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A two-layer model for buoyant displacement
flows in a channel with wall slip
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We study theoretically buoyant displacement flows of two generalized Newtonian
fluids in a two-dimensional (2-D) channel with wall slip. We assume that a
pseudo-interface separates two miscible (immiscible) fluids at the limit of negligible
molecular diffusion (negligible surface tension). A heavy fluid displaces a light fluid
at near-horizontal channel inclinations, implying that a stratified flow assumption is
relevant. We develop a classical lubrication approximation model as a semi-analytical
framework that includes a number of dimensionless parameters, such as a buoyancy
number, the viscosity ratio, the non-Newtonian properties and the upper and lower
wall slip coefficients. For specified interface heights and slopes, the reduced model
can furnish the flux and velocity functions in displacing and displaced phases. We
numerically solve the interface kinematic condition for four different wall slip cases:
no slip (Case I), slip at the lower wall (Case II), slip at the upper wall (Case
III) and slip at both walls (Case IV). The solutions for these cases deliver the
interface propagation in time, for which leading and trailing displacement front
heights, shapes and speeds and several key displacement features, such as front
characteristic spreading lengths and short time behaviours, can be directly predicted
by simplified analyses. The results reveal in detail how the presence of a channel wall
slip may significantly affect the overall displacement flow and the interface evolution
characteristics, for both Newtonian and non-Newtonian fluids. Regarding the latter,
our analysis quantifies in particular the appearance and removal of static residual wall
layers of the displaced phase, versus the wall slip cases.

Key words: low-Reynolds-number flows, lubrication theory, non-Newtonian flows

1. Introduction

From a fluid mechanics perspective, displacement flows are fascinating interfacial
flows, usually with a large number of parameters that govern their motion. These
flows usually occur within confined geometries and typical cases would involve at
least two fluids: one fluid (displacing fluid) is imposed at the flow geometry inlet
to push (displace) another one (displaced fluid) towards the exit. These flows can
be observed in plenty of natural phenomena but also in industrial applications, with
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Buoyant displacement flows in a channel with wall slip 603

prominent examples in the petroleum industry, e.g. well construction (Nelson &
Guillot 2006) and production (pipelining). Miscible, partially miscible and immiscible
flows are widespread. The fluids may have different properties: most commonly the
phases have viscosity and density ratios, and one or both phases can exhibit diverse
non-Newtonian properties. A list of all the parameters involved would be quite long,
e.g. the shape of the flow geometry, wall properties in certain cases, laminar, transient
or turbulent characteristics, to name a few. In this work, we will focus on a flow
feature that has been rarely explored in the context of displacement flows, i.e. the
effects of a channel wall slip with Newtonian and non-Newtonian fluids.

In the present work, we consider theoretically a two-fluid displacement flow in
a near-horizontal, two-dimensional long channel. The flow is structured/laminar and
it is at a limit where both mixing or interfacial surface tension can be ignored. In
general, our fluids obey a viscoplastic Herschel–Bulkley rheology and they can have a
small density difference (Boussinesq approximation), where a heavy fluid can displace
a lighter one. Similarly, a viscosity ratio between phases is also present as a flow
parameter, where a more viscous fluid displaces a less viscous one, or vice versa.
Finally, we consider the case wherein a slip velocity may exist at either or both walls
of the channel.

Realistic two-fluid systems can be affected by miscibility (mixing) or immiscibility
(surface tension) between phases; thus, ignoring these effects while studying interfacial
flows must be justified. Accordingly, our displacement flow wherein a pseudo-interface
separates the fluids is reminiscent of a miscible displacement flow at the limit of large
Péclet numbers (Pe), implying that the fluids do not have sufficient time to mix over
the time scale of our interest. In fact, several studies, including for example Chen
& Meiburg (1996), Petitjeans & Maxworthy (1996), Rakotomalala, Salin & Watzky
(1997) and Yang & Yortsos (1997), have considered miscible displacement flows when
Pe� 1 and demonstrated that the interface remains sharp for a wide range of flow
parameters and that the flow approaches the immiscible limit at zero surface tension.
Therefore, our case of interest may also resemble an immiscible displacement flow
when the capillary number is large (Ca� 1).

Buoyant displacement flows in confined geometry can be classified into two main
categories: a flow with a non-zero mean imposed flow velocity (V̂0 > 0) and a flow
with a zero mean imposed flow velocity (V̂0 = 0). The latter is known as a lock-
exchange flow, for which the literature is vast. Examples include a series of articles
by Seon et al. (2004, 2005, 2006, 2007a,b), on miscible iso-viscous flows with small
density differences, albeit with strong buoyancy forces. There are also high resolution
computational works on the same topic (e.g. Hallez & Magnaudet 2008, 2009) which
complete the picture for lock-exchange flows. These and similar studies provide deep
understanding of viscous and inertial states in the flow, interpenetrating fronts of the
heavy and light fluids, transitions in interfacial behaviours, inclination effects, etc. The
counterparts of these flows when V̂0 > 0 is present have been studied in a series of
works by Taghavi et al. (2010, 2011, 2012b) for near-horizontal, Alba, Taghavi &
Frigaard (2013b, 2014) for inclined and Amiri, Larachi & Taghavi (2016, 2017) for
strictly vertical and oscillatory geometries. Briefly, these studies classify various flow
regimes as an imposed flow is progressively added to buoyant exchange flows. They
demonstrated that the general displacement behaviours can be effectively quantified
versus the motion of the leading and trailing displacement fronts. For instance, Taghavi
et al. (2011) found that at small V̂0, there is a sustained-backflow regime, where the
trailing front moves upward against the mean flow direction. At a critical V̂0, the
trailing front remains motionless during times much longer than the characteristic time
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of the flow (i.e. a stationary interface regime). Interestingly, the displaced layer in this
marginal state is in counter-current motion, with a zero net flux. At larger V̂0, the flow
exhibits a temporary backflow and an instantaneous displacement regime, associated
with a downward motion of the trailing front at long times. Therefore, the stationary
interface regime indicates the transition between efficient and inefficient displacements.

Displacement flows are significantly influenced by the geometry in which they occur.
The effects of flow geometry can be understood by reviewing a number of works:
computational study of miscible exchange flows in square and circular pipes and two-
dimensional (2-D) channels (Hallez & Magnaudet 2008); analytical, computational and
experimental study of miscible displacement flows in pipes and channels (Taghavi
et al. 2012b); theoretical and experimental analyses of exchange flows in rectangular
channels of arbitrary aspect ratios (Malham et al. 2010, Martin et al. 2011 and to
some extent Matson & Hogg 2012) and their displacement flow counterparts (Taghavi,
Mollaabbasi & St-Hilaire 2017); displacement flows of immiscible fluids in a square
duct (Redapangu, Sahu & Vanka 2013). A relevant conclusion that can be drawn from
the ensemble of these studies is that a 2-D channel displacement flow may reasonably
approximate certain stratified flows (which in reality occur in 3-D geometries), unless
there are significant inertial effects, interfacial instabilities and mixing between the
phases, where the 3-D flow dynamics progressively deviates from 2-D assumptions.

Displacement flows are also affected by the rheology of the displacing and displaced
phases. Non-Newtonian characteristics make it hard to analyse these flows and,
therefore, most of the previous attempts have concentrated on non-Newtonian fluid
flows in ‘simple’ geometries, in particular Hele-Shaw cells. Some key developments
in this area can be attributed, to name a few, to Coussot (1999) and Lindner, Coussot
& Bonn (2000), who have considered the viscous fingering problem for yield stress
fluids (see also Eslami & Taghavi 2017). Yield stress fluid displacement flows in other
geometries have been studied by Freitas, Soares & Thompson (2013) (plane channel)
Bittleston, Ferguson & Frigaard (2002) (annulus), Dimakopoulos & Tsamopoulos
(2007) (complex tubes), De Sousa et al. (2007) (tubes), Eslami, Frigaard & Taghavi
(2017) (horizontal channels), etc. Notable contributions in this area are due to
Frigaard and co-workers in a series of papers, e.g. Allouche, Frigaard & Sona (2000),
Frigaard & Ryan (2004), Zhang & Frigaard (2006), Wielage-Burchard & Frigaard
(2011), Taghavi et al. (2012b), Alba et al. (2013a), Moyers-Gonzalez et al. (2013),
Roustaei & Frigaard (2013), etc. Using analytical, computational and experimental
techniques, this body of work sheds light on the crucial effects of a fluid’s yield
stress on displacement flows. The literature is simply too vast to cite all the relevant
studies but an interested reader is referred to an appealing review by Balmforth,
Frigaard & Ovarlez (2014) on recent developments in viscoplastic fluid mechanics.

There are numerous situations and applications where widely used no-slip
boundary conditions do not appropriately correspond to the physical reality, e.g.
microfluidics (Zhu & Granick 2001), polymer melts (Denn 2001), biological
applications (Thompson & Troian 1997), super hydrophobic substrates (Voronov,
Papavassiliou & Lee 2008), etc. Traditionally, wall slip is viewed as a relation
between wall slip velocity and wall shear stress, with the slip length equal to a
local distance linearly extrapolated beyond the surface boundary where the no-slip
condition would be satisfied. For Newtonian fluids, stratified flows with wall slip
have been recently looked at, mainly in the realm of stability analysis. Considerable
progress has been recently brought to the field thanks to the theoretical works of
Ghosh, Usha & Sahu (2014a,b, 2015, 2016) and Chattopadhyay, Usha & Sahu (2017).
These researchers have performed linear and/or spatio-temporal stability analyses for
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iso-density, miscible two-fluid systems in various configurations, with a number of
stabilizing and destabilizing features, a detailed review of which falls outside the
scope of our work. In addition, Hasnain & Alba (2017) have recently looked at
immiscible displacements in inclined ducts with a particular wall slip condition to
overcome contact-line problem singularity. Although these Newtonian fluid studies
are valuable, there is a consensus that non-Newtonian fluid flows with wall slip
are even more prevalent than their Newtonian counterparts. For example, based on
experimental evidence, Hatzikiriakos (2012) argues that wall slip can play a major
role especially for high molecular weight molten polymers and that strong wall slip
may occur depending on the wall shear stress. For non-Newtonian fluids, two-fluid
systems with wall slip have been rarely studied while the previous works have mainly
considered a single fluid within a flow geometry with wall slip. A relevant example
includes a range of analytical solutions for viscoplastic flows in channel provided by
Ferrás, Nóbrega & Pinho (2012); see also Denn (2001) for a review on wall slip
with non-Newtonian fluids, covering slip laws as well as techniques to measure wall
slip property.

While from a fundamental perspective our work is in the direction of several
studies showing the significance of fluid flows with wall slip and their relation to
non-Newtonian rheology (e.g. Poumaere et al. 2014), our motivation for this study
also comes from various industrial applications where a combination of wall slip, a
viscoplastic rheology and a two-fluid flow system may become important. Among
the widely known examples are polymer extrusion and coextrusion processes, where
the throughput and the quality of the final product can be affected by wall slip
(Denn 2001; Ferrás et al. 2012). There are also several other practical applications.
Let us explain two of them in more detail. For example, in oil well cementing
processes, cement slurry is pumped into the wellbore to displace and replace in situ
drilling mud (Nelson & Guillot 2006). The well can be inclined at any angle and
the fluids involved typically present density and viscosity ratios. Foamed cement,
i.e. a mixture of cement slurry, foaming agents and a gas, is being increasingly
used as an alternative to conventional cement (Ahmed et al. 2009), as it meets the
challenges of weak formations while enhancing mud removal. Foamed cement has
a complex rheology, exhibiting a shear rate-dependent viscosity, a yield stress and
other non-Newtonian characteristics (Kraynik 1988). When flowing, foam is known
to ‘slip at the wall’, due to the appearance of a thin fluid layer wetting the wall
and lubricating the foam flow, resulting in a macroscale description of the wall
boundary condition as a relation between the wall slip velocity and the wall shear
stress. The displacement of foam with another liquid has been also shown to exhibit
slip effects (Lindner et al. 2000). Therefore, the process of cementing oil wells using
foamed cement is a displacement flow with two fluids, buoyant effects, viscosity
ratios, viscoplastic rheologies and wall slip, all which contribute to the difficulty of
fully understanding and therefore designing the process. Another industrial application
to mention is in the waxy crude oil transportation in a pipeline, for which gelled
oil-related issues are common and restarting the pipeline in sequence stages is
sometimes necessary. One of the restarting stages consists of injecting a low viscosity
fluid at the pipe inlet to remove the gelled oil (Frigaard, Vinay & Wachs 2007).
Waxy crude oils present a complex rheology that includes a yield stress, in addition
to more exotic non-Newtonian effects. Furthermore, they present shear heterogeneities
(Dimitriou 2013) displayed by a slip forming at or near the pipe wall (Phillips et al.
2011). Thus, the problem of pipeline restart flows of waxy crude oils includes a
displacement flow process in which the presence of wall slip is highly relevant. Our
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current work is an effort to provide a fundamental understanding about these practical
displacement flows in some generality, using an analytical methodology.

The current work will contribute to the growing literature of displacement flows,
through developing a semi-analytical model that considers partial slip velocity at
either or both walls of a 2-D channel. The novelty of the current work primarily
arises from considering the wall slip context, as the style of our model derivation
and approach shares some similarities with two-fluid flow models used in the past to
study laminar displacements. In general, the model is based on generalized Newtonian
fluids, which are more prone to slip at the walls of the flow geometry. The model
considers a large number of dimensionless groups, such as viscosity and density ratios,
rheological features of the displacing and displaced fluids and wall slip parameters,
the combination of which makes the model suitable for evaluating more realistic
displacement flows. Finally, the exploitation of the model will deliver interfacial
patterns and flow regimes, which are essential elements to investigate these complex
flows.

In order to emphasize the perspective of our work, let us briefly review some of
the relevant issues. (i) Flow stability: The stability of multilayer flows with wall slip
cannot generally be determined beforehand (for example, see Ghosh et al. (2014a,b,
2015, 2016) and Chattopadhyay et al. (2017) on the dual role exhibited by wall slip in
the stability of various multilayer flows). Therefore, this type of model simplification
is often developed to make study of the stability problem possible, which can be for
example carried out through a long wavelength stability analysis (Amaouche, Mehidi
& Amatousse 2007 and Alba, Taghavi & Frigaard 2013c), among other possible
methods. This is of course in addition to the basic knowledge about the laminar flow
with wall slip, gained through such a simplified model. (ii) Buoyancy: A combination
of buoyancy and wall slip effects creates a highly unpredictable system in terms of
interfacial behaviours. Although there exist a few valuable works considering flow
topologies and interfacial front velocities for slip boundaries in gravity currents (e.g.
Härtel, Meiburg & Necker 2000), it must be admitted that the relevant literature is not
well developed due to the problem complexity, which highlights the need to simplified
models such as ours to understand the effects of buoyancy in combination with wall
slip on interfacial behaviours. (iii) Non-Newtonian fluids: These fluid flows, by nature,
are susceptible to wall slip. In fact, sometimes non-Newtonian characteristics and wall
slip are not separate issues, as the latter occurs due to the former and thus cannot be
avoided. For instance, certain yield stress fluids have been found to violate the wall
no-slip conditions (Barnes 1995; Poumaere et al. 2014). This also becomes relevant
in a displacement flow context. For example, the wall slip issue has been recently
found to affect the flow in experiments using a Carbopol solution (i.e. a widely used
laboratory yield stress fluid) displaced by a Newtonian fluid (Liu & de Bruyn 2018).
As the literature on yield stress fluid displacements is expanding, it seems necessary
to develop multilayer flow models that appropriately take into account wall slip and
allow us to explore its effects on various flow features. (iv) Controlling the flow
system: One key issue in the framework of displacement flows is addressing a critical
question on whether the displacing fluid can efficiently remove the in situ displaced
fluid. The answer to this question is directly linked to controlling the behaviours
of the interface between the pushing and pushed fluids. While there is a growing
literature on the employment of various flow control methods (e.g. using tapered flow
geometry (Al-Housseiny, Tsai & Stone 2012; Mollaabbasi & Taghavi 2016; Walling,
Mollaabbasi & Taghavi 2018), elastic-walled geometry (Pihler-Puzovic et al. 2012),
time-dependent flow rates (Li et al. 2009), etc.), there are also recent suggestions to
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use wall slip as an effective flow controlling strategy, as one can design the flow
geometry walls as hydrophobic surfaces with appropriate slip so as to control the flow
system (Chattopadhyay et al. 2017). In this context, our work provides an insight
on how the interface motion in a displacement flow is affected by wall slip; this
knowledge will eventually help realize if/how a displacement flow can be controlled
in a desired way by adjusting the wall slip properties.

The outline of the paper is as follows. Section 2 describes the flow geometry and
the governing equations of the problem. Section 3 reviews the lubrication model
developed and includes the details of the assumptions for displacement flows with
wall slip. Section 4 presents the results of the model, for the case where both fluids
are Newtonian, while § 5 is devoted to the results of the non-Newtonian case. The
paper ends in § 6 with the discussion and main conclusions.

2. Problem setting and governing equations
We consider displacement flows in a 2-D channel that is oriented at an angle close

to horizontal (β≈π/2), as schematically shown in figure 1. The channel has height D̂0

and length L̂. In its lower part, the channel is initially filled with a lighter fluid (fluid
L, with density ρ̂L) and in its upper part with a heavier fluid (fluid H, with density
ρ̂H). We assume that, due to the density difference and the channel inclination, fluid
H always advances at the bottom of the channel and fluid L always at the top (i.e. a
mechanically stable displacement). Fluid H is injected with the mean imposed velocity
V̂0, at the channel inlet, far away from the pseudo-interface that initially separates the
two fluids at x̂= 0 (see figure 1 for the coordinates). We assume that both fluids obey
a viscoplastic Herschel–Bulkley rheology, which will be described below. We render
the equations of motion dimensionless using D̂0 as length scale, V̂0 as velocity scale
and D̂0/V̂0 as time scale. The governing equations can be written as

[1± At]Re[ut + u · ∇u] = −∇p+∇ · τ ±
χ

2
eg, (2.1)

∇ · u = 0, (2.2)

where ± respectively refers to the heavy and light fluid layers and u= (u, v) denotes
the velocity, p the pressure and τ the deviatoric stress. In addition, eg= (1,− tanβ) is
in directions (x, y). The interface height is represented by h(x, t). For t> 0, the Navier
slip boundary conditions are satisfied at the solid walls, as described later. Our main
dimensionless number in (2.1) is the buoyancy number, representing the balance of
axial buoyancy and viscous stresses, defined as

χ ≡
(ρ̂H − ρ̂L)ĝD2

0 cos β

µ̂HV̂0
, (2.3)

in which ĝ is the gravitational acceleration and µ̂H is the heavy fluid’s effective
viscosity:

µ̂H = κ̂H[V̂0/D̂0]
nH−1
+ τ̂H,Y[V̂0/D̂0]

−1. (2.4)

Here τ̂H,Y , κ̂H and nH are the yield stress, the consistency index and the power-law
index, from the Herschel–Bulkley fluid model (as described further below).

The dimensionless parameters that appear on the right-hand side of (2.1) are
the Atwood number, At ≡ (ρ̂H − ρ̂L)/(ρ̂H + ρ̂L), and the Reynolds number, Re ≡
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FIGURE 1. (Colour online) Schematic of the displacement flow with wall slip. Note that
the velocity profile and the interface shape are illustrative only.

((ρ̂H + ρ̂L)V̂0D̂0)/(2µ̂H). We will focus on small density differences (i.e. small At),
implying that At is not a governing flow parameter. In addition, using the lubrication
scaling presented in § 3, we will show that Re will be also dropped as a flow
parameter.

Thanks to our scaling, in each cross-section of our long channel, we have∫ 1

0
u dy= 1. (2.5)

As figure 1 illustrates, we assume that a single-valued interface (y = h(x, t))
separates fluids H and L. Due to the slumping behaviour of the interface, we may
expect the appearance of displacement fronts. As figure 1 illustrates, we may define
a leading front with height ĥf (measured from the bottom wall) and velocity V̂f , and
a trailing front with height ĥb (measured from the top wall) and velocity V̂b.

2.1. Constitutive equations
We assume the fluids to be of generalized Newtonian type, in particular obeying the
Herschel–Bulkley model, which includes Newtonian, power law and Bingham models.
The dimensionless constitutive laws for Herschel–Bulkley fluids are

γ̇ (u)= 0 if τk(u)6 Bk, (2.6)

τk,ij(u)=
[
κkγ̇

nk−1(u)+
Bk

γ̇ (u)

]
γ̇ij(u) if τk(u) > Bk, (2.7)

where the subscripts k=H, L and the strain rate tensor has components

γ̇ij(u)=
∂ui

∂xj
+
∂uj

∂xi
, (2.8)

and the norms of these tensors (i.e. the second invariants), γ̇ (u) and τk(u), are defined
by

γ̇ (u)=

[
1
2

2∑
i,j=1

[γ̇ij(u)]2
]1/2

, τk(u)=

[
1
2

2∑
i,j=1

[τk,ij(u)]2
]1/2

. (2.9a,b)
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Since the parameters are dimensionless, we find κH = 1− BH and κL = m− BL, with
the viscosity ratio, m, defined as

m≡
µ̂L

µ̂H
=
κ̂L[V̂0/D̂0]

nL−1
+ τ̂L,Y[V̂0/D̂0]

−1

κ̂H[V̂0/D̂0]
nH−1
+ τ̂H,Y[V̂0/D̂0]

−1 , (2.10)

where µ̂H and µ̂L are viscosity scales for fluids H and L, respectively. For two
Newtonian fluids, we recover µ̂k = κ̂k. The Bingham numbers Bk are also defined as

Bk ≡
τ̂k,Y

κ̂H[V̂0/D̂0]
nH
+ τ̂H,Y

. (2.11)

Note that based on the definitions of the Bingham numbers above, we always have
0 6 BH < 1 and 0 6 BL <m.

It is worth emphasizing that, in the above scalings, the ‘effective viscosity’ is used
to produce the dimensionless groups, such as the Bingham numbers and the viscosity
ratio, implying that we are dealing with the ‘effective’ versions of Bk, m, etc. This
approach, which has been introduced in the recent literature (see e.g. Nirmalkar,
Chhabra & Poole 2013 and Thompson & Soares 2016), provides a reasonable
framework to analyse the role played by viscosity in our displacement flows. Also
note that our effective dimensionless groups can be easily converted to their more
conventional forms using simple relations (Nirmalkar et al. 2013; Thompson & Soares
2016).

3. Lubrication model
We now develop a lubrication model, by assuming that the interface is elongated

and that inertia is not dominant. The latter assumption does not necessarily exclude
moderate Re: for typical fluids/conditions, previous studies find nearly viscous
displacement flow regimes at near-horizontal duct inclinations; see, e.g. Taghavi
et al. (2010, 2011), Taghavi, Alba & Frigaard (2012a), Taghavi et al. (2012b).

We assume that velocities and stresses are continuous across the interface, which
satisfies a kinematic condition. We scale our equations using δ−1

� 1 as an interface
elongation length scale over which the interface typically spreads. We then define δx=
X, δt = T , δp= P and v = δV , and follow standard methods (e.g. see Leal 2007) to
arrive at the re-scaled equations:

δ [1± At] Re
[
∂u
∂T
+ u

∂u
∂X
+ V

∂u
∂y

]
= −

∂P
∂X
+
∂τXy

∂y
±
χ

2
+ δ2 ∂τXX

∂X
, (3.1)

δ3 [1± At] Re
[
∂V
∂T
+ u

∂V
∂X
+ V

∂V
∂y

]
= −

∂P
∂y
∓ δ

χ

2
tan β + δ2

(
∂τyX

∂X
+
∂τyy

∂y

)
, (3.2)

∂u
∂X
+
∂V
∂y
= 0. (3.3)

We consider the situation where the interface spreading is driven by buoyant stresses
that are balanced by viscous stresses, implying δχ = cot β. Therefore, the equations
above at the limit of δ→ 0 (with Re fixed) become

0 = −
∂P
∂X
+
∂

∂y
τk,Xy ±

χ

2
, (3.4)
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0 = −
∂P
∂y
∓ δ

χ

2
tan β. (3.5)

Integration equation (3.5) across both layers and after a little algebra, we arrive at

0 = −
∂P0

∂X
+
∂

∂y
τH,Xy, y ∈ (0, h), (3.6)

0 = −
∂P0

∂X
+
∂

∂y
τL,Xy − χ + hX, y ∈ (h, 1), (3.7)

where P0 = P(X, y, T)|y=0 − (Xχ/2) and hX = ∂h/∂X.
The leading-order strain rate component in the lubrication approximation is γ̇Xy =

∂u/∂y. Therefore, the leading-order shear stress τk,Xy in terms of γ̇Xy can be simplified
in terms of the leading-order constitutive laws:

∂u
∂y
= 0 if |τk,Xy|6 Bk, (3.8)

τk,Xy =

κk

∣∣∣∣∂u
∂y

∣∣∣∣nk−1

+
Bk∣∣∣∣∂u
∂y

∣∣∣∣
 ∂u
∂y

if |τk,Xy|> Bk. (3.9)

Boundary conditions are the Navier slip boundary conditions (Navier 1823) at the
two walls and the continuity of the velocity and shear stress at the interface:

u(X, y= 0, T) = λlτH,Xy(X, y= 0, T), (3.10)
u(X, y= 1, T) = −λuτL,Xy(X, y= 1, T), (3.11)

u(X, y→ h−, T) = u(X, y→ h+, T), (3.12)
τH,Xy(X, y→ h−, T) = τL,Xy(X, y→ h+, T), (3.13)

where λl and λu are the slip coefficients (or slip parameters) and the subscripts l and
u represent the channel lower and upper walls, respectively. These coefficients can be
written as

λu =
λ̂u

V̂0

(
κ̂H

[
V̂0

D̂0

]nH

+ τ̂H,Y

)
, (3.14)

λl =
λ̂l

V̂0

(
κ̂H

[
V̂0

D̂0

]nH

+ τ̂H,Y

)
. (3.15)

Note that λl or λu already combines the effective viscosity and a characteristic
length defined as an imaginary distance to which the wall velocity profile is
extrapolated to reach zero; therefore, λl or λu could be considered as a material
parameter characteristic of the fluid–solid pair; see Denn (2001). The boundary
conditions allow us to determine u for given values of ∂P0/∂X, m, χ , nk, Bk, λl, λu,
h and hX . To find the pressure gradient, note that (2.5) needs also to be satisfied as
an additional constraint.

The interface obeys a kinematic condition

∂h
∂T
+ u

∂h
∂X
= V, (3.16)
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which in combination with the incompressibility condition leads to

∂h
∂T
+
∂qH

∂X
= 0, (3.17)

where the flux of the heavy layer, qH , is defined as

qH =

∫ h

0
u dy. (3.18)

In the rest of the paper, we concentrate on providing the solutions to the flux function
and the kinematic condition.

3.1. Computing flux function
In this section we explain our method to find the stress and velocity solutions, from
which the flux can be computed. For fixed parameters, including fixed h and ∂h/∂X,
equations (3.6) and (3.7) can be written as

∂

∂y
τH,Xy =

∂P0

∂X
, y ∈ (0, h), (3.19)

∂

∂y
τL,Xy = χ − hX +

∂P0

∂X
, y ∈ (h, 1), (3.20)

showing that, in each pure fluid layer, the shear stresses are linear in y.
For Newtonian displacements, the equations can be simply integrated to deliver the

analytical solution for the flux function:

qH(h, hX, χ,m, λl, λu)= qH,A(h,m, λl, λu)+ qH,B(h,m, λl, λu)(χ − hX), (3.21)

which includes an advective component (qH,A) and a buoyancy-driven component
(qH,B), found as

qH,A =
a11λ

1
l λ

1
u + a10λ

1
l λ

0
u + a01λ

0
l λ

1
u + a00λ

0
l λ

0
u

c11λ
1
l λ

1
u + c10λ

1
l λ

0
u + c01λ

0
l λ

1
u + c00λ

0
l λ

0
u

, (3.22)

qH,B =
b11λ

1
l λ

1
u + b10λ

1
l λ

0
u + b01λ

0
l λ

1
u + b00λ

0
l λ

0
u

c11λ
1
l λ

1
u + c10λ

1
l λ

0
u + c01λ

0
l λ

1
u + c00λ

0
l λ

0
u

, (3.23)

where the coefficients aij, bij and cij (with i, j=0,1) are functions of h and m only, and
they are given in appendix A. If λl = λu = 0 (i.e. no-slip at both walls), we retrieve

qH =
a00 + b00(χ − hX)

c00
, (3.24)

which matches the flux function given in Taghavi et al. (2009) for a displacement flow
in a channel with no wall slip.

In a similar manner, the velocity profiles for Newtonian fluids can be also
analytically found as

uH = uH,A + uH,B(χ − hX), (3.25)
uL = uL,A + uL,B(χ − hX), (3.26)
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where the subscripts A and B represent the advective and buoyancy-driven components,
respectively. We find these components as

uk,A =
dk,11λ

1
l λ

1
u + dk,10λ

1
l λ

0
u + dk,01λ

0
l λ

1
u + dk,00λ

0
l λ

0
u

fk,11λ
1
l λ

1
u + fk,10λ

1
l λ

0
u + fk,01λ

0
l λ

1
u + fk,00λ

0
l λ

0
u

, (3.27)

uk,B =
ek,11λ

1
l λ

1
u + ek,10λ

1
l λ

0
u + ek,01λ

0
l λ

1
u + ek,00λ

0
l λ

0
u

fk,11λ
1
l λ

1
u + fk,10λ

1
l λ

0
u + fk,01λ

0
l λ

1
u + fk,00λ

0
l λ

0
u

, (3.28)

in which k=H, L (corresponding to the heavy and light fluids). The coefficients dk,ij,
ek,ij and fk,ij (with i, j = 0, 1) are functions of m, h and y, and they are given in
appendix B.

Having found the analytical form of the Newtonian flux function, we now turn
to finding the solution for non-Newtonian fluids. Let us first denote the wall shear
stresses in fluids H and L by τH and τL, respectively, and then simply find them versus
∂P0/∂X and interfacial stress τi through

τH = τi − h
∂P0

∂X
, (3.29)

τL = τi + (1− h)
(
χ − hX +

∂P0

∂X

)
. (3.30)

In each layer, the shear stresses in terms of τi, τH and τL are

τH,Xy(y) = τH

(
1−

y
h

)
+ τi

y
h
, (3.31)

τL,Xy(y) = τL
h− y
h− 1

+ τi
1− y
1− h

. (3.32)

Using the constitutive laws, the velocity gradient ∂u/∂y can be determined at each
point and therefore ∂u/∂y can be integrated away from the walls at y= 0 and y= 1,
where the Navier slip conditions are implemented, towards the interface. For given
wall and interfacial stresses (τH , τL and τi) and known flow parameters, two interfacial
velocities are delivered:

ui(h−) =
∫ h

0

u(y; τH, τi)

∂y
dy+ λlτH,Xy(X, y= 0, T), (3.33)

ui(h+) =
∫ h

1

u(y; τL, τi)

∂y
dy− λuτL,Xy(X, y= 1, T), (3.34)

which are not the same for initial guess values of wall stresses (τH, τL), but we can
simply iterate on τi to arrive at

1ui(τi)≡ ui(h−)− ui(h+) < ε, (3.35)

where ε is a small tolerance (typically set to 10−12 in our work). Computationally, τi
and ∂P0/∂X are obtained using a nested iteration. More specifically, for fixed ∂P0/∂X,
τi is found in an inner iteration to satisfy relation (3.35). To prescribe lower and upper
bounds for τi in the inner iteration, τi is typically expected to lie between τL and τH
for each fluid. Subsequently, ∂P0/∂X is obtained in an outer iteration to satisfy relation
(2.5). The initial bounds for ∂P0/∂X for the outer iteration are determined numerically.
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FIGURE 2. (Colour online) Examples of results obtained using the iterative technique
explained in the text. (a,b) Validation against the Newtonian fluid results for m = 100,
χ = 10, hX = 0: (a) flux versus interface height; (b) velocity profiles for a given interface
height (h = 0.4), marked by the thick horizontal line. The symbols used for the slip
cases are according to table 1, here and elsewhere. The small square dots superimposed
on each curve are from the analytical relations for Newtonian fluids. (c,d) Validation
against the results for a single viscoplastic fluid flow (by putting h= 1), with λl = 0 and
λu = 0, 0.2, 2,∞: (c) velocity profiles for BH = 0.5 and nH = 1; (d) velocity profiles for
BH = 0.5 and nH = 0.5. The lines show our results while the superimposed hollow squares
are from figure 3 in Panaseti & Georgiou (2017). Note that, due to a different scaling
compared to our work, the Bingham number and the upper wall slip coefficient in Panaseti
& Georgiou (2017) are equivalent to BH/(1− BH) and λu(1− BH), respectively.

Knowing τi, τH and τL, it is possible to derive lengthy algebraic expressions for the
two interfacial velocities versus these stresses and, subsequently, for the flux functions
in each fluid layer, which we do not present for brevity.

To verify the iterative method used for non-Newtonian fluids, we have compared
some flux functions and velocity profiles against the analytical solutions for Newtonian
fluids. For given values of m, χ and hX , an example of such a comparison is
presented in figure 2(a,b), wherein the flux function and the velocity profiles for
different slip cases are plotted. An extreme value of m is intentionally chosen to
verify the robustness of the numerical code. A perfect agreement is found between
the analytical solutions and the results obtained through the iterative method explain
above, for both the flux function and the velocity profiles. Finally, since there is a
viscosity ratio between the fluids, there is a significant jump in ∂u/∂y at the interface
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Case λl λu Illustrated in figures by

Case I 0 0 Solid line
Case II 0.1 0 Dashed line
Case III 0 0.1 Dash-dot line
Case IV 0.1 0.1 Bullets

TABLE 1. Main wall slip cases considered throughout the manuscript.

(figure 2b), which is well captured by the numerical method. In addition, we have
further validated our model results against the recent work of Panaseti & Georgiou
(2017) in which a single viscoplastic fluid flow is considered in a 2-D channel in
which the upper wall is slippery. For various slip coefficients, figure 2(c,d) shows
that our velocity profiles (found numerically) perfectly match those of Panaseti &
Georgiou (2017). Note that, to obtain this comparison, one needs to put h= 1, which
implies that only a pure heavy fluid flow is considered.

For a given interface height, the heavy fluid flux function was calculated using
the method explained (analytically for Newtonian fluids and numerically for
non-Newtonian fluids). Therefore, the kinematic condition was solved to give the
interface motion versus time and space. To this end, fully developed flows were
considered at the two channel ends, and an initially sharp interface was assumed to
be localized at X = 0, following a linear function h(X, T = 0) = −X + 0.5 (unless
otherwise stated), also typically used in previous studies. The slope of the function
had little effects on the interface propagation at long times. Discretization of the
kinematic condition was implemented in conservative form, first-order explicit in time
and second-order in space, and a (shock capturing) Van Leer flux limiter scheme
(Yee, Warming & Harten 1985) was used for robust integration. A spatial mesh step
of dX = 0.05 was typically chosen, which was below the satisfactory convergence
threshold. With regard to validation, our results for displacement flows in a channel
with no-slip walls were successfully compared with those of Taghavi et al. (2009).

3.2. Remarks
Even in its reduced form, our problem is governed by eight dimensionless parameters,
i.e. χ , m, BH , BL, nH , nL, λu and λl, making it difficult to provide quantitative
predictions for the flow regimes that cover all ranges of these dimensionless groups.
Thus, to better focus on the main features, we study Newtonian and non-Newtonian
fluids separately. Regarding the former, we will study a wide range of detailed
flow patterns/regimes based on reasonable variations of χ and m. Concerning
non-Newtonian fluids, we will first analyse the displacement efficiency for a wide
range of parameters and then we will mainly concentrate on the variation of the
rheological parameters that modify crucial viscoplastic displacement features, e.g.
static residual wall layers (SRWLs). Finally regarding the channel wall slip conditions,
we will study 4 displacement cases:

(i) Case I: no-slip at either wall;
(ii) Case II: slip at the lower wall only;

(iii) Case III: slip at the upper wall only;
(iv) Case IV: slip at both walls.
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FIGURE 3. (Colour online) Examples of displacements for χ = 0 and T = 0, 1, . . . , 9, 10.
In each column, the viscosity ratio is fixed: from left to right m= 0.1, m= 1 and m= 10.
From top to bottom each row belongs to Case I to Case IV. Contours illustrate the velocity
field at T = 10.

To provide a better understanding of the wall slip effects, we assume that significant
slip occurs. Particularly, we consider relatively large values for the slip coefficients
(λl and λu) and, unless otherwise stated, fix these values for the 4 cases according to
table 1 throughout the paper.

4. Newtonian fluids
It is logical to start with exploring Newtonian fluid displacements since some of the

major qualitative behaviours are common between Newtonian and more generalized
fluids. In addition, thanks to a fewer dimensionless parameters, the analysis of
Newtonian fluids is much simpler and the numerical solution is much faster.

4.1. Examples of typical behaviours
Figure 3 presents Newtonian displacement examples for a fixed χ value (χ = 0,
implying a viscous-dominated flow). Three viscosity ratios and four slip cases are
illustrated. In all cases, as time grows, the initially steep interface quickly transitions
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to a slumping pattern with the leading front advancing near the lower wall. Regarding
the displacements with no-slip boundary conditions (a–c), the flow behaviours are
intuitive. As the leading front sweeps the displaced fluid near the lower wall, the
trailing front seems to be pinned to the upper wall. When a more viscous fluid
displaces a less viscous one, the displacement is efficient: the leading front height (hf )
is large and the leading front speed (Vf ) is small. As m increases, the displacement
becomes less efficient: the height of the leading front decreases while its speed
increases. The velocity contours superimposed on the subfigures (e.g. figure 3c) also
show that the displacing fluid moves much faster within the slumping layer. When
slip occurs only at the lower wall (Case II, d–f ), the displacement does not seem
to be much affected, except for that, comparatively, hf values are slightly lower and
Vf values are slightly higher. However, the displacements in Case III (g–i) are more
affected by slip at the upper wall. In fact, for all viscosity ratios the trailing front
slips at the upper wall; however this slip appears to considerably affect the overall
displacement only for m = 10. Comparing figure 3(i) to figure 3(c) and figure 3( f ),
it is clear that slip at the upper wall improves the displacement efficiency as Vf
remarkably decreases and hf increases. When slip occurs at both walls (Case IV), the
displacement does not generally change compared to Case III, although, for large m,
figure 3(i) reveals that the displaced phase can slip ahead of the leading front.

Exploring displacement examples in which buoyancy was not strong (χ = 0), slip at
the upper wall appeared to be less significant in terms of impacting the flow. However,
as buoyancy increases for lager χ , the trailing front can become unpinned and even
move backward against the mean imposed flow direction; therefore, slip at the upper
wall can become a crucial flow parameter. For brevity, we do not provide exhaustive
figures to showcase these displacement examples. Instead, in the following subsections
we will focus on certain features of the flow, for example long time front heights and
speeds, which we examine for a wide range of parameters that include the slip cases.
This in return will provide us with an understanding of when/where/how slip at either
or both walls can affect the displacement flow.

4.2. Long time behaviours
Since the interface typically has a segment between two fronts (which move with
constant velocities at long times), the slope of the interface (hX) becomes negligible
throughout the interface except close to the fronts (which may have non-zero heights).
Thus, we can assume that hX → 0 as T � 1 and that the long time interfacial
behaviours can be approximated by

∂h
∂T
+
∂ q̃(h, χ,m, λl, λu)

∂X
= 0, (4.1)

where q̃ = qH|hX=0
. Let us first concentrate on the leading front. Due to the constant

flux, as the interface elongates between Xf (the leading front position) and Xb (the
trailing front position), the area behind it remains equal to T , to conserve mass. On
the other hand, the leading front moves with a constant height and speed at long times.
Mathematically, all this can be summarized into the following equations:

q̃(h∞f ) = h∞f
∂ q̃
∂h
(h∞f ), (4.2)

V∞f =
∂ q̃
∂h
(h∞f ), (4.3)
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FIGURE 4. (Colour online) Use of the equal areas rule (4.2) in determining the leading
front height at long times, h∞f , for the same parameters as in figure 3(c, f,i,l) (i.e. χ = 0
and m= 10): (a) Case I; (b) Case II; (c) Case III; (d) Case IV. Vertical broken line in
each subfigure indicates the leading front height at long times determined from (4.2).

where the superscript ∞ here and elsewhere denotes the value at long times (i.e. T→
∞). Therefore, to predict the displacement flow behaviours at long times, first h∞f can
be found through the solution of (4.2) (equal areas rule) and then V∞f can be simply
obtained from (4.3). Similarly, concerning the trailing front we can find

1− q̃(1− h∞b ) = h∞b
∂ q̃
∂h
(1− h∞b ), (4.4)

V∞b =
∂ q̃
∂h
(1− h∞b ), (4.5)

using which the trailing front height and speed at long times can be calculated.
An example of the use of the equal areas rule (4.2) in the determination of h∞f

is illustrated in figure 4, in which the results correspond to the long time interface
behaviours in the simulations performed in figure 3(c, f,i,l) (i.e. the right column in
figure 3). Different slip cases are examined. A few interpretations and comparisons
can be made using this figure. First of all, a comparison between figure 4 and the
corresponding simulations in figure 3 shows good agreement in terms of the prediction
of the leading front heights at longer times. Second, it is seen that the slip cases
significantly affect the variation of (∂ q̃/∂h)(h) versus h and, consequently, the value
of h∞f . Finally, for Cases I and II, one finds that ∂ q̃/∂h(h)→ 0 as h→ 1; therefore,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

55
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.555


618 S. M. Taghavi

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

1.0

1.2

1.4

1.6

1.8

m

hf
∞

Vf
∞

1.0

1.2

1.4

1.6

1.8

m

1

2

3

4

m

(a) (b) (c)

(d) (e) (f)

10-1 100 101 10-1 100 101 10-1 100 101

10-1 100 101 10-1 100 101 10-1 100 101

FIGURE 5. (Colour online) Heights and speeds of the leading front at long times versus
m. From left to right χ = 0, χ = 20 and χ = 50.

the trailing front at long times would be pinned to the upper wall, while for Cases III
and IV, ∂ q̃/∂h(h) > 0 as h→ 1, implying that the trailing front would advance with a
speed equal to (∂ q̃/∂h)(h= 1). Note that, regardless of the slip case, the leading front
is not pinned and it always advances forward due to the formation of the kinematic
shock, with a positive speed equal to (∂ q̃/∂h)(h= h∞f ), which in the case of figure 4
corresponds to the horizontal line separating the equal areas in each subfigure.

Figure 5 shows the variation of h∞f and V∞f versus m for the four wall slip
cases (within each subfigure) and three typical values of χ (in different subfigures).
Concentrating on the top row, at all values of χ , the curve of h∞f versus m in
Case II lies below the curves for the other cases. In addition, figure 5(a) illustrates
that, while h∞f in Cases I and II continuously decreases with m, in Cases III and
IV, it reaches a near plateau at large m. However, for larger χ values shown in
figure 5(b,c), the variation of h∞f versus m can be non-monotonic. Looking at (d–f ),
at χ = 0, Vf gradually increases with m, while the opposite is true at χ = 50. Finally,
as χ increases the variation of V∞f versus m can be non-monotonic in Cases I and II.

Figure 6 shows the variation of h∞b and V∞b versus m for the four wall slip cases
(within each subfigure) and three typical values of χ (in different subfigures). In
comparison to figure 5, a generally different behaviour is observed. First, at χ = 0,
h∞b is zero for all the slip cases. For larger χ , h∞b is still zero for Cases I and II
(expect for very small m) but becomes appreciable for Cases III and IV. In addition,
Case IV has the largest h∞b . For very large χ , for which there is a significant backflow
against the mean imposed flow direction, the trailing front height remains ∼ 0.4 (with
only small variations with m) for all four slip cases. Regarding V∞b , at χ = 0 there
is forward motion of the trailing fronts with notable speeds for Cases III and IV,
although their heights remain equal to zero. The behaviour of V∞b at the intermediate
value of χ is also noteworthy: starting from negative values, V∞b increases and crosses
over into positive values for Cases III and IV, while for Cases I and II the trailing
front does not move forward. For the largest χ , V∞b continuously increases with m
for all the slip cases, while the trailing front motion is fastest for Case IV (although
it does not have the smallest height; cf. figure 6c).
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FIGURE 6. (Colour online) Heights and speeds of the trailing front at long times versus
m. From left to right χ = 0, χ = 30 and χ = 200.

4.3. Critical stationary interface flows
Perhaps Taghavi et al. (2011) were first to study critical stationary interfaces in
buoyant displacement flows with Newtonian fluids. Their experiments and numerical
simulations showed that for a critical value of χ , there exists a marginal stationary
interface flow state, in which the trailing front is on the verge of moving upstream.
Meanwhile the displacing fluid is advected from the domain, under an interface that
remains stationary for the most part. The displaced layer above the interface is in
counter-current motion with a zero net flux. A stationary interface flow state is a
crucial flow feature in that it marks the transition between inefficient displacements
(i.e. the trailing front moves upstream implying that the displaced phase cannot be
washed away) and efficient ones (the trailing front does not move upstream implying
that the displaced phase can be eventually washed away). In the view of our model,
a stationary interface occurs with a flux equal to unity at an interface that has a zero
speed. Concentrating at long times (in other words hX→ 0), the stationary interface
condition satisfies

q̃H(1− hc, χc,m, λl, λu)= 1,
∂ q̃H(h, χc,m, Λ)

∂h

∣∣∣∣
h=1−hc

= 0,

 (4.6)

where χc denotes the critical buoyancy number and hc the critical residual layer height
(thickness) above the stationary interface. Note that hc is measured with respect to the
upper wall. hc and χc can be obtained through solving the coupled equations above.

Figure 7(a) shows the variation of hc versus m, for the four slip cases. It is
interesting to note that hc has considerable values in all the slip cases. The behaviour
of hc is slightly non-monotonic versus m and versus the slip cases. In each slip
case, hc seems to reach its maximum at a critical viscosity ratio 0.1 < m < 1, the
value of which depends on the slip case. Also, in general, the curve of hc versus
m for Case II remains above the rest of the curves, while the one for Case III lies
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FIGURE 7. (Colour online) Variation of hc and χc versus m, for the critical stationary
flow state.

below the other curves. Finally, the behaviour of hc versus m is similar for Cases I
and IV, i.e. the two symmetric cases. This observation may be justified by a simple
argument. When buoyancy is significant, a symmetric slip at both walls enhances the
downward/upward motion of the heavy/light fluids at the lower/upper wall; loosely
speaking, since this enhancement is more or less equal, the critical interface height
is not much affected. More rigorously, using a series of expansions for a symmetric
slip case (λ = λl = λu, with a small λ) in an iso-viscous displacement (m = 1), we
find

hc =
2−
√

2
2
+ (1−

√
2)λ+O(λ2). (4.7)

On the other hand, for λ→∞ we can also analytically show that

hc =
1
3 . (4.8)

Therefore, for an iso-viscous case, the critical interface height varies only within the
small range of (2−

√
2)/2= 0.293 (no slip) and 1/3= 0.334 (free slip), which is in

agreement with the above discussion.
Figure 7(b) shows how χc varies versus m for the four slip cases. Unlike hc, χc

monotonically increases with m, for which the increase rate is sharper at smaller m.
Finally, χc for Case I has generally the largest value while the opposite is true for
Case IV. Therefore, the effects of slip on χc and hc are not the same.

4.4. Characteristic spreading length of the front
Looking back at the interface profiles in figure 3, it can be recognized that the
interfacial slopes are much sharper at the frontal region, where diffusive spreading
of the interface is dominant. In fact, the curved shape of the leading (or trailing)
front is due to these significant diffusive effects. In order to find the front shape,
we can follow the approach explained in Taghavi et al. (2009), which is based on
calculating h∞f and V∞f , and then shifting to a reference frame that moves with V∞f
(i.e. ζ = X − V∞f T), to finally arrive at a steadily travelling interface solution:

d
dζ
[hV∞f − qH(h, hζ , χ,m, λl, λu)] = 0,

⇒ qH(h, hζ , χ,m, λl, λu) = hV∞f . (4.9)
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FIGURE 8. (Colour online) The leading front characteristic spreading length, ζL, versus m.
From left to right χ = 0, χ = 20 and χ = 50.

The equation above can be simply solved for h ∈ (0, h∞f ) to deliver the leading
front shape (and similarly the trailing front shape provided that the equations are
accordingly modified). However, the shape of the diffusive front is of less interest
compared to the characteristic spreading length of the front, ζL, which we define as
the longitudinal length over which the leading front shape extends. Following Taghavi
et al. (2017), to calculate this characteristic length, we assume that the frontal region
in the interval of (0, h∞f ) varies only linearly over ζL, implying that the interface slope
in relation (4.9) can be replaced by −h∞f /ζL. Integration within the frontal region
delivers∫ h∞f

0
qH

(
h,−

h∞f
ζL
, χ,m, λl, λu

)
dh ≈

∫ h∞f

0
hV∞f dh=

V∞f (h
∞

f )
2

2
, (4.10)

⇒

∫ h∞f

0
qH

(
h,−

h∞f
ζL
, χ,m, λl, λu

)
dh ≈

(h∞f )
2

2
∂ q̃H(h, χ,m, λl, λu)

∂h

∣∣∣∣
h=h∞f

. (4.11)

To find the characteristic spreading length for a given set of parameters (χ,m, λl, λu),
first h∞f is calculated using (4.2) and then an iterative method is used to obtain ζL that
satisfies (4.11).

Figure 8(a) illustrates the variation of ζL versus m, at χ = 0, for the four slip cases.
As can be seen, ζL decreases with m; however, the values of ζL and the decrease rate
of ζL versus m both highly depend on the slip cases. Figure 8(b) shows that, as χ
increases, ζL decreases. Comparatively, figure 8(c) suggests that the effects of the wall
slip and the viscosity ratio on ζL become more or less unimportant as χ is increased
to large values (i.e. when the flow becomes strongly buoyant).

4.5. Short time behaviour
In the limit of T � 1, we may expect flow reversal to occur due to significant
buoyancy (large interface slopes), implying that gravitational spreading dominates
the flow at short times. Therefore, to study the flow at short times, it is natural to
reconsider (3.17) while shifting to a steadily moving frame of reference z= X − T:

∂h
∂T
+
∂

∂z
[qH,A + qH,B(χ − hX)− h] = 0, (4.12)

where the first and second terms in the bracket represent the advective and the
buoyancy-driven components of the flux, respectively. Defining η = z/

√
T and
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FIGURE 9. (Colour online) The similarity solution h(η). From left to right m= 0.1, m= 1
and m= 10.

assuming T ∼ 0, we arrive at

1
2
η

dh
dη
=

d
dη

(
−qH,B

dh
dη

)
. (4.13)

Looking into the literature of similar multilayer flow problems, we find that Taghavi
et al. (2009) and Martin et al. (2011) argue that, due to singularity issues, in place
of h(η) it is more comfortable to work with η(h), for which the boundary conditions
are: η(0)= η0 and η(1)= η1 with unknown values of η0 and η1, which depend on the
slip conditions among the other parameters. Since slumping due to gravity leads to
a strong interpenetration of the fluids, we can always expect that η0 > 0 and η1 < 0,
which we use as an assumption to compute the solution of (4.13) through a numerical
method (here a shooting method).

Figure 9 shows the similarity solutions, η(h), for various m and wall slip cases. It
is seen that the viscosity ratio and the slip conditions significantly affect the interface
shape. In particular, the solution is not symmetric for m 6= 1, since a more viscous
fluid further resists motion. In addition, the solution is slightly asymmetric when the
fluids slip at one of the channel walls, for obvious reasons.

Figure 10(a) depicts η0 and η as a function of m for the four wall slip cases. The
asymmetry discussed above is also quite clear. Figure 10(b) depicts the variation of
h0 ≡ h(η)|η=0 versus m for the four wall slip cases. While for Case I at m = 1 one
finds h0 = 0.5 (as expected), the curve of h0 versus m is symmetric about the point
(m, h0)= (1, 0.5), which may be also expected. However, the symmetry is broken for
Case II and certainly for Cases III and IV, where even a non-monotonic variation of
h0 versus m is observed.

An additional feature observed in figure 10 is that when m< 1 the lower boundary
condition seems more determinant as the results of Cases I and III approach each
other; the same trend is observed for the results of Cases II and IV. On the other
hand, when m > 1 this trend is reversed and the upper boundary condition seems
more determinant. An explanation for this behaviour lies in the fact that the wall slip
velocities are proportional to the wall shear stresses, which are scaled with the heavy
fluid’s effective viscosity. Therefore, at a constant slip coefficient, for m< 1 the wall
slip velocity is relatively larger at the lower wall, while for m>1 the wall slip velocity
is relatively larger at the upper wall. Note that the same principle can be applied to
all the results presented throughout the paper (Newtonian and non-Newtonian cases):
for m< 1 (m> 1) the lower (upper) wall slip dominates that of the upper (lower) wall.
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FIGURE 10. (Colour online) Values of (a) η0 and η and (b) h0, versus m.

4.5.1. A simplified model for interface evolution at short times
To better understand displacement flow behaviours at short times, we develop a

simplified analysis, for which we crudely assume that the interface slope stretched
between the spatial positions of the leading and trailing fronts, Xf and Xb (respectively),
has an average slope of h̄X ≈ −1/(Xf − Xt). We also assume that the leading front
height and speed can be still approximated through modifying equations (4.2)
and (4.3):

q(hf , h̄X) ≈ hf
∂q
∂h
(hf , h̄X), (4.14)

Vf ≈
∂q
∂h
(hf , h̄X). (4.15)

The trailing front height (hb) and speed (Vb) can be similarly approximated by
modifying (4.4) and (4.5). Finally, the leading and trailing front positions can be
linked to the leading and trailing front velocities by

Xf =

∫ T

0
Vf dt, (4.16)

Xb =

∫ T

0
Vb dt. (4.17)

The system of equations above provides a simple framework to analyse the leading
and trailing front heights and speeds, perhaps more systematically than performing
simulations, for which for instance defining a front height at short times is not
straightforward.

Figure 11 plots the variation of the leading and trailing front heights and speeds
versus time, at χ = 0, for different m and the four slip cases. In general, it is observed
that the leading/trailing front height increases/decreases as time grows. On the other
hand, |Vf | and |Vb| both decrease with time. It is interesting to note that generally
|Vf | 6= |Vb| and that Vf remains always positive (as expected) but Vb crosses over
between negative and positive values. In addition, hf and hb are far from symmetric
with respect to h=0.5. In general, it can be also said that the front heights and speeds
reach their steady values as T ∼O(10−1). Finally, lower/higher viscosity ratios further
affect the leading/trailing front velocities, which, as explained earlier, is simply to the
dominance of the wall slip at the lower/upper wall.
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FIGURE 11. (Colour online) Short time behaviours for χ = 0. From left to right m= 0.1,
m= 1 and m= 10.

4.6. Lock-exchange flows
Our main purpose in this paper is to study two-layer flows for which there is always
an imposed flow velocity (V̂0 6= 0). In this case, the model is valid for small and
large values of the buoyancy number. However, an important class of problems, i.e.
the lock-exchange flows, cannot be directly evaluated using the scaling presented
earlier (since χ→∞ as V̂0→ 0). Therefore, it is worth developing and presenting an
alternative lubrication model scaling, exclusively for the case of lock-exchange flows
in an inclined channel. To do so, we re-scale velocities using a characteristic velocity
defined as

V̂c ≡
(ρ̂H − ρ̂L)ĝD2

0 cos β
2µ̂H

, (4.18)

which is simply the longitudinal component of a viscous velocity scale obtained
through balancing viscous and buoyant stresses. We can therefore re-define the
lubrication model parameters as

χe = 2, (4.19)

δe =
cot β

2
, (4.20)

Xe = δex, (4.21)
Te = δet, (4.22)
Pe = δep, (4.23)
Ve = v/δe. (4.24)

For Newtonian fluids, the definition of m, λl and λu would not be affected by the
alternative scaling. The lock-exchange flow flux function can be simply obtained
through removing the advective component from qH to find

qH,e = qH,B(χe − hXe). (4.25)

In all the above relations, the subscript e represents the lock-exchange flow case.
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FIGURE 12. Examples of lock-exchange interface profiles for m = 1 and Te =

0, 10, . . . , 90, 100. For a better visualization of symmetry/asymmetry, a bold line marks
the last profile (corresponding to Te = 100). A steep linear function, i.e. h(X, Te = 0) =
−10Xe+0.5, is used as the initial profile. (a) Case I; (b) Case II; (c) Case III; (d) Case IV.

Figure 12 illustrates the evolution of the lock-exchange interface profiles for the
four slip cases, for an iso-viscous displacement. The interface evolution is initially
faster due to a large interface slope. At longer times the interface evolution slows
down and the interface steadily evolves due to the channel slope. The symmetric slip
cases, i.e. Case I (no slip at either wall) and Case IV (equal slip at both walls),
present a symmetric flow evolution, although the interpenetration is stronger in Case
IV, as expected. The interface profiles of Cases II and III present asymmetric flows. To
highlight this, the interface positions at Xe= 0 are also marked by the arrows. Overall,
figure 12 shows that the wall slip cases affect lock-exchange flows at both short and
long times.

5. Non-Newtonian fluids
Here, we analyse the results for non-Newtonian fluid displacements, which may

have common interfacial features with Newtonian ones. Although these features can
be quantified using the very same techniques discussed earlier, we do not repeat the
analysis for brevity. Instead, in this section, after briefly exploring some of the general
features, we shall focus on the flow behaviours that are of concern/importance only
to viscoplastic displacements.

Let us first review some of the general non-Newtonian displacement patterns.
Figure 13 depicts examples of viscoplastic displacements, for fixed values of m= 10
and χ = 0, wherein either the displacing or displaced fluid has a yield stress. The
power-law index values are also fixed to nH = nL = 1. The simulation results for the
four wall slip cases are plotted. When BH = 0.5 and BL = 0, the displacement is
quite efficient for Cases III and IV and less efficient for Cases I and II, while the
leading front height is minimum for Case II and maximum for Case III. Similar to
Newtonian fluid displacements, the interface moves at the upper wall when the upper
wall slip conditions are implemented (Cases III and IV). When the displaced fluids
has a yield stress (BH = 0 and BL = 9), the behaviour is different for Cases I and
II. In particular, a static residual wall layer (SRWL) is observed in figure 13(e, f ).
The SRWL thickness is larger for Case II compared to that for Case I, implying that
slip at the lower wall can influence the static layer attached to the upper wall. The
displacements in both Case I and Case II are far from efficient. However, for Cases
III and IV, the situation changes completely. As the trailing front advances on the
upper wall, the displaced fluid is easily removed and there is no static layer.

Some of the features observed can be simply understood through exploring the
variation of the flux function, qH , versus the interface height, h, for different
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FIGURE 13. (Colour online) Examples of viscoplastic displacements for m = 10, χ = 0,
nL = nH = 1 and T = 0, 1, . . . , 9, 10. In (a–d) BH = 0.5 and BL = 0; in (e–h) BH = 0 and
BL = 9. From top to bottom each row belongs to Case I–Case IV. Contours illustrate the
velocity field at T = 10.

parameters that include non-Newtonian effects. An example of this is presented
in figure 14, where for simplicity m= 10 and hX = 0 (implying long time behaviours).
The buoyancy number and the power-law indices are also set to typical values. Above
a certain value of h< 1, qH reaches unity, implying that SRWLs of the displace fluid

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

55
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.555


Buoyant displacement flows in a channel with wall slip 627

0

0.2

0.4

0.6

0.8

1.0

1.2
(a) (b)

(c) (d)

0

0.2

0.4

0.6

0.8

1.0

1.2

0

0.2

0.4

0.6

0.8

1.0

1.2

0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6
h

qH

0.8 1.0 0 0.2 0.4 0.6
h

0.8 1.0

qH

FIGURE 14. (Colour online) Examples of flux for m = 10 and hX = 0: (a) χ = 0, nL =

nH = 1, BH = 0.5 and BL = 0; (b) χ = 0, nL = nH = 1, BH = 0 and BL = 9; (c) χ = 20,
nL = nH = 0.5, BH = 0.5 and BL = 0; (d) χ = 20, nL = nH = 0.5, BH = 0 and BL = 9.

could exist only for these slip cases, i.e. Cases I and II. Figure 14 also reveals that
χ is also an influential parameter on the variation of qH versus h, and consequently
on the interface shape in viscoplastic displacements. Finally, since m > 1 the upper
boundary condition is determinant (note for example that the solid and dashed lines
are closer to each other and the dash-dot line and dots are also closer).

In order to enable a comparison among a large number of results for non-Newtonian
displacement flows, let us rely on an indicator for displacement efficiency (E), which
we define as the fraction of the displaced fluid that has been removed from the
channel at long times (here we take T = 10):

E=

∫ Xf

0
h(X, T = 10) dX

Xf
. (5.1)

Therefore, to find E, we first numerically integrate the area under a developed
interface between X= 0 and X=Xf ; then, we find the ratio of this area to the area of
an ideal displacement (100 % efficient), i.e. Xf × 1. Thanks to the mass conservation,
the numerator in (5.1) must be equal to T , which is the condition that we have used
to ensure that our numerical code conserves mass for all simulations.

Figure 15 addresses Newtonian–viscoplastic, viscoplastic–Newtonian and
viscoplastic–viscoplastic displacement scenarios in terms of the displacement
efficiency. In each subfigure, the most efficient displacements are marked by
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FIGURE 15. (Colour online) Displacement efficiency, E, in the plane of dimensionless
groups, for χ = 0 and nL = nH = 1. (a–d) Show E in the plane of m and BH when a
viscoplastic fluid displaces a Newtonian fluid (BL = 0). (e–h) Show E in the plane m
and BL when a Newtonian fluid (BH = 0) displaces a viscoplastic fluid. (i–l) Show E in
the plane of BH and BL (for a fixed m = 1) when a viscoplastic fluid displaces another
viscoplastic fluid. The values of E are marked by the symbol size and colours. From top
to bottom, each row belongs to Case I–Case IV. In each subfigure, the most efficient
displacements are marked by superimposed and the least efficient displacements by
superimposed6.

superimposed and the least efficient displacements by superimposed 6. When
several data points are marked by the same superimposed symbols, it means that
their values of E are quite close to one another (within 1 % difference in E). When
a viscoplastic fluid displaces a Newtonian fluid (left column), m affects E more
than BH does. In general, the lower viscosity ratio flows have higher displacement
efficiencies. The least efficient displacement for each slip case is typically found at
the largest values of m and BH . In addition, the most efficient displacements are in
general found for Case III, where the heavy fluid does not slip at the lower wall
and only the light fluid slips at the upper wall. When a Newtonian fluid displaces a
viscoplastic fluid (middle column), compared to the left column, the displacements
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FIGURE 16. (Colour online) Short time interface behaviours for χ = 0, m= 51, BH = 0,
BL= 50, nH = nL= 1 and T = (0, 1, . . . , 9, 10)× 4× 10−4: (a) Case I; (b) Case II; (c) Case
III; (d) Case IV. Horizontal dashed lines mark the maximal SRWL predictions at long
times, calculated using the method explained in § 5.1.

are more efficient in some cases and less efficient in some others. Although the most
efficient displacements for each slip case are found at the smallest values of m and
BL, the least efficient displacements are not necessarily found at the largest values
of m and BL. Especially for Case IV, the least efficient displacements are somewhat
scattered. Moreover, the displacement efficiencies for Case III are very close and do
not much vary in the plane of m and BL. Finally, when a viscoplastic fluid displaces
another viscoplastic fluid (right column), E highly depends on the values of BH and
BL as well as the slip case. When there is no slip (figure 15i: Case I), the most
efficient displacement is found for the maximum value of BL and the minimum value
of BH . For slip cases, the largest values of E are found for Case III and the smallest
values of E for Case II. Reviewing the results provided by figure 15 highlights the
fact that the displacement efficiency for the slip cases do not necessarily follow a
definitive trend in terms of variations in m, BL and BH , implying that numerical
simulations must be performed for each individual case to obtain the displacement
behaviour and find the displacement efficiency.

Figure 16 illustrates the short time interface behaviours for a viscoplastic
displacement in which the displaced fluid has a large yield stress. To obtain these
results, the initial interface has been significantly sharpened. Cases I and II eventually
present a SRWL as time grows. For the same parameters, Cases III and IV do not
present a SRWL, as the light fluid slips at the upper wall. Therefore, the overall
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displacement is more efficient for these cases. However, it must be noted that, even
for Cases I and II, the light layer attached to the upper wall is not initially static as
the interface slowly moves at very short times (except for h = 1). This observation
is related to the fact that buoyancy stresses are initially large due to the slope of
the interface. As the interface slumps and its slope decreases, the light fluid’s yield
stress is able to overcome the decreasing local buoyancy stresses. Thus, the moving
layer above the interface evolves into a SRWL over a short time scale. Due to
their fundamental and practical importance, we shall focus the rest of the paper to
analysing SRWLs at longer times, which appear exclusively in displacement flows
with generalized Newtonian fluids.

5.1. Static residual wall layers
Although the literature of static wall layers in viscoplastic fluid flows is expanding
thanks to the recent works of Roustaei & Frigaard (2013), Roustaei & Frigaard
(2015), Roustaei, Gosselin & Frigaard (2015), Mollaabbasi & Taghavi (2016) and
others, it was perhaps Allouche et al. (2000) who pioneered a model to analyse
SRWLs in viscoplastic displacement flows, for the case of a vertical channel flow
(i.e. symmetric). Taghavi et al. (2009) extended the work of Allouche et al. (2000)
to slumping displacements in a channel with no-slip boundary conditions. These
and similar works have demonstrated that, for the cases where SRWLs exist, the
maximal SRWL thickness is typically observed at longer times. Therefore, we also
concentrate our analysis on long times and rely on a similar procedure proposed by
Allouche et al. (2000) and Taghavi et al. (2009) to calculate our SRWL thickness
for displacements with wall slip.

Below, we will systematically analyse the formation of SRWLs, for the four wall
slip cases. First, we will treat Cases I and II and then extend our analysis to a
marginal state for Cases III and IV.

5.1.1. Static wall layers for Cases I and II
Assuming that fluid L is fully static for y ∈ [h, 1], the governing equation for the

heavy fluid motion can be written as

∂

∂y
τH,Xy =

∂P0

∂X
, y ∈ (0, hs), (5.2)

where hs is the corresponding interface height. The appropriate boundary conditions
are

u(0) = λlτH, (5.3)
u(hs) = 0. (5.4)

On the other hand, the flow rate condition becomes∫ hs

0
u(y) dy= 1. (5.5)

For simplicity, let us assume that λl is small so that the plug core within the
lower layer does not touch the lower wall. We then define h1 as the vertical distance
between the lower wall and the place where the shear stress becomes zero within
the heavy layer (note that due to the slip at the lower wall, the velocity profile can
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be asymmetric within the lower layer). We simply integrate the above system to
find the velocity field and then integrate across the heavy fluid layer to transform
equation (5.5) into

h2
s B̃1/nH

H ((h̃1 − ξ)
2+1/nH

− (h̃1 − 2)(2− h̃1 − ξ)
1+1/nH

)

4 ξ 1/nH

(
2+

1
nH

)

+

h2
s B̃1/nH

H

(
1

nH
+ 3
)
(2− h̃1 − ξ)

1+1/nH

4 ξ 1/nH−1

(
1+

1
nH

)(
2+

1
nH

) −
h̃1 λ̃l(ξ − h̃1)hs B̃H

2ξ
= 1, (5.6)

where B̃H =BH/(1− BH) and λ̃l= λl(1− BH), while hs and h̃1= 2h1/hs are dependent
parameters related through the solution of

hs =

2B̃1−1/nH
H λ̃l h̃1

(
1+

1
nH

)
ξ 1−1/nH ((2− h̃1 + ξ)

1+1/nH
− (h̃1 − ξ)

1+1/nH
)
. (5.7)

The above equation is obtained by considering the fact that one needs to find the same
speed for the heavy layer plug when integrating the equations starting from the lower
wall or from the interface (otherwise the plug would be deformable). Finally, ξ and
∂P0/∂X are related through

−
∂P0

∂X
=

2BH

ξhs
. (5.8)

Our analysis shows that the root of (5.6), lying in (0, 1], can be found numerically.
In other words, ξ can be found for a given set of parameters (hs, B̃H, nH, λ̃l). Let
us now suppose that χ is small so that the stress at the upper wall has the same
sign as the interfacial stress. Considering that the interfacial stress is ∂P0/∂X(hs − h1)

and the upper wall shear stress is (1− h1)(∂P0/∂X)+χ(1− hs), the initial static layer
assumption is ∣∣∣∣(1− h1)

∂P0

∂X
+ χ(1− hs)

∣∣∣∣6 BL. (5.9)

A maximal SRWL can be defined using the minimum of hs, denoted by hs,min, for
which relation (5.9) holds:

Ystatic = 1− hs,min. (5.10)

Substituting the pressure gradient from (5.8) into (5.9), we reach at the condition
governing the maximal SRWL:

B̃Y

ξ

(
2

hs,min
− h̃1

)
− χ̃(1− hs,min)= 1, (5.11)
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FIGURE 17. (Colour online) Maximal SRWL thickness, Ystatic, with contours spaced at
intervals Ystatic = 0.1, for χ̃ = nH = 1: (a) Case I with λ̃l = 0; (b) Case II with λ̃l = 0.1.
Shaded areas mark the limit where no SRWLs exist.

where B̃Y =BH/BL and χ̃ =χ/BL. Therefore, only five parameters govern the solution
of the maximal SRWL:

λ̃l,

B̃H,

B̃Y,
χ̃ ,
nH.

 (5.12)

In order to compare the results of the simplified method explained here and those
of our numerical simulations, the horizontal dashed lines in figure 16(a,b) mark the
maximal SRWL predictions, where good agreement is observed: in the simulations,
the SRWL thicknesses at long times approach the predictions of the simplified method.
In addition, as the heavy fluid slips at the lower wall (Case II), the SRWL thickness
increases.

The critical existence condition of any SRWL is found as hs,min→ 1 and it is given
by

B̃Y =
ξ |hs,min→1

(2− h̃1)
. (5.13)

Figure 17 shows the variation of the maximum SRWL versus B̃H and B̃Y , for Cases
I and II, at fixed values of χ̃ and nH . The shaded area marks the region where no
SRWL is found. It can be seen that, at large B̃H , slip at the lower wall (Case II) has
two effects: reducing the region where no SRWL is possible and changing the spacing
between the contours of the maximal SRWL thickness.

5.1.2. Static wall layers for Cases III and IV
Regarding Cases III and IV, SRWLs appear only if the stress at the upper wall is

exactly zero and the interfacial stress is smaller than the light fluid’s yield stress. This
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FIGURE 18. (Colour online) Maximal SRWL thickness, Ystatic, with contours spaced at
intervals Ystatic = 0.1, for nH = 1: (a) Case III with λ̃l = 0; (b) Case IV with λ̃l = 0.1. For
a given set of hs and B̃H , the corresponding values of χ̃ can be calculated using equation
(5.14). Shaded areas mark the limit where no SRWLs exist.

means that the following relations need to be simultaneously satisfied to deliver the
maximal SRWL thickness:

χ̃ =
2− hs,minh̃1

hs,min(2− h̃1)(1− hs,min)
,

B̃Y =
ξ

2− h̃1

.

 (5.14)

For a given parameter set, there exists a critical value for χ̃ for which the displaced
layer is fully static. Figure 18 plots the variation of the maximum SRWL in the plane
of B̃H and B̃Y , for Cases III and IV, at a fixed value of nH . Note that, for a given set
of hs and B̃H , the corresponding values of χ̃ need be calculated using equation (5.14).
For example, in this figure for hs= 0.5 and B̃H = 6, the critical values of χ̃ for Cases
III and IV are equal to 6 and 5.3, respectively. This suggests the parameter ranges
for which a SRWL is observed is sensitive to the variations of the Bingham numbers
and the buoyancy number. Finally, compared to Case III, slip at both walls (Case IV)
results in a further shrinkage of the region where no SRWL is possible.

6. Discussion and conclusions
We have considered a buoyant displacement flow in a 2-D channel with wall

slip boundary conditions and accordingly developed a two-layer lubrication/thin film
model in combination with a generalized Newtonian rheology. We have focused on
the limit where surface tension or mixing can be neglected (Pe→∞ and Ca→∞).
We have aimed at quantifying displacement flow behaviours when the common
no-slip condition at the channel walls is replaced with a simple Navier slip condition,
relating the wall slip velocity to the wall shear stress. Although the model is general,
in order to alleviate the analysis, we have presented the results only for four wall
slip cases: Case I (no-slip), Case II (slip at the lower wall), Case III (slip at the
upper wall) and Case IV (slip at both walls), all with fixed slip coefficients. Below,
we will summarize our main findings.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

55
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.555


634 S. M. Taghavi

For Newtonian fluids, a large number of results are presented. First, general
displacement behaviours are reviewed, by examining the interface evolution (with
time) and the velocity field. The results highlight that slip at either wall significantly
changes the overall displacement. Most efficient displacements are usually found
when the fluids slip at the upper wall only. In addition, through a simple analysis,
the heights and the speeds of the leading and trailing fronts are evaluated versus the
viscosity ratio and a buoyancy number, for the four slip cases, where non-monotonic
behaviours are sometimes observed as these parameters vary. A critical flow state,
i.e. the stationary interface flow, is also quantified for displacements with wall slip,
furnishing a critical buoyancy number and a critical interface height. Moreover,
analysing the frontal region reveals that a channel with a no-slip condition has the
shortest characteristic spreading length at the front (ζL), while a channel with wall slip
at both walls has the largest ζL. For most of the parameter ranges, slip at the lower
wall (Case II) extends the frontal region further, compared to the case with slip at
the upper wall only (Case III). The interface evolution at short times is characterized
by an exchange flow, which can be analysed through a similarity solution, revealing
that wall slip causes the interpenetrating fronts to advance relatively faster. Transition
between the short and long time displacements can be analysed through a simplified
model with propagating fronts, suggesting that the leading and trailing front velocities
approach their long time asymptotes at T∼O(10−1) and that the fronts feel the effects
of wall slip in both short and long times. Finally, when buoyancy is weak, the trailing
front at longer times is pinned to the upper wall in Cases I and II, but it is not pinned
in the other slip cases.

Concerning non-Newtonian fluid flows, since the number of the dimensionless
groups is large, a parametric study of all the dimensionless group ranges is not
feasible. Instead, in order enable a comparison among a large number of simulation
results, an ad hoc displacement efficiency parameter is defined. The results show that,
for all the slip cases, most (least) efficient displacements are typically found at small
(large) viscosity ratios, which may be expected. However, the effects of the Bingham
numbers are peculiar in that there are no definitive trends in the variation of E as
the Bingham numbers vary in slip cases. Especially for Case IV, the variation of E
versus BH and BL becomes non-monotonic, which underlines the fact the prediction
of the flow behaviours becomes harder as the fluids slip at both walls. Moreover,
when the displaced fluid possesses a yield stress, it is possible for there to exist a
static residual wall layer (SRWL), which is a prominent displacement flow feature
for non-Newtonian displacements. The simulation results reveal that slip at the upper
wall results in a removal of SRWLs, which could be of significant thickness in the
case of no slip at the upper wall. Therefore, the analysis is directed towards a simple
1-D model to predict maximal SRWL thicknesses for Cases I–IV. Depending on the
values and the ranges of the dimensionless groups, various conditions regarding the
SRWL thickness may occur. These can be effectively summarized in the planes with
a modified yield stress and a yield stress ratio as parameters. The SRWL thickness
can be quantified when the rheology of the displacing phase, the yield stress of
the displaced phase, the buoyancy number and the lower wall slip coefficient are
specified.

In this work, we concentrated on a simple yet practical wall slip law, i.e. a Navier
slip law, relating the wall slip velocity to the shear stress at the wall. However,
our model formulation should make it possible to equally consider other useful
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slip models, especially those relevant to non-Newtonian fluids. These may include but
are not limited to the nonlinear Navier slip law (Schowalter 1988), the Hatzikiriakos
slip law (Hatzikiriakos 2012), the asymptotic slip law (Ferrás et al. 2012), etc.

Finally, it is instructive to discuss how our model and its results could be
validated with experiments. Although displacement experiments are generally
straightforward to conduct, here there may be a challenge to induce well-controlled
wall slip in laboratory-scale experiments. There exist experimental techniques to
characterize/control the occurrence of wall slip (e.g. Lauga & Stone 2003; Nickerson
& Kornfield 2005; Vayssade et al. 2014), but these have mainly focused on slip
heterogeneities in small systems, where buoyancy is naturally ignored due to the
small characteristic flow size. Alternatively, buoyant displacement flow experiments
with wall slip may be carried out using indirect approaches, such as employing a
highly thin layer of a low viscosity fluid to lubricate the flow geometry walls. In
this case, the wall slip velocity results from a macroscale description of the boundary
condition at the layer. In fact, we have performed in our laboratory very preliminary
displacement experiments in a horizontal square duct with walls made ‘slippery’ using
such a method. The results show qualitative agreement with model observations, in
particular, in terms of the wall slip effects leading to increase the displacement
efficiency.

In future, the work presented can be extended to include miscibility or surface
tension as parameters. The displacement flow stability can be also analysed to
understand the effects of wall slip on the general stability picture.
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Appendix A. Coefficients in the flux function

The coefficients in the flux function equation (3.23) are

a11 = 36 h m2,

a10 =−6 h m((3− 2 m)h2
− 3),

a01 =−6 h2m2(h− 3),
a00 =−h(3m(1− m)h3

+ 6 h2m− 9 hm).

 (A 1)

b11 =−12m(1−m)h5
+ 12m(3− 2 m)h4

− 12m(3− m)h3
+ 12 h2m,

b10 = (3− 4 m)h6
− 12(1−m)h5

+ 6(3− 2 m)h4
− 4(3− m)h3

+ 3h2,

b01 =−m(4− 3 m)h6
+ 6m(2−m)h5

− 3m(4− m)h4
+ 4 h3m,

b00 = (1−m)h7
− (4− 3 m)h6

+ (6− 3 m)h5
− (4−m)h4

+ h3.

 (A 2)

c11 = 36 m2,

c10 = 12m((m− 1)h3
+ 1),

c01 = 12 m((m− 1)h3
− 3(m− 1)h2

+ 3(m− 1)h+ 1),
c00 = 3+ 3(m− 1)((m− 1)h4

+ 4h3
− 6h2

+ 4h).

 (A 3)
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Appendix B. Coefficients in the velocity functions
Here, we provide the coefficients concerning the velocity profile equations (3.27)

and (3.28). For the heavy fluid, we have

dH,11 = 12 m2,

dH,10 = 6m(1−my2
+ (m− 1)h2),

dH,01 = 6m2y(2− y),
dH,00 = 6m[((1−m)h− 1)y2

+ (1+ (m− 1)h2)y].

 (B 1)

eH,11 = 2m(1− h)[2(1−m)h3
+ (3m− 4)h2

+ 2 h− 3 y2m],
eH,10 = (1− h)[m(h2

+ h− 2)y2
+ (m− 1)h4

+ 3(1−m)h3
+ (2 m− 3)h2

+ h],
eH,01 = (1− h)m[(3 m− 2)h2

+ 2 (2− 3 m)h− 2]y2

+ 2(1− h)m[2(1−m)h3
+ (3 m− 4)h2

+ 2 h]y,

eH,00 =
(1− h)

2
[(1−m)h3

+ (5 m− 3)h2
+ (3− 4 m)h− 1]y2

+ (1− h)[(m− 1)h4
+ 3(1−m)h3

+ (2 m− 3)h2
+ h]y.


(B 2)

fH,11 = 12 m2,

fH,10 = 4m((m− 1)h3
+ 1),

fH,01 = 4m((m− 1)(h− 1)3 +m),
fH,00 = h(m− 1)((m− 1)h3

+ 4h2
− 6h+ 4)+ 1,

 (B 3)

For the light fluid, we have

dL,11 = 12 m2,

dL,10 = 6m(1− y2),

dL,01 = 6m((1−m)h2
− y2
+ 2 y+ 2(m− 1)h),

dL,00 = 6[((1−m)h− 1)y2
+ (1+ (m− 1)h2)y+ (1−m)h2

+ (m− 1)h].

 (B 4)

eL,11 = 2mh(3y2
− 6 y+ 2+ (2m− 2)h3

+ (3− 2 m)h2),

eL,10 = h[((2 m− 3)h2
+ 3)y2

+ 4((1−m)h3
− 1)(y− 1)− 3+ (3− 2 m)h2

],

eL,01 = hm[(3h− h2)y2
+ (2 h2

− 6 h)y+ (m− 1)h4
+ (1−m)h3

+ 2 h],

eL,00 =
h
2
[((m− 1)h3

− 2h2
+ 3h)y2

+ 2((1−m)h4
+ h2
− 2 h)y]

+
h
2
[2(m− 1)h4

+ (1−m)h3
+ h].


(B 5)

fL,11 = fH,11,

fL,10 = fH,10,

fL,01 = fH,01,

fL,00 = fH,00.

 (B 6)
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