersion of the vortical fissures. This mechanism of
transport adheres to the distance from the wall scaling dictated by the linear W+(y+)
distribution (φ = φc coordinate stretching). Statistical descriptions based upon the
attached-eddy model are consistent with this mechanism (Townsend 1976; Perry &
Chong 1982; Perry, Henbest & Chong 1986; Perry & Marusic 1995).

The above description is supported by the greater importance of 〈wωy〉 in layer II
and similarly for 〈vωz〉 in layer IV, as these correlations are associated with vorticity
stretching and advection, respectively, e.g. Tennekes & Lumley (1972). It is easily
reasoned that vorticity stretching is the dominant mechanism underlying the three-
dimensionalization of the near-wall vorticity field. Consistently, analysis of the mean
enstrophy equation in the SM reveals that for y+ . 40 vorticity stretching underlies an
exchange of enstrophy from the mean to the fluctuations that coincides with the rapid
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(a)
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(b)
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FIGURE 11. Streamwise (a), and wall-normal (b), vorticity intensity profiles from the
channel flow DNS of Hoyas & Jimenez (2006), normalized by uτ and W(y+) and plotted
versus y+: δ+ = 547 (- - -); δ+ = 934 (– – –); δ+ = 2004 (——).
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(b)
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FIGURE 12. Vorticity intensity profiles as normalized by uτ and W(y+) and plotted versus
y+, (a) from the δ+ = 2004 channel flow DNS of Hoyas & Jimenez (2006), (b) from the
δ+ = 1271 boundary layer DNS of Schlatter & Orlu (2010): Wω′x/uτ (– – –); Wω′y/uτ (- - -);
Wω′z/uτ (——).

rise of ω′z/|Ωz| in figure 10, and the invariant development and equalization of the ω′i
(i= x, y, z) shown in figures 11 and 12. Between y+ ' 40 and y+ ' 2.6

√
δ+, advection

becomes more significant, and by the end of layer III, ω′x and ω′y develop self-similarly
with ω′z (figure 12). Consonant with self-similar mean dynamics in the domain where
φ = φc, the intensities of the two components contributing to (1.2) (ω′y and ω′z) are
indistinguishable. A more detailed discussion of the profiles in figures 11 and 12 is
given in the SM.

The contributions from the motions bearing ωy and ωz to the mean dynamics
are clarified in figure 13, which presents profiles of W+〈vωz〉+, W+〈wωy〉+, and
their difference, W+ dT+/dy+. When the dT+/dy+ profile is weighted by W+ the
momentum source and sink portions of the resulting profile on the hierarchy become
nearly identical in shape and amplitude (figure 1). In the region where turbulent
inertia is a net momentum source, the W+〈wωy〉+ profile is solely negative, and is
the largest contributor to dT+/dy+. On the other hand, W+〈vωz〉+ is positive interior
to y+ ' 8. Klewicki, Murray & Falco (1994) attribute this to the lifting of sublayer
(layer I) streaks, which constitute positive ωz perturbations. They further surmised
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0.3
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100 101 102 103

FIGURE 13. Channel flow profiles of the terms in (1.2) weighted by W+(y+): W+dT+/dy+
(——); W+〈vωz〉+ (– – –); W+〈wωy〉+ (- - -). Data are from the DNS of Hoyas & Jimenez
(2006).

that, since the ω̃z in a lifting streak is large and negative, as it moves to increasing
y+ it will quickly become a negative perturbation. At the near-wall zero-crossing of
〈vωz〉+, 〈wωy〉+ wholly accounts for dT+/dy+. Here dT+/dy+ is near its maximum,
but is decreasing, i.e. is on the hierarchy, y+ > y+pi. From this position out to y+m (zero-
crossing of dT+/dy+, figure 1), W+〈wωy〉+ has greater magnitude than W+〈vωz〉+,
and their diminishing difference accounts for the decrease in dT+/dy+. Physically, the
intensity of vorticity stretching is decreasing, while the influence of advective transport
is increasing. When combined with the results of figures 9–12, these findings support
the assertion that vorticity stretching, reorientation and inter-component exchange are
most significant on the domain where φ 6= constant (figure 1).

A relatively simpler structure emerges across layer III and into layer IV, and this is
clarified by the W+ weighting of figure 13. For y+ > y+m , the W+〈vωz〉+ profile levels
off, and attains convincing constancy from εy+ ' 2.6 to at least where the W+〈wωy〉+
crosses zero (y+ ' 600). In accord with figure 3, this is clear evidence that the nearly
constant and increasingly dominant W+〈vωz〉+ contribution to the momentum sink-like
motions on the domain where φ = φc results from the decreasing magnitude of 〈vωz〉+
being nearly perfectly balanced by the linear increase in W+(y+). This further suggests
that the distance from the wall scaling (which follows from the asymptotic linearity
of W+) physically derives from concentrated regions of ω̃z (or nearly equivalently,
ωz) being dispersed throughout layer IV at an average rate described by W+(y+)
(figure 3). Between its near-wall peak and εy+ ' 2.6, the W+〈wωy〉+ profile exhibits
a rapid decrease in amplitude, indicating the attenuation of vorticity stretching. At
the start of the region where φ = φc the W+〈vωz〉+ contribution is nearly double that
of W+〈wωy〉+. Beyond εy+ ' 2.6 the W+〈wωy〉+ profile is non-zero, but exhibits an
approximately logarithmic decay out to its zero-crossing. Physically, as the vortical
fissures disperse, vorticity stretching attenuates (figure 3).

3.4. Spanwise vorticity length and time scales
The characteristics of the vortical fissures are now considered. The results of the
analysis are consistent with the scaling behaviours of the fissure widths and spacings
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FIGURE 14. Durations and streamwise (advected) lengths associated with ωz events
exceeding ±1.0ω′z: (a) inner-normalized positive durations versus y+, (b) inner-normalized
negative durations versus y+, (c) meso-normalized positive durations versus εy+, (d) meso-
normalized negative durations versus εy+, (e) meso-normalized positive lengths versus εy+,
(f ) meso-normalized negative lengths versus εy+. δ+ = 375 (•); δ+ = 970 (�); δ+ = 1500
(�); δ+ ' 890 000 (N). Results are derived from the measurements of Klewicki & Falco
(1996) and Priyadarshana & Klewicki (2004).

given in figure 3. They are also consistent with the transition from the spatial
confinement to advective dispersion mechanism of scale separation across layer III,
as also depicted in figure 3.

Time series analyses were used to quantify the duration of positive and negative
ωz events, Tp and Tn respectively, that exceed a given threshold. To account for
intermittent signal amplitude deviations from the predominant trend, events were
sustained for a 20 % drop below the peak event value, even when the signal amplitude
became smaller than the threshold defining the beginning of the event. For the
laboratory data sets presented in figure 14, previous analyses indicate that for a
range of thresholds equal to or exceeding 1.0ω′z the event durations are only weakly
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dependent on threshold (Klewicki & Falco 1996). Similar dependence is observed
for variations in the percentage drop limit. Variations in these parameters cause
small proportional variations in the results, and thus Reynolds number dependence
is essentially independent of the threshold and percentage drop limit. Event durations
were converted to streamwise lengths using the mean velocity, e.g. Lp = UTp.

Figures 14(a) and 14(b) respectively show profiles of the inner-normalized durations
of positive and negative ωz events at δ+ = 375, 970, 1500 and approximately 890 000.
These exhibit clear variations with δ+. At any given δ+, each profile is characterized
by relatively large values near the wall that decrease to an outer portion that retains
almost exactly constant values. Consistent with the outward motion of layer I streaks,
the positive event durations become noticeably larger than the negative ones as the
wall is approached. The profiles of figure 14(a,b) consistently shift upward with
increasing δ+, and the knee that exists between the downward near-wall trend and
outer plateau (seen in each of the laboratory profiles) shifts outward with δ+. Although
scattered, the δ+ ' 890 000 data clearly exhibit larger values.

Figure 14(c,d) presents the ωz event durations under a normalization using
√
νδ/uτ

and uτ . This is a useful surrogate for W(y+), since it is the width of layer III, the
central layer on the hierarchy (Klewicki 2013a). The event profiles of figure 14(c,d)
indicate a rapid shortening of the event durations in layer II, followed by a milder
decrease across layer III. Once into layer IV the event durations are remarkably
constant; both the δ+ = 970 and 1500 curves have essentially identical values
and individually vary by only ∼2.5% peak-to-peak for εy+ > 2.6. Apparently, the
increasing size of the motions corresponding to ωz > 1.0ω′z is nearly exactly counter-
balanced by their increasing advection velocity with increasing y. The δ+ ' 890 000
data of figure 14(c,d) are nominally parallel to but about one decade (in εT+) below
the laboratory data.

Figure 14(e,f ) shows the advected lengths. The laboratory profiles reveal that
both the positive and negative event lengths are minimal at εy+ ' 2.6, while the
δ+ ' 890 000 data suggest a shallow minimum in layer III. As in figure 14(c,d), these
data are about one decade in εL+ below the low-δ+ profiles. At high Reynolds number
the position at which U+ equals a fixed fraction of U+∞ (or U+c ) moves to increasing
y+ with increasing δ+ (Metzger & Klewicki 2001). This phenomenon is accounted
for by the present framework, as revealed by the scaling behaviour, ΓII ' 0.5Γ∞,
independent of δ+. This position resides at εy+ ' 1.6 for all δ+ (table 1). The results
of figure 14(e,f ) provide evidence that, when combined with the event durations of
figure 14(c,d), this scaling property causes the minimum streamwise advected length
of the ωz motions to reside near εy+ ' 2.6.

The detailed behaviours of figure 14(e,f ) are clarified in figure 15, which shows
the Lp and Ln data at δ+ = 970 and δ+ = 1500 and their average, (Lp + Ln)/2, on
expanded logarithmic axes. The Lp exceed the Ln near the wall (figure 15a). With
increasing y, the Lp exhibit a rapid decrease out to near y+ = 40, and continue to
decrease, only more slowly, to εy+ ' 2.6. Over this same domain, the negative lengths
rise to a maximum, but then, like the positive lengths, exhibit a gradual decrease out
to εy+ ' 2.6. On the figure, y+ = 40 corresponds to 40ε, and therefore this position
moves to the left with increasing δ+. Thus, the profiles in figure 15(b) diverge at
positions interior to y+ = 40 in the δ+ = 970 flow. This is because the δ = 970 flow
has entered the inner scaling domain, while the δ+ = 1500 data are still in their
intermediate scaling domain. As seen in figure 15(b), the minimum of the average
lengths convincingly occurs at εy+ ' 2.6.
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FIGURE 15. Streamwise lengths associated with ωz. (a) Positive ωz events: δ+ = 970 (�);
δ+ = 1500 (♦); negative ωz events: δ+ = 970 (�); δ+ = 1500 (�). (b) Average of positive
and negative event lengths: δ+ = 970 (©); δ+ = 1500 (•). Dashed lines denote layer III
boundaries. Dotted line denotes 40ε at δ+ = 970. Dash-dot line denotes 40ε at δ+ = 1500.

The near-wall position where the Lp and Ln profiles cross is between y+ = 20 and
y+ = 25. Beyond here, and into layer III, they develop a nearly constant difference
that persists to y+ ' δ+. Starting at εy+ ' 2.6, the ωz lengths exhibit an approximately
power-law increase, although a logarithmic fit is also reasonable. The slope of the εL+n
line is observed to be slightly larger than the slope of the εL+p line (0.20 versus 0.18).
The ratios of the Ln/Lp profiles (not shown) indicate that for εy+ & 2.6, Ln maintains a
slightly larger value than Lp for Reynolds numbers up to δ+ ' 106.

Taken together, the results of figure 14(c–f ) support the depiction of vortical fissures
in figure 3. The results of figure 14(c–f ) also reinforce the spectral analyses of Morrill-
Winter & Klewicki (2013), suggesting that

√
νδ/uτ is the characteristic scale at which

the individual vortical motions organize at low Reynolds number, but at sufficiently
high δ+ (somewhere between δ+ = 1500 and δ+ = 890 000) this scaling breaks down.
In this regard, two possibilities are apparent: (i) the process occurs gradually over an
extended δ+ range; or (ii) the process occurs abruptly when a critical condition is met.
Morrill-Winter & Klewicki (2013) suggest that the latter possibility, if it occurs, may
be associated with a mixing transition akin to that described by Dimotakis (2000).

McKeon & Morrison (2007) have previously discussed the potential existence of a
mixing transition in turbulent pipe flow. In addition, the study of Ishihara, Hunt &
Kaneda (2011) reveals that high-Reynolds-number isotropic turbulence is characterized
by embedded shear layers that contain a richly complex internal structure, and
reinforce the results of Hunt et al. (2010, 2011) suggesting that thin internal shear
layers are a generic element of high-Reynolds-number turbulence. The particle image
velocimetry (PIV) measurements by Morris et al. (2007) provide evidence that the
vortical fissures in a δ+ ' 5 × 105 boundary layer are akin to shear layers, but have
a complex internal structure. Thus, while the results of figure 14(c,d) are in accord
with the physical processes indicated in figure 10, these processes apparently have
added complexity associated with the εT+ and εL+ at δ+ ' 890 000 being significantly
smaller than those at low δ+. The emergence of fine structure within the fissures
provides a plausible explanation.

Estimates for the widths of the vortical fissures, ∆f , as a function δ+ were
determined by taking a sample of transverse slices through the layer IV PIV vorticity
contour measurements of Meinhart & Adrian (1995), Adrian et al. (2000) and Morris
et al. (2007). These are the measurements that these researchers used to exemplify the
properties of the fissures, and the (nominally) uniform-momentum zones that reside
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FIGURE 16. Vortical fissure thickness estimates normalized by δ versus δ+: Meinhart &
Adrian (1995) (N); Adrian et al. (2000) (�); Morris et al. (2007) (�). Streamwise Taylor
microscale at εy+ = 2.6: Klewicki & Falco (1990) (♦); Stanislas, Perret & Foucaut (2008)
(O); Marusic & Adrian (2013) (4); Metzger (2006) (C); Klewicki, Priyadarshana & Metzger
(2008) (�). Average of the positive and negative ωz length scales from figure 14 (©).

between them. The sample size for each δ+ was between 10 and 20 measurements.
At any given δ+, however, the scatter of the measurements was relatively small, with
the sample standard deviations ranging between 8 % and 26 % of the sample mean. As
with the vorticity event lengths in figure 14, the present fissure width measurements
would probably shift sightly upward or downward if a different threshold were used
to construct the underlying vorticity contours. The Reynolds number variations of the
measured ∆f are, however, expected to be relatively insensitive to such factors.

The measured fissure widths as normalized by δ are the solid symbols in figure 16.
As indicated in figure 10, the fissures are surmised to form between y+ ' 40 and the
outer edge of layer III (εy+ ' 2.6). Thus, the ∆f /δ data are expected to nominally
range between the thickness of layer III and layer II, ε and 1.6ε, respectively (solid
lines on figure 16). The other data on this figure are streamwise Taylor length
scale measurements, λx/δ, at εy+ ' 2.6, and the average of the εLp/δ and εLn/δ

measurements from figure 14(e,f ), which were also evaluated at εy+ ' 2.6. The λx/δ

data attributed to Marusic & Adrian (2013) are derived from the measurements of
Hutchins et al. (2009). The δ+ = O(106) data are derived from the SLTEST site in
Utah’s western desert. The data point attributed to Klewicki et al. (2008) is previously
unpublished. It comes from the average of two λx measurements using the two single-
wire sensors that were deployed along with the microphones of that study, see figure 2
of Klewicki et al. (2008). The measurement attributed to Metzger (2006) comes from
an experiment involving a rake of single-wire sensors. As Metzger demonstrates, this
measurement also shows very good agreement with the λx measurements derived from
the data set of Priyadarshana & Klewicki (2004).

The results of figure 16 suggest that at low δ+ both ∆f /δ and λx/δ scale with ε.
Classical scaling estimates indicate that λx/δ should scale with ε in the boundary layer,
e.g. Tennekes & Lumley (1972). The present fissure width estimates also indicate an
adherence to this scaling at least up to δ+ = O(106), and thus this attribute is depicted
in figure 3. On the other hand, this scaling breaks down for λx, and by δ+ = O(106),
λx is about one tenth ∆f , or equivalently, about equal to ε/10. Metzger (2006) was
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Momentum source-like eddies

Momentum sink-like eddies

Balance breaking and exchange

Inertial mean dynamics

Mean momentum

Mean vorticity

Stretching vortices

Advecting vortical fissures

IV

III

II

I

FIGURE 17. A physical model of the dynamical and vortical processes consistent with the
mean similarity structure of turbulent wall-flow dynamics.

the first to provide a clear indication of this behaviour, and the present data reveal
that this phenomenon also holds for the ωz event lengths. This finding is similarly
consistent with the result of Priyadarshana & Klewicki (2003) indicating that over the
range 500 . δ+ . 1.5 × 106, spanwise vorticity frequency spectra merge when scaled
by the Taylor time scale, λt. Similarly, Klewicki & Falco (1996) found that the present
low δ+ωz event durations exhibit approximate invariance under normalization by λt.
The results of figure 16 further suggest that at some relatively high δ+ the fissures may
begin to develop an intermittent internal structure. The λx/δ data of Marusic & Adrian
(2013) provide a subtle indication that a more steeply downward trend in λx/δ may
begin near δ+ = 15 000.

At present, it seems safe to surmise that the overall velocity jump across each
fissure is of primary importance when considering contributions to the mean velocity
profile. The existence of a complex internal structure to the fissures may, however,
prove to be important when considering how to modify boundary layer dynamics at
high Reynolds number.

4. Discussion and conclusions
The vortical structure of turbulent wall flows was depicted in figure 3. Data

pertaining to the vorticity field were then examined and scaled relative to the self-
similar structure admitted by the mean dynamical equation. Discussions of the results
relative to the depiction of figure 3 were given throughout, and thus are not repeated
here.

Figure 17 presents a depiction of the mean dynamical structure by Klewicki et al.
(2007), as updated with the vortical structure evidenced herein. It is considered to be a
useful companion to figure 3. Features relevant to the mean dynamics are given on the
right, while those associated with vorticity are on the left. The domain of the Lβ layer
hierarchy is represented on the far right. Across this hierarchy, the inertial turbulent
motions span the full separation of scales, as reflected by δ+ = δ/(ν/uτ ). The flow
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field mechanisms associated with the velocity–vorticity products in figures 2 and 13
are simultaneously responsible for the inward transport of momentum and the outward
transport of vorticity depicted in the centre (Klewicki et al. 2007; Eyink 2008).

Interior to layer III, vorticity stretching, and to a lesser degree vorticity advection,
characterize the momentum source-like motions. The spatial confinement mechanism
for scale separation depicted in figure 3 stems from this vorticity stretching, as does
the exchange from mean to fluctuating enstrophy, especially in the region y+ . 40.
Beyond layer III, vorticity advection, and to a lesser degree vorticity stretching,
characterize the momentum sink-like motions. Here, scale separation occurs owing
to the spatial dispersion of the vortical motions formed in layer II. This is also
where the logarithmic mean profile emerges with increasing δ+, as it is associated
with the emerging linearity of the W+(y+) profile, and thus φ → φc (Klewicki
2013a). This suggests that inner–outer interactions are embodied in the mechanisms
that simultaneously sustain the two kinds of self-similarity (inner: φ 6= const., outer:
φ = φc) associated with the invariant form admitted by (1.1). As discussed in greater
length in the SM, the existing evidence suggests that the two mechanisms for scale
separation are self-reinforcing via the inner–outer interactions across layer III.

Equation (1.3) describes the coordinate stretching that underlies the similarity
solution admitted by (1.1). As in laminar flow, a knowledge of this coordinate
stretching allows one to estimate the fraction of the flow volume occupied by the
vorticity field as δ+→∞ (Klewicki 2013b). A number of results pertaining to mean
flow structure also relate to φc, while other empirically determined behaviours shown
herein exhibit apparent dependence on this parameter. Given that φ describes how
the average scale of the motions responsible for turbulent momentum transport are
stretched to ‘fit’ within the physical space of the flow, it also seems worth noting
that ∆+I ' φ2

c , ε∆+II ' φc, and ε∆+III ' φ2
c − φ. On-going efforts are being devoted to

constructing well-founded explanations that clarify these observations.
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