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ABSTRACT

We construct a mirabolic analogue of the geometric Satake equivalence. We also prove
an equivalence that relates representations of a supergroup to the category of GL(N —
1, C[t])-equivariant perverse sheaves on the affine Grassmannian of GLy. We explain
how our equivalences fit into a more general framework of conjectures due to Gaiotto
and to Ben-Zvi, Sakellaridis and Venkatesh.
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1. Introduction

1.1 Reminder on geometric Satake

Let F = C((t)) D C[t] = O. Throughout the paper, we fix an integer N > 1, set Gg = GL(N, F)
and Go = GL(V,0), and let Gr = Gg/Gg be the affine Grassmannian of GLy. This is an
ind-scheme equipped with a natural action of the group Gg x C*, where C* acts by loop
rotation. Let Dg (Gr) (respectively, Dg xcx (Gr)) be the Go-equivariant (respectively, Go x
C*-equivariant) constructible derived category of Gr.! This is a monoidal category with respect
to convolution (which coincides with fusion); cf. [MV07].

Let gl be the complex vector space of N x N matrices and let GLy act on gl by con-
jugation. Write Sym®(gly[—2]) for the symmetric algebra of gly viewed as a dg-algebra such
that the space gly, of generators, is placed in degree 2 and the differential is equal to zero. Let
Dg'el;fv (Sym*®(glx[—2])) be the triangulated category of perfect GLy-equivariant dg-modules over
Sym®(gly[—2]), localized with respect to quasi-isomorphisms. The tensor product of dg-modules
gives this category a monoidal structure. One of the versions of derived Satake equivalence proved
in [BF08] states that there is an equivalence DS’ 61;?’ (Sym®(gly[—2])) = Dg¢ (Gr) of triangulated
monoidal categories.

It will be convenient for us to reformulate the above result as follows. Let 7™ GLy[2] be
the shifted cotangent bundle on GLy, viewed as a dg-scheme equipped with zero differential.
The action of GLy on itself by left and right translations induces a GLy x GLy-action on
T* GLy[2]. Let DS;%VXGLN (T* GLy[2]) be the triangulated category of GLy x GLy-equivariant
perfect complexes of Op- g,y 2-modules on 7 GLy[2]. The fiber of T* GLy[2] over 1 € GLy
may (and will) be identified with (gly[—2])* = gl3[2]. Restriction to this fiber induces a monoidal
equivalence DSJ;%V *GLy (7* GLy[2]) = Dsel;év (Sym®(glx[—2])), where the category on the right
is identified with the triangulated category of GLy-equivariant perfect complexes on (gly[—2])*.

! Throughout the paper, we consider the sheaves with complex coefficients (with a few technical exceptions).
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Thus, the derived Satake equivalence stated above may be interpreted as an equivalence

GLN xGL ~
l)perév>< N(T* GLN[QD - DGo (GI‘)

There is also a natural ‘quantum’ counterpart of the latter equivalence, where the category
DSJ;%V xGLy (T* GLy[2]) is replaced by an appropriately defined category of asymptotic shifted
weakly equivariant D-modules on GLy, and the category Dg, (Gr) is replaced by D wcx (Gr);

see [BFO08].

1.2 Mirabolic Satake category

In the present paper we will be interested in a mirabolic analogue of the above setting. To explain
this, fix an N-dimensional vector space V and put V=V ®F, Vo =V ® O and V=V- {0}.
We identify G = GLy with GL(V'), so that Gg acts on V and Gg is the stabilizer of V.
Following [FGT09], the mirabolic affine Grassmannian is defined as Gr x V. We let Go act
on Gr x V diagonally. The orbits of Gg in Gr x V are, unlike the case of Gg-orbits in Gr,
not finite-dimensional. Heuristically, these orbits are of semi-infinite type in the sense that the
‘closure’ of an orbit projects onto a (finite dimensional) Schubert variety in Gr and onto a lattice
in V.

In view of the above, defining the correct mirabolic analogue of the equivariant derived Satake
category requires some care. According to our definition, an object of this category is supported
on the product of a finite-dimensional Schubert variety in Gr and a lattice inside the Tate
vector space V; moreover, this object is pulled back from a finite-dimensional quotient of this
lattice. According to three possible choices (-, -, and !*-) of pullback, one gets the three versions
Digo(Gr x V), D,go(Gr x V) and Dig,(Gr x V) of Go-equivariant constructible derived
categories on Gr x V. These categories are related to each other by certain renormalization
equivalences.

We equip the above categories with monoidal structures given by various types of convolution
operation. The convolution along the Grassmannian, the first factor in Gr x V| is defined simi-
larly to the case of the usual Satake category. The convolution along the second factor depends

!
on the choice of category. Specifically, the convolution operation ® in Dig,(Gr x V) involves the

I-tensor product of constructible sheaves on V. The convolution operation % on D,go(Gr x V)
involves a #-pushforward along 4+: V x V — V., the map given by addition. These two types
of convolution are related to each other via Fourier transform (along V). Finally, we define a
monoidal structure  on Di,g,(Gr x V) via the fusion operation on a mirabolic analogue of the
Beilinson—Drinfeld Grassmannian.

The categories above have natural counterparts involving the action of C* on Gr by
loop rotation. These are C[A]-linear categories where C[h] = HZ, (pt). Thus, there is a cate-
gory Diggxex (Gr x V) (respectively, D,goxcx(Gr x V)) equipped with a similarly defined

!
monoidal structure ® (respectively, i) The fusion operation x on Di.gy(Gr x V) has no

Go X C*-equivariant counterpart, however.

1.3 Mirabolic Satake equivalence

The category on the ‘other side’ of mirabolic Satake equivalence is an appropriately defined
triangulated category of ‘equivariant asymptotic shifted D-modules’ on the vector space gly
of N x N matrices. More formally, we introduce a C[h]-algebra ©°, a graded version of the
algebra of differential operators on gly (where degh = 2). The action of GLy on gly by left
and right multiplication induces a GLy x GLy-action on ®°®. The relevant category is then
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defined to be the derived category of weakly GLxy x GLy-equivariant perfect dg-modules over
D°, where ©° is viewed as a dg-algebra with zero differential. Similarly to the constructible story,
we actually define three versions, DSQI;%VXGLN( 11)s DSQI;?XGLN( 0.2) and DSJ;%VXGLN (D3), of
such a category that correspond to three different choices of grading on our algebra. The algebra
of asymptotic differential operators specializes at i = 0 to the algebra C[T*gly]. We denote the
specialization of D7, ; at h =0by &7,_,. Accordingly, the above-defined C[h]-linear categories
specialize at i = 0 to various versions of the derived category of GLy x GLy-equivariant coherent
sheaves on the shifted cotangent bundle T*gly.

Next, we equip the above-defined categories with monoidal structures. The monoidal struc-

DGLNXGLN

A
ture * on perf

(D5 ,) is defined as a convolution operation on D-modules associated

B
with the map gly x gly — gly, given by matrix multiplication. The monoidal structure * on

A
DSeI;fV XGLav 0.2) is defined as F~1o (%) o (F x F), where F is the functor of Fourier transform

on D-modules. Each of these monoidal structures has a quasiclassical limit at 2 = 0, defined as
a convolution of coherent sheaves arising from a certain Lagrangian correspondence. Finally, the
tensor product of coherent sheaves, that is, the functor M, M’ — M®es M/, gives a monoidal

structure on pert

for h # 0)z.
One of the main results of the present paper (see Theorems 3.6.1 and 5.1.1) states that
one has the following equivalences of triangulated monoidal categories, called mirabolic Satake

(&7 1). This monoidal structure has no counterpart for D-modules (i.e.

equivalences:

o« Ay 9 !
(DSeEfVXGLN(rDz,O)v ¥) —— (Digoxcx (Grx V), ®),
(DG (25,), £) B (Dugguen(Grx V), &

perf 0,2/ ~ *Go ><I(C><( rx V)) * )a
(DSeI;éVXGLN (SI,I)v ®6’ ) % (D!*GO (GI' X V), *).

1,1

Furthermore, it turns out that the triangulated category Di.g,(Gr x V) is equivalent to the
bounded derived category of the abelian category Pervg, (Gr x V) of Go-equivariant perverse
sheaves on Gr x V, the heart of the perverse t-structure on Di.go (Gr x V).

Remark 1.3.1. The counterpart of the last statement in the case of the usual Satake category
is false: the triangulated category Di.g,(Gr) is not equivalent to the derived category of the
category Pervg, (Gr), which is well known to be a semisimple abelian category.

Remark 1.3.2. One can view the group GLy as a Zariski open subset of the vector space gly
of all N x N matrices. Associated with the open embedding GLy < gy, one has a restriction
functor on D-modules. It turns out that the counterpart of this functor for constructible derived
categories is a suitably defined version of restriction with respect to the ‘zero section’ Gr x {0} —
Gr x V. That is, one has a natural functor Dg,(Gr x V) — Dg,(Gr). We will show that the
latter functor makes the derived Satake category D, (Gr) a localization of the mirabolic derived
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Satake category Dgo(Gr x V). Moreover, the mirabolic Satake equivalence is compatible with
the standard Satake equivalence in the sense that there is a commutative diagram of functors

asymptotic equivariant mirabolic derived Satake
D-modules on gl ~ DGO XCX* (GI‘ X V)
l restriction localization
; P derived Satake
asymptotic equivariant
D-modules on GLx ~ DGO XCX (GI’)

1.4 Conjectural Iwahori-equivariant version
Let IC Go be an Iwahori subgroup and Fl:= Gg/I the affine flag variety. In [Bezl6],
Bezrukavnikov established an equivalence of Dy(F1), the I-equivariant constructible derived cat-
egory of F1, and the derived category of GLy-equivariant coherent sheaves on an appropriate
dg-version of the Steinberg variety. Motivated by this result, we expect that there is a mirabolic
counterpart of this equivalence.

To explain this, fix a pair Vi, Vs, of N-dimensional vector spaces and let F¢;, i = 1,2, denote
the variety of complete flags in V. Further, consider a dg-scheme with zero differential

Hpir := Hom(V7, Vo)[1] x Hom(Va, V1)[1] x Fby x Fy.

Write A (respectively, B) for an element of Hom(V1, V2)[1] (respectively, Hom(V2, V1)[1]), and
F, = (Fi(l) C Fi(z) Cc---C Fi(N) =V;) for an element of F¢;.

We define the mirabolic Steinberg scheme to be a dg-subscheme Sty,; of Hyy cut out by
the equations saying that the flag F5 is stable under the composition AB and the flag Fj is
stable under the composition BA. Thus the mirabolic Steinberg scheme is a shifted variety of
quadruples:

Stmir = {(A, B, F}, Fy) € Hyy | AB(FY) € B and BA(FY) ¢ FY, vj € [1, N]}.

Let Dy(F1 x V) be the I-equivariant constructible derived category of F1 x V. We propose the
following conjecture.

CONJECTURE 1.4.1. There exists an equivalence of triangulated categories
DELVDXGL(V2) Coh (St ) = Dy(F1 x V).

This conjecture would explain, in particular, the appearance of the same polynomials, called
the Kostka—Shoji polynomials, in two different problems. On the one hand, it was proved in
[FGTO09] that these polynomials are equal to the Poincaré polynomials of the stalks of Go-
equivariant intersection cohomology (IC) sheaves on the mirabolic affine Grassmannian. On the
other hand, it was proved in [FI18] that the Kostka—Shoji polynomials are equal to the Poincaré
polynomials of graded multiplicities of the natural GLy x GLy-action on the space of global
sections of line bundles on a convolution diagram of the cyclic A;-quiver.

% Here we view both Hom(Vi, V2) and Hom(Vz, V1) as odd vector spaces, so that the functions on Hom(V7, V2)[1] x
Hom(V2, V1)[1] (with grading disregarded) really form a symmetric (infinite-dimensional) algebra, not an exterior
algebra.
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1.5 Satake equivalence for some Lie supergroups

We consider the Lie superalgebra gl(M|N) of endomorphisms of a super vector space CMIN
and the corresponding Lie supergroup GL(M|N) = Aut(CMV). We also consider a degenerate
version gl(M|N) where the supercommutator of the even elements (with even or odd elements)
is the same as in gl(M|N), while the supercommutator of any two odd elements is set to zero. In
other words, the even part gl(M|N)g = gl ® gly acts naturally on the odd part gl(M|N); =
Hom(CY,CY) @ Hom(C",CM), but the supercommutator gl(M|N); x gl(M|N); — gl(M|N)g
equals zero.

The category of finite-dimensional representations of the corresponding supergroup
GL(M|N) (in vector superspaces) is denoted by Rep(GL(M|N)), and its bounded derived
category is denoted by SD(GL(M|N)).

There is a Koszul equivalence »: SD(GL(N|N)) —=> SDIS’QI;%V XGL 11) (equivariant
perfect dg-supermodules over dg-superalgebra (‘5{71); see, for example, [MRI10]. It inter-

twines the usual tensor product of GL(N|N)-modules with the tensor product ®ee on

SDSGI;? xGLy ( Il) Composing the Koszul equivalence > with the mirabolic Satake equivalence
R SDS;;?’XGLN( 11) = SDugo(Gr x V) (constructible sheaves of supervector spaces)

we obtain a super Satake equivalence SD(GL(N|N)) == SDi.go(Gr x V) that intertwines
the usual tensor product of GL(N|N)-modules with the fusion product on SDingg(Gr x
V). Moreover, this derived equivalence is exact with respect to the tautological t¢-structure
on SD(GL(N|N)) with the heart Rep(GL(N|N)) (respectively, the perverse t-structure on
SDnGo(Gr x V) with the heart SPervg, (Gr x V)).

Similarly, we construct equivalences

SD(GL(N — 1|N)) = SDJA -0 (&% )

perf SDGL(N—l,O)(GrGLN)a

ewlz

where &%, = Syn® (Hom(CN=1,CN)[-1] @ Hom(CY,CN~1)[-1]).3 The composition is again
t-exact with respect to the tautological t-structure on SD(GL(N — 1|N)) with the heart
Rep(GL(N — 1|N)) (respectively, the perverse t-structure on SDqrn—1,0)(GraLy) with the
heart SPervar,v—1,0)(GrgLy)). Moreover, the composition intertwines the usual tensor prod-
uct of GL(N — 1|N)-modules with the fusion product on SPervgrv_1,0)(GraLy). Simi-

larly to §1.3, the functor ® can be extended to an equivalence ®j: SDSQI;?’IXGLN (D°) =

SDgr(N—1,0)xcx (GrGLy ), where D°* is the graded Weyl algebra of shifted differential operators
on Hom(CN~=1,CV) (with degh = 2 and all the other generators in degree 1).

1.6 Gaiotto conjectures

One may wonder if there is a geometric realization of categories of representations of
non-degenerate supergroups GL(N|N), GL(N —1|N). It turns out that such a realiza-
tion exists (conjecturally) for the categories of integrable representations of quantized
algebras Ug(gl(N|N)), Ug(gl(N —1|N)). First of all, similarly to the classical Kazh-
dan-Lusztig equivalence, it is expected that U,(gl(M|N))-mod = ]E{Lc(gA[(]\ﬂN))7 where ¢ =
exp(my/—1/c), and KLC(Q/;\[(M]N)) stands for the derived category of GL(M,O) x GL(N, O)-

~

equivariant gl(M|N)-modules at the level corresponding to the invariant bilinear form

S Here we view both Hom(C¥~!',CY) and Hom(CN,C¥~!) as odd vector spaces, so that
Synt® (Hom(CN ", CY)[-1] ® Hom(CY,C¥"")[-1]) (with grading disregarded) is really a symmetric
(infinite-dimensional) algebra, not an exterior algebra.
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(X,Y)=c-sTr(XY) — %Killingg[(MW) (X,Y) on gl(M|N). Second, it is expected that the cat-
egory KLc(gA[(N —1|N)) is equivalent to the g-monodromic GL(N — 1, O)-equivariant derived
constructible category of the complement £°® of the zero section of the determinant line bundle on
Grqr, , and this equivalence takes the standard t-structure of KL.(gl(N — 1|N)) to the perverse
t-structure.

Further, it is expected that KL.(gl(N|N)) is equivalent to the g-monodromic GL(N,O)-
equivariant derived constructible category of L® x V, and this equivalence takes the standard
t-structure of KLC(E[(N\N)) to the perverse t-structure. For M < N —1 it is expected that
KLc(gA[(M |N)) is equivalent to the g-monodromic GL(M, O)-equivariant derived constructible
category of L°® with certain Whittaker conditions; cf. § 2.6 for more details. In particular, the
special case M = 0 of this conjecture follows from the fundamental local equivalence [Gai08,
Gail6, Gai20] of the geometric Langlands program.

There are similar expectations for other classical (i.e. orthosymplectic) Lie superalgebras;
the interested reader may try to find them in [GW09].

1.7 Conjectures of Ben-Zvi, Sakellaridis and Venkatesh

In an ongoing project of D. Ben-Zvi, Y. Sakellaridis and A. Venkatesh, the authors propose the
Periods—L-functions duality conjectures. Their conjectures predict, among other things, that,
given a reductive group G and its spherical homogeneous variety X = G / H, there is a subgroup
GX C GV, its graded representation Vy = @,y V¥,[i], and an equivalence DCoh(Vy//GY) =
DCoh((P;cz V¥.ili])/ GX ) =~ Dg(oy(X (F)). For a partial list of examples, see the table at the
end of [Sak13]. The relevant representations Vy (constructed in terms of the Luna diagram of
X) can be read off from the fourth column of the table.

It turns out that the equivalences discussed in § 1.5 fit into the general setting outlined in
the previous paragraph. Thus the case of [Sak13, Example 13| corresponds to the equivalence
B: DOV (89 1) < Darv-1,0)(Gray ) of § 1.5. To explain this, let G := GLy—1 x GLy
and H:= GLy_1. We view H as a block-diagonal subgroup of G and put X = G /H. Then,
loosely speaking, we have Dgr(v_1,0)(Grary) ~ D(GL(N —1,0)\GL(N,F)/GL(N, O)) ~
D(G(O)\G(F)/H(F)) ~ D(G(O)\X(F)) ~ Dg(0)(X(F)). On the other hand, we consider a
graded GV-module Vy := Hom(CV~1,CM)[1] ® Hom(CY,CV~1)[1] (similarly to the footnote in
§1.5, we view Vy as an odd vector space placed in cohomological degree —1; note also that
GY ~ G = GLy_; x GLy). Hence, the equivalence ® of §1.5 takes the form DCoh(Vy/GY) ~
Do) (X (F)).

Similarly, [Sak13, Example 14] matches the Gaiotto conjecture of § 1.6 for an orthosymplectic
Lie superalgebra.

1.8 Organization of the paper

In §2 (which is not necessary for understanding subsequent sections) we formulate the Gaiotto
conjectures and explain their relation to the geometric Langlands program and, in particu-
lar, with the fundamental local equivalence. Section 3 is the technical core of the paper. In
this section we establish a coherent description of the spherical mirabolic affine Hecke category
D¢, n,0)(Gr x V) with its three monoidal structures. Also, as preparation for §4 we give a
coherent description of the restriction functor Dgr(n,0)(Gr x V) — Dgr(n,0)(Gr X Vi).* In
§4 we establish a coherent description of the category Dgpnv—-1,0)(Gr) along with its fusion

4 Recall that Vo = V[t] is the standard lattice in the Tate vector space V.
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monoidal structure. In §5 we prove the quantum analogues, that is, counterparts for categories
equivariant with respect to the loop rotations, of the results above.

2. Gaiotto conjectures

The purpose of the present section is to put the main results of this paper into a wider framework
which has to do with the local geometric Langlands correspondence. This section will be used
for motivation purposes only. It can be safely skipped by readers who are not interested in the
geometric Langlands correspondence. The ideas of this section are due to D. Gaiotto (private
communication). Gaiotto informed us that his ideas were motivated, to a large extent, by his
discussions with P. Yoo as well as by [MW15].

2.1 Reminder on strong actions on categories

Let G be a connected reductive group over C and let x denote an invariant symmetric bilinear
form on the Lie algebra g of G (when G is simple, the vector space of such bilinear forms is one-
dimensional, so we can think of x as an element of C). Then there is a notion of strong action
of the group Gy on a category C of level k. We refer the reader to [Gail6] for details of the
definition. It will be important for us later that this definition is, in some sense, invariant under
integral shifts. Specifically, any category € endowed with a Gg-action of level x has a natural
Gr-action of level k + k/, where x’ is another form as above which is, moreover, integral in the
sense that the corresponding quadratic form is integral and even on elements of the coweight
lattice of GG. Here are two important examples.

(1) Let g, denote the central extension of gg associated with the form . Let g.-mod be the
category of continuous (with respect to t-adic topology) modules over g, such that the element
1 of the center acts on the module as the identity. Then the adjoint action of Gy on g, has a
natural lift to a strong action of G on g,-mod of level k. More generally, let a = a5 @ a7 be a
Lie superalgebra. Make the following assumptions.

(i) G acts on a.
(ii) We are given a map ¢: g — ag such that the corresponding adjoint action of g on a is equal
to the derivative of the G-action from (i).
(iii) The algebra a is equipped with an invariant symmetric (in the super sense) bilinear form
ka- Let kg be its pullback to g.

Associated with the form xq, there is a canonical Kac-Moody extension a of ap. As before,
we denote by a-mod the category of continuous modules M over a such that the element 1
of the center acts on M by the identity. This category comes equipped with a Gg-action of
level kg.

We will mostly be interested in the following special case of the above construction. Fix a pair
M, N, of non-negative integers. Let a = gl(M|N), G = GLy; x GLy. Let kq(x,y) = ¢ - sTr(zy),
where sTr stands for ‘super-trace’ and ¢ € C.

(2) Assume that the form x is integral and even. Then this form gives rise to a central
extension G of Gg. Let X be an ind-scheme equipped with a é—equivariant line bundle L. Then,
for any ¢ € C, one has the category D.(X)-mod of c-twisted D-modules on X. This category has
a natural strong Gg-action of level ¢ - k.
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2.2 Digression on the local (quantum) geometric Langlands correspondence
Let G and k be as above and assume in addition that the form k is non-degenerate. Let GV
denote the Langlands dual group. Since k is non-degenerate it gives a similar form " for GV.
Further, put ket = —%Kﬂlingg, where Killing, stands for the Killing form on the Lie algebra g
of G.

The local quantum geometric Langlands conjecture is, roughly speaking, an equivalence of
2-categories

{categories with strong Gg-action of level k + Kyt }

and

{categories with strong Gp-action of level —k" — kY% }.

The form kit being integral, the shift by ket in the above formulation is not essential. However,
it is convenient for many applications to make this shift.

To give a rigorous meaning to the above conjecture one needs, first of all, to replace all
‘categories’ by suitable ‘dg-categories’. This upgrades each side of the equivalence to an (oo, 2)-
category. Then, for generic (i.e. non-rational) x, the above equivalence is expected to hold as
stated. For general x, more corrections are necessary but we will not discuss this here since the
local geometric Langlands correspondence will only serve as a guiding principle.

There is a ‘limiting version’ of the above conjecture for k = 0. To explain this, we use the
notion of a ‘category over a stack 8’; cf. [Gail6, § 6] and references therein. Write D° = Spec(F)
and let LocSysav (D) be the classifying stack of principal GV-bundles on D° equipped with
a connection. The ‘classical’ local geometric Langlands conjecture predicts a close relationship
between

{categories with strong Gg-action of level Kcyit }

and

{categories over LocSysqv(D°)}.

Here, kqpriy can be replaced by 0, since ket is integral. Again, it is possible to make the informal
relation above a rigorous mathematical conjecture; cf. again [Gail6, §6] for a more detailed
discussion.

In the remainder of this section we will pretend that both quantum and classical geometric
Langlands conjectures hold as stated. We will write € — €V for the resulting correspondence.

An important example of such a correspondence is as follows. Fix a non-degenerate form
and let € = Dy, (Grg)-mod be the category of (k — Keit)-twisted D-modules on the affine
Grassmannian Grg of G. It is expected that in this case the category €V is the category
D_,v_,.v_(Grgv)-mod. In the limiting case x =0 category €V is expected to be a pushfor-
ward of Célategory QCoh(pt/GY) under the natural map pt/G" — LocSysav (D°) induced by the
embedding of the trivial local system. These expectations would have the following implication.

(i) If % is non-degenerate, then CE0 ~ (€V)G6 (here €S0 denotes the category of Go-
equivariant objects in C).

(ii) If & = 0 then %0 is equivalent to the pullback of the category €Y under the map pt/GY —
LocSysgv (D°) corresponding to the trivial local system.
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2.3 Whittaker category and the fundamental local equivalence
In this subsection we discuss another important example of Langlands dual categories. We refer
to [Gail6, Gai20] for details.

Let U be a maximal unipotent subgroup of G and let xg: U — G, be a non-degenerate
character. We define a character x: Up — G, by

x(u(t)) = Resg=o xo(u(t)) dt.

Given a (cocomplete, dg) category C with a strong Gg-action of a fixed level, one can define a
category Whit(€) of (Ur, x)-equivariant objects in C.

We consider the category Dy (Gr)-mod of k-twisted D-modules on Gg. According to [AG02],
this category has a natural action of G of level k that comes from left translations, and also
another action of Gy of level —k + 2kt that comes from right translations.

Let Whit],(Gr) denote its Whittaker category with respect to the right action. This category
inherits the left action of level k. One could ask what is its Langlands dual category.

For simplicity, below we will only consider either the case where k is not rational (i.e. the
value of the corresponding quadratic form on any coroot is not a rational number) or the case
k =0.

Assume first that x is non-degenerate and not rational. Then it is expected (cf. [Gail6]) that

Whit;,

KR—Kecrit

(Gp)Y is the category av_nv+,icvrit—mod. (2.3.1)

In the case k = 0 the expected answer is the category QCoh(LocSysqv(D?)).

Let Whit,(Grg) denote the category of k-twisted D-modules on Grg and let KL, (g) =
(8,-mod)“0. Then, statements (i) and (ii) of §2.2 imply the following result, which has been
proved rigorously in [Gai20, Gai08] (it goes under the name ‘fundamental local equivalence’).

THEOREM 2.3.1. Assume that x is non-degenerate and not rational. Then
Whitst .., (Gra) = KLgv v (gY), (2.3.2)

Whit(Grg) ~ Rep(GY). (2.3.3)
Moreover, these equivalences hold at the level of abelian categories.

Remarks 2.3.2. (1) The critical shifts in (2.3.2) are not important for irrational « if one only
cares about both sides as abstract categories. However, we still prefer to keep them, since in this
way one can also extend the statement to rational x; in addition, the shifts are important if we
keep track of some natural structures on these categories (cf. (4)) below.

(2) Note the absence of a negative sign before £ + kY, on the right-hand side of (2.3.2).
This has to do with the fact that Whit, ., (Grg) is actually the category of Go-equivariant
objects with respect to the left action of Go on the category of D-modules on Gg which are
Whittaker on the right. This change from right to left is what is responsible for the change of
sign.

(3) The fact that the above equivalences respect the natural ¢-structures does not follow (to
the best of our knowledge) from any geometric Langlands considerations. In fact, at the level of
(unbounded) derived categories the statement holds for all x, but when & is positive rational it
is very far from an abelian equivalence.

(4) The above equivalences are in fact not only equivalences of abstract categories, but also
equivalences of categories with factorization structure, a notion closely related to the notion of
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a braided monoidal category (it is also worthwhile to note that as an abstract category, KL,(g)
is independent of k if k is irrational; but it is not so if we take into account the factorization
structure).

2.4 Gaiotto conjectures: geometric Langlands form in the case N > M

There is one more series of examples which are relevant to the subject of this paper. Fix two non-
negative integers N and M such that N > M and set Gy v = GLys X GLy. Note that Gy n is
isomorphic to G/ y-

We are going to produce an example of Langlands dual categories for G n; for M =0
we will recover (2.3.1). First, we describe the analogue of the right-hand side. Let ¢ € C. Then
the category in question will be the category é\[(M |N).-mod of modules over the affine Lie
superalgebra g[(M IN) of level ¢ karn + 3Killing MmN, Where

(1) run(z,y) = sTr(zy),
(2) Killing,,  is the restriction of the Killing form of gl(M|N) to the even part (note that it
is degenerate if M = N).

This category has a natural action of the group Gy n(F) of a certain level which is an integral
shift of (¢- kar, —c - k) (here K denotes the standard invariant bilinear form on the Lie algebra
gly equal to Tr(X -Y)). As has been explained above, one can twist the action of Gy n(F) on
this category so that the twist becomes equal to (¢ kar, —¢ - KN) — Kerit (here by Kepig we mean
the critical bilinear form for the Lie algebra gas ). Hence it makes sense to consider its Langlands
dual. This should be a category with a strong action of G, (F') of level c b (K, —KN) — Kerit-
However, we can again twist the action and think of it as a category with an action of G, n(F)
of level ¢+ (kps, —kn). Let us give a conjectural description of the Langlands dual category
according to a prediction of D. Gaiotto.

Next, let M < N. We define a unipotent subgroup Uy, n of GLy as follows. If M = N —1
this subgroup is trivial, and if M = 0 it is the group Uy of unipotent upper-triangular matrices.
In the general case, Uy v is a subgroup of Uy defined as follows.

Let eprr,n € gly be the standard upper-triangular Jordan block of size N — M, that is,

N-M-1

EM,N = g Eiit1,
i—1

where E;; stands for the matrix whose (,j)th entry is equal to 1 and all other entries are
equal to 0. The element ey n is part of an slo-triple (eam,n,hmn, fun). Here fyn =
Z@]\L _1M_1 i(N—M —i)Ej+1; and hpn is the diagonal matrix which has diagonal entries
(N-M-1,N—-M-3,...,—N+ M+1,0,...,0). For any integer [ we let g; denote the
l-eigenspace of the adjoint action of hys n on gly. We set

UM N = @gl @ 07,
1>2

where gf is the intersection of g; with the Lie algebra of upper-triangular matrices. We define
a Lie algebra homomorphism X%m ~:um,y — C by sending a matrix (u;;) to Zfi _1M_1 Wi it 1-
Let Upr,n be a unipotent subgroup of GLy with Lie algebra uys,n and let Uy vy — G, be the

homomorphism induced by X?M, ~ (which we denote by the same symbol X(J)\/[, N)-
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We embed the group GL) into the centralizer of the element hjs n in GLy (this is the block-
diagonal embedding corresponding to rows N — M + 1,..., N). It is easy to see that the group
GLjs normalizes the subgroup Uy n, and the homomorphism X(J)\/I, n 1s fixed by the GLj/-action
on Uy n by conjugation.

Remark 2.4.1. Upr n is conjugate to the subgroup U}, 5 formed by the block-upper-triangular

matrices
U, * *
0 1m41 = |, wherer=[(N-M-1)/2], s=[(N-M—-1)/2];
0 0 Us

in particular, r +s= N — M — 1. Here U, stands for an arbitrary unipotent upper-triangular
matrix in GL,,, and the notation ‘*’ is used for arbitrary matrices of an appropriate size. Moreover,

the conjugation can be chosen so that the character X(])W N corresponds to the character XE\Z?,

on u%}?v := Lie Uj(\ﬁ\); given by (uij) — S207) Uit + Unk + Uk N—st1 + Dor N i1 Uiit1 for any
choice of k € {r +1,..., N — s}. The subgroup U](VT[‘;\), C GLy and the character XS\Z;SK, are defined
for an arbitrary pair (r,s) € N? := Zzzo with r+s=N — M — 1. (In the two extreme cases

{r,s} ={0,N — M — 1}, one of the middle terms in the formula for XS\ZSK, is undefined and

should be omitted.) Moreover, XE\ZSK, can be replaced by an arbitrary representative of the open

NcLy (U](\/T[’y‘j\),)—orbit in ug‘t[f]z[*

Remark 2.4.2. U](\g’fofl) is also conjugate to the unipotent radical U(ys41,1,... 1) of the standard
parabolic subgrouf) Pip41,1,...,1) of GLy corresponding to the partition (M +1,1,...,1) of N.
The character X%47 N is conjugate to the restriction of the regular character u ZZ]\L _11 Uj 41 Of
the upper-triangular subgroup to U(pr41,1,...,1); cf. [JPS83, §(2.11)] and [Cog04, beginning of § 2
of Lecture 5].

As before, we define a homomorphism x s n: U, n(F) — G4 to be Resi—o Xg& N-

For any ¢ € C, we now consider the category Dy (GL(N, F))Um~F)xuvn By definition this
is the derived category of D-modules on GL(N, F) twisted by ¢’ - kx that are equivariant on the
left with respect to (Un,n(F), xa,n). This category has a natural action of GL(M,F) of level
- ki coming from left multiplication and an action of GL(N,F) of level —c' -k — Killingg
coming from right multiplication (recall that Killing, =~ denotes the Killing form on gly). As
before, we can twist the second action to make it an action of level —¢’ - k.

Remark 2.4.3. In fact, using the Fourier transform for D-modules, one can show that replacing
(r,s) in Remark 2.4.1 with any pair of non-negative integers whose sum equals N — M — 1
produces a category equivalent to Dy (GL(N, F))Vm .~ F)xan

We now take ¢ =1/c. Then, according to a conjecture of D. Gaiotto, the category
Dy o(GL(N, F))Um.n(F)xann s Langlands dual to gl(M|N)e-mod.

We can also consider the limit ¢ — oco. To simplify the discussion we will not do it now, but
we will discuss it later when we turn to Gg-equivariant objects.

2.5 Gaiotto conjectures: geometric Langlands form for N = M

Let us also discuss the case N = M. In this case on the left we again take the same category
gl(N|N),-mod of modules over the affine Lie superalgebra gl(N|N) oflevel ¢ - Ky n — %KillingMN
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(note that the Killing form is zero for N = M). The Langlands dual category (according to
Gaiotto) is the derived category D;/.(GL(N,F) x V) of 1/c-twisted D-modules on GL(N, F) x
V where

(1) the twisting is with respect to the first factor,

(2) the two actions of GL(N,F) come from the diagonal action coming from the left action of
GL(N,F) on the first factor and the natural action of GL(N,F) on the second factor, and
the right multiplication action GL(N,F) on the first factor.

2.6 Gaiotto conjectures: ‘simple-minded’ form

The above statements are not really well-formulated mathematical conjectures, since the local
geometric Langlands duality is not known at present. However, we can turn them into precise
conjectures by using (i) at the end of §2.2, that is, we are going to take G s n(O)-invariants on
both sides. We get the following conjectures.

CONJECTURE 2.6.1. Assume that N > M and assume that c # 0 is not a rational number. The

categories DS’CL(M’O)MUM’N(F)’XM’N)(GrGLN) and KLC(E;\[(M\N)) are equivalent as factorization

categories. Here KL, (gl(M |N)) is the category of Ga,n(O)-equivariant objects in the category
gl(M|N).-mod.

Similarly, the category pELIV,0)

1/e (GrgLy x V) is equivalent to KLC(g[(N|N)).

We now want to take the limit ¢ — oo. In this case 1/¢ goes to 0 and the category of
1/c-twisted D-modules in Conjecture 2.6.1 just becomes the category of usual D-modules. The
¢ — 0o limit of the category KL.(gl(M|N)) is not canonically defined: one has to choose some nice
extension of the corresponding family of categories from Al to P!; cf. [Zhal7, §6]. Naively, one
might think that the correct extension is just the category of representations of the supergroup
GL(M|N). However, it turns out that this is not the right choice. Instead, one needs to consider
the category of representations of the group GL(M|N)) defined in §1.5. With these conventions
one gets the following conjecture.

CONJECTURE 2.6.2. Assume that N > M. Then the category D(GF(M.0)xUnn (F).xwN) (Grq, )
is equivalent to the category of modules over the group GL(M|N)).

Similarly, for N = M, the category DEN:0)(Grqy, ~ X V) is equivalent to the category of
modules over the group GL(N|N)).

These equivalences should hold for both derived and abelian categories.

In the present work we prove Conjecture 2.6.2 for M = N and M = N — 1.

3. A coherent realization of Dgry,(n,0)(Gr X V)

3.1 Setup and notation
We follow the notation of [FGT09]. Recall that Gr = Grgr, = Gr/Go = GL(N,F)/ GL(N, O),
where F = C((t)) D C[t] = O. We consider a complex vector space V with a basis e, ...,en. We
set V=VRF>V®0 =V,

Recall that the Gg-orbits in Gr x Gr (respectively, in Gr x Gr x \O/) are numbered in
[FGT09, §3.1] by signatures® (respectively, by bisignatures, i.e. pairs of signatures) in such a

® Sequences of integers v = (v1 > --- > vy), following the terminology of H. Weyl.
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way that the Gg-orbits on Gr x Gr numbered by partitions v = (v > --- > vy > 0) corre-
spond to the pairs of lattices L' C L?. More precisely, the orbit corresponding to a bisignature
(A, i) contains a point

N
<L1 = O(ey,e9,...,eN), L? = O<t_’\1_“1el,t_/\2_“262, e ,t_’\N_“NeN>, v= Zt_)‘ieZ).

Irreducible representations of GLy = GL(V) are also numbered by the signatures, so that, for
example, the determinant character det V corresponds to (1V). To a signature v = (v > --- >
vN) we associate an irreducible representation V,, with the highest weight v. The geometric
Satake equivalence takes the irreducible perverse sheaf IC,, to the irreducible representation V}.
Thus if v is a partition (respectively, a negative partition (0 > vy > -+ > vy)), then V} is an
antipolynomial (respectively, polynomial) representation of GLy (a polynomial functor in V*,
V', respectively).

A word of apology for our weird convention is in order. The numbering of Gg-orbits in
Gr such that the orbits of sublattices L C V are numbered by partitions goes back at least to
[Lus81]. We choose the numbering such that the orbits of sublattices are numbered by negative
partitions since under this numbering the adjacency order of Gp-orbits in Gr x v goes to Shoji’s
order ([Sho04], [FGT09, Proposition 12]) on the set of bisignatures. Furthermore, we choose the
Satake equivalence 1C, — V;} (as opposed to IC, — V,,) since it makes the statement of our
main result Theorem 3.6.1 neater.

3.2 Constructible mirabolic category and convolutions

The triangulated category Dgg (Gr X \07) is defined as in [FGT09, §2.6]. We will denote it by
D,y (Gr x V). Recall that an object F of D.g,(Gr x V) is supported on Gr x "V for
certain m € Z, and there exist n > m and a Go-equivariant sheaf ¥, on Gr x (t"V/t"Vy)
such that J = p; 3, where

Pn: Gr x t"Vy — Gr x (thO/th())

is the natural projection. In other words, ¥ is a collection of Gg-equivariant sheaves F,, on
Gr x (t"™V/t" V) for n’ > n along with a compatible system of isomorphisms D /n,f}'n/ SN

F,n for n” > n’, where
Purt s GE X "V /" Vi — Gr x t™V [tV

are the natural projections.

If in the above definition we replace p;, by pil and p’, Jnt by p!n,, It then we obtain a trian-
gulated category Digo (Gr x V). Note that p,» /. is a smooth morphism of relative dimension
N(n” —n'), so we have a canonical isomorphism p!n,, It =pt, I [2N(n” —n')]. We also consider
the intermediate version

P = D N0 = 1)) = s [-N (" — )],

exact for the perverse t-structure. The corresponding triangulated category will be denoted
D[*GO(GI‘ X V)

G
We will make use of an identification Gr x V= Gp x V = (Gr x V)/Go (quotient with
respect to the diagonal right-left action). We will denote the orbit of (g,v) € Gg x V by [g,v].
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Note that the left diagonal action of Go on Gr x V in terms of the above identification is
h-[g,v] = [hg,v]. We consider the following convolution diagram:

a Go
Gr x (Gr xV) —— Gf X (GrxV)
pl ml (3.2.1)
(Grx V) x (GrxV) Gr x V,

([g1: 920), (92, 0]) < (g1, [g2,v]) = 91, [g92, 0] = [g192, 0],
! ) ~
Given JF1,55 € D!GO(GI‘ X V), we define F; ® Fy = rn*(ffl X 3'2), where F1 X Fy €
G
D, (GF X (Gr x V)) is the canonical descent of p'(F; X F5) along q. Similarly, given F;, Fo €
* ~ % ~ % G
D.co(Gr x V), we define F; ® Fy := m,(F) K F,), where F) K Fy € Dugy (Gr x (Gr X
V)) is the canonical descent of p*(F; X F3) along q, a unique sheaf such that p*(F; K Fy) =
q*(F1 X Fo).
We also consider another convolution diagram:
G
GpxVx(GrxV) —— Gp xO(erVxV)
pl “‘l (3.2.2)
(Grx V) x (GrxV) Gr x V,

([g1,v1], g2, v2]) & (g1, v1, [g2, v2]) % [g1, [92, 95 01, va]] = 9192, g5 Lon + va).
_ . G
Given F1, 55 € Digo (Gr x V), we define F1 + 55 1= my(F, & F,), where 1 K 5, € Dig, (Gp %
(Gr x V x V)) is the canonical descent of p'(F; X Fp) along q. Similarly, given Fi,F €

* ~ % ~ x G
D.co(Gr x V), we define F, * Fy := m.(F, K F,), where Fy B Fy € Dugo (Gr X (Gr x V X
V)) is the canonical descent of p*(F; B F3) along q.
If we formally put v; =0 in (3.2.2), we obtain the convolution diagram

q Go
GrxGrxV —— Gr X (GrxYV)
pleﬂl ml (3.2.3)
Gr x (Gr x V) Gr xV,

([91], [g2,v]) 2 (g1, [g2,v]) > [g1, [g2,v]] = [g192, ],

and if we put v9 = 0, we obtain

q Go
GrxVxGr —— Gp x (GrxYV)
prightl ml (324)
(Gr x V) x Gr Gr xV,

pright

(lg1, 0] lg2]) == (g1, v, [g2]) > [0, g2, 95 "0]] = [9192, 95 0],
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Given P € Dgy(Gr) and F € Drgo (Gr x V) (where 7 =!I, x, %), we define P * F := m, (P X F),
~ G
where PR F € Dogy (GF X (Gr x V)) is the canonical descent of pq (P X F) along q. We also

~ ~ G
define F « P := m, (FX P), where FX P € Drg,(GF X (Gr x V)) is the canonical descent of
pfight(f}' X P) along q. Both the left and right convolutions are biexact for the perverse t-structures
on Dgg, (Gr) and Di,go(Gr x V); see [FGT09, §3.9].

3.3 Fusion

Let X be a smooth curve. For any integer k£ > 0, and a collection x = (:Ui)le of S-points of X,
we denote by D, the formal neighborhood of the union of graphs |z| := Ulefmi C S x X, and
we denote by DS := D, \ |z| the punctured formal neighborhood. The mirabolic version of the
Beilinson—Drinfeld Grassmannian is the ind-scheme Gr%ﬁ[)’ . over X* parametrizing the following
collections of data:

('ti)i?:l’ &, ¢ 8triv|Dg — 8|Dg, v E F(D;78)>

where € is a rank-N vector bundle on D,. If X = A, we have over the complement to the
diagonals a canonical isomorphism

(AF N A) x40 GrBD L, = (AF N A) x (Gr x V).

We denote the projection (AF~ A)x (Grx V)¥ — (Grx V)" by pr,. Given Fi,F5 €
Drgo (Gr x V) (where 7 =1, x, Ix) we take k = 2 and define the fusion

F1x Ty = pr2*¢az—y pr;(‘rfl X 352)[1]’

where z, y are coordinates on A? (so that z — y = 0 is the equation of the diagonal A C A?), and
Yy is the nearby cycles functor for the pullback of the function x —y to Gr%ﬁfm, normalized
so as to preserve the perverse t-structure. Note that the leftmost occurrence of pry in the above
definition projects A! x Gr x V to Gr x V, while the rightmost occurrence of pry projects

(A2 A) x (Gr x V)2 to (Gr x V)2

3.4 Coherent mirabolic category and convolutions
We write I1E for an odd vector space obtained from a vector space E by reversing the parity.
We fix a pair of N-dimensional vector spaces Vi ~ CY ~ V5. We consider the Lie super-
algebra gl(N|N) = gl(V; & 1IV,). We have gl(N|N) = g5 P g7, where g7 = IIHom(V1,V2) &
ITHom(V2, Vi), and g5 = End(V1) @ End(V2). We set G5 = GL(V1) x GL(V2). We consider the
dg-algebra® 8% | = Sym(g7[—1]) with zero differential, and the triangulated category ngrf( 1)
obtained by localization (with respect to quasi-isomorphisms) of the category of perfect Gg-
equivariant dg-®7 ;-modules. The category Dgfrf( 11) is monoidal with respect to M, M’ +—
M@esr M'; see §3.7 below.
We will also need two more versions of &7 ;, namely

&0 ,=Sym(Hom(V1, V2)) ® Sym(Hom(V2, V1)[-2]),
®3 o=Sym(Hom(V1, V2)[-2]) ® Sym(Hom(Vz, V1)),

6 We view g1 as an odd vector space, so that Sym(gi[—1]) (with grading disregarded) is really a symmetric
(infinite-dimensional) algebra, not an exterior algebra.
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and the corresponding triangulated categories Dperf(Qﬁ('),Z) and D0 (&3 ) We will now define

perf
the monoidal structures on D] eorf(®0,2) and D eorf(®2,0)'

We consider the variety Q4 (respectively, QF) of sextuples

A € Hom(Vi,Vs), B € Hom(Va,V;), A’ € Hom(V{,Va),
B' € Hom(V», V), A” € Hom(V1,V{), B" € Hom(V{, V1),

such that
A=AA", B =A"B, B"=BA (respectively, B = B"B', A'=AB", A" = B’A)

(here V] is a copy of V7). Clearly, Q4 ~ Hom(V4, V{) x Hom(V{, V2) x Hom(V4,V7), and QF ~
Hom(V{, V1) x Hom(V2, V{) x Hom(V4, V3). We have

| B Va (3.4.1)

We denote Hom(V3, Vo) x Hom(Va, V1) x Hom(V{, V3) x Hom(Va2, V{) x Hom(V4, V{) x Hom(V{, V7)
by J{. We have the natural projections

prig: H — Hom(Vy, Vo) x Hom(Va, V1),  prysg: H — Hom(VY, V5) x Hom(Va, VY),
pryy: H — Hom(Vq, V) x Hom(V{, V4).
The group Gg := GL(V1) x GL(V{) x GL(V2) naturally acts on H:

(91,91, 92)(A, A, A", B, B', B") = (92 Ag; ', 92 A'9 1 61 A0y L, 1 By ', 61 Blgy L n B g 7).
The projections prys, prysg, pryys are equivariant with respect to the same-named projections from
Gg to GL(V1) x GL(Va), GL(V{) x GL(Va), GL(V1) x GL(VY).

Given M1/2 € COhGL(VII)XGL(VQ) (Hom(Vl’, VQ) X Hom(VQ, Vll)) and Mll’ S COhGL(Vl)XGL(V{)
(Hom(V4, V{) x Hom(V{, V1)), we set
A . . ,
My * Myrg == prog, (prip Mir ®cjaq C[Q”] X[ pripMyrg) S
€ CohSLVXGLU) (Hom(V7, V) x Hom(Va, V1)),

B /
Mi1 * Mg = pryg, (prip M1 ®cjaq C[Q7] ®cjaq prinMisg) D)

€ CohSLXGLUV) (Hom(V7, V) x Hom(Va, 11)).

We will actually need the following modifications of these functors:

* Dperf((go 2) X Dperf(®0 2) — Dperf((’55,2)a * Dperf(®§,0) perf(®2 0) = Dperf(®5,0)7
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obtained using the dg-algebras with trivial differentials C[H]§, and C[H]3 ; respectively, where
C[H]5 2 = Sym(Hom(V1, V2)) ® Sym(Hom(Va, V1)[—2]) ® Sym(Hom(V], V2))
® Sym(Hom(V3, V{)[-2]) @ Sym(Hom(V1, V7)) @ Sym(Hom(V{, V1)[-2)),
C[#(]3,0 = Sym(Hom(V1, V2)[—2]) ® Sym(Hom(V2, V1)) @ Sym(Hom(VY, V2)[—2])
® Sym(Hom(Vz, V7)) ® Sym(Hom(V1, V{)[—2]) ® Sym(Hom(V/, V4)).
(we identify C[Hom(U, W)] with SymHom(W, U)).

3.5 Localization, coherent
We identify

Hom(‘/h V2) = HOIH(VQ, ‘/Yl)*? HOHI(VQ, Vvl) = Hom(‘/h ‘/2)*7
so that
Sym(Hom(V7, V3)) = C[Hom(V2, V1)], Sym(Hom(V;, V1)) = C[Hom(Vi, V3)].

We have an open subvariety Isom(Va, V) C Hom(Vs,Vy), so that C[Hom(Va, V1)] C
C[Isom(Va, V1)]. We set

B* := ClIsom(V2, V1)] ® Sym(Hom(Va, V1)[—2])
(a dg-algebra with trivial differential). Similarly, we define
2A* := Sym(Hom(Vi, V2)[—2]) ® C[Isom(V7, V3)].

An equivalent formulation of [BF08, Theorem 5] is an existence of a monoidal equlvalence
perf(Q(') Dg (Gr) (and, changing the roles of Vi, Vs, a monoidal equivalence Dperf(%') o
D (Gr).
Since A* (respectively, B°) is a localization of &3 (respectively, of &g,), we have the
restriction of scalars functors

(Ql.) perf(®2 0) Resp: Dperf(sB.) perf(®0 2)
where ngrf( -7) stands for the Ind-completion of D erf( 2)-
perf(Ql‘) and fN[ € Dperf( 50), both convolutions

Resa(N) %M and M ¥ Resa(N) lie in Dpe(;f( 50) C Dperf( 50)- Thus we have the left and

Resa: Dpe]rf

However one can check that, for N € D

right convolution actions

A ° .
e perf (Ql ) perf(®2 0) perf(®2 0) perf(®2 0) X Dperf(ézl ) perf(®2 0)

and similarly,

B (] (] (]
*1 perf(% ) perf(®O 2) - Dperf(®0,2)7 perf(®0 2) X Dperf(% ) - Dpeorf(®o,2)

3.6 Renormalizations

The action of the center Z(GL(V1)) = G, on an object M € Dperf( 1) defines a grading, and
the corresponding degrees will be denoted by deg;. Similarly, the actlon of Z(GL(V3)) = Gy,
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gives rise to another grading with degrees denoted by deg,. The cohomological degrees will be
denoted simply by deg. Clearly, the degrees of the generators are as follows:

degy(Hom(V1, V2)) = deg; (Hom(V3, V1)) = 1,
deg; (Hom(V1, Vo)) = degy(Hom(V, V3)) = —1.

Hence changing cohomological degrees by the formula deg ~~ deg+ deg; (respectively, deg ~~
deg — deg,) yields equivalences

Ga Oright Ga Oright Ga
D o (65,0) : Dpeorf( I,l) . Dpeorf(®a,2)7
Olef Gj
( 11) lett Dpe?rf(®a:2)’

respectively. The notation is due to the fact that ger commutes with the left action of
Rep(GL(V1)) on our categories, while grigne commutes with the right action of Rep(GL(V2))
on our categories.

Now recall the notation in the definition of categories Drg, (Gr x V) (where 7 =, x, !x) of
§3.1. Given F = (F)n>m € Digo (Gr x V), we define 0yigit T := (Fn[-Nn])n>m € Divgeo (Gr x
V). Similarly, given F = (F,)n>m € Divgo(Gr x V) we define 04iontF := (Fp[-Nn])pom €
D.co(Gr x V). The functors g,ight commute with the action of the monoidal category Dg (Gr)
by right convolutions. Recall also that the affine Grassmannian is a union of connected com-
ponents Gr = leezGr(k)» where Gr®) parametrizes the lattices of virtual dimension k (e.g.
dim(tVo) = —N). For F supported on Gr® x V we set giet;(F) := 0rignt(F)[—k]. Then the
functors

Gp . Oleft Gp
'D (62,0) ‘Dperf

Oleft - D!Go (GI‘ X V) — D!*GO(GI' X V), D!*GO(GI' X V) — D*Go (GI‘ X V)
commute with the action of the monoidal category D, (Gr) by the left convolutions.
Our goal is the following theorem.

THEOREM 3.6.1. There exist monoidal” equivalences of triangulated categories

_ A N |
Seorf( 50), *) o (Digo (Grx V), ® )

N \]/ Oright N J/ Oright

(Dper(®11), @er,) — T (Duco(Grx V), %) (3.6.1)

Zlgright ZJ/Qright

i B N .
(Dge%f(ﬁﬁa)a * ) ‘;7 (D*GO(GI‘ X V), * )

(D

(the vertical equivalences are not monoidal). The squares are commutative. The horizontal equiv-
alences commute with the actions of the monoidal spherical Hecke category Pervgg(Gr) =
Rep(GLy) by the left and right convolutions.

The proof will be given in §3.16 after some necessary preparation.

7 See §3.7 for the definition of the left middle monoidal structure.
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3.7 Super

Strictly speaklng, in accordance with the footnote at the beginning of § 3.4, we should consider
the category SDperf( 1) of super dg-modules over the superalgebra &7 ; = Sym(gq[—1]). The
latter superalgebra is supercommutative, hence we have a symmetric monoidal structure ®gs

on the category SD

perf( 1)- The equivalence o1 of Theorem 3.6.1 can be upgraded to a
monoidal equivalence S® I (S’DG0

perf( t1): ®ey,) = (SDuao(Gr x V), ) to the derived

category of sheaves with coefﬁ(nents in super vector spaces.
However, the action of the central element (Idy,,—Idy,) € Gg on an object of D° e (&%)
equlps this obJect with an extra Z/2Z-grading, and thus defines a fully faithful functor
DEo (8,) — SD G (81,1) of a ‘superization’, such that its essential image is closed under the

perf perf
monmdal structure ®@; .- This defines the desired monoidal structure ®gs —on the category

G-
Dpeorf ( I,l ) N

3.8 Koszul equivalence

We consider the following complex H® of odd vector spaces living in degrees 0, 1: g7 1, g1- We
define the Koszul complex K*® as the symmetric algebra Sym(H*®). The degree-0 part

K° = A(Hom(V4, Vo) & Hom(V, V7)) =: A

(as a vector space, with a superstructure disregarded). We turn K*® into a dg-&67, — A-bimodule
by letting &7 ; act by multiplication, and A by differentiation. Note that K*® is quasi-isomorphic
to C in degree 0 as a complex of vector spaces, but not as a dg-&7 ; — A-bimodule. We consider
the derived category Dfi@ (A) of finite-dimensional complexes of G5 X A-modules. If we remember

the superstructure of A, we obtain the corresponding category of super dg-modules SDS{’(A).
We have the Koszul equivalence functors

st DEP(A) =5 DI (83,),  SDGP(A) = SDS2(&% ), Nio K* @y N.

Here is an equivalent definition of the category S Dgé (A). We consider the following degeneration
gl(N|N) of the Lie superalgebra gi(/N|N): the supercommutator of the even elements (with
even or odd elements) remains intact, but the supercommutator of any two odd elements is set
to zero. Let SDiy(gl(N|N)) denote the derived category of bounded complexes of integrable
gl(IV|N)-modules (note that the even part of gl(N|N) is just gg, and the integrability is nothing
but gg-integrability, i.e. Gg-equivariance). Then S Dip (g[(N |IN)) = SDijl6 (A) tautologically. The
resulting Koszul equivalence s: SDjn(gl(N|N)) = SDperf( 1) is monoidal with respect to
the usual tensor structure on the left-hand side and s | on the right-hand side.

As in §3.7, the action of (Idy,,—Idy,) € G gives rise to a ‘superization’ fully faithful
functor Dgﬁ (A) — S’Dg6 (A) = SDing(gl(N|N)) with the essential image closed under the ten-
sor structure. This defines the tensor structure on Dgﬁ (A) such that the Koszul equivalence

x: Dgﬁ (A) = Dperf( 1) is monoidal.

COROLLARY 3.8.1 (of Theorem 3.6.1). (a) The composed equivalence

O 0 300 DIO(A) = Dyuge (Gr x V)
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is exact with respect to the tautological t-structure on Df(c;f’ (A) and the perverse t-structure on
D!*Go (GI‘ X V)

(b) This equivalence is monoidal with respect to the tensor structure on Dgé (A) and the
fusion x on Di,go(Gr x V).

(c) The equivariant derived category Dy.go(Gr x V) is equivalent to the bounded derived
category of the abelian category Pervg,(Gr x V).

Proof. We consider an irreducible Gg-module Vi x ® V2, as a Gg X A-module with the trivial
action of A. Then »#(Vi x®@ V2 ) = Vi A ® (’5;71 ® Vo 4, and <I>1’1(V1,>\ ® 61,1 Q@ Vo) = IC(A*#*) by
construction of @11, Here, for a signature v = (11 > -+ > vy), we set v* 1= (—uy > - > —1).

Finally, since Dgﬁ (A) is equivalent to the bounded derived category of its heart Rep(Gg x A),
(c) follows from (a). O

3.9 De-equivariantized Ext algebra

Recall from [FGT09, Proposition 8] that the Go-orbits in Gr X V are numbered by bisignatures
(A, ) where both A and p have length N. The IC extension of the constant one-dimensional
local system on such an orbit is denoted by 1C(y ). In particular, IC o~ g~y is the constant sheaf
on Gr’ x Vg, to be denoted by Ey for short. Also recall from [FGT09, §3] that the left and
right actions of the monoidal Satake category Pervgg (Gr) = Rep(GLy) on Di.go (Gr x V) by
convolutions respect the perverse t-structure with the heart Pervgy (Gr x V) C Digo (Gr X
V). As has been mentioned in § 3.6, the right actions of Dg(Gr) on D2g,(Gr x V) commute
with the equivalences gright, but the left actions only commute with orign; up to cohomological
shifts depending on the connected components of Gr.

We restrict the left and right actions of Dg,(Gr) on D2gy(Gr x V) to the left and right
actions of Pervg, (Gr) = Rep(GLy). Thus we obtain the action of Rep(G) for G = GLy x GLy.
Let Dgaeg (Gr x V) denote the corresponding de-equivariantized category (see [AG03] in the
setting of abelian categories and [Gail5] in the setting of dg-categories). Recall that to construct
D;i(e;‘fg (Gr x V), we first consider objects of the ind-completion of D>g,(Gr x V) endowed with
an action of Rg where Rg is the regular representation of G considered as a ring object in
Rep(G). Then we take compact objects of the resulting category. More explicitly, an object
of D?Efg((}r x V) is an object F of Drg,(Gr x V) together with a system of isomorphisms
ICAxTF*+IC, = Vy® V; ® J (recall that the geometric Satake equivalence takes ICy to V) for
any signatures A, p, satisfying some natural compatibilities with respect to direct sums and tensor
products. By definition we have a natural forgetful functor D?geg (Gr x V) — Dgo(Gr x V).
This functor admits a left adjoint that sends an object F to Rg x F = @)\’“ VA@V,@ICy x J *
IC,.
Thus, given F1,%F2 € Drg,(Gr x V), we denote the corresponding objects of the de-
equivariantized category by the same symbols, and we have

RHOHIDgéeq (GrxV) (?1, ?2) = @ RHOHID?GO (GrxV) (?1, ICy * Fy % ICM) RVA® VH' (391)

=0

Ap
LEMMA 3.9.1. The dg-algebra RHom jdceq (erv)(Eo,Eo) is formal, that is, it Is quasi-
!*GO
isomorphic to the graded algebra Ext® jeeq (Eo, Ep) with trivial differential.
D!*GO (GrxV)
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Proof. We change the setting to the base field F,. Then a Go-equivariant irreducible per-
verse sheaf IC(y ) on Gr x V carries a natural Weil structure (see [FGTO09, §2.6]) and
Extb!*GO(Ger)(Eg,IC()\#)) is pure. Indeed, if 7y denotes the closed embedding Vo = Gr? x
Vo — Gr x V, then Eth)!*GO(erV)(EUvIC(A,M)) =Hg, (Vo,ié]IC(A,“)). Let us consider the
loop rotation action G,, ~ (Gr x V). We have an embedding A! < V (constant Laurent series),
and Gr® x Al is a fixed point component of the G,,-action, so that Hg, (Vo,iE)IC(A’#)) is the
hyperbolic restriction to this component (more precisely, the hyperbolic restriction is a geo-
metrically constant complex on A! with the above stalks) [Bra03, DG14]. But the hyperbolic
restriction preserves purity.

Now, given the purity of Extb!*GO (GrxV) (Eo0,IC(x yy), the desired result follows by an

application of [BF08, Lemma 15] (and then of [BF08, Proposition 5]). O
We denote the dg-algebra Ext® i, (Eo, Eo) (with trivial differential) by &°. Since it
D!*GO (GrxV)

is an Ext-algebra in the de-equivariantized category between objects induced from the original
category, it is automatically equipped with an action of GLy x GLy = GL(V}) x GL(V2) = Gj,

. . . Gp
and we can consider the corresponding triangulated category Dp (€.

LEMMA 3.9.2. There is a canonical equivalence Dggf(@') 5 Digo(Gr x V).

Proof. The desired functor is constructed as in [BF08, § 6.5, Propositions 5,6]. Since Ej generates
the triangulated category Di.go (Gr x V) (with respect to the left and right actions of the Satake
category), the claim follows from Lemma 3.9.1. d

We also consider the left and right actions of the monoidal Satake category Pervgg (Gr) =
Rep(GLy) on Dgo(Gr) by convolutions. Let DdGegq(Gr) denote the corresponding de-
equivariantized category. Then the dg-algebra RHodeeeq(Gr)(ICo,ICo) is formal, that is,

Go

it is quasi-isomorphic to the graded algebra Extz)deeq (ICy,ICy) with trivial differen-

(Gr)

Go

tial. Furthermore, it follows from [BF08, Theorem 5] that there is a natural isomorphism
EXt.DdGegq(Gr) (ICy,ICo) = A* (in the notation of §3.5).

3.10 Localization, constructible

We have an automorphism a: Gr x V=5 Gr x V, (L,v) — (L,tv). We have a morphism
of endofunctors a* — Id: D,g,(Gr x V) — D,go(Gr x V) constructed as follows. We con-
sider a family of automorphisms a: A x Gr x V < Gr x V, (¢, L,v) — (L, (c + t)v), so that
ap = a. Note that o = 1d on D.gy(Gr x V) for ¢ # 0. Now the desired morphism o* — Id
is just the cospecialization® morphism from the stalk at 0 € A' to the nearby stalk. For
F1,F2 € Dygo(Gr x V), we have an inductive system

- — RHomp ., _(Grxv)((@"71)"F1,52) — RHomp . _(cexv)((@")*F1,To) — -+

Note that it stabilizes since, by definition of D,g,(Gr x V), the restriction of (a™)*F; to the
support of F becomes the pullback of an appropriate sheaf in Dg (Gr) for n >> 0.

8 Terminology of [Sch19, 6.2.7].
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We define the localized category D10C (Gr x V) as the category with the same objects as
D,go(Gr x V), and with morphisms

The tautological functor D,gy(Gr x V) — DL"CEO (Gr x V) is denoted by wuj (‘restriction to
v=0).

We also have the Verdier dual (to the above a* — Id) morphism of endofunctors Id —
a' Digo(Gr x V) — Digo(Gr x V). This gives rise to an inductive system for F,F> €
DgGO(GI' X V),

- — RHomp ¢ (Grxv)(F1, (@™ H)'F,) — RHomp,q, (Grxv)(F1, (@")'Fs) — -+,

stabilizing for reasons similar to those above. We define the localized category Dloc (Gr x V)
as the category with the same objects as Dig, (Gr x V), and with morphisms

RHomD}oGCO (Grxv) (F1, F2) :=lim RHomp,., (Grxv) (F1, (&™)'Fy).

The tautological functor Dig,(Gr x V) — D!IOGCO(GI' x V) is denoted by uf, (‘corestriction to
v=0).

We also have the projection pr: Gr x Vg — Gr, and the corresponding pullbacks
pr*: Dgo(Gr) — Digo (Gr x V) and pr': Dgg(Gr) — Digo(Gr x V) (with the essential
images supported on Gr x Vg C Gr x V).

LEmMMA 3.10.1. The compositions
ug o pr*: Dgg (Gr) — D% o(Gr x V), up o pr': Dg, (Gr) — DI o(Gr xV)

are equivalences of categories sending ICq to oright Fo, 0.1, Fo, respectively.

nght

Proof. Clear. g

The localizations of the de-equivariantized categories Dféeg(Gr x V) and D%ﬁ((}r x V)

will be denoted by D'%G3°Y(Gr x V) and Dy %*Y(Gr x V), respectively.
o >0
Recall the dg-algebras 2®,25° introduced in §3.5.

COROLLARY 3.10.2. There are canonical isomorphisms

(a) EXt.DvIOGC’deeq(GrXV)( “ghtEO’ rlghtEO) =20,
'Go

(b) Ethjl*cg,deeq(Ger)(QrightEo, Oright Fo) = B°.

Note that the dg-algebra RHom Ddeeq (GraV) (0right E0, 0right Eo) (respectively, RHom D!déeg (GraV)

(‘QrightEO’ QrightEO)) is also formal, that is, it is quasi-isomorphic to Extz)deeq

oo (Gr><V) (QrightE07

Oright o) (respectively, EXt.Ddeeq (Gr XV)(‘Qr_iglhtEO’Qr_iglhtEO)) with trivial differential. If we dis-
(Eo, Ep). We will denote
(E(),Eo); the

regard their gradings, they are both isomorphic to Extheeq (GrxV)

the algebra Ext® (Eo, Ep) with grading forgotten by EXtheeq (

DCleeq (GrxV) GrxV)
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: ] (] (] [ ] 140 _
same applies to A®, B* E* &*. Thus we have equalities EXthéeg (GrXV)(QrightEQ, Oright o) =

(EO,EO)ZEX‘EDgéeq o Eo,0nk o).
'Go

EXtheeq (GrxV) (Qright

—1
+Go (GrxV) right

LEMMA 3.10.3. The natural morphism

° —1 —1 ° -1 -1
EXtD?éeq(GrXV) (QrightEO’ Oright £0) — EXtDig’de"‘q(GrXV) (€righe Eo, QrightE())
=0 =0

is injective.

Proof. We have a!g;iglhtIC(,lNJN)[N] i Q;iglhtEo, and we need to check that, for any A, p, the
natural morphism

9: RHomp,.,  (Grxv) (0rigni £0; Origh 1COM 1))

— RHomp, (Grxv) (Qigne C 17 13) [N, 0 IC A ) (3.10.1)

is injective. Indeed, since ' is a Hecke transformation endofunctor (namely, it is given by convo-
lution ICn)*? % IC_;)~ with invertible objects of the Satake category), the morphism ¢ is an

endomorphism of the identity endofunctor of the de-equivariantized category D;iéi?(Gr x V). In
other words, ¥ is an element of the center of this category. But the natural morphism from the
center to its localization is injective if and only if the multiplication by ¥ is injective.

We change the setting to the base field F, as in the proof of Lemma 3.9.1. Then all the IC
sheaves in question carry a natural Weil structure, and it was proved in the proof of Lemma 3.9.1
that both the left- and right-hand side of (3.10.1) are pure; it is immediate to see that they are
pure of the same weight w. The cone of ¥ is Hg (2o~ ov), zbggglhtIC(A,u)), where 1o stands for
the locally closed embedding of the Go-orbit g~ gvy = Gr? x (Vo tVy) — Gr x V. Due to
the pointwise purity of IC( ) [FGTO09, §3], ZEIC(A#) is a pure local system on Qyn g~); hence
He (Qon oy, ZE)IC( Ap)) is also pure of weight w. It follows that the kernel of ¥} vanishes, and ¥
is injective. O

COROLLARY 3.10.4. The algebra € = Ext jdceq

)(EO,EO) is a commutative integrally
!*GO

(GrxVv
closed domain.

3.11 Calculation of the Ext algebra

Recall that the first fundamental coweight of GLy is w1 = (1,0, ...,0), and wi = (0,...,0,—1).
We have RHomD!*GO (Grxv)(ICu, * Eo, Eg *1C,,) = RHomD!*GO (Grxv) (B0, ICus * Eg x1C,, ),
RHong*GO(GrXV) (EO * ICwl s ICwl * Eg) = RHong*GO(GrXV) (Eo, ICwl * EO * ICWT). Now
IC,,, * Ey is the constant IC sheaf of the stratum closure formed by all the pairs (L, v) such that
the lattice L contains Vg as a hyperplane, and v € L. Furthermore, Ey * IC,,, is the constant 1C
sheaf of the stratum closure formed by all the pairs (L, v) such that the lattice L contains V) as a
hyperplane, and v € V. In particular, the latter stratum closure is a smooth divisor in the former
stratum closure, so we have canonical elements h € EthD!*GO(erV)(ICm x By, By % 1C,, ) and

h* € Ext}j' o (erv)(Eo x [Cy,,1C,, * Ep). Hence we obtain the subspaces h ® Vor @V, C ¢!
¥ O
and h* @V, ® Vor C €1 (see §3.9 for the definition of €* and (3.9.1)). We identify the former
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subspace with Hom(Vj,V2) and the latter one with Hom(V%, V7). Thus we obtain a homo-
morphism ¢*: Sym (ITHom(V4, V2)[—1] ® ITHom(V3, V1)[—1]) = Sym(gs[-1]) = 11— € (due

to commutativity of €).

LEMMA 3.11.1. ¢°® is an isomorphism.

Proof. We can and will disregard the grading. The morphism ¢ induces the morphism
¢*: Spec€ — g7 that is an isomorphism over the open subset Isom(V2, V1) x Hom(V4, V2) C g7
due to Corollary 3.10.2(a). Similarly, ¢* is an isomorphism over the open subset Hom(Va, V}) x
Isom(V7, V) due to Corollary 3.10.2(b).

Since the complement to the union of these two open subsets has codimension 2 in g, we
can apply Lemma 3.11.2 below. Note that the irreducibility of Spec€ is guaranteed by Corollary
3.10.4. It remains only to check that the ratio of the above isomorphisms is the identity birational
isomorphism between the varieties Isom(V2, V1) x Hom(Vi, V2) and Hom(Va, V1) x Isom(Vi, Va).

The composition h o h* € EXtZD!*GO(GI‘XV) (Ep +IC,,,, Ey % IC,,,) is multiplication by the first
Chern class of the normal line bundle N to the divisor supp(Ey * IC,,, ) in supp(IC,, * Ep). Recall
that Gr*' ~ PN~ The line bundle N is pulled back from the line bundle O(1) on PN~1 ~
Gr“'. Recall also that the restriction of the determinant line bundle £ from Gr to Gr*! is also
isomorphic to O(1). We conclude that h o h* = ¢;(L).

On the other hand, in the equivariant Satake category

Daqo(Gr) 2 D (Sym(gln[~2])) = Dy (A°),

perf — “perf

the first Chern class ¢;(L) € EXtQDGO (Gr)(ICo % ICy,;, ICo +IC,,; ) C 22 corresponds to the iden-

tity element (shifted by 2) Id € Hom(Va, V1)* @ Hom(V2, V7).
The lemma is proved. O

LEMMA 3.11.2. Let w: X — A" be a morphism from an irreducible affine algebraic variety to an
affine space. Let f,g € C[A"] be such that the codimension of the closed subvariety A"\ (Uy U
Ug) in A" is at least 2, where Uy = {u € A" | f(u) # 0}. Assume, moreover, that each of the
morphisms 71 (Ug) — Uy and 71 (U,) — Uy, induced by =, is an isomorphism. Then 7 is an
isomorphism.

Proof. Let Xy =n"Y(Uy) (respectively, X, =n~1(U,)), and write j: Uy UU, — A" (respec-
tively, jx: Xy U Xy — X) for the open embedding. We have the commutative diagram

j*
C[A"] & I'(Uf UUy, Oy;ur,) == {udv € ClUf] & C[Uy] | ulv;nv, = vlusnu, b
ln* l(ﬁxf)*GB(Wxg)*
j*
CIX] " T(Xf U Xy, Ox,0x,) == {a® 0 € C[X] @ C[X,] | illx;nx, = ]x,0x,}

The map j* in this diagram is an isomorphism by the assumption of codimension at least 2. The
map jy is injective since X is irreducible. The assumptions imply also that the vertical map
(mlx,)* @ (m|x,)" on the right is an isomorphism. It follows that the vertical map 7* on the left
must be an isomorphism, as required. O
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3.12 Restriction to Gr X Vg

The existence of the desired equivalence ®! of Theorem 3.6.1 follows from Lemmas 3.9.2 and
3.11.1. The equivalences ®%? and ®29 are obtained by conjugating with Qiéht. It remains to
check their compatibility with monoidal structures.

We denote by 7o (respectively, 7_1) the closed embedding Gr x Vo < Gr x V (respectively,
Gr x tVy — Gr x V). We also denote by jg the locally closed embedding Gr x (Vo ~\tVy) —
Gr x V. Our goal in this section is a description in terms of ®!'! of the endofunctors jo*jf),
jo*j%): D!*Go (GI‘ X V) — D!*GO(GI' X V)

Recall the setup and notation of § 3.4. We have the natural morphisms

p: Q4 — Hom(V, Va) x Hom(Va, Vi) = g7,
g: 9% — Hom(V{, V5) x Hom(V5, V{) = Ig;;
p(A, A A" BB B")=(A,B), q(A A A" BB B")=(A,B).
We also have the natural morphisms

p.q: Go— G5, pl91,91,92) = (91,92),  a(91,91,92) = (91, 92)-

Clearly, p,q: Q4 — IIg] are equivariant with respect to p,q: Gg — Gj. Hence we have the
convolution functor

peq": Coh®o(TIgf) = Coh(G5\ITg%) L Coh(Go\2*) 2% Coh(Gg\Tg;) = Coh® (ITg?)

(in particular, p* involves taking GL(V{ )-invariants). We will actually need the same-named

functor p.q* Dperf( 1) — Dpeorf( 1) defined similarly using the dg-algebra with trivial dif-

ferential &7, ® (C[Hom(Vl, V])] (the gradmg on C[Hom(V1, V)] is trivial, and if we disregard the
grading, then %, ® C[Hom(V1, V{)] ~ C[Q4)).

We also have a Gg-invariant subvariety Qg‘ C Q4 given by the equation that A” is non-
invertible. The restriction of p, ¢ to Qg‘ will be denoted by pg, qo. As above, we obtain the functor

O*qo Dpeorf( 1 ) - Dperf( 1 1)

PROPOSITION 3.12.1. (a) There is an isomorphism of functors
Jorh 0 @M ~ @M o p.g*: DI (8% ) = Dige(Gr x V).

(b) The isomorphism in (a) can be extended to the following commutative diagram of
morphisms:

Jo1x] 0@V —— @llo (det Vi @ (psq*) o (det™ 'V @ —))

| |

Id

oLl oLl ~det A"
JoxJo © @1 o o p.g*

(¢) There is an isomorphism of functors

Gy (g0
70:30 © @1 =~ &1L o po.gs: DIS(BY 1) — Digo(Gr x V).
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Proof. (a) The support of IC(,, ) lies in Gr x Vj if and only if v is a negative partition (0 >
v1 > - > vy) (see [FGT09, Proof of Proposition 8]). So Di.g,(Gr x Vj) is generated by the
collection of objects IC(,, ,,) where v is a negative partition. Thus we see that jo. is a fully faithful
functor whose image is generated by {IC(, , | ¥ <0} and 7 is the right adjoint of .. Recall
that V;J denotes an irreducible representation of GL(V') obtained by applying the corresponding
Schur functor to V*. The result of application of the same Schur functor to Vi* (respectively,
Vi*,V5") will be denoted by Vi, (respectively, Vi, V5',). Since

ICu =0 (V@8] @ Vy,) =0 (Vi @6) @ Vs )

(where v* = (—vn, —UN_1,..., — 12, —Vl) for v = (v1,...,vnN)), we have to show that p,g¢* lands
in the subcategory Dpe"r’f>( 11) C Dpeorf( 11) generated by objects {Viax®@ &7, @ Vs, [ A >0}

and to construct the adJunctlon 1som0rphlsm

Hom pCo

(& 1)<V1,A R 1@ Vo, Vi8],V ,)
per

-~ Hom pCo

f(®I 1)(‘/17}\ ® 61’1 ® VQ,“,p*q*(V{,X ® 61’1 ® VQ,,U/))
per

for a partition A. Equivalently, we have to construct an isomorphism

(Vi@ V] x) @ C[Hom(VY, V) x Hom(Va, V)] @ (V3,, ® V) S EH)

-~ (foA ®p*q*(‘/1/7>\/ % C[Hom(V{, V2) x Hom(Va, V!)] @ Vo) @ Vi“)GL(Vl)xGL(Vz)
* *k G
= (Ve W yeClote Vs, @ Vyw)) ™

Recall that Q4 = Hom(V3, V/) x Hom(V/,V3) x Hom(Va, V1). We apply Lemma 3.13.1(c) below
to Uy = Vo, Uy = Vi, Us = V/, v = A (in the notation of §3.13) to obtain an isomorphism

V1/7*>‘ ® C[Hom( V53, Vll)] ~ (C[Hom(VQ, 1) ® Vf’:}‘ ® C[Hom(V3, Vl/)])GL(V1)

whose inverse induces the desired adjunction isomorphism.
We still have to check that the essential image of p,.q* lies in the subcategory Dperf ( Il) C

Dseorf( 11) generated by {V1 x® @67, ® V2 w] | A > 0}. We consider the homomorphism &7 ; —

C kllhng all the generators, and for M € Dperf( 11) we set zgM = C®L;71M € D%(C) (‘the

fiber at 0 € Hom(V;, V2) x Hom(V3,V1)’). Note that zip.q* lands in the category generated by
{Via® Vo, | A >0}, that is, the category of modules with polynomial action of GL(V}). Indeed,
recall that Gg acts on Q4 via

(91,91, 92) (A, A" B) = (92A'g; 7, g1 A"g7 " g1 Bgy ).

Since we impose the conditions B =0 = A := A’A”, the action of GL(V1) on zip.¢*N (for a free
dg-&7 ;-module N) comes from its action on functions of A”, and the latter action is polynomial.

Finally, we claim that if the action of GL(V7) on ziM is polynomial, then M lies in the
subcategory generated by {(Via®®7, @V, | A > 0}. To this end we apply the Koszul equiv-

alence : Dg(’ (A) = Dperf( 11) of §3.8. It is easy to see that if the action of GL(V1) on the

total cohomology of K € Dfd (A) is polynomial, then X lies in the subcategory Pol C chjf’ (A)
generated by the Gy x A-modules with polynomial action of GL(V}) and trivial action of A.
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Now 3(Pol) is the subcategory Dpeor’f—( 11) C Dperf( 1)- And if the action of GL(V;) on ziM
is polynomial, then M ~ 3(X), where the action of GL(Vl) on the total cohomology of X is
polynomial. This completes the proof of (a).

(b) As a*J_1.7" 4 =~ jo*jéa* (in the notation of §3.10), we deduce an isomorphism of functors

Jo1ejtg 0 @M~ @M o (det Vi ® (pug”) o (det ™'V @ —)): DO

(671) = Digo (Gr x V).

Thus the upper and lower rectangles of the diagram in (b) are commutative by construction.
We have to prove the commutativity of the big curved quadrangle. The endofunctors jo*j!o,
j_l*j!_l of Di.go (Gr x V) are equipped with the structure of idempotent comonads. The desired
commutativity follows from the fact that, given two idempotent comonads Ty, 77 : € — C, there is
at most one morphism of functors y: 77 — T such that e = ¢y o x for the counits ¢;: T; — Ide.
Indeed, x = Ty(e1) o x1, where x; is defined as the composition

T1 ngoTlﬁTHTOOTl.

We claim that y; is an isomorphism uniquely defined as the inverse to the morphism ey o T7: T o
T7 = T7. In effect, the composition

EoOTl

T1 T10T1—>T00T1

equals the composition

T 2T 0T, X [deoTy =Ty

which in turn equals Idp, . Conversely, the composition
TooTy 28 1oy X8 10Ty

equals the composition

T() OXOTI
_—

Tooly =Z2TyoTy 0Ty Tooldpod)y Z2TpoTh

which in turn equals Idp o7, .

This completes the proof of (b), but we would like to give one more independent argument
that will prove useful later on.

Recall that we have to prove the commutativity of the big curved quadrangle. To this end
we change the setting to the base field IF, as in the proof of Lemma 3.9.1. That is, we replace
Di.go(Gr x V) by the equivalent equivariant derived category of sheaves on (Gr x V) as in
[BF08, Proposition 5] (in particular, choosing an isomorphism C ~ Q,). However, we preserve the
notation Di.gq (Gr x V) for this category in order not to overload our notation (anyway, it will
only be used during the current proof). All the irreducible perverse sheaves IC(a, ) carry a natural
Tate Weil structure by [FGT09, Proposition 11]. They (along with their Tate twists) generate
a subcategory” Di.go (Gr x V) of the mixed version D!‘fjiéfo(Gr x V) of Digo(Gr x V). We

will use a particular dg-model of D!*GO (Gr x V) viewed as a category enriched over complexes
equipped with an action of the Frobenius automorphism Fr. Note that the absolute values of the
eigenvalues of Fr lie in \/62, and hence our complexes carry an additional grading according to
the absolute values of the eigenvalues of Fr. If we forget the mixed structure and remember only

9 Closed with respect to taking cones and direct summands.
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this additional grading, we obtain a category Qg*(;o (Gr x V) enriched over complexes equipped
with an additional grading. Its localization with respect to quasi-isomorphisms will be denoted
D!*Go (GI‘ X V)

On the other hand, we consider the category QGGXCX

perf (81,1) of perfect G x C*-equivariant

dg-&7 ;-modules and its localization (with respect to quasi-isomorphisms) Dfeﬁrfxcx( 11) Here

all the generators of &7 ; have weight 1 with respect to the action of C*. Then the standard mod-

: . : . Gg
ification of our construction of the equivalence ®!!: Dpeorf

~ _ X ~ ~ _ X
a functor ®!: Qggr?(c (811) = Dikgo (Gr x V) and its localization oLl DpGeoerC (8, =

E!*Go (GI’ X V)

We have the similar diagram of morphisms of functors D

( 1,1) —5 Di,go (Gr x V) produces

G() xCX

perf ( I,l) - D!*Go(Gr x V)

with commutative upper and lower rectangles

To1s7-1 0 @1 = @11 o (det Vi @ (pug®) o (det V] @ —))

| |

. 14 .
@171 @171 -det A"
JorJy © @11 ®U1 o p.gt

and we have to prove the commutativity of the big curved quadrangle. The endofunctors

det Vi @ (p«q*) o (det~1V/ ® —), 1Id, p.q* of ng?cx( 11) are given by their respective ker-
G2xC*
nels Ki, Ko, K3 in D0~

—perf
opposed to (C*)?) suffices since all the three functors under consideration commute with the

shifts of the additional grading. Similarly, all the three functors on the constructible side com-
mute with the Tate twists. All three kernels are pure of weight 0, that is, their additional

gradings coincide with their cohomological gradings. The category of pure weight 0 objects in
G2 xC*
Dpeor? ( 171 ® 61,1> is equivalent to the abelian category of G% x C*-equivariant &1 ® &1 1-

modules (the equivalence being obtained by taking cohomology). Therefore, the morphisms
of functors (det V4 ® —) o (p«q*) o (det™'V] ® —) — Id and p.q* — Id arise from the morphisms
between the respective kernels that are injective as morphisms of &1 ; ® &1 1-modules. We have to

(81, ®67,). Note that the equivariance with respect to C* (as

compare certain morphisms to @' K3, and we know that their compositions with the monomor-
phism &1 K5 — ®L1K, coincide, hence the desired equality of morphisms. This completes our
second proof of (b).

(¢) This follows from the comparison of the distinguished triangles

(j—1*5L1 — jO*jE) - JO*J!O) o @bt

and
b1 o (det Vi @ (peg”) o (det ™ V] @ =) — pug™ — posag)-

The proposition is proved. O
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3.13 Some invariant theory

Let Uy, U, Us be vector spaces of dimensions n, na, n3. The irreducible polynomial (respectively,
antipolynomial) representations of GL(Uj;) are realized in the Schur spaces S\U; (respectively,
SaAU}), where A is a partition with £(X) < n;. We will also write Sy«U; for S\U;", where

A= —wo)\ = (_)‘nm _/\’ni717 ey —)\2, —)\1)

for X = (A1,...,An,;). We set SaU; = 0 = Sy=Uj; for £(X) > n;. We denote by Hom<,,, (U1,Us) C
Hom(Uj, Us) the subvariety formed by all the homomorphisms of rank at most ns.

LEmMA 3.13.1. The composition of homomorphisms induces the following isomorphisms of
GL(U1) x GL(Us)-modules.

(a) C[Homcp,(U1,Us)] == (C[Hom(Uy, Us)] @ C[Hom(Us, Ug)])GL(UZ),

(b) If ny < ng, for a partition v,

SuU1 ® C[Hom(U7, Us)] == (C[Hom(U7, Uz)] @ S,Us @ C[Hom(Us, Us)]) ).
(c) If n3 < ng, for a partition v,

C[Hom(Uy, Us)] @ S, U5 = (C[Hom(U7, Uz)] @S, Us ® C[Hom(Us, Us)]) ™72,

Proof. (a) We have C[Hom(U;, Uj)| = €,,50 Sym™ (U; @ U;) = D SaU; ® Sx+Uj as a GL(U;) x
GL(Uj)-module. Also, C[Hom<,(U;,Uj)] = @yn)<, SaUi ®Sx-U; as a GL(U;) x GL(Uj)-
module. Clearly, (Sy«Us® S#UQ)GL(UQ) = C%«. So the two sides of (a) are isomorphic as
GL(U7) x GL(Us)-modules. On the other hand, the morphism in question is injective since the
composition morphism Hom(Uy, Usz) x Hom(Us, Us) — Hom<y,, (U1, Us) is dominant. Hence the
morphism in question is an isomorphism.

(b) We consider a copy Uj, of Us, we tensor both sides of (b) with S,-Uj, and take the direct
sum over all partitions v with ¢(r) < ny. Then we have to prove that the morphism

~: C[Hom(Uy, U3)] @ C[Hom(Uy, Us)]
— (C[Hom(U1, Uz)] ® C[Hom(Us, Uy)] @ C[Hom(Us, U?))])GL(Uz)7

induced by the composition of arrows of the D4-quiver in

Ux

/ N
L7 l N (3.13.1)
» N
) — @ — [

is an isomorphism. Now the statement can be reduced to (a) using the substitution Us ~» Us @ Uj,.
Alternatively, the condition n; < ns guarantees that the morphism from the representation space
of the Dy4-quiver to the representation space of the dashed As-quiver is dominant. Hence 7 is

injective. The surjectivity of 7 follows, for example, from [LP90, Theorem 1].
(c) This is dual to (b). O
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3.14 The monoidal property of ®2:0

A
Recall the notation of §3.4. The monoidal structure * on Dperf(Qﬁgo) is deﬁned via the kernel

C[o4]s o a Go- equlvarlant dg-C[H]3 ;-module. The monoidal structure ® on Digy(Gr x V)
transferred to Dperf(QjQ,O) via the equivalence ®2° is also defined via a kernel X* (a Go-
equivariant dg-C[H]3 -module). We have to construct an isomorphism of Go-equivariant
dg-C[H]3 j-modules C[QA]QO - K.

We denote by C[H]3, the localization of C[H]3 defined as C[J-C]g’o[det_lA,det_lA’,
det™'A"]. We define K¢, := C[Hioc)3 0 ®ciags , X* and (C[Qﬁ‘)c] (C[%OCBO@CWQO C1Q4)3,-

loc *—
We have 2083 0 QnghtEO Also, for F € Dig,(Gr x V), we have erghtEo ® F = jo*]oi}'

A !
Thus Proposition 3.12.1(a) yields an isomorphism of functors @20(05'0 x —) =5 (@2’005570) ®

®20— . This isomorphism yields in turn an isomorphism of kernels C[Qforg]' 50— Kgorg, where
the subscript forg denotes the restriction of the dg-module structure from C[H]3 5 to C[Hiorg]3 o =
Sym(Hom(V1, V2)[=2]) ® Sym(Hom(V2, V1)) @ Sym(Hom(VY, V2)[—2]) © Sym(Hom(Vz, V})).

According to Proposition 3.12.1(b), the following diagram of functors Dgerf( 50) =
Digo (Gr x V) commutes:

To1:71 0 @20 "= 8200 (det Vi ® (peg*) o (det™'V{ © —))

J/ \L -det A”

JoxJo © D0 %00 p.g*

Hence the diagram

commutes as well, and in particular the multiplication by det A” is injective on X*®, and hence
gc. — j<l.OC

Now since q)lc;c' perf(Ql‘) —5 Dgo(Gr) = D!I"GC0 (Gr x V) (see Lemma 3.10.1 and Corollary
3.10.2) coincides with the equivariant Satake equivalence, and the latter is monoidal, we obtain
an isomorphism of localized kernels C[Q7}_ e as Ga-equivariant C[Hjoc|3 o-modules.
By the argument in the second proof of Proposition 3.12.1(b) (using the additional grading

]20":K

and purity of X°®), it remains to verify that this isomorphism restricts to the desired iso-
morphism from (C[QAB,O C (C[Qfgcb o to X* C XK} ..
scalars to (C[.{.H:forg]io. But we have already seen that over (C[H'Cforg]io we obtain an isomorphism

A e ~ °
C[Qforg]Q,O - “Kforg'
This completes the proof of the monoidal property of ®20.

For this verification it suffices to restrict the
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3.15 Fourier transform
We have the Fourier transform functors (along V)

FT: Digo(Gr x V) = D.go(Gr x V), FT: D,g,(Gr x V) — Dig, (Gr x V),
FT: D!*Go (GI‘ X V) — D[*GO<GI‘ X V)

Strictly speaking, the Fourier transform goes not to Dsg,(Gr x V), but to Dsg,(Gr X
(V*®F)). However, we identify V* with V using our choice of (self-dual) basis ey, ..., en,
and accordingly change the action of Go = GL(N, O) by composing it with the automorphism
g — ‘g~ !. Note that the resulting Fourier transform to Drgo(Gr x V) is independent of the
choice of basis in V.

To describe the effect of FT on the coherent side, we identify V; = V|* and V5 = V5 using
our bases. Furthermore, we identify

Hom(Vi, Va) = Hom(V5, Vy") = Hom(V, Vi), A B = 14,
Hom(Vz, Vi) = Hom(Vy', Vy) = Hom(Vi,Va), B A= 'B.

Thus we obtain an t-equivariant transposition isomorphism

7: 83 = Sym(Hom(V1, V2)) ® Sym(Hom(Vz, V1)[-2])
— Sym(Hom(V1, V2)[-2]) ® Sym(Hom(V2, V1)) = &g 5,

where 1: Gy — G is an automorphism (gi,g2) — (‘g7 ',%5 ). We denote the extension of

(8§2). Clearly, the functor ¢7: (DGG (830); {é) —

. Gj . Gy
scalars via 7 by @7: D 0.(&3,) — D perf

perf perf

- B
(Dgeorf( 0.2) * ) is monoidal. Also, by the standard properties of the Fourier transform, the

functor
!

FT: (Digo(Gr x V), ® ) — (Do (Gr x V), %)
is monoidal. Thus the monoidal property of ®2 is a corollary of the following proposition.

PROPOSITION 3.15.1. The functors FT o ®20: D;;e@rf( 50) = Digo(Gr x V) and ®%2 o o1 are
isomorphic.

Proof. Going over the construction of equivalences of ®%2, 20, we see that it suffices to construct
the isomorphisms FT(Ey) == Ej (evident), and

FT(—1efs * ® ¥ —right) — (—left) * FT(®) % t(—right) (3.15.1)

(left and right convolution functors Dgg(Gr) x Digo(Gr x V) X Dgo(Gr) — Digo (Gr x
V)). Here ¢: Dg,(Gr) — Dgy(Gr) is a monoidal autoequivalence induced by the automor-
phism ¢: g — g~1 of Gg. Note that the Satake equivalence intertwines ¢: Dgg (Gr) — Dg, (Gr)
with the same-named autoequivalence of Rep(GLy). Also note that ¢: Dg,(Gr) — Dgg(Gr)
is induced by the automorphism L — L* of Gr. Here L+ :={v € V: (v,L) € O}, and (-,-)
stands for the F-bilinear pairing on V such that (e;, e;) = d;;. Now the existence of the desired
isomorphism (3.15.1) follows from the definitions of FT and convolutions (3.2.3) and (3.2.4). O
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3.16 The monoidal property of ®1:1
The argument is very similar to that of §3.14. We introduce

C[H]3 1 = Sym(Hom(V1, V3)[—1]) @ Sym(Hom(V3, V1) [—1]) @ Sym(Hom(VY, V2)[-1])

® Sym(Hom(V3, V{)[—1]) ® Sym(Hom(V1, V{)[-1]) ® Sym(Hom(V{, V1)[-1]).
Then the monoidal structure ®gs  on Dgeﬁrf( 11) is defined via the kernel C[A]f ;: the diagonal
Go-equivariant dg-&9 j-trimodule. The fusion monoidal structure x on DG (Gr x V) trans-

ferred to DpGgf( 11) via the equivalence Ll is also defined via a kernel K® (a Gg-equivariant
dg-®7 ;-trimodule). Note that we have a different equivariant structure than for X* (in the nota-
tion of § 3.14) because of the different compatibility with the Hecke action. We have to construct
an isomorphism of Gg-equivariant dg-&7 ;-trimodules C[A]T ; — K*.

We have @1’10511 ~ Ey. Also, we have an isomorphism of endofunctors Eyx— =
Id: Digo(Gr x V) — Digo(Gr x V). Thus we obtain an isomorphism of functors

L (BY | ®ps  —) = (P18} ) x @1~ This isomorphism yields an isomorphism of kernels

ClAforg]71 — KR, (the notation is explained in §3.14).

The following diagram commutes:

IC(_1N71N) * @1’1 $ @1’1 o (det ‘/1 R —& det_l‘/ll)

i \L -det A”

Ey * el PL.1

Hence the diagram

commutes as well, and the rest of the argument proceeds just as in § 3.14.
This completes the proof of the monoidal property of ®!'! along with Theorem 3.6.1.

4. A coherent realization of Dgy,(n—1,0)(GT)

4.1 Notation

We consider a complex vector space V; with a basis e, es, . .., ex. We consider the Lie superalge-
bra gl(N — 1|N) = gl(V; @ I1V2). We have a decomposition gl(N — 1|N) = g5 @ g1, where gy =
HHom(V7, V) @ ITHom(Vz, V1), and gy = End(V;) @ End(V2). We set Gy = GL(V1) x GL(V2).
We consider the dg-algebra ®* = Sym(gg[—1]) with trivial differential, and the triangulated cat-

egory Dgef’rf(@') obtained by localization (with respect to quasi-isomorphisms) of the category
of perfect Gig-equivariant dg-&®-modules. Finally, we set Go = GL(N — 1, 0).

. . . . = Gy ey ~
THEOREM 4.1.1. There exists an equivalence of triangulated categories ®: Dp (6% =

D¢ (Gr) commuting with the left convolution action of the monoidal spherical Hecke category
Pervar(v—1,0)(Gry-1) = Rep(GLy_1) and with the right convolution action of the monoidal
spherical Hecke category Pervgy,n,0)(Gry) = Rep(GLy).
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The proof will be given in §4.4 after some preparations in §§4.2 and 4.3.
Similarly to §3.8, we define A := A(Hom(Vl, V2) @ Hom( V43, Vl)). We consider the derived

category chjf’(/_\) of finite-dimensional complexes of Ggx A-modules. We have the Koszul
equivalence functors

5 Dg()(]\) L)Dggf(@.)’ SDS(}(]\) -~ SDfearf

(&°).

We also consider the degeneration gl(N — 1|N) of the Lie superalgebra gl(N — 1|N) (defined
as in §1.5), and the derived category of bounded complexes of integrable gl(N — 1| N)-modules

SDint(gl(N — 1|N)) = SDijiﬁ(]\). The following corollary of Theorem 4.1.1 is proved just like
Corollary 3.8.1.

COROLLARY 4.1.2. (a) The composed equivalence
o %: DI(A) = Dg (Gr)

is exact with respect to the tautological t-structure on ch(ia (A) and the perverse t-structure on
D¢, (Gr). i

(b) This equivalence is monoidal with respect to the tensor structure on Dgc (A) and the
fusion x on Dg (Gr).

(¢) The equivariant derived category Dg (Gr) is equivalent to the bounded derived category
of the abelian category Pervg  (Gr).

In case N = 2, both Theorem 4.1.1 and Corollary 4.1.2(a) were proved in [BF18] by a rather
different argument.

4.2 Constructible mirabolic restriction

Clearly, Vo \tVy is a single Gg-orbit, and the stabilizer of the vector e; € Vg~ tVy is the
mirabolic subgroup Mg C Go. Hence Dgy(Gr x (Vo \tVy)) = Drg(Gr). We will denote
Gr = Grgr, by Gry to distinguish it from Gry_; := Grgr, ,. We will also denote by
Gr§; C Gry (respectively, Gr§y_; C Gry_1) the closed subvariety classifying the sublattices in
the standard one V (respectively, in Vg := Oez @ Oe3 @ --- @ Oey). It is a union of the Schu-
bert varieties numbered by the negative partitions of length < N (respectively, < N — 1). The
category Pervgrn,0y(Grfy) (respectively, Pervgrnv—1,0)(Grfy_;)) is monoidal and the Satake
equivalence takes it to the monoidal category of polynomial representations of GLy (respectively,
GLN_1). o )

We have a closed embedding ¢: Gr§_; — Gr§, (L C V) — (Oe; & L C V).

LEMMA 4.2.1. (a) The functor ¢': Dgrn,0)(Grf) = Darnv—1,0)(Grf_;) is monoidal.
(b) For a negative partition A we have ¢'ICx = ICA[|A|] in the notation of § 3.13 (i.e. if \; < 0,
then ¢'ICx = 0, and if Ay = 0, then ¢'ICx =IC(y,5..5xy)[A2 + - + An])-

Proof. (a) The Grassmannian of sublattices Gr§ (respectively, Gr§_;) is the union of con-

(=n)

") (respectively, UnenGryty

nected components UneNGr]CV’ ) parametrizing sublattices of
codimension n. Clearly, g(Gr]CV’Sn)) C Gr]CV’(*n). Moreover, g(Gr]CV’S")) is a connected com-

ponent of the intersection of the Levi Grassmannian Grgr,,xcrLy_, C Gry with Grjc\,’(fn) . We
have the monoidal functor of hyperbolic restriction to the Levi Grassmannian; see for example,
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, 9.3. at p. . oince F-s(Gryt, NGry =¢(Gry , the hyperbolic
BD, 5.3.28 213]. Since (Mg -s(Gry ™) nGrGT™ = ¢(Gr[™), the hyperbol
restriction to the component g(Gr]CV’Sn)) coincides with the corestriction ¢'.
(b) We have (SAV;*)¢11 = SAVi* Now the desired claim follows from [BD, Proposition 5.3.29].
O

Recall that the monoidal Hecke category Dgpn,0)(Gry) = Dgo(Gr) acts by left convo-
lution on Di.go(Gr x V). In particular, the monoidal subcategory Dgg (Gr§) C Dg, (Gr)
acts on Digo(Gr x V). We define the action of Dgg(Gr§) by the left convolution on
Dgo (Gr x (Vo N tVy)) as follows: A xF := 34 (A * 70.F) (in the notation of §3.12). Also, the
monoidal Hecke category Dgr,n—1,0)(Grn-1) acts by left convolution on Dgr,n—1,0)(Grn).
Finally, we denote by ResGL(N 1.0), : Dmo (Gry) — Darnv—1,0)(Gry) the functor of restriction
of equivariance under GL( —1,0) — Mo.

LEMMA 4.2.2. We have a compatible system of isomorphisms for all A € DGL(Nyo)(GrJCV) and
Fe DGO (GI‘ X (VO AN tVQ)) = DMO (GI‘).‘

GL(N 1, 0)( GL(N-1, 0)(3,)

Res A*&")—>gA*ResM

Proof. Comparison of definitions. O

4.3 Coherent mirabolic restrlctlon

Recall the subcategory DSV (6%) C DSn(®3,) generated by {Vix®®t,@ Vi, |A>0)

introduced in the proof of Proposition 3.12.1(a). The equivalence ®!: Dgeﬁrf( 1) —
Di,go (Gr x V) restricts to the same-named equivalence Dpeor’f—( 11) = Dugo(Gr x Vo), and

the functor p.q*: Dlior’f—( 1) — Dgeor’f—( 1.1) (in the notation of § 3.12) is isomorphic to Id. Thus

we have a natural morphism Id = p.¢* — po.¢j (again in the notation of § 3.12) of endofunctors of

Diﬁr’fz( 1 ?1). Composing with another copy of po«q, we obtain a morphism po«qg — Po«qg © Poxq
GOv_

of endofunctors of Dperf

to Proposition 3.12.1(c), ®1! takes po.q] to jo*j'o, and ]0*]0 —>]0*j00j0*j0. Inverting the
isomorphism  po.qg —— Po«q; © Po«qy, We obtain an isomorphism po.qg © Po«qy — Po«qy that,

(871,) that is easily seen to be an isomorphism. Indeed, according

together with the morphism Id — po.qj, equips po«qg with a structure of (idempotent) monad
in Df&’f( 11)-

We denote the dg-algebra with trivial differential & ; @ C[Hom<xy_1(V1,V])] (the grading
on C[Hom<y_1(V4,V])] is trivial) by §* (here Hom<xy_1(V1, V{) C Hom(V;, V{) stands for the
subvariety formed by the non-invertible homomorphisms). It is acted upon by Gg. By Theorem
3.6.1 and Proposition 3.12.1, we have an equivalence of categories ®’ from the Kleisli category
(see [Mac98, VL.5]) D(po«qg) of the monad po.q in Dpeorf—( 11) to Do (Gr x (Vo \tVy)). For
the modules ViA@Y, @ Vo, Vi) xy @B% | @V, over the monad po.q; (here both X, A" are

partitions), we have

L] L] * (] * G
Homp (py,q) (VIA® BT 1 @ Va0, Vi v @67 1 @ Vo ) = (V1,>\ ® Vll,x 5 ®(Va,® Vo)) 2.
Recall the equivalence Dg,(Gr x (Vo \tVy)) = Dm,(Gr). By an abuse of notation, we

will denote the composed equivalence D(posq5) == Dmg (Gr) also by @'
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On the other hand, we consider a full subcategory Dfeﬁr’fzo(@ﬁ') C Dfeﬁrf(@') generated by the

free modules V; x ®_Q_5' ® Va,,, for partitions A (of length < N — 1). We construct an equivalence

®: D(po«qs) = D}iﬁr’fzo(@') as follows. We consider the variety P of sextuples

A € Hom(V1,V2), B € Hom(Va,V;), A € Hom(Vy,Vs),
B € Hom(V,, V1), b€ Hom(Vy,V1), a € Hom(Vy, V1),

such that A = Ab, B = bB, a = BA. Clearly,

P ~ Hom(V;, V1) x Hom(Vy, Vo) x Hom(Va, V4).

P
,//“ BYN
Vis==e===== Va

We have the natural morphisms

p: P — Hom(Vy,V2) x Hom(V,, Vy) =1lg}, q: P — Hom(V7, V) x Hom(Va, Vi) = Ig7;
p(A’ A? a’ b7B7B) = (A’ B)? q(A7 A? a7 b? B’ B) = (A’ B)'

The variety P is acted upon by G := GL(V7) x GL(V7) x GL(V3):
(gla gb 92)(A7 Aa a, ba Ba B) = (QQAQII, 9214?;17 glagfla glbg;17 ngQEIa .ngg;l)

We have the natural morphisms

p: GT - Gﬁ? p(glvglag2) = (91;92); q: G'P - Gﬁa q(gl’glaQQ) = (glagZ)'

Clearly, thﬁ morphisms p: P — Ilgj, q: P — Ilg] are equivariant with respect to p: Gp — Gy,
q: Gp — G5. Hence we have the convolution functor

q.p": Coh®o(TIgf) = Coh(G5\ITg?) 2 Coh(Gp\P) I Coh(Gig\I1g}) = Coh® (ITg?)

(in particular, g. involves taking GL(Vj)-invariants). We will actually need the same-named
functor q.p*: DO ( 1) — Do

perf perf(@3') defined similarly using the dg-algebra with trivial
differential

Sym (Hom(V4, V2)[—1] @ Hom(V1, V1)[—1]) ® SymHom(V3, V1)

(the grading on SymHom(f{l,Vl) is trivial, andiif we disregard the grading, then
Sym (Hom(V4, V2)[—1] & Hom(Vy, V1)[—1]) ® SymHom(Vy, Vi) ~ C[P]).

Now recall that D(po.qj) is a full subcategory of DGG( 11)- The desired func-

/ perf
G,
tor ®: D(po«q5) — Dy

egory D(po«q3) C Dgecrf( 11)- The full subcategory D(po.qs) is generated by the objects
Pody(Via® 8% 1 @ Vau) =pipo.qp) ViA® BT ® Vo, (the left- and right-hand sides are isomor-

phic in the Kleisli category D(po«qg)) with A running through the set of partitions. For a

(&*) is nothing but the restriction of q.p* to the full subcat-
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partition A we have

P(VIA®6B 1 ®0Va,) =ViaQ6° 0V,
in the mnotation of §3.13 (ie. if A=A\ >X>--> Ay >0) 7and An > 0, Ehen
P(ViA® 61,0V, ) =0, and if Ay =0, then <I>(V1 ®(’51 L@ Vs M) Viouseoay 1) @6 ®
Va,u). Hence ®(V1 A ® 87, @ V2 ,,) actually lies in D 0’20((’5') (&*). It remains to check

perf
that & is fully faithful.
For partitions X, X', we have to check that the following morphism is an isomorphism:

perf

(Vvlf)\ ®p0*q:)<(‘/1,’>\/ ® C[HOHI(V{, sz) % HOm(V&, ‘/1/)] ® ‘/27“/) ® VQ),:“)GL(Vl)XGL(VQ)
= (Via® WV x ®ClQ] @ (V5,, @ Vo)) = (SaVi @Sy W @ C[Qo] ® (V5 @ Vo))

AN (SAVf‘ ® S\ V1 ® C[Hom(Vy, Vo) x Hom(Va, V1) ® (VZ*,M ® Vé#/))GL(VI)XGL(VZ))-

/4// lB/TN
V’ =y

The desired isomorphism is equal to the composition of the following three. The first is induced
by

= 1\ GL(V1)

C[HOHI<N 1(V1,V1)] ((C[Hom(Vl,Vl)] ®(C[HOH1(V1,V1)]) ;

see Lemma 3.13.1(a). The second is induced by the inverse of

Sx Vi ® C[Hom(V7, V3)] == (C[Hom(V1, V{) ® Sy V{ @ C[Hom(V7, VQ)])GL(VD;
see Lemma 3.13.1(b). The third is induced by the inverse of

C[Hom(V, V1)] @ Sa- Vi = (C[Hom(Va, V1) ® Sx-Vi ® C[Hom(V4, V1)]) ",

see Lemma 3.13.1(c).

4.4 Proof of Theorem 4.1.1

We consider an F-linear automorphism £ of V: £(e1) = ey, {(e;) = te; for i =2,..., N, and the
same-named induced automorphism of Gr. It is given by the action of an element diag(1,t,...,t)
of the diagonal Cartan torus Tg. Note that diag(1,t,...,t)Modiag(1,t71,...,¢t7!) D Mo.
Hence &, acts on the equivariant category Dwmg(Gr) (by restricting equivariance from
diag(1,t,...,t)Modiag(1,t!,...,t7!) to Mg). Clearly, & acts on the equivariant cat-
egory Dgrv-1,0)(Gr) as well. Recall that Resl(\;,[LO(N_l’o): Do (Gr) — Derv-1,0)(Gr)
denotes the functor of restriction of equivariance under GL(N — 1,0) — M. We denote
by Avg/IchNfLo): Dgrn-1,0)(Gr) — Dmgo (Gr) the corresponding right adjoint x-averaging
functor.

LEMMA 4.4.1. (a) Given F € Dgr(n-1,0)(Gr), for n >> 0 the canonical morphism Reslc\},IL(N LO)

AVGL(N 1,0) EF — )T is an isomorphism.
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(b) &« is an auto-equivalence of Dgr(n—1,0)(Gr), and hence the natural functor from
Der(n-1,0)(Gr) to colimg, Dar,n—1,0)(Gr) is an equivalence.

(¢) The restriction of equivariance functor Resf/ILcEN_l’o): Dy (Gr) — Dgrn—1,0)(Gr)
induces the same-named equivalence of the colimits Reslc\}/ILcEN_l’o): colim¢, Dmg, (Gr) —

colimg, Dar(v-1,0)(Gr) & Darnv-1,0)(Gr).

Proof. Tt suffices to prove (a) for an irreducible perverse J € Dgr,v—1,0)(Gr). This in turn
follows from the fact that, for any GL(N — 1,0)-orbit @ C Gr and n > 0, the shift £ "0
becomes Mg-invariant. Indeed, Mg is generated by its radical Ug and GL(N —1,0). As n

grows, ng) = diag(1,t7",...,t7")Ugp diag(1,t",...,t") forms a system of shrinking subgroups
of Up, and we take n big enough so that the action of Ug’ ) on O is trivial (recall that the action
of Ug on any Schubert subvariety of Gr factors through a finite-dimensional quotient group).

(b) is evident, and (c) follows from (a) and (b). O

Ii()r’fzo(é‘) obtained by tensoring with

the polynomial representation det(V7) of GL(V7). The full embedding Df eﬁr’fzo(@') — Dfe@rf(@')

gives rise to an equivalence of colimits colim,, Di‘l’fzo(@?) — colim,, Dfearf(@?) = ngf(@.)'

Composing the inverse of ® with @ (in the notation of §4.3), we obtain an equivalence

P’ Di‘l}zo(@') — Dpmg (Gr). According to Lemma 4.2.2, the equivalence ®': Dliﬁr’fzo(@’) -,

D, (Gr) intertwines the endofunctors n and &, and hence induces the desired equivalence

5. nGo
D Dperf

On the coherent side we consider an endofunctor n of D

(&) — Dgr,(n-1,0)(Gr) between the colimits. Theorem 4.1.1 is proved.

5. Loop rotation and quantization

5.1 Graded differential operators and convolutions

We have Hg (pt) = C[h]. We consider the algebra © of ‘graded differential operators’ on
Hom(Va, V1): a C[h]-algebra generated by Hom(V2, V1) and Hom(V3, V,) with relations [h, h'] =
[f, f']1 =0, [h, f] = (h, f)h for h,h' € Hom(Va, V1), f, f' € Hom(Vi, V5). It is equipped with the
grading deg f = degh =1, degh = 2. We denote by D7, this graded algebra viewed as a dg-
algebra with trivial differential. We will also need two more versions of D7 ; differing by the
gradings of generators: in 03, we set deg f =0 and degh = 2, while in D3, we set deg f = 2
and degh = 0.

Recall the setup and notation of §3.4. So we have another copy V{ of Vi, we rebaptize the
algebra ® of ‘graded differential operators’ on Hom(V3, V1) as D91, and along with it we consider
Doy (‘graded differential operators’ on Hom(V2, V{)) and ©1/1 (‘graded differential operators’
on Hom(V{,V1)). Note that D91 = D12 (‘graded differential operators’ on Hom(Vi, V2)), and
similarly @21/ = @1/2, and @1/1 = @11/.

We have morphisms

m?: Hom(V{, Va) x Hom(Vy, V{) — Hom(Vy, V), (A, A") — A’A",

m?: Hom(V/, V1) x Hom(Va, V{) — Hom(V, V1), (B",B')+— B"B'.
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They give rise to the functors

GL(V/)xGL(V) GL(V1)xGL(VY/)

Dperf (91’2) X Dperf (@11,) N DGL(VI)XGL(VQ)

perf

(M1’27 Mll’) = (mf(MI/Q X j\/[lll))GL(Vll)7

GL(V{)xGL(V1) GL(V2)xGL(V/)

Dperf (91’1) X Dperf (@21,) N DGL(VQ)XGL(Vl)

perf

(M1, Marr) = (mZ (M K M21/))GL(V{)

(here m# and mZ stand for the direct images in the category of ©- modules).
We will actually need the corresponding functors on the categories of dg-modules

* Dperf(©2 0) X Dperf(©2 0) - Dperf(©§,0)7 * ‘Dperf(go 2) X ‘Dperf(go 2) - Dperf(ga,Q)'

The multiplicative group G,, acts on Gr x V as loop rotations. The goal of this section is the
following theorem.

THEOREM 5.1.1. There exist monoidal equivalences of triangulated categories

~

5 A !
(DGO ( 5,0)7 *) —0> (DIGOXcX(GrXV)7 @)

perf @?L’
ZJ/Qright ZJ/Qright
Gz ~
Dpeorf( I,l) ? D!*Go XCX (Gr X V) (511)
h

ZJ/Qright Zlgright

_ B -~
(Dgeorf( (.),2)7 * ) ‘;;—’ (D*GO xC X (GI’ X V), :Ik< )
h

(the vertical and middle row equivalences are not monoidal). The horizontal equivalences com-
mute with the actions of the monoidal spherical Hecke category Pervgg wcx (Gr) = Rep(GLy)
by left and right convolutions.

The proof will be given in §5.3.

5.2 Construction of equivalences

We set €2 := Ext® jeeq (Eo, Ep) (a dg-algebra with trivial differential). Since it is an
D{SEL 6y, (GTXV)

Ext-algebra in the de-equivariantized category, it is automatically equipped with an action
of GLy x GLN GL(W1) x GL(V2) = G, and we can consider the corresponding trlangulated

category Dperf( 3). Similarly to Lemma 3.9.2, there is a canonical equivalence Dperf((’f') -

D1GoxG,, (Gr x V). It remains to construct an isomorphism ¢3 : 11— €.

Note that €} is a C[h]-algebra, and €}/(h=0)= €* = &7, = Sym(g[-1]), so that &*
acquires a Poisson bracket from this deformation. We claim that this Poisson bracket arises from
the canonical symplectic form on g7. Indeed, the isomorphism ¢* (see the proof of Lemma 3.11.1)
over Isom(V2, V1) x Hom(V;, V2) and Hom(Va, Vi) x Isom(V1, Va) is Poisson. Here the Poisson
structure on these open subsets arises from the deformations 3, B} which in turn arise from
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the loop-rotation-equivariant Satake category Dgg xG,, (Gr). The corresponding Poisson brack-
ets are the standard ones on the cotangent bundles T*Isom(V2, V1), T*Isom(V1, V2), as follows
from [BF08, Theorem 5].

Now D7, is a unique graded C[A]-algebra with D1 ,/(h = 0) = Sym(g;[—1]) such that the
corresponding Poisson bracket on Sym(gi[—1]) is the standard one. Thus ¢7 and @%’1 are
constructed.

5.3 Restriction to Gr X Vy with loop rotation
Similarly to §3.12, our goal in this section is a description in terms of equivalence of Theorem
5.1.1 of the endofunctors 7«7y, JoxJ Dy,goxex (Gr X V) — Di,goxcx (Gr x V). To this end
we will need the algebra $ of ‘graded differential operators’ on Hom(V3, V5) & Hom(Vi, V{) &
Hom(VY, V3) defined similarly to © of §5.1. It is equipped with the grading where the gener-
ators from Hom(Va, V1), Hom(V1, V2), Hom(V{, V3) and Hom(Va, V) have degree 1, while the
generators from Hom(V;, V{) and Hom(VY, V1) have degrees 2 and 0 respectively, and degh = 2.
We denote by $® this graded algebra viewed as a dg-algebra with trivial differential. If we
denote the similar dg-algebras of ‘graded differential operators’ on Hom(V, V), Hom(Vy, VY)
and Hom(V/, V2) by ©%,, ©%,, and D35, then H°* = D}, @ D}, ® D},,. Since the canonical line
bundle on an affine space carries a canonical flat connection, the algebras ©7; admit (GL(V;) x
GL(Vj}))-equivariant anti-involutions. Thus we can identify $* =5 D1, ® (D}, @ D7,5)°P.

The algebra $°* has a cyclic holonomic left dg-module Q° of ‘delta-functions along the
subvariety cut out by the equation A = A’A”’; see (3.4.1). We also consider the GL(V1) x GL(V{)-
equivariant cyclic D};,-module D%,,, corresponding to the Dy := DHom(VhV{)—module given

by
Dyy/ (D1 ® det Vi @ det™ V) (det A”) = Tndy" oy OBomn .07
We define the following endofunctors of Dfeif( 11):
D (D11) = Dy (D1) 5 M pag™M
= (2" 9oy o, (01 © M) € DI (95) = DT (1)),

G o GL(V/)x GL(V N
Dpeorf( 171) - Dperg ! ( 2)( T12) 3 M — powqo M

GL(V1)xGL(V o Gy .
per§ Rl 2)( 12) :Dpeorf( 1,1)-

Then, similarly to Proposition 3.12.1, one proves the following proposition.

° ° GL(V/
= (Q ®®Il’®©1’2(©11/0®M)) ( 1) S D

PROPOSITION 5.3.1. (a) There is an isomorphism of functors

_ 4 1,1 1,1 Ner
JoxJo © @y = Py o pug”: Dpeorf( I,l) — Digoxex (Gr x V).

(b) There is an isomorphism of functors

Go

! 1,1 1,1 )
J0xJ0 © Pp = Py 0 posgy Dperf( ;,1) — Digoxex (Gr x V).

Now, using Proposition 5.3.1 in place of Proposition 3.12.1, one checks the monoidal prop-
erties of @%’0 and @2’2 similarly to the monoidal properties of ®2° and ®%2 checked in §§3.14
and 3.15, respectively. This completes the proof of Theorem 5.1.1.
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5.4 ®-modules and Dgr(n—1,0)xcx (Gr)
Similarly to § 5.1, we consider the dg-algebra (with trivial differential) ®® of ‘graded differential
operators’ on Hom(Va, V7). Then, similarly to Theorem 4.1.1, one proves the following theorem.

THEOREM 5.4.1. There exists an equivalence of triangulated categories ®j: Dge(;f(@') AN
Dg, wcx (Gr) commuting with the left convolution action of the monoidal spherical Hecke cat-
egory Pervarnv_1,0)xcx (Gry-1) = Rep(GLy-1) and with the right convolution action of the

monoidal spherical Hecke category Pervgy,n,0yxcx (Gry) = Rep(GLy).
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