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Linear potential-flow theory is used to study loads imposed on finite line arrays
of rigid, bottom-mounted, surface-piercing, vertical cylinders by surface water
waves. Perturbations in the cylinder locations are shown to damp the resonant
loads experienced by the unperturbed array. A relationship is established between
the damping and the phenomenon of Anderson localisation. Specifically, the
Rayleigh–Bloch waves responsible for the resonant loads are shown to attenuate
along the array when perturbations are introduced, resulting in localisation when
the attenuation rate is sufficiently large with respect to the array length. Further, an
efficient solution method for line arrays is introduced that captures the Rayleigh–Bloch
wave modes supported by unperturbed arrays from the scattering characteristics of an
individual cylinder.

Key words: surface gravity waves, wave scattering, waves in random media

1. Introduction

Maniar & Newman (1997) studied hydrodynamic loads imposed by surface water
waves on columns supporting, for example, bridges or floating airports, using a
model based on linear potential-flow theory. They modelled the columns as a long,
finite straight-line array of equally spaced, rigid, bottom-mounted, surface-piercing
cylinders with identical circular cross-sections. Figure 1 shows schematics of their
model geometry, which this study uses as the basic, unperturbed geometry. Spatial
locations are defined by the Cartesian coordinate system (x, y, z), where (x, y) defines
locations in the infinite horizontal plane and z is the vertical coordinate. The radius
of the cylinders is denoted a and the spacing between centres of adjacent cylinders
is denoted d. The cylinders are aligned along the x-axis, and indexed n = 1, . . . , N
from left to right. The geometrical centres of the disks they occupy in the horizontal
plane are denoted (xn, yn) for n = 1, . . . , N, where xn = x1 + (n − 1)d and yn = 0.

† Email address for correspondence: luke.bennetts@adelaide.edu.au
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FIGURE 1. (Colour online) Schematics of the geometry considered by Maniar & Newman
(1997) and others, providing the unperturbed geometry for this study: (a) cross-sectional
side view; and (b) plan view.

Under the usual assumptions of linear water-wave/structure interaction theory (e.g.
Linton & McIver 2001), and noting uniformity of the geometry in the vertical plane,
the hydrodynamic loads for motions at a prescribed angular frequency, ω ∈ R+,
are defined in terms of the velocity potential (g/iω)φ(x, y) cosh{k(z + h)}/cosh(kh),
where g ≈ 9.81 m s−2 is the constant of gravitational acceleration, h denotes the
equilibrium water depth, and the complex-valued function φ satisfies Helmholtz
equation in the horizontal plane exterior to the cylinders with wavenumber k(ω)∈R+,
zero-normal-derivative conditions on the cylinder boundaries, and the Sommerfeld
radiation condition in the far field.

Maniar & Newman (1997) found that cylinders within the array experience extreme,
resonant loads at certain frequencies, with the strongest resonance imposing in-line
loads (the load in the direction of the array) 35 times that of a cylinder in isolation,
for cylinders in the middle of a 100-cylinder array. This occurred for a frequency just
below the frequency at which a non-trivial solution exists for the related problem of
a single cylinder in the centre of a channel with width equal to the cylinder spacing,
and rigid walls on which the normal derivative of the potential vanishes (a Neumann
trapped mode; see Callan, Linton & Evans 1991). They showed a weaker resonance
occurs at a frequency just below the frequency at which a non-trivial solution exists
for the cognate channel problem in which the potential vanishes on the channel walls
(a Dirichlet trapped mode; see Evans & Porter 1997). These trapped modes may
be interpreted as solutions of the infinite-array problem, existing in the absence of
ambient incident wave forcing. Maniar & Newman (1997) argued that, although the
trapped-mode solutions do not exist for a finite array, for long arrays incident waves
excite large responses almost identical to the trapped modes around these frequencies
– a phenomenon known as near trapping – explaining the resonant loads.

Evans & Porter (1999) established the Neumann trapped mode as the standing-wave
limit of a so-called Rayleigh–Bloch wave – a trapped mode that propagates along
an infinite array and decays exponentially away from it. For circular cylinders,
Rayleigh–Bloch waves have been shown to exist for all values of cylinder radius and
spacing, and all frequencies below the so-called cutoff, where the Rayleigh–Bloch
wave becomes a Neumann trapped mode. Below the cutoff, the Rayleigh–Bloch
wavelength is shorter than the wavelength in the surrounding open water, so that it
unequivocally cannot radiate energy away from the array. In this regime, incident
waves cannot excite a Rayleigh–Bloch wave on an infinite array, as the incident
wave imposes a quasi-periodicity on the wave field that is incompatible with the
quasi-periodicity of the Rayleigh–Bloch wave. However, incident waves can excite
Rayleigh–Bloch waves on arrays with ends, for example, semi-infinite arrays, where
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a Rayleigh–Bloch wave is generated at the end and propagates along the array, or
finite arrays, where Rayleigh–Bloch waves are generated at both ends, propagating in
both directions along the array.

Evans & Porter (1999) found that matching the Rayleigh–Bloch wavelength to the
length of the array provides a better approximation of the resonant (near-trapping)
frequency for the long, finite array than the frequency of the Neumann trapped mode.
They showed that at this resonant frequency the wave-surface profile along the finite
array almost exactly matches the profile of the Rayleigh–Bloch wave supported by
the corresponding infinite array with an appropriately tuned amplitude, except in
vicinities of the array ends. Further, they showed that for cylinder-radius-to-spacing
ratios greater than ∼ 0.41, Rayleigh–Bloch waves exist that are antisymmetric with
respect to the plane passing through the cylinder axes, in addition to the symmetric
modes that exist for all ratios. Porter & Evans (1999) calculated Rayleigh–Bloch
waves for non-circular cylinders numerically, and Linton & McIver (2002) proved
Rayleigh–Bloch waves exist for cylinders of arbitrary cross-sectional shape.

Linton, Porter & Thompson (2007) and Peter & Meylan (2007) developed
similar solution methods for semi-infinite arrays forced by plane incident waves,
by expressing the wave field as a superposition of the field supported by the
corresponding infinite array under the same forcing, a Rayleigh–Bloch wave
propagating along the array (when operating below the cutoff), and a decaying,
circular wave generated at the array end. Thompson, Linton & Porter (2008) extended
this approach to give an efficient approximation method for long, finite arrays, in
which Rayleigh–Bloch waves propagate in both directions along the array, and circular
waves are generated at both ends but are assumed to have decayed sufficiently by the
time they reach the opposite end that their influence is negligible. They showed that
resonance in the middle of the array is due to a combination of (i) strong excitation
of Rayleigh–Bloch waves, (ii) strong reflection of Rayleigh–Bloch waves at the ends
of the array and (iii) constructive interference of Rayleigh–Bloch waves following
multiple reflections, all of which are satisfied just below the cutoff.

Motivated by the findings of Maniar & Newman (1997) and others, Kagemoto et al.
(2002) used laboratory wave-tank experiments to study the wave field along an array
of 50 identical, evenly spaced cylinders with radius and spacing of the order 0.1 m,
forced by plane waves at head-on incidence and focusing on frequencies around the
Neumann trapped mode. Measurements of free-surface elevations along the array were
analysed, as proxies for the loads on the cylinders. They showed that the resonance
is significantly smaller than the theoretical prediction and occurs towards the front
of the array rather than in the middle. They attributed this to viscous dissipation on
the cylinder surfaces, acknowledging that viscous effects would be far weaker at field
scales.

Rayleigh–Bloch waves exist in other branches of wave science, where they are
sometimes known as edge, guided, surface or bound waves. Colquitt et al. (2015)
recently developed low- and high-frequency homogenisation theories to calculate
Rayleigh–Bloch waves in an elastic medium with an infinite array of voids. Their
Introduction provides an up-to-date review of Rayleigh–Bloch waves in different
phenomena.

The present study concerns the impacts of perturbing the cylinder locations from
their regular arrangement on the excitation of resonant loads, with figure 2 acting as
catalyst. It shows the frequency dependence of the normalised maximum in-line load

max
n=1,...,N

|Fn| where Fn = tanh(ka)
ka

∫ π

−π

φ(xn + a cos ϑ, yn + a sin ϑ) cos(ϑ) dϑ (1.1)
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FIGURE 2. (Colour online) Maximum normalised in-line load on a 100-cylinder array
produced by a plane incident wave at head-on incidence, with cylinder-radius-to-spacing
ratio a/d= 0.25, for an unperturbed array (ε= 0, –), and the means of ensembles of 100
randomly generated realisations of perturbed arrays, using perturbation strengths ε = 0.1
(∗), ε= 0.2 (E) and ε= 0.4 (+).

on 100-cylinder arrays, caused by an ambient incident plane wave with potential

φam = Aϕ where ϕ(x, y :ψam)= eik(x cosψam+y sinψam) (1.2)

and A is a constant amplitude, at head-on incidence ψam = 0. Results are shown for
the unperturbed array, with a/d = 0.25 as in Maniar & Newman (1997, figure 2),
and perturbed arrays in which the perturbations are chosen randomly from uniform
distributions, with the perturbation strength (later denoted ε) being half the magnitude
of the maximum perturbation relative to the cylinder spacing. Results shown for the
perturbed arrays are means of 100 randomly generated realisations of the array. The
results are for illustrative purposes only and the values of the loads on the linearly
scaled ordinate axis are omitted accordingly.

The loads for the unperturbed array display the resonance associated with the
Neumann trapped mode, around kd/π≈ 0.88535, as identified by Maniar & Newman
(1997) and others. (No attempt has been made to sample the frequency range in order
to capture the resonance exactly.) The series of maxima and minima leading up to
the resonance is a consequence of resonant and antiresonant interactions between the
rightward- and leftward-propagating Rayleigh–Bloch waves, which can be deduced
from Thompson et al. (2008)’s equations (33) and (41). The frequency range shown
extends just beyond the cutoff at frequency kd/π ≈ 0.88574, omitting the weaker
resonance associated with the Dirichlet trapped mode. The focus of this investigation
will be on frequencies around the strongest resonance, as in Evans & Porter (1999),
Thompson et al. (2008) and others. Perturbations significantly damp this resonance,
with the damping increasing as the perturbation strength increases. Maximum loads
away from the resonance are relatively unaffected by perturbations.

In many other situations involving wave propagation through some medium,
random perturbations in the medium suppress wave propagation, spatially localising
wave energy to a vicinity of their source – a phenomenon known as Anderson
localisation (see the book by Sheng 2006). Localisation can be identified as
exponential attenuation of the wave through the medium, for which, in the absence
of perturbations, the wave would propagate without loss of intensity. It has been
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discovered, mainly theoretically but also experimentally, for classical waves in many
contexts, including structural acoustics (Hodges & Woodhouse 1983), ultrasonics
(Weaver 1990) and optics (Berry & Klein 1997).

Here, random perturbations in the locations of cylinders in the line array are shown
to localise Rayleigh–Bloch waves, within the framework of linear potential-flow
theory, leading to the damping of resonant loads observed in figure 2. To the authors’
knowledge, localisation of Rayleigh–Bloch modes has not been investigated in any
context previously. As part of the study, a solution method is developed for line
arrays that identifies Rayleigh–Bloch wave modes supported by unperturbed arrays
from the scattering characteristics of individual cylinders, without evaluating slowly
convergent Schlömilch series, as necessitated by standard interaction theory (e.g.
Evans & Porter 1997). The method is based on the plane-wave integral representation
of the wave field (e.g. Clemmow 1966), as opposed to Fourier–Bessel representations
more familiar in array problems, and is adapted from the method outlined by
Montiel, Squire & Bennetts (2015, 2016) for wave propagation through large, finite
arrays of scatterers/floating bodies. The key challenge is then to extract perturbed
Rayleigh–Bloch wavenumbers from the overall wave fields, and this is achieved by (i)
using Rayleigh–Bloch waves rather than plane waves as forcing, and (ii) combining
wave fields forced by Rayleigh–Bloch waves propagating in opposite directions for
each individual realisation of the perturbed array. Perturbation strengths ε = O(0.01)
are shown to slightly decrease the Rayleigh–Bloch wavenumber, resulting in small
phase shifts in the load profiles along the array and weakly damping the resonance.
Perturbation strengths ε=O(0.1) are shown to produce imaginary components in the
Rayleigh–Bloch wavenumber, causing the Rayleigh–Bloch waves to attenuate along
the array, shifting the maximum load to the front of the array and strongly damping
the resonance.

2. Rayleigh–Bloch waves of unperturbed problem
2.1. Reflection and transmission kernels for a single cylinder

Consider the subregion of the horizontal plane

Ω = {(x, y) : x− < x< x+ and y ∈R}, (2.1)

where the limits x± are chosen so that it contains a single cylinder only (cylinder n,
say). Figure 3(a) shows a schematic of the subregion. The wave field incident on the
cylinder in Ω , φin, consists of the ambient incident wave and the scattered wave fields
produced by all other cylinders in the array. Let the incident field be decomposed as
φin = φin− + φin+, where φin− represents the part of the wave field incident from the
left-hand boundary of Ω , and φin+ represents the part incident from the right-hand
boundary, as illustrated in figure 3(a).

The incident fields are expressed in the plane-wave integral form

φin± =
∫
Γ±

A±(χ)ϕ(x, y : χ) dχ, (2.2)

where the integration contours are defined by

Γ− = {−π/2+ iγ : γ ∈R+} ∪ {γ ∈R : −π/2 6 γ 6π/2} ∪ {π/2− iγ : γ ∈R+}, (2.3)

as shown by the grey curve in figure 3(b), and Γ+ = Γ− + π. On the real branches
of Γ±, ϕ defines plane waves propagating rightwards for Γ− and leftwards for Γ+.
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FIGURE 3. (a) Schematic of region Ω defined in (2.1), and corresponding incident and
scattered fields, as defined in (2.2) and (2.7b), respectively. (b) Integration contour Γ−
(–) in the complex plane, as defined in (2.3), and sampled points used for numerical
approximation (u, see § 2.2).

On the complex branches, it defines plane waves that decay rightwards for Γ− and
leftwards for Γ+. Therefore, equation (2.2) expresses the incident wave field φin−
as a superposition of plane waves propagating/decaying rightwards, and φin+ as a
superposition of plane waves propagating/decaying leftwards, weighted by amplitude
functions A±, respectively.

The individual plane-wave components of the incident field, ϕ, have the Fourier–
Bessel series representations

ϕ(x, y :ψ)=
∞∑

m=−∞
eim(π/2−ψ)Jm(kr)eimθ , (2.4)

where r=√(x− xn)2 + (y− yn)2 and θ = arg{(x− xn)+ i(y− yn)} are, respectively, the
radial and azimuthal coordinates associated with the cylinder in Ω , and Jm is the first-
kind Bessel function of order m. The scattered wave field produced by this incident
component is

ϕsc(x, y :ψ)=
∞∑

m=−∞
Zmeim(π/2−ψ)Hm(kr)eimθ , (2.5)

where Hm is the first-kind Hankel function of order m and Zm=−J′m(ka)/H′m(ka) (e.g.
Martin 2006). It has the plane-wave integral representation

ϕsc(x, y :ψ)= 1
π

∞∑
m=−∞

Zm

∫
Γ∓

eim(χ−ψ)ϕ(x, z : χ) dχ (2.6)

for ±(x− xn)> 0 and r> a, derived using the Sommerfeld integral representation for
Hankel functions (Sommerfeld 1949, § 19).
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For the full incident wave field, φin, defined by (2.2), the scattered wave field is

φsc(x, y) =
∫
Γ−

A−(ψ)ϕsc(x, y :ψ) dψ +
∫
Γ+

A+(ψ)ϕsc(x, y :ψ) dψ, (2.7a)

=
∫
Γ∓

B̃±(χ)ϕ(x, y : χ) dχ ≡ φsc±(x, y) (2.7b)

for ±(x− xn)> 0 and r> a, where

B̃±(χ)= 1
π

∞∑
m=−∞

Zm

{∫
Γ−

eim(χ−ψ)A−(ψ) dψ +
∫
Γ+

eim(χ−ψ)A+(ψ) dψ
}

(2.8)

for χ ∈ Γ∓, are scattered amplitude functions. Equation (2.7b) expresses the scattered
field as a superposition of waves propagating/decaying leftwards on the left-hand side
of the cylinder, and propagating/decaying rightwards on its right-hand side, as shown
in figure 3(a).

The total wave field, φ, is decomposed into fields propagating/decaying rightwards
and leftwards on the left- and right-hand sides of the source via the integral
representations

φ(x, y)=
∫
Γ±

A±(χ)ϕ(x, y : χ) dχ +
∫
Γ∓

B±(χ)ϕ(x, y : χ) dχ (2.9)

for ±(x − xn) > 0 and r > a, where B± = A∓ + B̃± represent outgoing amplitude
functions. The A± are, accordingly, referred to as incoming amplitude functions.
The outgoing amplitude functions are expressed in terms of the incoming amplitude
functions using the scattering relations

B−(χ) =
∫
Γ−

R(χ :ψ)A−(ψ) dψ +
∫
Γ+

T(χ :ψ)A+(ψ) dψ (2.10a)

and B+(χ) =
∫
Γ−

T(χ :ψ)A−(ψ) dψ +
∫
Γ+

R(χ :ψ)A+(ψ) dψ. (2.10b)

Here, R and T are, respectively, reflection and transmission kernels, which are defined
by

R(χ :ψ)= 1
π

∞∑
m=−∞

Zmeim(χ−ψ) and T(χ :ψ)= δ(χ −ψ)+ R(χ :ψ). (2.11a,b)

They determine the outgoing amplitude response in direction χ due to an incoming
amplitude forcing in direction ψ .

In order to calculate wave interactions between adjacent subregions, it is convenient
to normalise the wave phases to the left- or right-hand side of the region, using the
phase-shifted amplitude functions

Â±(χ)= eikx± cos(χ)A±(χ) and B̂±(χ)= eikx± cos(χ)B±(χ), (2.12a,b)

so that the potential can be expressed as

φ(x, y)=
∫
Γ±

Â±(χ)ϕ̂±(x, y : χ) dχ +
∫
Γ∓

B̂±(χ)ϕ̂±(x, y : χ) dχ (2.13)
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for ±(x − xn) > 0 and r > a, where ϕ̂± = eik{(x−x±)cosψ+y sinψ}. The phase-shifted
amplitude functions satisfy scattering relations analogous to (2.10a–b), but with
reflection and transmission kernels, respectively,

R̂±(χ :ψ) = eikx±(cosχ−cosψ)R(χ :ψ) (2.14a)

and T̂±(χ :ψ) = eik(x∓ cosχ−x± cosψ)T(χ :ψ). (2.14b)

2.2. Numerical approximation
Following Montiel et al. (2015, 2016), for numerical calculations the complex
branches of the contour Γ− (and, hence, Γ+) are truncated, with the magnitude
of the imaginary parts restricted to being less than or equal to a prescribed value
χmx−i ∈R+. Further, the truncated contours are sampled, with the real branch sampled
at Jr regular points, and the complex branches sampled at Ji + 1 regular points. The
sampled points at the ends of the real branch overlap with the sampled points at the
real-valued ends of the complex branches, so that the composite contours Γ± each
contain 2Ji + Jr sampled points. The black bullets on figure 3(b) are an example of
the truncated and sampled version of the contour Γ−. The infinite series stemming
from the Fourier–Bessel representations are also truncated, with the truncation limits
denoted ±M. Results presented in §§ 3 and 4 use the truncations M= 5 and χmx−i= 2,
and discretisations Jr = Ji = 100, which were found to provide sufficient accuracy,
noting Montiel et al. (2016) present relevant convergence analyses for a related
problem.

The numerical approximations convert the operator form of the scattering relations
satisfied by the phase-shifted amplitude functions to the array relations

b̂− = R̂−â− + T̂+â+ and b̂+ = T̂−â− + R̂+â+, (2.15a,b)

where the amplitude vectors â± and b̂± have entries

{â±}j = Â±(χj) and {b̂±}j = B̂±(χj) (2.16a,b)

for j= 1, . . . , 2Ji + Jr, and the matrices R̂± and T̂± have entries

{R̂±}i,j =wiR̂±(χj : χi) and {T̂±}i,j =wiT̂±(χj : χi) (2.17a,b)

for i, j= 1, . . . , 2Ji+ Jr. The matrices combine the reflection/transmission kernels and
numerical integration, where wi (i= 1, . . . , 2Ji+ Jr) denote the quadrature weights – a
composite trapezoidal rule is used for calculations, as in Montiel et al. (2015, 2016).

2.3. Spectrum for an infinite array of cylinders
Let the transfer matrix, P, which maps the amplitude functions on the left-hand side
of subregion Ω to the amplitude functions on the right-hand side, be defined by(

b̂+
â+

)
= P

(
â−
b̂−

)
and P =

(
T̂− − R̂+T̂

−1
+ R̂− R̂+T̂

−1
+

T̂
−1
+ R̂− T̂

−1
+

)
. (2.18a,b)

Centring the subregion around the cylinder it contains and setting its width to be d, i.e.
x±= xn± d/2 are the midpoints between the cylinder in Ω and the adjacent cylinders,
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FIGURE 4. Spectrum of transfer matrix P, defined in (2.18), for a/d=0.25 at the resonant
frequency for the 100-cylinder array, kd/π≈ 0.88535. (a) Eigenvalues λ in the complex
plane, with eigenvalues supporting head-on incidence in the positive x-direction, exp(ikd),
and the Rayleigh–Bloch mode propagating in the positive x-direction, exp(iβ0d),
indicated. (b) The moduli of the corresponding eigenfunctions associated with rightward
propagating/decaying motions, vkd+ and vβ0d+, respectively, as functions of the spectral
parameter χ .

the spectrum of the transfer matrix determines the modes supported by the unperturbed
array. Figure 4(a) shows an example of the eigenvalues λ= λi (i= 1, . . . , 4Ji + 2Jr)

of the transfer matrix in the complex plane. The example problem considered is the
resonant case Maniar & Newman (1997) identified for N= 100 cylinders, at frequency
kd = 2.78142 (kd/π ≈ 0.88535). The eigenvalues appear in reciprocal pairs, i.e. for
|λ| = 1 if exp{i arg(λ)} is an eigenvalue then so is exp{−i arg(λ)}, and for arg(λ)= 0
if |λ| is an eigenvalue then so is 1/|λ|. Repeated eigenvalues relate to symmetric and
antisymmetric eigenfunctions with respect to χ .

The eigenvalues forming the backwards -shape on the unit circle are the discrete
approximation of the continuous spectrum, corresponding to solutions in which wave
energy propagates to the far field. In the infinite-array setting, these are solutions
forced by a plane ambient incident wave. The angle of the ambient incident wave with
respect to the x-axis, ψam, is related to the argument of the eigenvalue via arg(λ)=
kd cos(ψam). Therefore, the eigenvalues at λ= 1 correspond to incident waves normal
to the array, propagating parallel to the y-axis, and the eigenvalues at the tips of
the backwards -shape correspond to forcing at grazing incidence, i.e. parallel to the
x-axis. The eigenvalue at the upper tip, which is labelled exp(ikd), corresponds to a
rightward propagating incident wave, and the eigenvalue at the lower tip, exp(−ikd)
(unlabelled), corresponds to a leftward propagating incident wave.

The subset of eigenvalues on the positive real axis form the discrete approximation
to the continuous spectrum, generalised to forcing waves that decay exponentially.
Eigenvalues smaller than unity decay rightwards, and eigenvalues greater than unity
decay leftwards. The set of eigenvalues greater than unity extends beyond the figure
limits.

The pair of eigenvalues on the unit circle closest to negative unity correspond
to Rayleigh–Bloch wave modes. These eigenvalues are denoted exp(±iβ0d), where
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β0 ∈ R+ is the Rayleigh–Bloch wavenumber. They form the discrete spectrum, i.e.
they correspond to solutions for which wave energy decays with distance away from
the array. The eigenvalue in the upper half of the complex plane, which is labelled
exp(iβ0d), relates to the mode that propagates rightwards along the array, and the
eigenvalue in the lower half of the complex plane, exp(−iβ0d) (unlabelled), to the
mode that propagates leftwards. As these eigenvalues are separated from the -shape
β0 > k, confirming that the Rayleigh–Bloch waves are shorter than the waves in the
surrounding open water.

The definitions of continuous and discrete spectra used here are in terms of
quasi-periodicities of possible solutions for a given frequency. This differs from, for
example, Porter & Evans (1999), who define the spectra in terms of frequencies
at which solutions exist for a given quasi-periodicity. In simple terms, the spectral
parameter used here relates to the directional spectrum, whereas in Porter & Evans
(1999) and others it relates to the frequency spectrum.

Figure 4(b) shows the moduli of the rightward-propagating/decaying components
of the eigenfunctions, vkd+(χ) and vβ0d+(χ), associated with the labelled eigenvalues
exp(ikd) and exp(iβ0d), respectively. The eigenfunctions are approximated using
the eigenvectors associated with the eigenvalues, and are normalised so that their
L2-norm is unity. The eigenfunction vkd+ displays a sharp spike at χ = 0. This is an
approximation of a Dirac delta function, corresponding to the plane ambient incident
wave in the infinite-array problem. In contrast, the eigenfunction vβ0d+ is smooth,
indicating that it is an unforced solution of the infinite-array problem. Its dominant
energy is spread around χ = 0, and it has sidebands extending onto the complex
branches (|Re(χ)/π− Im(χ)|> 0.5).

3. Damping of resonant loads
3.1. Solution method for finite, perturbed arrays

Positional disorder is introduced into the problem via random perturbations in the
locations of the cylinders. The perturbed locations of the cylinder centres are denoted

(xn, yn)= (x1 + (n− 1)d, 0)+ pn for n= 1, . . . ,N. (3.1)

A parameter ε is used to control the perturbation strength, with the perturbation
vectors expressed as

pn = εd(µn, νn) for n= 1, . . . ,N, (3.2)

where µn and νn are randomly selected from uniform distributions over the interval
[−0.5, 0.5]. The perturbation strength is bounded by ε < 1 − 2a/d so that cylinders
cannot overlap. Figure 5 shows a schematic of the perturbed geometry.

A contiguous sequence of subregions Ωn (n = 1, . . . , N) is chosen, as shown in
figure 5, with each subregion containing the cylinder of the corresponding index. (As
indicated in figure 5, it is unnecessary for the subregions to contain the corresponding
unperturbed cylinders.) The amplitude functions and reflection/transmission matrices
associated with subregion Ωn are assigned superscripts (n), with the reflection/trans-
mission matrices calculated using the method outlined in §§ 2.1–2.2.

For 16p6q6N, Ωp,q denotes the region contained between the left-hand boundary
of Ωp and the right-hand boundary of Ωq, with figure 5 showing Ω1,N as an example.
Let R̂

(p,q)
± and T̂

(p,q)
± denote the reflection and transmission matrices for this region, i.e.

b̂
(p)

− = R̂
(p,q)
− â(p)

− + T̂
(p,q)
+ â(q)+ and b̂

(q)

+ = T̂
(p,q)
− â(p)

− + R̂
(p,q)
+ â(q)+ . (3.3a,b)
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FIGURE 5. (Colour online) Schematic plan view of the perturbed geometry.

The reflection and transmission matrices for Ωp,q with Ωq+1 appended to its right-hand
side, R̂

(p,q+1)
± and T̂

(p,q+1)
± , can be calculated from R̂

(p,q)
± , T̂

(p,q)
± , R̂

(q+1)
± and T̂

(q+1)
± via

R(p,q+1)
− = R(p,q)

− + T (p,q)
+

(
I − R(q+1)

− R(p,q)
+
)−1

R(q+1)
− T (p,q)

− , (3.4a)

T (p,q+1)
+ = T (p,q)

+
(
I − R(q+1)

− R(p,q)
+
)−1

T (q+1)
+ (3.4b)

R(p,q+1)
+ = R(q+1)

+ + T (q+1)
−

(
I − R(p,q)

+ R(q+1)
−

)−1
R(p,q)
+ T (q+1)

+ , (3.4c)

and T (p,q+1)
− = T (q+1)

−
(
I − R(p,q)

+ R(q+1)
−

)−1
T (p,q)
− , (3.4d)

where I is the identity matrix of dimension 2Ji + Jr. These relations are derived
from the scattering relations for an individual region (2.15), on the basis that (i) the
outgoing wave field on the right-hand side of cylinder q is the incoming field on the
left-hand side of cylinder q + 1, and (ii) the outgoing field on the left-hand side of
cylinder q+ 1 is the incoming field on the right-hand side of cylinder q, i.e.

â(q+1)
− = b̂

(q)

+ and â(q)+ = b̂
(q+1)

− . (3.5a,b)

Versions of relations (3.4) have been used by Botten et al. (2004), Peter & Meylan
(2009) and Bennetts (2011), among others, for electromagnetic, water wave and
acoustic problems, respectively.

The reflection and transmission matrices R̂
(1,n)
± and T̂

(1,n)
± for n = 1, . . . , N are

obtained by beginning with the leftmost region, Ω1, recursively appending the next
region to the right and applying (3.4). The process is initialised with the identities

R̂
(1,1)
± = R̂

(1)
± and T̂

(1,1)
± = T̂

(1)
± . (3.6a,b)

Similarly, the reflection and transmission matrices R̂
(n,N)
± and T̂

(n,N)
± for n= 1, . . . , N

are obtained by beginning at the rightmost region, ΩN , then recursively appending the
next region to the left and applying similar equations to (3.4) for region Ωp,q with
Ωp−1 appended to its left-hand side.

The sampled amplitude functions throughout the array are obtained from the
reflection and transmission matrices via

b̂
(n)

+ =
(

I − R̂
(1,n)
+ R̂

(n+1,N)
−

)−1 (
T̂
(1,n)
− â(1)− + R̂

(1,n)
+ T̂

(n+1,N)
+ â(N)+

)
(3.7a)

and
â(n)+ =

(
I − R̂

(n+1,N)
− R̂

(1,n)
+
)−1 (

R̂
(n+1,N)
− T̂

(1,n)
− â(1)− + T̂

(n+1,N)
+ â(N)+

)
(3.7b)
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FIGURE 6. (Colour online) (a) As in figure 2 but for a Rayleigh–Bloch ambient incident
wave. (b) Corresponding indices of the cylinders experiencing the maximum loads.

for n=1, . . . ,N−1. The vectors â(1)− and â(N)+ are, respectively, the sampled directional
spectra for the prescribed rightward and leftward propagating/decaying components of
the ambient incident wave field, Âam− = Â(1)− and Âam+ = Â(N)+ , defined via

φam =
∫
Γ−

Âam−(χ)ϕ̂(1)− (x, y : χ) dχ +
∫
Γ+

Âam+(χ)ϕ̂(N)+ (x, y : χ) dχ, (3.8)

where ϕ̂(1)− and ϕ̂
(N)
+ are the phase-shifted plane-wave potentials defined below (2.13)

for subregions Ω1 and ΩN , respectively. Bennetts & Squire (2009) originally presented
equivalent expressions to (3.7) for a problem involving multiple rows of floating
bodies. Calculation of the amplitude functions completes the solution process.

3.2. Numerical results
To simplify the analysis, the ambient incident wave field is set to be the rightward-
propagating Rayleigh–Bloch mode, i.e. Âam−= vβ0d+ and Âam+= 0. Figure 6(a) shows
the maximum (normalised) load on a 100-cylinder array computed from (1.1), as a
function of frequency, kd/π, for different perturbation strengths, ε. It is equivalent
to figure 2 for the Rayleigh–Bloch incident wave rather than the plane incident
wave, with the frequency range truncated due to the cutoff at kd/π ≈ 0.88574. For
frequencies immediately beyond the cutoff, the Rayleigh–Bloch wavenumbers become
complex and the Rayleigh–Bloch wave decays along the array (as identified by
Thompson et al. 2008).

For the unperturbed problem, the Rayleigh–Bloch incident wave excites a resonance
at the same frequency as the plane incident wave, kd/π ≈ 0.88535, preceded by a
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FIGURE 7. Example realisations of load profiles on 100-cylinder arrays for a/d =
0.25, kd/π ≈ 0.88535, and (a) no perturbation, (b) perturbation strength ε = 0.01, and
(c) ε= 0.2.

series of maxima and minima. This is expected, as these features are caused by
interactions between rightward- and leftward-propagating Rayleigh–Bloch waves (as
explained in § 1, cf. Thompson et al. 2008). Moreover, in an identical fashion to the
plane-wave case, perturbations damp the resonance for the Rayleigh–Bloch incident
wave field.

Figure 6(b) shows the index of the cylinder at which the maximum load is
attained, as a function of frequency and for the different perturbation strengths.
For low frequencies, the maximum is attained at the farthest cylinder from the
source of the incident wave field (the right-hand end of the array, n = 100), due to
cylinders refracting the rightward-propagating incident wave energy in towards the
array (Maniar & Newman 1997). This low-frequency behaviour is consistent for the
different perturbation strengths, as the perturbations are small in comparison to the
wavelength, 2π/k, in this regime. For the unperturbed array, the maximum load is
attained at the right-hand end of the array up to kd/π ≈ 0.4–0.5. As the frequency
increases beyond this limit, the location of the maximum begins to jump around
erratically, as it moves between different local maxima of comparable magnitudes
along the array. For the perturbed arrays, the maximum load departs the right-hand
end of the array for lower frequencies than the unperturbed array, with the departure
frequency decreasing as the perturbation strength increases. The location of the
maximum then transitions relatively smoothly towards the front cylinder (left-hand
end of the array, n= 1), as frequency increases.

Figure 7 shows example profiles of the loads on the array at the resonant frequency
kd/π ≈ 0.88535. It shows the profile for the unperturbed array and for two random
realisations of the perturbed array, for perturbation strengths ε = 0.01 and 0.2. The
profile for the unperturbed array is qualitatively identical to that presented by Maniar
& Newman (1997) for a plane incident wave – it is an approximately symmetric
hump, with the maximum load attained at the centre (n = 51), due to coherence
between strongly excited rightward- and leftward-propagating Rayleigh–Bloch
modes (Thompson et al. 2008). The weak perturbation (ε = 0.01) preserves the
near symmetry but slightly shortens the length of the resonant hump and damps
the maximum load. The strong perturbation (ε = 0.2) fundamentally changes the
qualitative properties of the profile, eliminating symmetry and resonance altogether.
The profile attenuates from the front of the array to the rear, with accompanying
oscillations, indicating a localised state has been reached.
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4. Localisation of Rayleigh–Bloch waves
4.1. Perturbed Rayleigh–Bloch wavenumber calculation

For the unperturbed array forced by a Rayleigh–Bloch ambient incident wave, the
wave field along the array is dominated by rightward- and leftward-propagating
Rayleigh–Bloch modes. For a perturbed array, it is hypothesised that, similarly, the
wave field is dominated by perturbed Rayleigh–Bloch modes, with complex-valued
wavenumbers β+(ε) ∈ R+ + iR+ for the rightward-propagating mode and β−(ε) ∈
R− + iR− for the leftward-propagating mode. It is expected that β− ≈ −β+, on
average at least, due to symmetry of the perturbations, and for the unperturbed array
β±(0) = ±β0. The change in the real parts of the wavenumbers, with respect to the
unperturbed Rayleigh–Bloch wavenumbers, induces phase shifts in the modes, and the
introduction of imaginary components produces attenuation of the modes, resulting in
localisation for sufficiently large attenuation rates.

The perturbed wavenumbers, β±, are extracted from wave fields for the perturbed
arrays, using a version of an approach proposed by Bennetts & Peter (2013). For each
realisation of the perturbed array, the wave fields are calculated for

(i) a rightward-propagating Rayleigh–Bloch incident wave (Âam−= vβ0d+ and Âam+=
0, as in § 3),

(ii) and a leftward-propagating Rayleigh–Bloch incident wave (Âam− = 0 and Âam+ =
v−β0d− = vβ0d+),

where v−β0d− is the component of the eigenfunction associated with −β0 that
propagates/decays leftwards, and vβ0d+ is defined in § 2.3.

The rightward- and leftward-propagating directional amplitude functions along the
array for these wave fields are denoted

ξ
(n)
β±d = B̂(n−1)

+ and ζ
(n)
β±d = B̂(n)− (4.1a,b)

for n = 1, . . . , N + 1, respectively, where the undefined amplitude functions at the
boundaries of the array are replaced by the equivalent functions of the ambient
incident wave fields,

B̂(0)+ ≡ Âam− and B̂(N+1)
− ≡ Âam+. (4.2a,b)

The hypothesis that the wave fields are dominated by perturbed Rayleigh–Bloch modes
is translated into the ansatzes

ξ
(n)
β±d ≈ a(ξ)± eiβ+dnvβ+d+ + b(ξ)± eiβ−d(N+1−n)vβ−d+ (4.3a)

and ζ
(n)
β±d ≈ a(ζ )± eiβ+dnvβ+d− + b(ζ )± eiβ−d(N+1−n)vβ−d−, (4.3b)

where a(•)± (ε) and b(•)± (ε) are coefficients/amplitudes, vβ±d+ is the component of the
eigenfunction associated with β± that propagates/decays rightwards, and vβ±d− is the
component propagating/decaying leftwards.

Ansatzes (4.3a–b) are combined, as in Bennetts & Peter (2013), to produce the
expression

eig(M (n))= {eiβ+dn, eiβ−dn} for n= 1, . . . ,N, (4.4a)

where

M (n) =M (n,N+1)inv(M (1,N+2−n)), M (p,q) =
(
ξ
(p)
β+d(0) ξ

(q)
β−d(0)

ζ
(p)
β+d(0) ζ

(q)
β−d(0)

)
, (4.4b,c)
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FIGURE 8. Eigenvalues of matrix M (n), given in (4.4), corresponding to rightward-
propagating (a,b) and leftward-propagating (c,d) Rayleigh–Bloch modes for a/d = 0.25,
kd/π ≈ 0.88535 and ε = 0.2. (a,c) Real parts of the natural logarithms of the modes
(phases) and (b,d) imaginary parts (attenuation), calculated as means of an ensemble of
500 simulations (E). Straight-line fits (–) used to extract the Rayleigh–Bloch wavenumbers
are overlaid.

and eig(•) denotes the set of eigenvalues of the included matrix. The values of the
amplitude functions corresponding to wave components propagating parallel to the x-
axis only are used because the ansatzes essentially reduce the problem to a single
dimension.

Figure 8 shows an example of natural logarithms of eigenvalues of the matrix M (n),
as a function of cylinder index n, for a 100-cylinder array with perturbation strength
ε = 0.2 at the resonant frequency for the unperturbed array, kd/π ≈ 0.88535. The
eigenvalues are separated into real and imaginary parts (a,c and b,d, respectively),
and those corresponding to β+ and β− (a,b and c,d, respectively). The results are the
means of ensembles of 500 randomly generated realisations of the perturbations.

The log-eigenvalue profiles are approximately linear – noise is visible in the
imaginary parts but not in the real parts, which are dominated by the eigenvalues of
the underlying unperturbed array. Straight-line fits are overlaid on the profiles, from
which the non-dimensional Rayleigh–Bloch wavenumbers, β±d, are extracted as the
slopes. The fits are made to the interior of the profiles only to avoid contamination
by local effects of the array ends, just visible in the imaginary parts. The extracted
Rayleigh–Bloch wavenumbers display the expected symmetry (to three decimal
places), with β+d≈ 3.02058+ 0.01536i and β−d≈−3.02055− 0.01548i.

Extracting array wavenumbers (in this case Rayleigh–Bloch wave numbers) from
mean log-eigenvalue profiles is more stable than Bennetts & Peter (2013)’s method
of extracting array wavenumbers from log-eigenvalue profiles of individual realisations
and then averaging. The Rayleigh–Bloch wavenumbers are not those of the effective
(mean) wave field, as the amplitudes and phases are separated prior to averaging.
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FIGURE 9. (a,c) Phase changes of perturbed Rayleigh–Bloch wavenumbers relative
to the unperturbed wavenumbers, as functions of disorder strength for a/d = 0.25
and kd/π ≈ 0.88535. (b,d) Corresponding attenuation rates. (a,b) Results for the
rightward-propagating/attenuating Rayleigh–Bloch mode, and (c,d) results for the leftward-
propagating/attenuating mode. Results are calculated using a 100-cylinder array (@) and a
200-cylinder array (p).

4.2. Numerical results
Figure 9 shows the extracted wavenumbers as functions of perturbation strength for
the resonant frequency, and using ensembles of 100 realisations for each perturbation
strength. The real parts (phases) are shown as relative deviations from the Rayleigh–
Bloch wavenumbers of the unperturbed array,

∆Re(β±d)= Re(β±d)∓ β0d
β0d

, (4.5)

in (a,c), with the imaginary parts (attenuation rates) shown in (b,d). Wavenumbers
supporting rightward-propagating/attenuating modes are shown in (a,b), with those for
the leftward-propagating/attenuating modes in (c,d). Results are shown for 100- and
200-cylinder arrays.

The results again show the expected symmetry β− ≈−β+. The phase changes are
similar for the 100- and 200-cylinder arrays, indicating that the real parts of the
Rayleigh–Bloch wavenumbers do not depend on array length (beyond N = 100, at
least). Deviations between the phases for the two array lengths are evident for weak
perturbations, approximately log10 ε < −1.5 (ε < 0.03162), with the phase changes
approximately zero in this regime for the 200-cylinder arrays, i.e. β±(ε) ≈ ±β0

for ε � 1 as expected, but being a small finite value for the 100-cylinder array.
The errors for the 100-cylinder array are due to 100 cylinders not providing an
interval long enough to average out the presence of oscillations caused by the
circular wave fields generated at the array ends, which compromise the validity of
ansatzes (4.3). Stronger perturbations, log10 ε > −1.5, clearly reduce the modulus of
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FIGURE 10. (a) Maximum load (–) and load on the first cylinder (– - –), caused by a
rightward-propagating Rayleigh–Bloch ambient incident wave on a 200-cylinder array for
a/d= 0.25 and kd/π≈ 0.88535, as functions of disorder. (b) A corresponding load-profile
realisation for log10 ε=−2 (u), and the profile for the unperturbed problem with kd/π≈
0.88532 (E). (c) As in (b) but for log10 ε=−1.25 (u) and kd/π≈ 0.88487 (E).

the phase of the Rayleigh–Bloch wavenumbers, with the reduction steadily increasing
as the perturbation strength increases.

In the weak-perturbation regime, log10 ε <−1.5, deviations between the two array
lengths are exacerbated for the attenuation rates, as the attenuation is negligible so that
the oscillations caused by the circular wave fields dominate the imaginary-component
profiles. The 200-cylinder array provides attenuation rates that are approximately
zero for very weak perturbations, approximately log10 ε <−2 (ε < 0.01), as expected,
whereas attenuation rates for the 100-cylinder array are visibly non-zero in this regime.
For stronger perturbations, log10 ε >−1.5, the moduli of the attenuation rates increase
with increasing perturbation strength and the attenuation rates for the 100-cylinder
array rapidly transition to agreement with those of the 200-cylinder array. This marks
the regime in which attenuation dominates the profiles of the imaginary components
of the eigenvalues of M (n).

Figure 10(a) shows the corresponding maximum load on the 200-cylinder array
produced by a rightward-propagating Rayleigh–Bloch ambient incident wave field
and the load on the front cylinder (n = 1), as functions of perturbation strength.
The resonance in the maximum load for the unperturbed 200-cylinder array at
kd/π ≈ 0.88535 manifests as two symmetric humps in the load profile, where each
hump is almost identical to that shown in figure 7(a) for the 100-cylinder array. (A
stronger, single-hump resonance for the 200-cylinder array, analogous to that shown
by figure 7(a) for the 100-cylinder array, is obtained at a slightly higher frequency.)

For weak perturbations, log10 ε <−1.5, resonance in the maximum load is damped,
as indicated in figure 7(b) for the 100-cylinder array, with the damping gradually
increasing as the perturbation strength increases. Figure 10(b) shows an individual
load profile in the weak-perturbation regime, with log10 ε = −2, for which β±d ≈
±3.109± 0.000i. The profile is similar to the two-hump resonant profile occurring for
the unperturbed array at this frequency, but with the resonances damped and the hump
lengths reduced. The load profile for the unperturbed array with frequency kd/π ≈
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0.88532, for which β0d≈ 3.109, is superimposed on the panel. It is almost identical to
the profile for the perturbed array, indicating that a weakly perturbed array acts like an
unperturbed array with a slightly shortened cylinder spacing and/or to slightly shifted
forcing. (A similar profile can be obtained at the resonant frequency by increasing the
number of cylinders in the unperturbed array to N = 204. Alternatively, reducing the
perturbed array to N = 196 cylinders produces a profile approximating the two-hump
resonance for the unperturbed array with N = 200.)

For stronger perturbations, log10 ε>−1.5, the maximum load is approximately equal
to the load on the front cylinder, as the attenuation rates are, in general, sufficiently
large to produce localised states, as shown in figure 7(c) for the 100-cylinder array. A
weak resonance in the maximum load around log10 ε=−1.25 (ε≈ 0.05623) causes it
to deviate away from the load on the front cylinder. Figure 10(c) shows an individual
load profile for log10 ε = −1.25, for which β± ≈ ±3.094 ± 0.003i, with the load
profile for the unperturbed array at frequency kd/π≈0.88487 superimposed, for which
β0≈ 3.094. The profile for the unperturbed array is resonant, as indicated by the three
humps and the symmetry of the profile, although it is a weaker resonance than the
two-hump resonance at kd/π ≈ 0.88535. The three humps are visible in the profile
for the perturbed array, driving the resonance in the maximum load around log10 ε=−1.25. However, attenuation produced by the imaginary component of the Rayleigh–
Bloch wavenumber significantly reduces the hump peaks, so that the resonance is
weak.

5. Summary and conclusions
A solution method has been presented for water-wave interactions with line arrays

of rigid, bottom-mounted, surface-piercing cylinders, in which the wave field excited
by an ambient incident wave is calculated recursively. The directional scattering
kernels for a solitary cylinder, used in the method, identify the Rayleigh–Bloch
modes responsible for causing resonant loads in the interior of the array. It was
shown that Rayleigh–Bloch modes can be used as the ambient incident wave field to
excite the resonant loads, considerably simplifying the analysis.

The method readily permits perturbations to be introduced into the array. It was
shown that perturbations in the positions of the cylinders damp the resonant loads.
Perturbation strengths ε = O(0.01) (i.e. of order 1 % of the cylinder spacing) were
shown to damp the resonance weakly. These perturbations produce small phase shifts
in the load profiles along the arrays, meaning the arrays respond in a similar fashion
to an unperturbed array with slightly smaller cylinder spacings. Perturbation strengths
ε = O(0.1) strongly damp the resonance, resulting in the maximum load occurring
close to the front of the array, with the loads generally diminishing with distance along
the array.

The strong damping was associated with the localisation phenomenon. Perturbed
Rayleigh–Bloch wavenumbers were calculated for the perturbed arrays by combining
wave fields excited by unperturbed Rayleigh–Bloch incident fields, for ensembles
of randomly generated realisations of the perturbations. For perturbation strengths
ε = O(0.01), the perturbed Rayleigh–Bloch wavenumbers remain approximately
real, relating to the phase shifts in the load profiles, and the weak damping of
resonances. Perturbation strengths ε = O(0.1) produce imaginary components of
appreciable magnitudes in the perturbed Rayleigh–Bloch wavenumbers, attenuating
the corresponding modes as they propagate along the arrays, so that the maximum
load is attained close to the front of the array, and resulting in localisation if the
attenuation rates are sufficiently large with respect to the array length.
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It would be difficult to confirm the localisation predicted here experimentally,
as it would have to be disentangled from the dissipative mechanisms inevitable in
water-wave problems. For instance, the attenuation of the wave profile along the array
found by Kagemoto et al. (2002), which they attributed to viscous dissipation, is,
superficially, similar to attenuation signalling localisation. Although it is clearly not a
localisation effect in this case (e.g. positional inaccuracies equivalent to perturbation
strengths ε < 0.006 are reported), viscous dissipation would still play a role for
stronger perturbations. Analogous issues are inherent in many other phenomena
where localisation is predicted (see the discussion in Weaver 1990).
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