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Abstract

We construct a mirabolic analogue of the geometric Satake equivalence. We also prove
an equivalence that relates representations of a supergroup to the category of GL(N −
1,C[[t]])-equivariant perverse sheaves on the affine Grassmannian of GLN . We explain
how our equivalences fit into a more general framework of conjectures due to Gaiotto
and to Ben-Zvi, Sakellaridis and Venkatesh.
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1. Introduction

1.1 Reminder on geometric Satake
Let F = C((t)) ⊃ C[[t]] = O. Throughout the paper, we fix an integer N ≥ 1, set GF = GL(N,F)
and GO = GL(N,O), and let Gr = GF/GO be the affine Grassmannian of GLN . This is an
ind-scheme equipped with a natural action of the group GO � C×, where C× acts by loop
rotation. Let DGO

(Gr) (respectively, DGO�C×(Gr)) be the GO-equivariant (respectively, GO �

C×-equivariant) constructible derived category of Gr.1 This is a monoidal category with respect
to convolution (which coincides with fusion); cf. [MV07].

Let glN be the complex vector space of N ×N matrices and let GLN act on glN by con-
jugation. Write Sym•(glN [−2]) for the symmetric algebra of glN viewed as a dg-algebra such
that the space glN , of generators, is placed in degree 2 and the differential is equal to zero. Let
DGLN

perf (Sym•(glN [−2])) be the triangulated category of perfect GLN -equivariant dg-modules over
Sym•(glN [−2]), localized with respect to quasi-isomorphisms. The tensor product of dg-modules
gives this category a monoidal structure. One of the versions of derived Satake equivalence proved
in [BF08] states that there is an equivalenceDGLN

perf (Sym•(glN [−2])) ∼−→DGO
(Gr) of triangulated

monoidal categories.
It will be convenient for us to reformulate the above result as follows. Let T ∗ GLN [2] be

the shifted cotangent bundle on GLN , viewed as a dg-scheme equipped with zero differential.
The action of GLN on itself by left and right translations induces a GLN ×GLN -action on
T ∗ GLN [2]. Let DGLN×GLN

perf (T ∗ GLN [2]) be the triangulated category of GLN ×GLN -equivariant
perfect complexes of OT ∗ GLN [2]-modules on T ∗ GLN [2]. The fiber of T ∗ GLN [2] over 1 ∈ GLN

may (and will) be identified with (glN [−2])∗ = gl∗N [2]. Restriction to this fiber induces a monoidal
equivalence DGLN×GLN

perf (T ∗ GLN [2]) ∼−→DGLN
perf (Sym•(glN [−2])), where the category on the right

is identified with the triangulated category of GLN -equivariant perfect complexes on (glN [−2])∗.

1 Throughout the paper, we consider the sheaves with complex coefficients (with a few technical exceptions).
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Thus, the derived Satake equivalence stated above may be interpreted as an equivalence
DGLN×GLN

perf (T ∗ GLN [2]) ∼−→DGO
(Gr).

There is also a natural ‘quantum’ counterpart of the latter equivalence, where the category
DGLN×GLN

perf (T ∗ GLN [2]) is replaced by an appropriately defined category of asymptotic shifted
weakly equivariantD-modules on GLN , and the categoryDGO

(Gr) is replaced byDGO�C×(Gr);
see [BF08].

1.2 Mirabolic Satake category
In the present paper we will be interested in a mirabolic analogue of the above setting. To explain
this, fix an N -dimensional vector space V and put V = V ⊗F, V0 = V ⊗ O and

◦
V = V � {0}.

We identify G = GLN with GL(V ), so that GF acts on V and GO is the stabilizer of V0.
Following [FGT09], the mirabolic affine Grassmannian is defined as Gr×V. We let GO act
on Gr×V diagonally. The orbits of GO in Gr× ◦

V are, unlike the case of GO-orbits in Gr,
not finite-dimensional. Heuristically, these orbits are of semi-infinite type in the sense that the
‘closure’ of an orbit projects onto a (finite dimensional) Schubert variety in Gr and onto a lattice
in V.

In view of the above, defining the correct mirabolic analogue of the equivariant derived Satake
category requires some care. According to our definition, an object of this category is supported
on the product of a finite-dimensional Schubert variety in Gr and a lattice inside the Tate
vector space V; moreover, this object is pulled back from a finite-dimensional quotient of this
lattice. According to three possible choices (!-, ∗-, and !∗-) of pullback, one gets the three versions
D!GO

(Gr×V), D∗GO
(Gr×V) and D!∗GO

(Gr×V) of GO-equivariant constructible derived
categories on Gr×V. These categories are related to each other by certain renormalization
equivalences.

We equip the above categories with monoidal structures given by various types of convolution
operation. The convolution along the Grassmannian, the first factor in Gr×V, is defined simi-
larly to the case of the usual Satake category. The convolution along the second factor depends

on the choice of category. Specifically, the convolution operation
!
� in D!GO

(Gr×V) involves the
!-tensor product of constructible sheaves on V. The convolution operation

∗∗ on D∗GO
(Gr×V)

involves a ∗-pushforward along +: V ×V→ V, the map given by addition. These two types
of convolution are related to each other via Fourier transform (along V). Finally, we define a
monoidal structure � on D!∗GO

(Gr×V) via the fusion operation on a mirabolic analogue of the
Beilinson–Drinfeld Grassmannian.

The categories above have natural counterparts involving the action of C× on Gr by
loop rotation. These are C[�]-linear categories where C[�] = H•

C×(pt). Thus, there is a cate-
gory D!GO�C×(Gr×V) (respectively, D∗GO�C×(Gr×V)) equipped with a similarly defined

monoidal structure
!
� (respectively,

∗∗). The fusion operation � on D!∗GO
(Gr×V) has no

GO � C×-equivariant counterpart, however.

1.3 Mirabolic Satake equivalence
The category on the ‘other side’ of mirabolic Satake equivalence is an appropriately defined
triangulated category of ‘equivariant asymptotic shifted D-modules’ on the vector space glN
of N ×N matrices. More formally, we introduce a C[�]-algebra D•, a graded version of the
algebra of differential operators on glN (where deg � = 2). The action of GLN on glN by left
and right multiplication induces a GLN ×GLN -action on D•. The relevant category is then
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defined to be the derived category of weakly GLN ×GLN -equivariant perfect dg-modules over
D•, where D• is viewed as a dg-algebra with zero differential. Similarly to the constructible story,
we actually define three versions, DGLN×GLN

perf (D•
1,1), D

GLN×GLN
perf (D•

0,2) and DGLN×GLN
perf (D•

2,0), of
such a category that correspond to three different choices of grading on our algebra. The algebra
of asymptotic differential operators specializes at � = 0 to the algebra C[T ∗glN ]. We denote the
specialization of D•

i,2−i at � = 0 by S•
i,2−i. Accordingly, the above-defined C[�]-linear categories

specialize at � = 0 to various versions of the derived category of GLN ×GLN -equivariant coherent
sheaves on the shifted cotangent bundle T ∗glN .

Next, we equip the above-defined categories with monoidal structures. The monoidal struc-

ture
A∗ on DGLN×GLN

perf (D•
2,0) is defined as a convolution operation on D-modules associated

with the map glN × glN → glN , given by matrix multiplication. The monoidal structure
B∗ on

DGLN×GLN
perf (D•

0,2) is defined as F−1 ◦ (
A∗) ◦ (F× F), where F is the functor of Fourier transform

on D-modules. Each of these monoidal structures has a quasiclassical limit at � = 0, defined as
a convolution of coherent sheaves arising from a certain Lagrangian correspondence. Finally, the
tensor product of coherent sheaves, that is, the functor M,M′ 	→M⊗S•

1,1
M′, gives a monoidal

structure on DGLN×GLN
perf (S•

1,1). This monoidal structure has no counterpart for D-modules (i.e.
for � 
= 0)z.

One of the main results of the present paper (see Theorems 3.6.1 and 5.1.1) states that
one has the following equivalences of triangulated monoidal categories, called mirabolic Satake
equivalences:

(
DGLN×GLN

perf (D•
2,0),

A∗ ) Φ2,0
�−−→∼=

(
D!GO�C×(Gr×V),

!
�

)
,

(
DGLN×GLN

perf (D•
0,2),

B∗ ) Φ0,2
�−−→∼=

(
D∗GO�C×(Gr×V),

∗∗ )
,

(
DGLN×GLN

perf (S•
1,1), ⊗S•

1,1

) Φ1,1−−→∼=
(
D!∗GO

(Gr×V), �
)
.

Furthermore, it turns out that the triangulated category D!∗GO
(Gr×V) is equivalent to the

bounded derived category of the abelian category PervGO
(Gr×V) of GO-equivariant perverse

sheaves on Gr×V, the heart of the perverse t-structure on D!∗GO
(Gr×V).

Remark 1.3.1. The counterpart of the last statement in the case of the usual Satake category
is false: the triangulated category D!∗GO

(Gr) is not equivalent to the derived category of the
category PervGO

(Gr), which is well known to be a semisimple abelian category.

Remark 1.3.2. One can view the group GLN as a Zariski open subset of the vector space glN
of all N ×N matrices. Associated with the open embedding GLN ↪→ glN , one has a restriction
functor on D-modules. It turns out that the counterpart of this functor for constructible derived
categories is a suitably defined version of restriction with respect to the ‘zero section’ Gr× {0} ↪→
Gr×V. That is, one has a natural functor DGO

(Gr×V) → DGO
(Gr). We will show that the

latter functor makes the derived Satake categoryDGO
(Gr) a localization of the mirabolic derived
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Satake category DGO
(Gr×V). Moreover, the mirabolic Satake equivalence is compatible with

the standard Satake equivalence in the sense that there is a commutative diagram of functors

asymptotic equivariant
D-modules on glN

mirabolic derived Satake

∼=
��

restriction
��

DGO�C×(Gr×V)

localization

��
asymptotic equivariant

D-modules on GLN

derived Satake

∼=
�� DGO�C×(Gr)

1.4 Conjectural Iwahori-equivariant version
Let I ⊂ GO be an Iwahori subgroup and Fl := GF/I the affine flag variety. In [Bez16],
Bezrukavnikov established an equivalence of DI(Fl), the I-equivariant constructible derived cat-
egory of Fl, and the derived category of GLN -equivariant coherent sheaves on an appropriate
dg-version of the Steinberg variety. Motivated by this result, we expect that there is a mirabolic
counterpart of this equivalence.

To explain this, fix a pair V1, V2, of N -dimensional vector spaces and let F�i, i = 1, 2, denote
the variety of complete flags in Vi. Further, consider a dg-scheme with zero differential

Hmir := Hom(V1, V2)[1]×Hom(V2, V1)[1]× F�1 × F�2.
2

Write A (respectively, B) for an element of Hom(V1, V2)[1] (respectively, Hom(V2, V1)[1]), and
Fi = (F (1)

i ⊂ F (2)
i ⊂ · · · ⊂ F (N)

i = Vi) for an element of F�i.
We define the mirabolic Steinberg scheme to be a dg-subscheme Stmir of Hmir cut out by

the equations saying that the flag F2 is stable under the composition AB and the flag F1 is
stable under the composition BA. Thus the mirabolic Steinberg scheme is a shifted variety of
quadruples:

Stmir = {(A,B, F1, F2) ∈ Hmir | AB(F (j)
2 ) ⊆ F (j)

2 and BA(F (j)
1 ) ⊆ F (j)

1 , ∀j ∈ [1, N ]}.
Let DI(Fl×V) be the I-equivariant constructible derived category of Fl×V. We propose the
following conjecture.

Conjecture 1.4.1. There exists an equivalence of triangulated categories

DGL(V1)×GL(V2) Coh(Stmir) ∼= DI(Fl×V).

This conjecture would explain, in particular, the appearance of the same polynomials, called
the Kostka–Shoji polynomials, in two different problems. On the one hand, it was proved in
[FGT09] that these polynomials are equal to the Poincaré polynomials of the stalks of GO-
equivariant intersection cohomology (IC) sheaves on the mirabolic affine Grassmannian. On the
other hand, it was proved in [FI18] that the Kostka–Shoji polynomials are equal to the Poincaré
polynomials of graded multiplicities of the natural GLN ×GLN -action on the space of global
sections of line bundles on a convolution diagram of the cyclic Ã1-quiver.

2 Here we view both Hom(V1, V2) and Hom(V2, V1) as odd vector spaces, so that the functions on Hom(V1, V2)[1] ×
Hom(V2, V1)[1] (with grading disregarded) really form a symmetric (infinite-dimensional) algebra, not an exterior
algebra.
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1.5 Satake equivalence for some Lie supergroups
We consider the Lie superalgebra gl(M |N) of endomorphisms of a super vector space CM |N ,
and the corresponding Lie supergroup GL(M |N) = Aut(CM |N ). We also consider a degenerate
version gl(M |N) where the supercommutator of the even elements (with even or odd elements)
is the same as in gl(M |N), while the supercommutator of any two odd elements is set to zero. In
other words, the even part gl(M |N)0̄ = glM ⊕ glN acts naturally on the odd part gl(M |N)1̄ =
Hom(CM ,CN )⊕Hom(CN ,CM ), but the supercommutator gl(M |N)1̄ × gl(M |N)1̄ → gl(M |N)0̄
equals zero.

The category of finite-dimensional representations of the corresponding supergroup
GL(M |N) (in vector superspaces) is denoted by Rep(GL(M |N)), and its bounded derived
category is denoted by SD(GL(M |N)).

There is a Koszul equivalence κ : SD(GL(N |N)) ∼−→ SDGLN×GLN
perf (S•

1,1) (equivariant
perfect dg-supermodules over dg-superalgebra S•

1,1); see, for example, [MR10]. It inter-
twines the usual tensor product of GL(N |N)-modules with the tensor product ⊗S•

1,1
on

SDGLN×GLN
perf (S•

1,1). Composing the Koszul equivalence κ with the mirabolic Satake equivalence

Φ1,1 : SDGLN×GLN
perf (S•

1,1)
∼−→ SD!∗GO

(Gr×V) (constructible sheaves of supervector spaces)

we obtain a super Satake equivalence SD(GL(N |N)) ∼−→ SD!∗GO
(Gr×V) that intertwines

the usual tensor product of GL(N |N)-modules with the fusion product on SD!∗GO
(Gr×

V). Moreover, this derived equivalence is exact with respect to the tautological t-structure
on SD(GL(N |N)) with the heart Rep(GL(N |N)) (respectively, the perverse t-structure on
SD!∗GO

(Gr×V) with the heart SPervGO
(Gr×V)).

Similarly, we construct equivalences

SD(GL(N − 1|N)) ∼−→̄
κ
SD

GLN−1×GLN

perf (S̄•
1,1)

∼−→̄
Φ
SDGL(N−1,O)(GrGLN

),

where S̄•
1,1 = Sym•(Hom(CN−1,CN )[−1]⊕Hom(CN ,CN−1)[−1]

)
.3 The composition is again

t-exact with respect to the tautological t-structure on SD(GL(N − 1|N)) with the heart
Rep(GL(N − 1|N)) (respectively, the perverse t-structure on SDGL(N−1,O)(GrGLN

) with the
heart SPervGL(N−1,O)(GrGLN

)). Moreover, the composition intertwines the usual tensor prod-
uct of GL(N − 1|N)-modules with the fusion product on SPervGL(N−1,O)(GrGLN

). Simi-
larly to § 1.3, the functor Φ̄ can be extended to an equivalence Φ̄� : SDGLN−1×GLN

perf (D̄•) ∼−→
SDGL(N−1,O)�C×(GrGLN

), where D̄• is the graded Weyl algebra of shifted differential operators
on Hom(CN−1,CN ) (with deg � = 2 and all the other generators in degree 1).

1.6 Gaiotto conjectures
One may wonder if there is a geometric realization of categories of representations of
non-degenerate supergroups GL(N |N), GL(N − 1|N). It turns out that such a realiza-
tion exists (conjecturally) for the categories of integrable representations of quantized
algebras Uq(gl(N |N)), Uq(gl(N − 1|N)). First of all, similarly to the classical Kazh-
dan–Lusztig equivalence, it is expected that Uq(gl(M |N)) -mod ∼= KLc(ĝl(M |N)), where q =
exp(π

√−1/c), and KLc(ĝl(M |N)) stands for the derived category of GL(M,O)×GL(N,O)-
equivariant ĝl(M |N)-modules at the level corresponding to the invariant bilinear form

3 Here we view both Hom(CN−1, CN ) and Hom(CN , CN−1) as odd vector spaces, so that
Sym•(Hom(CN−1, CN )[−1] ⊕ Hom(CN , CN−1)[−1]

)
(with grading disregarded) is really a symmetric

(infinite-dimensional) algebra, not an exterior algebra.
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(X,Y ) = c · sTr(XY )− 1
2 Killinggl(M |N)(X,Y ) on gl(M |N). Second, it is expected that the cat-

egory KLc(ĝl(N − 1|N)) is equivalent to the q-monodromic GL(N − 1,O)-equivariant derived
constructible category of the complement L• of the zero section of the determinant line bundle on
GrGLN

, and this equivalence takes the standard t-structure of KLc(ĝl(N − 1|N)) to the perverse
t-structure.

Further, it is expected that KLc(ĝl(N |N)) is equivalent to the q-monodromic GL(N,O)-
equivariant derived constructible category of L• ×V, and this equivalence takes the standard
t-structure of KLc(ĝl(N |N)) to the perverse t-structure. For M < N − 1 it is expected that
KLc(ĝl(M |N)) is equivalent to the q-monodromic GL(M,O)-equivariant derived constructible
category of L• with certain Whittaker conditions; cf. § 2.6 for more details. In particular, the
special case M = 0 of this conjecture follows from the fundamental local equivalence [Gai08,
Gai16, Gai20] of the geometric Langlands program.

There are similar expectations for other classical (i.e. orthosymplectic) Lie superalgebras;
the interested reader may try to find them in [GW09].

1.7 Conjectures of Ben-Zvi, Sakellaridis and Venkatesh
In an ongoing project of D. Ben-Zvi, Y. Sakellaridis and A. Venkatesh, the authors propose the
Periods–L-functions duality conjectures. Their conjectures predict, among other things, that,
given a reductive group G and its spherical homogeneous variety X = G /H, there is a subgroup
G∨

X ⊂ G∨, its graded representation V ∨
X =

⊕
i∈Z

V ∨
X,i[i], and an equivalence DCoh(V ∨

X/G∨
X) =

DCoh
(
(
⊕

i∈Z
V ∨

X,i[i])/G∨
X

) � DG(O)(X(F)). For a partial list of examples, see the table at the
end of [Sak13]. The relevant representations V ∨

X (constructed in terms of the Luna diagram of
X) can be read off from the fourth column of the table.

It turns out that the equivalences discussed in § 1.5 fit into the general setting outlined in
the previous paragraph. Thus the case of [Sak13, Example 13] corresponds to the equivalence
Φ̄ : DGLN−1×GLN

perf (S̄•
1,1)

∼−→DGL(N−1,O)(GrGLN
) of § 1.5. To explain this, let G := GLN−1×GLN

and H := GLN−1. We view H as a block-diagonal subgroup of G and put X = G /H. Then,
loosely speaking, we have DGL(N−1,O)(GrGLN

) � D(
GL(N − 1,O)\GL(N,F)/GL(N,O)

) �
D

(
G(O)\G(F)/H(F)

) � D(
G(O)\X(F)

) � DG(O)(X(F)). On the other hand, we consider a
graded G∨-module V ∨

X := Hom(CN−1,CN )[1]⊕Hom(CN ,CN−1)[1] (similarly to the footnote in
§ 1.5, we view V ∨

X as an odd vector space placed in cohomological degree −1; note also that
G∨ � G = GLN−1×GLN ). Hence, the equivalence Φ̄ of § 1.5 takes the form DCoh(V ∨

X/G∨) �
DG(O)(X(F)).

Similarly, [Sak13, Example 14] matches the Gaiotto conjecture of § 1.6 for an orthosymplectic
Lie superalgebra.

1.8 Organization of the paper
In § 2 (which is not necessary for understanding subsequent sections) we formulate the Gaiotto
conjectures and explain their relation to the geometric Langlands program and, in particu-
lar, with the fundamental local equivalence. Section 3 is the technical core of the paper. In
this section we establish a coherent description of the spherical mirabolic affine Hecke category
DGL(N,O)(Gr×V) with its three monoidal structures. Also, as preparation for § 4 we give a
coherent description of the restriction functor DGL(N,O)(Gr×V)→ DGL(N,O)(Gr×V0).4 In
§ 4 we establish a coherent description of the category DGL(N−1,O)(Gr) along with its fusion

4 Recall that V0 = V [[t]] is the standard lattice in the Tate vector space V.
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monoidal structure. In § 5 we prove the quantum analogues, that is, counterparts for categories
equivariant with respect to the loop rotations, of the results above.

2. Gaiotto conjectures

The purpose of the present section is to put the main results of this paper into a wider framework
which has to do with the local geometric Langlands correspondence. This section will be used
for motivation purposes only. It can be safely skipped by readers who are not interested in the
geometric Langlands correspondence. The ideas of this section are due to D. Gaiotto (private
communication). Gaiotto informed us that his ideas were motivated, to a large extent, by his
discussions with P. Yoo as well as by [MW15].

2.1 Reminder on strong actions on categories
Let G be a connected reductive group over C and let κ denote an invariant symmetric bilinear
form on the Lie algebra g of G (when G is simple, the vector space of such bilinear forms is one-
dimensional, so we can think of κ as an element of C). Then there is a notion of strong action
of the group GF on a category C of level κ. We refer the reader to [Gai16] for details of the
definition. It will be important for us later that this definition is, in some sense, invariant under
integral shifts. Specifically, any category C endowed with a GF-action of level κ has a natural
GF-action of level κ+ κ′, where κ′ is another form as above which is, moreover, integral in the
sense that the corresponding quadratic form is integral and even on elements of the coweight
lattice of G. Here are two important examples.

(1) Let ĝκ denote the central extension of gF associated with the form κ. Let ĝκ-mod be the
category of continuous (with respect to t-adic topology) modules over ĝκ such that the element
1 of the center acts on the module as the identity. Then the adjoint action of GF on ĝκ has a
natural lift to a strong action of GF on ĝκ-mod of level κ. More generally, let a = a0̄ ⊕ a1̄ be a
Lie superalgebra. Make the following assumptions.

(i) G acts on a.
(ii) We are given a map ι : g→ a0̄ such that the corresponding adjoint action of g on a is equal

to the derivative of the G-action from (i).
(iii) The algebra a is equipped with an invariant symmetric (in the super sense) bilinear form

κa. Let κg be its pullback to g.

Associated with the form κa, there is a canonical Kac–Moody extension â of aF. As before,
we denote by â-mod the category of continuous modules M over â such that the element 1
of the center acts on M by the identity. This category comes equipped with a GF-action of
level κg.

We will mostly be interested in the following special case of the above construction. Fix a pair
M,N , of non-negative integers. Let a = gl(M |N), G = GLM ×GLN . Let κa(x, y) = c · sTr(xy),
where sTr stands for ‘super-trace’ and c ∈ C.

(2) Assume that the form κ is integral and even. Then this form gives rise to a central
extension Ĝ of GF. Let X be an ind-scheme equipped with a Ĝ-equivariant line bundle L. Then,
for any c ∈ C, one has the category Dc(X)-mod of c-twisted D-modules on X. This category has
a natural strong GF-action of level c · κ.
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2.2 Digression on the local (quantum) geometric Langlands correspondence
Let G and κ be as above and assume in addition that the form κ is non-degenerate. Let G∨

denote the Langlands dual group. Since κ is non-degenerate it gives a similar form κ∨ for G∨.
Further, put κcrit = −1

2Killingg, where Killingg stands for the Killing form on the Lie algebra g

of G.
The local quantum geometric Langlands conjecture is, roughly speaking, an equivalence of

2-categories

{categories with strong GF-action of level κ+ κcrit}

and

{categories with strong G∨
F-action of level −κ∨ − κ∨crit}.

The form κcrit being integral, the shift by κcrit in the above formulation is not essential. However,
it is convenient for many applications to make this shift.

To give a rigorous meaning to the above conjecture one needs, first of all, to replace all
‘categories’ by suitable ‘dg-categories’. This upgrades each side of the equivalence to an (∞, 2)-
category. Then, for generic (i.e. non-rational) κ, the above equivalence is expected to hold as
stated. For general κ, more corrections are necessary but we will not discuss this here since the
local geometric Langlands correspondence will only serve as a guiding principle.

There is a ‘limiting version’ of the above conjecture for κ = 0. To explain this, we use the
notion of a ‘category over a stack S’; cf. [Gai16, § 6] and references therein. Write D◦ = Spec(F)
and let LocSysG∨(D◦) be the classifying stack of principal G∨-bundles on D◦ equipped with
a connection. The ‘classical’ local geometric Langlands conjecture predicts a close relationship
between

{categories with strong GF-action of level κcrit}

and

{categories over LocSysG∨(D◦)}.

Here, κcrit can be replaced by 0, since κcrit is integral. Again, it is possible to make the informal
relation above a rigorous mathematical conjecture; cf. again [Gai16, § 6] for a more detailed
discussion.

In the remainder of this section we will pretend that both quantum and classical geometric
Langlands conjectures hold as stated. We will write C 	→ C∨ for the resulting correspondence.

An important example of such a correspondence is as follows. Fix a non-degenerate form κ

and let C = Dκ+κcrit(GrG)-mod be the category of (κ− κcrit)-twisted D-modules on the affine
Grassmannian GrG of G. It is expected that in this case the category C∨ is the category
D−κ∨−κ∨

crit
(GrG∨)-mod. In the limiting case κ = 0 category C∨ is expected to be a pushfor-

ward of category QCoh(pt/G∨) under the natural map pt/G∨ → LocSysG∨(D◦) induced by the
embedding of the trivial local system. These expectations would have the following implication.

(i) If κ is non-degenerate, then CGO � (C∨)G∨
O (here CGO denotes the category of GO-

equivariant objects in C).
(ii) If κ = 0 then CGO is equivalent to the pullback of the category C∨ under the map pt/G∨ →

LocSysG∨(D◦) corresponding to the trivial local system.
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2.3 Whittaker category and the fundamental local equivalence
In this subsection we discuss another important example of Langlands dual categories. We refer
to [Gai16, Gai20] for details.

Let U be a maximal unipotent subgroup of G and let χ0 : U → Ga be a non-degenerate
character. We define a character χ : UF → Ga by

χ(u(t)) = Rest=0 χ0(u(t)) dt.

Given a (cocomplete, dg) category C with a strong GF-action of a fixed level, one can define a
category Whit(C) of (UF, χ)-equivariant objects in C.

We consider the category Dκ(GF)-mod of κ-twisted D-modules on GF. According to [AG02],
this category has a natural action of GF of level κ that comes from left translations, and also
another action of GF of level −κ+ 2κcrit that comes from right translations.

Let Whitr
κ(GF) denote its Whittaker category with respect to the right action. This category

inherits the left action of level κ. One could ask what is its Langlands dual category.
For simplicity, below we will only consider either the case where κ is not rational (i.e. the

value of the corresponding quadratic form on any coroot is not a rational number) or the case
κ = 0.

Assume first that κ is non-degenerate and not rational. Then it is expected (cf. [Gai16]) that

Whitr
κ−κcrit

(GF)∨ is the category ĝ∨−κ∨+κ∨
crit

-mod. (2.3.1)

In the case κ = 0 the expected answer is the category QCoh(LocSysG∨(D◦)).
Let Whitκ(GrG) denote the category of κ-twisted D-modules on GrG and let KLκ(g) =

(ĝκ-mod)GO . Then, statements (i) and (ii) of § 2.2 imply the following result, which has been
proved rigorously in [Gai20, Gai08] (it goes under the name ‘fundamental local equivalence’).

Theorem 2.3.1. Assume that κ is non-degenerate and not rational. Then

Whitκ+κcrit(GrG) � KLκ∨+κ∨
crit

(g∨), (2.3.2)

Whit(GrG) � Rep(G∨). (2.3.3)

Moreover, these equivalences hold at the level of abelian categories.

Remarks 2.3.2. (1) The critical shifts in (2.3.2) are not important for irrational κ if one only
cares about both sides as abstract categories. However, we still prefer to keep them, since in this
way one can also extend the statement to rational κ; in addition, the shifts are important if we
keep track of some natural structures on these categories (cf. (4)) below.

(2) Note the absence of a negative sign before κ∨ + κ∨crit on the right-hand side of (2.3.2).
This has to do with the fact that Whitκ+κcrit(GrG) is actually the category of GO-equivariant
objects with respect to the left action of GO on the category of D-modules on GF which are
Whittaker on the right. This change from right to left is what is responsible for the change of
sign.

(3) The fact that the above equivalences respect the natural t-structures does not follow (to
the best of our knowledge) from any geometric Langlands considerations. In fact, at the level of
(unbounded) derived categories the statement holds for all κ, but when κ is positive rational it
is very far from an abelian equivalence.

(4) The above equivalences are in fact not only equivalences of abstract categories, but also
equivalences of categories with factorization structure, a notion closely related to the notion of
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a braided monoidal category (it is also worthwhile to note that as an abstract category, KLκ(ĝ)
is independent of κ if κ is irrational; but it is not so if we take into account the factorization
structure).

2.4 Gaiotto conjectures: geometric Langlands form in the case N > M

There is one more series of examples which are relevant to the subject of this paper. Fix two non-
negative integers N and M such that N ≥M and set GM,N = GLM ×GLN . Note that GM,N is
isomorphic to G∨

M,N .
We are going to produce an example of Langlands dual categories for GM,N ; for M = 0

we will recover (2.3.1). First, we describe the analogue of the right-hand side. Let c ∈ C. Then
the category in question will be the category ĝl(M |N)c-mod of modules over the affine Lie
superalgebra ĝl(M |N) of level c · κM,N + 1

2KillingM,N , where

(1) κM,N (x, y) = sTr(xy),
(2) KillingM,N is the restriction of the Killing form of gl(M |N) to the even part (note that it

is degenerate if M = N).

This category has a natural action of the group GM,N (F) of a certain level which is an integral
shift of (c · κM ,−c · κN ) (here κN denotes the standard invariant bilinear form on the Lie algebra
glN equal to Tr(X · Y )). As has been explained above, one can twist the action of GM,N (F) on
this category so that the twist becomes equal to (c · κM ,−c · κN )− κcrit (here by κcrit we mean
the critical bilinear form for the Lie algebra gM,N ). Hence it makes sense to consider its Langlands
dual. This should be a category with a strong action of GM,N (F) of level c−1 · (κM ,−κN )− κcrit.
However, we can again twist the action and think of it as a category with an action of GM,N (F)
of level c−1 · (κM ,−κN ). Let us give a conjectural description of the Langlands dual category
according to a prediction of D. Gaiotto.

Next, let M < N . We define a unipotent subgroup UM,N of GLN as follows. If M = N − 1
this subgroup is trivial, and if M = 0 it is the group UN of unipotent upper-triangular matrices.
In the general case, UM,N is a subgroup of UN defined as follows.

Let eM,N ∈ glN be the standard upper-triangular Jordan block of size N −M , that is,

eM,N =
N−M−1∑

i=1

Ei,i+1,

where Eij stands for the matrix whose (i, j)th entry is equal to 1 and all other entries are
equal to 0. The element eM,N is part of an sl2-triple (eM,N , hM,N , fM,N ). Here fM,N =∑N−M−1

i=1 i(N −M − i)Ei+1,i and hM,N is the diagonal matrix which has diagonal entries
(N −M − 1, N −M − 3, . . . ,−N +M + 1, 0, . . . , 0). For any integer l we let gl denote the
l-eigenspace of the adjoint action of hM,N on glN . We set

uM,N =
⊕
l≥2

gl ⊕ g+
1 ,

where g+
1 is the intersection of g1 with the Lie algebra of upper-triangular matrices. We define

a Lie algebra homomorphism χ0
M,N : uM,N → C by sending a matrix (uij) to

∑N−M−1
i=1 ui,i+1.

Let UM,N be a unipotent subgroup of GLN with Lie algebra uM,N and let UM,N → Ga be the
homomorphism induced by χ0

M,N (which we denote by the same symbol χ0
M,N ).
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We embed the group GLM into the centralizer of the element hM,N in GLN (this is the block-
diagonal embedding corresponding to rows N −M + 1, . . . , N). It is easy to see that the group
GLM normalizes the subgroup UM,N , and the homomorphism χ0

M,N is fixed by the GLM -action
on UM,N by conjugation.

Remark 2.4.1. UM,N is conjugate to the subgroup U ′
M,N formed by the block-upper-triangular

matrices ⎛
⎝Ur ∗ ∗

0 1M+1 ∗
0 0 Us

⎞
⎠ , where r = �(N −M − 1)/2�, s = �(N −M − 1)/2�;

in particular, r + s = N −M − 1. Here Up stands for an arbitrary unipotent upper-triangular
matrix in GLp, and the notation ‘∗’ is used for arbitrary matrices of an appropriate size. Moreover,
the conjugation can be chosen so that the character χ0

M,N corresponds to the character χ(r,s)
M,N

on u
(r,s)
M,N := LieU (r,s)

M,N given by (uij) 	→
∑r−1

i=1 ui,i+1 + urk + uk,N−s+1 +
∑N−1

i=N−s+1 ui,i+1 for any

choice of k ∈ {r + 1, . . . , N − s}. The subgroup U (r,s)
M,N ⊂ GLN and the character χ(r,s)

M,N are defined
for an arbitrary pair (r, s) ∈ N2 := Z2

≥0 with r + s = N −M − 1. (In the two extreme cases

{r, s} = {0, N −M − 1}, one of the middle terms in the formula for χ(r,s)
M,N is undefined and

should be omitted.) Moreover, χ(r,s)
M,N can be replaced by an arbitrary representative of the open

NGLN
(U (r,s)

M,N )-orbit in u
(r,s)∗
M,N .

Remark 2.4.2. U (0,N−M−1)
M,N is also conjugate to the unipotent radical U(M+1,1,...,1) of the standard

parabolic subgroup P(M+1,1,...,1) of GLN corresponding to the partition (M + 1, 1, . . . , 1) of N .
The character χ0

M,N is conjugate to the restriction of the regular character u 	→∑N−1
i=1 ui,i+1 of

the upper-triangular subgroup to U(M+1,1,...,1); cf. [JPS83, §(2.11)] and [Cog04, beginning of § 2
of Lecture 5].

As before, we define a homomorphism χM,N : UM,N (F)→ Ga to be Rest=0 χ
0
M,N .

For any c′ ∈ C, we now consider the category Dc′(GL(N,F))UM,N (F),χM,N . By definition this
is the derived category of D-modules on GL(N,F) twisted by c′ · κN that are equivariant on the
left with respect to (UM,N (F), χM,N ). This category has a natural action of GL(M,F) of level
c′ · κM coming from left multiplication and an action of GL(N,F) of level −c′ · κM −KillingglN
coming from right multiplication (recall that KillingglN

denotes the Killing form on glN ). As
before, we can twist the second action to make it an action of level −c′ · κM .

Remark 2.4.3. In fact, using the Fourier transform for D-modules, one can show that replacing
(r, s) in Remark 2.4.1 with any pair of non-negative integers whose sum equals N −M − 1
produces a category equivalent to Dc′(GL(N,F))UM,N (F),χM,N .

We now take c′ = 1/c. Then, according to a conjecture of D. Gaiotto, the category
D1/c(GL(N,F))UM,N (F),χM,N is Langlands dual to ĝl(M |N)c-mod.

We can also consider the limit c→∞. To simplify the discussion we will not do it now, but
we will discuss it later when we turn to GO-equivariant objects.

2.5 Gaiotto conjectures: geometric Langlands form for N = M

Let us also discuss the case N = M . In this case on the left we again take the same category
ĝl(N |N)c-mod of modules over the affine Lie superalgebra ĝl(N |N) of level c · κN,N − 1

2KillingN,N
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(note that the Killing form is zero for N = M). The Langlands dual category (according to
Gaiotto) is the derived category D1/c(GL(N,F)×V) of 1/c-twisted D-modules on GL(N,F)×
V where

(1) the twisting is with respect to the first factor,
(2) the two actions of GL(N,F) come from the diagonal action coming from the left action of

GL(N,F) on the first factor and the natural action of GL(N,F) on the second factor, and
the right multiplication action GL(N,F) on the first factor.

2.6 Gaiotto conjectures: ‘simple-minded’ form
The above statements are not really well-formulated mathematical conjectures, since the local
geometric Langlands duality is not known at present. However, we can turn them into precise
conjectures by using (i) at the end of § 2.2, that is, we are going to take GM,N (O)-invariants on
both sides. We get the following conjectures.

Conjecture 2.6.1. Assume that N > M and assume that c 
= 0 is not a rational number. The

categories D
(GL(M,O)�UM,N (F),χM,N )

1/c (GrGLN
) and KLc(ĝl(M |N)) are equivalent as factorization

categories. Here KLc(ĝl(M |N)) is the category of GM,N (O)-equivariant objects in the category

ĝl(M |N)c-mod.

Similarly, the category D
GL(N,O)
1/c (GrGLN

×V) is equivalent to KLc(ĝl(N |N)).

We now want to take the limit c→∞. In this case 1/c goes to 0 and the category of
1/c-twisted D-modules in Conjecture 2.6.1 just becomes the category of usual D-modules. The
c→∞ limit of the category KLc(ĝl(M |N)) is not canonically defined: one has to choose some nice
extension of the corresponding family of categories from A1 to P1; cf. [Zha17, § 6]. Naively, one
might think that the correct extension is just the category of representations of the supergroup
GL(M |N). However, it turns out that this is not the right choice. Instead, one needs to consider
the category of representations of the group GL(M |N)) defined in § 1.5. With these conventions
one gets the following conjecture.

Conjecture 2.6.2. Assume thatN > M . Then the categoryD(GL(M,O)�UM,N (F),χM,N )(GrGLN
)

is equivalent to the category of modules over the group GL(M |N)).
Similarly, for N = M , the category DGL(N,O)(GrGLN

×V) is equivalent to the category of

modules over the group GL(N |N)).
These equivalences should hold for both derived and abelian categories.

In the present work we prove Conjecture 2.6.2 for M = N and M = N − 1.

3. A coherent realization of DGL(N,O)(Gr × V)

3.1 Setup and notation
We follow the notation of [FGT09]. Recall that Gr = GrGLN

= GF/GO = GL(N,F)/GL(N,O),
where F = C((t)) ⊃ C[[t]] = O. We consider a complex vector space V with a basis e1, . . . , eN . We
set V = V ⊗F ⊃ V ⊗O = V0.

Recall that the GF-orbits in Gr×Gr (respectively, in Gr×Gr× ◦
V) are numbered in

[FGT09, § 3.1] by signatures5 (respectively, by bisignatures, i.e. pairs of signatures) in such a

5 Sequences of integers ν = (ν1 ≥ · · · ≥ νN ), following the terminology of H. Weyl.
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way that the GF-orbits on Gr×Gr numbered by partitions ν = (ν1 ≥ · · · ≥ νN ≥ 0) corre-
spond to the pairs of lattices L1 ⊂ L2. More precisely, the orbit corresponding to a bisignature
(λ,μ) contains a point

(
L1 = O〈e1, e2, . . . , eN 〉, L2 = O〈t−λ1−μ1e1, t

−λ2−μ2e2, . . . , t
−λN−μN eN 〉, v =

N∑
i=1

t−λiei

)
.

Irreducible representations of GLN = GL(V ) are also numbered by the signatures, so that, for
example, the determinant character detV corresponds to (1N ). To a signature ν = (ν1 ≥ · · · ≥
νN ) we associate an irreducible representation Vν with the highest weight ν. The geometric
Satake equivalence takes the irreducible perverse sheaf ICν to the irreducible representation V ∗

ν .
Thus if ν is a partition (respectively, a negative partition (0 ≥ ν1 ≥ · · · ≥ νN )), then V ∗

ν is an
antipolynomial (respectively, polynomial) representation of GLN (a polynomial functor in V ∗,
V , respectively).

A word of apology for our weird convention is in order. The numbering of GO-orbits in
Gr such that the orbits of sublattices L ⊂ V0 are numbered by partitions goes back at least to
[Lus81]. We choose the numbering such that the orbits of sublattices are numbered by negative
partitions since under this numbering the adjacency order of GO-orbits in Gr× ◦

V goes to Shoji’s
order ([Sho04], [FGT09, Proposition 12]) on the set of bisignatures. Furthermore, we choose the
Satake equivalence ICν 	→ V ∗

ν (as opposed to ICν 	→ Vν) since it makes the statement of our
main result Theorem 3.6.1 neater.

3.2 Constructible mirabolic category and convolutions
The triangulated category DGO

(Gr× ◦
V) is defined as in [FGT09, § 2.6]. We will denote it by

D∗GO
(Gr×V). Recall that an object F of D∗GO

(Gr×V) is supported on Gr× tmV0 for
certain m ∈ Z, and there exist n > m and a GO-equivariant sheaf Fn on Gr× (tmV0/t

nV0)
such that F = p∗nFn, where

pn : Gr× tmV0 → Gr× (tmV0/t
nV0)

is the natural projection. In other words, F is a collection of GO-equivariant sheaves Fn′ on
Gr× (tmV0/t

n′
V0) for n′ ≥ n along with a compatible system of isomorphisms p∗n′′/n′Fn′ ∼−→

Fn′′ for n′′ ≥ n′, where

pn′′/n′ : Gr× tmV0/t
n′′

V0 � Gr× tmV0/t
n′
V0

are the natural projections.
If in the above definition we replace p∗n by p!

n and p∗n′′/n′ by p!
n′′/n′ , then we obtain a trian-

gulated category D!GO
(Gr×V). Note that pn′′/n′ is a smooth morphism of relative dimension

N(n′′ − n′), so we have a canonical isomorphism p!
n′′/n′ ∼= p∗n′′/n′ [2N(n′′ − n′)]. We also consider

the intermediate version

p!∗
n′′/n′ := p∗n′′/n′ [N(n′′ − n′)] = p!

n′′/n′ [−N(n′′ − n′)],
exact for the perverse t-structure. The corresponding triangulated category will be denoted
D!∗GO

(Gr×V).

We will make use of an identification Gr×V = GF

GO× V = (GF ×V)/GO (quotient with
respect to the diagonal right-left action). We will denote the orbit of (g, v) ∈ GF ×V by [g, v].
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Note that the left diagonal action of GO on Gr×V in terms of the above identification is
h · [g, v] = [hg, v]. We consider the following convolution diagram:

GF × (Gr×V)
q−−−−→ GF

GO× (Gr×V)

p

⏐⏐� m

⏐⏐�
(Gr×V)× (Gr×V) Gr×V,

(3.2.1)

([g1, g2v], [g2, v])
p←− (g1, [g2, v])

q−→ [g1, [g2, v]]
m−→ [g1g2, v].

Given F1,F2 ∈ D!GO
(Gr×V), we define F1

!
� F2 := m∗(F1 �̃

!
F2), where F1 �̃

!
F2 ∈

D!GO

(
GF

GO× (Gr×V)
)

is the canonical descent of p!(F1 � F2) along q. Similarly, given F1,F2 ∈
D∗GO

(Gr×V), we define F1

∗
� F2 := m∗(F1 �̃

∗
F2), where F1 �̃

∗
F2 ∈ D∗GO

(
GF

GO× (Gr×
V)

)
is the canonical descent of p∗(F1 � F2) along q, a unique sheaf such that p∗(F1 � F2) =

q∗(F1 �̃
∗
F2).

We also consider another convolution diagram:

GF ×V × (Gr×V)
q−−−−→ GF

GO× (Gr×V ×V)

p

⏐⏐� m

⏐⏐�
(Gr×V)× (Gr×V) Gr×V,

(3.2.2)

([g1, v1], [g2, v2])
p←− (g1, v1, [g2, v2])

q−→ [g1, [g2, g−1
2 v1, v2]]

m−→ [g1g2, g−1
2 v1 + v2].

Given F1,F2 ∈ D!GO
(Gr×V), we define F1

!∗ F2 := m!(F1 �̃
!
F2), where F1 �̃

!
F2 ∈ D!GO

(
GF

GO×
(Gr×V ×V)

)
is the canonical descent of p!(F1 � F2) along q. Similarly, given F1,F2 ∈

D∗GO
(Gr×V), we define F1

∗∗ F2 := m∗(F1 �̃
∗
F2), where F1 �̃

∗
F2 ∈ D∗GO

(
GF

GO× (Gr×V ×
V)

)
is the canonical descent of p∗(F1 � F2) along q.

If we formally put v1 = 0 in (3.2.2), we obtain the convolution diagram

GF ×Gr×V
q−−−−→ GF

GO× (Gr×V)

pleft

⏐⏐� m

⏐⏐�
Gr× (Gr×V) Gr×V,

(3.2.3)

([g1], [g2, v])
pleft←−− (g1, [g2, v])

q−→ [g1, [g2, v]]
m−→ [g1g2, v],

and if we put v2 = 0, we obtain

GF ×V ×Gr
q−−−−→ GF

GO× (Gr×V)

pright

⏐⏐� m

⏐⏐�
(Gr×V)×Gr Gr×V,

(3.2.4)

([g1, v], [g2])
pright←−−− (g1, v, [g2])

q−→ [g1, [g2, g−1
2 v]] m−→ [g1g2, g−1

2 v].
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Given P ∈ DGO
(Gr) and F ∈ D?GO

(Gr×V) (where ? =!, ∗, !∗), we define P ∗ F := m∗(P �̃ F),

where P �̃ F ∈ D?GO
(GF

GO× (Gr×V)
)

is the canonical descent of p∗left(P� F) along q. We also

define F ∗ P := m∗(F �̃ P), where F �̃ P ∈ D?GO
(GF

GO× (Gr×V)
)

is the canonical descent of
p∗right(F � P) along q. Both the left and right convolutions are biexact for the perverse t-structures
on DGO

(Gr) and D!∗GO
(Gr×V); see [FGT09, § 3.9].

3.3 Fusion
Let X be a smooth curve. For any integer k > 0, and a collection x = (xi)k

i=1 of S-points of X,
we denote by Dx the formal neighborhood of the union of graphs |x| := ⋃k

i=1Γxi ⊂ S ×X, and
we denote by D◦

x := Dx � |x| the punctured formal neighborhood. The mirabolic version of the
Beilinson–Drinfeld Grassmannian is the ind-scheme Grmir

BD,k over Xk parametrizing the following
collections of data:

(xi)k
i=1, E, φ : Etriv|D◦

x

∼−→ E|D◦
x
, v ∈ Γ(D◦

x,E),

where E is a rank-N vector bundle on Dx. If X = A1, we have over the complement to the
diagonals a canonical isomorphism

(Ak � Δ)×Ak Grmir
BD,k

∼= (Ak � Δ)× (Gr×V)k.

We denote the projection (Ak � Δ)× (Gr×V)k → (Gr×V)k by pr2. Given F1,F2 ∈
D?GO

(Gr×V) (where ? = !, ∗, !∗) we take k = 2 and define the fusion

F1 � F2 := pr2∗ψx−y pr∗2(F1 � F2)[1],

where x, y are coordinates on A2 (so that x− y = 0 is the equation of the diagonal Δ ⊂ A2), and
ψx−y is the nearby cycles functor for the pullback of the function x− y to Grmir

BD,2, normalized
so as to preserve the perverse t-structure. Note that the leftmost occurrence of pr2 in the above
definition projects A1 ×Gr×V to Gr×V, while the rightmost occurrence of pr2 projects
(A2 � Δ)× (Gr×V)2 to (Gr×V)2.

3.4 Coherent mirabolic category and convolutions
We write ΠE for an odd vector space obtained from a vector space E by reversing the parity.

We fix a pair of N -dimensional vector spaces V1 � CN � V2. We consider the Lie super-
algebra gl(N |N) = gl(V1 ⊕ΠV2). We have gl(N |N) = g0̄ ⊕ g1̄, where g1̄ = ΠHom(V1, V2)⊕
ΠHom(V2, V1), and g0̄ = End(V1)⊕ End(V2). We set G0̄ = GL(V1)×GL(V2). We consider the
dg-algebra6 G•

1,1 = Sym(g1̄[−1]) with zero differential, and the triangulated category DG0̄
perf(G

•
1,1)

obtained by localization (with respect to quasi-isomorphisms) of the category of perfect G0̄-
equivariant dg-G•

1,1-modules. The category D
G0̄
perf(G

•
1,1) is monoidal with respect to M,M′ 	→

M⊗G•
1,1

M′; see § 3.7 below.
We will also need two more versions of G•

1,1, namely

G•
0,2=Sym(Hom(V1, V2))⊗ Sym(Hom(V2, V1)[−2]),

G•
2,0=Sym(Hom(V1, V2)[−2])⊗Sym(Hom(V2, V1)),

6 We view g1̄ as an odd vector space, so that Sym(g1̄[−1]) (with grading disregarded) is really a symmetric
(infinite-dimensional) algebra, not an exterior algebra.

1739

https://doi.org/10.1112/S0010437X21007387 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007387


A. Braverman et al.

and the corresponding triangulated categories DG0̄
perf(G

•
0,2) and D

G0̄
perf(G

•
2,0). We will now define

the monoidal structures on DG0̄
perf(G

•
0,2) and DG0̄

perf(G
•
2,0).

We consider the variety QA (respectively, QB) of sextuples

A ∈ Hom(V1, V2), B ∈ Hom(V2, V1), A′ ∈ Hom(V ′
1 , V2),

B′ ∈ Hom(V2, V
′
1), A′′ ∈ Hom(V1, V

′
1), B′′ ∈ Hom(V ′

1 , V1),

such that

A = A′A′′, B′ = A′′B, B′′ = BA′ (respectively, B = B′′B′, A′ = AB′′, A′′ = B′A)

(here V ′
1 is a copy of V1). Clearly, QA � Hom(V1, V

′
1)×Hom(V ′

1 , V2)×Hom(V2, V1), and QB �
Hom(V ′

1 , V1)×Hom(V2, V
′
1)×Hom(V1, V2). We have

V1

A ��

� �
�

A′′

��
V2

B��

B′

��
�

��
V ′

1 A′

��
B′′

���
�
�
�

(3.4.1)

We denote Hom(V1, V2)×Hom(V2, V1)×Hom(V ′
1 , V2)×Hom(V2, V

′
1)×Hom(V1, V

′
1)×Hom(V ′

1 , V1)
by H. We have the natural projections

pr12 : H→ Hom(V1, V2)×Hom(V2, V1), pr1′2 : H→ Hom(V ′
1 , V2)×Hom(V2, V

′
1),

pr11′ : H→ Hom(V1, V
′
1)×Hom(V ′

1 , V1).

The group GQ := GL(V1)×GL(V ′
1)×GL(V2) naturally acts on H:

(g1, g′1, g2)(A,A
′, A′′, B,B′, B′′) = (g2Ag−1

1 , g2A
′g′−1

1 , g′1A
′′g−1

1 , g1Bg
−1
2 , g′1B

′g−1
2 , g1B

′′g′−1
1 ).

The projections pr12,pr1′2,pr11′ are equivariant with respect to the same-named projections from
GQ to GL(V1)×GL(V2), GL(V ′

1)×GL(V2), GL(V1)×GL(V ′
1).

Given M1′2 ∈ CohGL(V ′
1)×GL(V2)

(
Hom(V ′

1 , V2)×Hom(V2, V
′
1)

)
and M11′ ∈ CohGL(V1)×GL(V ′

1)(
Hom(V1, V

′
1)×Hom(V ′

1 , V1)
)
, we set

M11′
A∗ M1′2 := pr12∗(pr∗11′M11′ ⊗C[H] C[QA]⊗C[H] pr∗1′2M1′2)GL(V ′

1)

∈ CohGL(V1)×GL(V2)
(
Hom(V1, V2)×Hom(V2, V1)

)
,

M11′
B∗ M1′2 := pr12∗(pr∗11′M11′ ⊗C[H] C[QB]⊗C[H] pr∗1′2M1′2)GL(V ′

1)

∈ CohGL(V1)×GL(V2)
(
Hom(V1, V2)×Hom(V2, V1)

)
.

We will actually need the following modifications of these functors:

B∗ : DG0̄
perf(G

•
0,2)×DG0̄

perf(G
•
0,2)→ D

G0̄
perf(G

•
0,2),

A∗ : DG0̄
perf(G

•
2,0)×DG0̄

perf(G
•
2,0)→ D

G0̄
perf(G

•
2,0),
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obtained using the dg-algebras with trivial differentials C[H]•0,2 and C[H]•2,0 respectively, where

C[H]•0,2 = Sym(Hom(V1, V2))⊗ Sym(Hom(V2, V1)[−2])⊗Sym(Hom(V ′
1 , V2))

⊗Sym(Hom(V2, V
′
1)[−2])⊗Sym(Hom(V1, V

′
1))⊗ Sym(Hom(V ′

1 , V1)[−2]),

C[H]•2,0 = Sym(Hom(V1, V2)[−2])⊗Sym(Hom(V2, V1))⊗ Sym(Hom(V ′
1 , V2)[−2])

⊗Sym(Hom(V2, V
′
1))⊗ Sym(Hom(V1, V

′
1)[−2])⊗Sym(Hom(V ′

1 , V1)).

(we identify C[Hom(U,W )] with SymHom(W,U)).

3.5 Localization, coherent
We identify

Hom(V1, V2) = Hom(V2, V1)∗, Hom(V2, V1) = Hom(V1, V2)∗,

so that

Sym(Hom(V1, V2)) = C[Hom(V2, V1)], Sym(Hom(V2, V1)) = C[Hom(V1, V2)].

We have an open subvariety Isom(V2, V1) ⊂ Hom(V2, V1), so that C[Hom(V2, V1)] ⊂
C[Isom(V2, V1)]. We set

B• := C[Isom(V2, V1)]⊗Sym(Hom(V2, V1)[−2])

(a dg-algebra with trivial differential). Similarly, we define

A• := Sym(Hom(V1, V2)[−2])⊗C[Isom(V1, V2)].

An equivalent formulation of [BF08, Theorem 5] is an existence of a monoidal equivalence
D

G0̄
perf(A

•) ∼= DGO
(Gr) (and, changing the roles of V1, V2, a monoidal equivalence DG0̄

perf(B
•) ∼=

DGO
(Gr)).

Since A• (respectively, B•) is a localization of G•
2,0 (respectively, of G•

0,2), we have the
restriction of scalars functors

ResA : DG0̄
perf(A

•)→ D̂
G0̄
perf(G

•
2,0), ResB : DG0̄

perf(B
•)→ D̂

G0̄
perf(G

•
0,2),

where D̂G0̄
perf(G

•
?,?) stands for the Ind-completion of DG0̄

perf(G
•
?,?).

However, one can check that, for N ∈ DG0̄
perf(A

•) and M ∈ DG0̄
perf(G

•
2,0), both convolutions

ResA(N)
A∗ M and M

A∗ ResA(N) lie in D
G0̄
perf(G

•
2,0) ⊂ D̂G0̄

perf(G
•
2,0). Thus we have the left and

right convolution actions

A∗ : DG0̄
perf(A

•)×DG0̄
perf(G

•
2,0)→ D

G0̄
perf(G

•
2,0), D

G0̄
perf(G

•
2,0)×DG0̄

perf(A
•)→ D

G0̄
perf(G

•
2,0),

and similarly,

B∗ : DG0̄
perf(B

•)×DG0̄
perf(G

•
0,2)→ D

G0̄
perf(G

•
0,2), D

G0̄
perf(G

•
0,2)×DG0̄

perf(B
•)→ D

G0̄
perf(G

•
0,2).

3.6 Renormalizations
The action of the center Z(GL(V1)) ∼= Gm on an object M ∈ DG0̄

perf(G
•
1,1) defines a grading, and

the corresponding degrees will be denoted by deg1. Similarly, the action of Z(GL(V2)) ∼= Gm
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gives rise to another grading with degrees denoted by deg2. The cohomological degrees will be
denoted simply by deg. Clearly, the degrees of the generators are as follows:

deg2(Hom(V1, V2)) = deg1(Hom(V2, V1)) = 1,

deg1(Hom(V1, V2)) = deg2(Hom(V1, V2)) = −1.

Hence changing cohomological degrees by the formula deg� deg + deg1 (respectively, deg�
deg−deg2) yields equivalences

D
G0̄
perf(G

•
2,0)

�right−−−→ D
G0̄
perf(G

•
1,1)

�right−−−→ D
G0̄
perf(G

•
0,2),

D
G0̄
perf(G

•
2,0)

�left−−→ D
G0̄
perf(G

•
1,1)

�left−−→ D
G0̄
perf(G

•
0,2),

respectively. The notation is due to the fact that �left commutes with the left action of
Rep(GL(V1)) on our categories, while �right commutes with the right action of Rep(GL(V2))
on our categories.

Now recall the notation in the definition of categories D?GO
(Gr×V) (where ? = !, ∗, !∗) of

§ 3.1. Given F = (Fn)n>m ∈ D!GO
(Gr×V), we define �rightF := (Fn[−Nn])n>m ∈ D!∗GO

(Gr×
V). Similarly, given F = (Fn)n>m ∈ D!∗GO

(Gr×V) we define �rightF := (Fn[−Nn])n>m ∈
D∗GO

(Gr×V). The functors �right commute with the action of the monoidal category DGO
(Gr)

by right convolutions. Recall also that the affine Grassmannian is a union of connected com-
ponents Gr =

⊔
k∈Z

Gr(k), where Gr(k) parametrizes the lattices of virtual dimension k (e.g.
dim(tV0) = −N). For F supported on Gr(k) ×V we set �left(F) := �right(F)[−k]. Then the
functors

�left : D!GO
(Gr×V)→ D!∗GO

(Gr×V), D!∗GO
(Gr×V)→ D∗GO

(Gr×V)

commute with the action of the monoidal category DGO
(Gr) by the left convolutions.

Our goal is the following theorem.

Theorem 3.6.1. There exist monoidal7 equivalences of triangulated categories

(
D

G0̄
perf(G

•
2,0),

A∗ ) ∼−−−−→
Φ2,0

(
D!GO

(Gr×V),
!
�

)
	
⏐⏐��right 	

⏐⏐��right(
D

G0̄
perf(G

•
1,1), ⊗G•

1,1

) ∼−−−−→
Φ1,1

(
D!∗GO

(Gr×V), �
)

	
⏐⏐��right 	

⏐⏐��right(
D

G0̄
perf(G

•
0,2),

B∗ ) ∼−−−−→
Φ0,2

(
D∗GO

(Gr×V),
∗∗ )

(3.6.1)

(the vertical equivalences are not monoidal). The squares are commutative. The horizontal equiv-

alences commute with the actions of the monoidal spherical Hecke category PervGO
(Gr) ∼=

Rep(GLN ) by the left and right convolutions.

The proof will be given in § 3.16 after some necessary preparation.

7 See § 3.7 for the definition of the left middle monoidal structure.
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3.7 Super
Strictly speaking, in accordance with the footnote at the beginning of § 3.4, we should consider
the category SDG0̄

perf(G
•
1,1) of super dg-modules over the superalgebra G•

1,1 = Sym(g1̄[−1]). The
latter superalgebra is supercommutative, hence we have a symmetric monoidal structure ⊗G•

1,1

on the category SD
G0̄
perf(G

•
1,1). The equivalence Φ1,1 of Theorem 3.6.1 can be upgraded to a

monoidal equivalence SΦ1,1 :
(
SD

G0̄
perf(G

•
1,1), ⊗G•

1,1

) ∼−→ (
SD!∗GO

(Gr×V), �
)

to the derived
category of sheaves with coefficients in super vector spaces.

However, the action of the central element (IdV1 ,−IdV2) ∈ G0̄ on an object of DG0̄
perf(G

•
1,1)

equips this object with an extra Z/2Z-grading, and thus defines a fully faithful functor
D

G0̄
perf(G

•
1,1)→ SD

G0̄
perf(G

•
1,1) of a ‘superization’, such that its essential image is closed under the

monoidal structure ⊗G•
1,1

. This defines the desired monoidal structure ⊗G•
1,1

on the category

D
G0̄
perf(G

•
1,1).

3.8 Koszul equivalence
We consider the following complex H• of odd vector spaces living in degrees 0, 1: g1̄

Id−→ g1̄. We
define the Koszul complex K• as the symmetric algebra Sym(H•). The degree-0 part

K0 = Λ
(
Hom(V1, V2)⊕Hom(V2, V1)

)
=: Λ

(as a vector space, with a superstructure disregarded). We turn K• into a dg-G•
1,1 − Λ-bimodule

by letting G•
1,1 act by multiplication, and Λ by differentiation. Note that K• is quasi-isomorphic

to C in degree 0 as a complex of vector spaces, but not as a dg-G•
1,1 − Λ-bimodule. We consider

the derived category DG0̄
fd (Λ) of finite-dimensional complexes of G0̄ � Λ-modules. If we remember

the superstructure of Λ, we obtain the corresponding category of super dg-modules SDG0̄
fd (Λ).

We have the Koszul equivalence functors

κ : DG0̄
fd (Λ) ∼−→D

G0̄
perf(G

•
1,1), SD

G0̄
fd (Λ) ∼−→ SD

G0̄
perf(G

•
1,1), N 	→ K•⊗Λ N.

Here is an equivalent definition of the category SDG0̄
fd (Λ). We consider the following degeneration

gl(N |N) of the Lie superalgebra gl(N |N): the supercommutator of the even elements (with
even or odd elements) remains intact, but the supercommutator of any two odd elements is set
to zero. Let SDint(gl(N |N)) denote the derived category of bounded complexes of integrable
gl(N |N)-modules (note that the even part of gl(N |N) is just g0̄, and the integrability is nothing
but g0̄-integrability, i.e. G0̄-equivariance). Then SDint(gl(N |N)) ∼= SD

G0̄
fd (Λ) tautologically. The

resulting Koszul equivalence κ : SDint(gl(N |N)) ∼−→ SD
G0̄
perf(G

•
1,1) is monoidal with respect to

the usual tensor structure on the left-hand side and ⊗G•
1,1

on the right-hand side.
As in § 3.7, the action of (IdV1 ,−IdV2) ∈ G0̄ gives rise to a ‘superization’ fully faithful

functor DG0̄
fd (Λ)→ SD

G0̄
fd (Λ) ∼= SDint(gl(N |N)) with the essential image closed under the ten-

sor structure. This defines the tensor structure on D
G0̄
fd (Λ) such that the Koszul equivalence

κ : DG0̄
fd (Λ) ∼−→D

G0̄
perf(G

•
1,1) is monoidal.

Corollary 3.8.1 (of Theorem 3.6.1). (a) The composed equivalence

Φ1,1 ◦ κ : DG0̄
fd (Λ) ∼−→D!∗GO

(Gr×V)
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is exact with respect to the tautological t-structure on D
G0̄
fd (Λ) and the perverse t-structure on

D!∗GO
(Gr×V).

(b) This equivalence is monoidal with respect to the tensor structure on D
G0̄
fd (Λ) and the

fusion � on D!∗GO
(Gr×V).

(c) The equivariant derived category D!∗GO
(Gr×V) is equivalent to the bounded derived

category of the abelian category PervGO
(Gr×V).

Proof. We consider an irreducible G0̄-module V1,λ⊗V2,μ as a G0̄ � Λ-module with the trivial
action of Λ. Then κ(V1,λ⊗V2,μ) = V1,λ⊗G•

1,1⊗V2,μ, and Φ1,1(V1,λ⊗G•
1,1⊗V2,μ) = IC(λ∗,μ∗) by

construction of Φ1,1. Here, for a signature ν = (ν1 ≥ · · · ≥ νN ), we set ν∗ := (−νN ≥ · · · ≥ −ν1).
Finally, since DG0̄

fd (Λ) is equivalent to the bounded derived category of its heart Rep(G0̄ � Λ),
(c) follows from (a). �

3.9 De-equivariantized Ext algebra
Recall from [FGT09, Proposition 8] that the GO-orbits in Gr× ◦

V are numbered by bisignatures
(λ,μ) where both λ and μ have length N . The IC extension of the constant one-dimensional
local system on such an orbit is denoted by IC(λ,μ). In particular, IC(0N ,0N ) is the constant sheaf
on Gr0 ×V0, to be denoted by E0 for short. Also recall from [FGT09, § 3] that the left and
right actions of the monoidal Satake category PervGO

(Gr) ∼= Rep(GLN ) on D!∗GO
(Gr×V) by

convolutions respect the perverse t-structure with the heart PervGO
(Gr×V) ⊂ D!∗GO

(Gr×
V). As has been mentioned in § 3.6, the right actions of DGO

(Gr) on D?GO
(Gr×V) commute

with the equivalences �right, but the left actions only commute with �right up to cohomological
shifts depending on the connected components of Gr.

We restrict the left and right actions of DGO
(Gr) on D?GO

(Gr×V) to the left and right
actions of PervGO

(Gr) ∼= Rep(GLN ). Thus we obtain the action of Rep(G) for G = GLN ×GLN .
Let Ddeeq

?GO
(Gr×V) denote the corresponding de-equivariantized category (see [AG03] in the

setting of abelian categories and [Gai15] in the setting of dg-categories). Recall that to construct
Ddeeq

?GO
(Gr×V), we first consider objects of the ind-completion of D?GO

(Gr×V) endowed with
an action of RG where RG is the regular representation of G considered as a ring object in
Rep(G). Then we take compact objects of the resulting category. More explicitly, an object
of Ddeeq

?GO
(Gr×V) is an object F of D?GO

(Gr×V) together with a system of isomorphisms
ICλ ∗ F ∗ ICμ

∼−→ V ∗
λ ⊗V ∗

μ ⊗F (recall that the geometric Satake equivalence takes ICλ to V ∗
λ) for

any signatures λ,μ, satisfying some natural compatibilities with respect to direct sums and tensor
products. By definition we have a natural forgetful functor Ddeeq

?GO
(Gr×V)→ D?GO

(Gr×V).
This functor admits a left adjoint that sends an object F to RG ∗ F =

⊕
λ,μ Vλ⊗Vμ⊗ ICλ ∗ F ∗

ICμ.
Thus, given F1,F2 ∈ D?GO

(Gr×V), we denote the corresponding objects of the de-
equivariantized category by the same symbols, and we have

RHom
Ddeeq

?GO
(Gr×V)

(F1,F2) =
⊕
λ,μ

RHomD?GO
(Gr×V)(F1, ICλ ∗ F2 ∗ ICμ)⊗Vλ⊗Vμ. (3.9.1)

Lemma 3.9.1. The dg-algebra RHom
Ddeeq

!∗GO
(Gr×V)

(E0, E0) is formal, that is, it is quasi-

isomorphic to the graded algebra Ext•
Ddeeq

!∗GO
(Gr×V)

(E0, E0) with trivial differential.
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Proof. We change the setting to the base field Fq. Then a GO-equivariant irreducible per-
verse sheaf IC(λ,μ) on Gr×V carries a natural Weil structure (see [FGT09, § 2.6]) and
Ext•D!∗GO

(Gr×V)(E0, IC(λ,μ)) is pure. Indeed, if ı̄0 denotes the closed embedding V0
∼= Gr0 ×

V0 ↪→ Gr×V, then Ext•D!∗GO
(Gr×V)(E0, IC(λ,μ)) = H•

GO
(V0, ı̄

!
0IC(λ,μ)). Let us consider the

loop rotation action Gm � (Gr×V). We have an embedding A1 ↪→ V (constant Laurent series),
and Gr0 × A1 is a fixed point component of the Gm-action, so that H•

GO
(V0, ı̄

!
0IC(λ,μ)) is the

hyperbolic restriction to this component (more precisely, the hyperbolic restriction is a geo-
metrically constant complex on A1 with the above stalks) [Bra03, DG14]. But the hyperbolic
restriction preserves purity.

Now, given the purity of Ext•D!∗GO
(Gr×V)(E0, IC(λ,μ)), the desired result follows by an

application of [BF08, Lemma 15] (and then of [BF08, Proposition 5]). �

We denote the dg-algebra Ext•
Ddeeq

!∗GO
(Gr×V)

(E0, E0) (with trivial differential) by E•. Since it

is an Ext-algebra in the de-equivariantized category between objects induced from the original
category, it is automatically equipped with an action of GLN ×GLN = GL(V1)×GL(V2) = G0̄,
and we can consider the corresponding triangulated category DG0̄

perf(E
•).

Lemma 3.9.2. There is a canonical equivalence D
G0̄
perf(E

•) ∼−→D!∗GO
(Gr×V).

Proof. The desired functor is constructed as in [BF08, § 6.5, Propositions 5,6]. Since E0 generates
the triangulated categoryD!∗GO

(Gr×V) (with respect to the left and right actions of the Satake
category), the claim follows from Lemma 3.9.1. �

We also consider the left and right actions of the monoidal Satake category PervGO
(Gr) ∼=

Rep(GLN ) on DGO
(Gr) by convolutions. Let Ddeeq

GO
(Gr) denote the corresponding de-

equivariantized category. Then the dg-algebra RHom
Ddeeq

GO
(Gr)

(IC0, IC0) is formal, that is,

it is quasi-isomorphic to the graded algebra Ext•
Ddeeq

GO
(Gr)

(IC0, IC0) with trivial differen-

tial. Furthermore, it follows from [BF08, Theorem 5] that there is a natural isomorphism
Ext•

Ddeeq
GO

(Gr)
(IC0, IC0) ∼= A• (in the notation of § 3.5).

3.10 Localization, constructible
We have an automorphism α : Gr×V ∼−→Gr×V, (L, v) 	→ (L, tv). We have a morphism
of endofunctors α∗ → Id : D∗GO

(Gr×V)→ D∗GO
(Gr×V) constructed as follows. We con-

sider a family of automorphisms α : A1 ×Gr×V ↪→ Gr×V, (c, L, v) 	→ (L, (c+ t)v), so that
α0 = α. Note that α∗

c
∼= Id on D∗GO

(Gr×V) for c 
= 0. Now the desired morphism α∗ → Id
is just the cospecialization8 morphism from the stalk at 0 ∈ A1 to the nearby stalk. For
F1,F2 ∈ D∗GO

(Gr×V), we have an inductive system

· · · → RHomD∗GO
(Gr×V)((α

n−1)∗F1,F2)→ RHomD∗GO
(Gr×V)((α

n)∗F1,F2)→ · · · .
Note that it stabilizes since, by definition of D∗GO

(Gr×V), the restriction of (αn)∗F1 to the
support of F2 becomes the pullback of an appropriate sheaf in DGO

(Gr) for n� 0.

8 Terminology of [Sch19, 6.2.7].
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We define the localized category Dloc
∗GO

(Gr×V) as the category with the same objects as
D∗GO

(Gr×V), and with morphisms

RHomDloc
∗GO

(Gr×V)(F1,F2) := lim−→RHomD∗GO
(Gr×V)((α

n)∗F1,F2).

The tautological functor D∗GO
(Gr×V)→ Dloc

∗GO
(Gr×V) is denoted by u∗0 (‘restriction to

v ≈ 0’).
We also have the Verdier dual (to the above α∗ → Id) morphism of endofunctors Id→

α! : D!GO
(Gr×V)→ D!GO

(Gr×V). This gives rise to an inductive system for F1,F2 ∈
D!GO

(Gr×V),

· · · → RHomD!GO
(Gr×V)(F1, (αn−1)!F2)→ RHomD!GO

(Gr×V)(F1, (αn)!F2)→ · · · ,

stabilizing for reasons similar to those above. We define the localized category Dloc
!GO

(Gr×V)
as the category with the same objects as D!GO

(Gr×V), and with morphisms

RHomDloc
!GO

(Gr×V)(F1,F2) := lim−→RHomD!GO
(Gr×V)(F1, (αn)!F2).

The tautological functor D!GO
(Gr×V)→ Dloc

!GO
(Gr×V) is denoted by u!

0 (‘corestriction to
v ≈ 0’).

We also have the projection pr : Gr×V0 → Gr, and the corresponding pullbacks
pr∗ : DGO

(Gr)→ D∗GO
(Gr×V) and pr! : DGO

(Gr)→ D!GO
(Gr×V) (with the essential

images supported on Gr×V0 ⊂ Gr×V).

Lemma 3.10.1. The compositions

u∗0 ◦ pr∗ : DGO
(Gr)→ Dloc

∗GO
(Gr×V), u!

0 ◦ pr! : DGO
(Gr)→ Dloc

!GO
(Gr×V)

are equivalences of categories sending IC0 to �rightE0, �
−1
rightE0, respectively.

Proof. Clear. �

The localizations of the de-equivariantized categories Ddeeq
∗GO

(Gr×V) and Ddeeq
!GO

(Gr×V)

will be denoted by Dloc,deeq
∗GO

(Gr×V) and Dloc,deeq
!GO

(Gr×V), respectively.
Recall the dg-algebras A•,B• introduced in § 3.5.

Corollary 3.10.2. There are canonical isomorphisms

(a) Ext•
Dloc,deeq

!GO
(Gr×V)

(�−1
rightE0, �

−1
rightE0) ∼= A•,

(b) Ext•
Dloc,deeq

∗GO
(Gr×V)

(�rightE0, �rightE0) ∼= B•.

Note that the dg-algebra RHom
Ddeeq

∗GO
(Gr×V)

(�rightE0, �rightE0) (respectively, RHom
Ddeeq

!GO
(Gr×V)

(�−1
rightE0, �

−1
rightE0)) is also formal, that is, it is quasi-isomorphic to Ext•

Ddeeq
∗GO

(Gr×V)
(�rightE0,

�rightE0) (respectively, Ext•
Ddeeq

!GO
(Gr×V)

(�−1
rightE0, �

−1
rightE0)) with trivial differential. If we dis-

regard their gradings, they are both isomorphic to Ext•
Ddeeq

!∗GO
(Gr×V)

(E0, E0). We will denote

the algebra Ext•
Ddeeq

!∗GO
(Gr×V)

(E0, E0) with grading forgotten by Ext
Ddeeq

!∗GO
(Gr×V)

(E0, E0); the
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same applies to A•,B•,E•,G•. Thus we have equalities Ext
Ddeeq

∗GO
(Gr×V)

(�rightE0, �rightE0) =

Ext
Ddeeq

!∗GO
(Gr×V)

(E0, E0) = Ext
Ddeeq

!GO
(Gr×V)

(�−1
rightE0, �

−1
rightE0).

Lemma 3.10.3. The natural morphism

Ext•
Ddeeq

!GO
(Gr×V)

(�−1
rightE0, �

−1
rightE0)→ Ext•

Dloc,deeq
!GO

(Gr×V)
(�−1

rightE0, �
−1
rightE0)

is injective.

Proof. We have α!�−1
rightIC(−1N ,1N )[N ] � �−1

rightE0, and we need to check that, for any λ,μ, the
natural morphism

ϑ : RHomD!GO
(Gr×V)(�

−1
rightE0, �

−1
rightIC(λ,μ))

→ RHomD!GO
(Gr×V)(�

−1
rightIC(−1N ,1N )[−N ], �−1

rightIC(λ,μ)) (3.10.1)

is injective. Indeed, since α! is a Hecke transformation endofunctor (namely, it is given by convo-
lution IC(1N )∗? ∗ IC(−1)N with invertible objects of the Satake category), the morphism ϑ is an
endomorphism of the identity endofunctor of the de-equivariantized category Ddeeq

!GO
(Gr×V). In

other words, ϑ is an element of the center of this category. But the natural morphism from the
center to its localization is injective if and only if the multiplication by ϑ is injective.

We change the setting to the base field Fq as in the proof of Lemma 3.9.1. Then all the IC
sheaves in question carry a natural Weil structure, and it was proved in the proof of Lemma 3.9.1
that both the left- and right-hand side of (3.10.1) are pure; it is immediate to see that they are
pure of the same weight w. The cone of ϑ is H•

GO
(Ω(0N ,0N ), ı

!
0�

−1
rightIC(λ,μ)), where ı0 stands for

the locally closed embedding of the GO-orbit Ω(0N ,0N ) = Gr0 × (V0 � tV0) ↪→ Gr×V. Due to
the pointwise purity of IC(λ,μ) [FGT09, § 3], ı!0IC(λ,μ) is a pure local system on Ω(0N ,0N ); hence
H•

GO
(Ω(0N ,0N ), ı

!
0IC(λ,μ)) is also pure of weight w. It follows that the kernel of ϑ vanishes, and ϑ

is injective. �

Corollary 3.10.4. The algebra E = Ext
Ddeeq

!∗GO
(Gr×V)

(E0, E0) is a commutative integrally

closed domain.

3.11 Calculation of the Ext algebra
Recall that the first fundamental coweight of GLN is ω1 = (1, 0, . . . , 0), and ω∗

1 = (0, . . . , 0,−1).
We have RHomD!∗GO

(Gr×V)(ICω1 ∗ E0, E0 ∗ ICω1) = RHomD!∗GO
(Gr×V)(E0, ICω∗

1
∗ E0 ∗ ICω1),

RHomD!∗GO
(Gr×V)(E0 ∗ ICω1 , ICω1 ∗ E0) = RHomD!∗GO

(Gr×V)(E0, ICω1 ∗ E0 ∗ ICω∗
1
). Now

ICω1 ∗ E0 is the constant IC sheaf of the stratum closure formed by all the pairs (L, v) such that
the lattice L contains V0 as a hyperplane, and v ∈ L. Furthermore, E0 ∗ ICω1 is the constant IC
sheaf of the stratum closure formed by all the pairs (L, v) such that the lattice L contains V0 as a
hyperplane, and v ∈ V0. In particular, the latter stratum closure is a smooth divisor in the former
stratum closure, so we have canonical elements h ∈ Ext1D!∗GO

(Gr×V)(ICω1 ∗ E0, E0 ∗ ICω1) and

h∗ ∈ Ext1D!∗GO
(Gr×V)(E0 ∗ ICω1 , ICω1 ∗ E0). Hence we obtain the subspaces h⊗Vω∗

1
⊗Vω1 ⊂ E1

and h∗⊗Vω1 ⊗Vω∗
1
⊂ E1 (see § 3.9 for the definition of E• and (3.9.1)). We identify the former
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subspace with Hom(V1, V2) and the latter one with Hom(V2, V1). Thus we obtain a homo-
morphism φ• : Sym

(
ΠHom(V1, V2)[−1]⊕ΠHom(V2, V1)[−1]

)
= Sym(g1̄[−1]) = G•

1,1 → E• (due
to commutativity of E).

Lemma 3.11.1. φ• is an isomorphism.

Proof. We can and will disregard the grading. The morphism φ induces the morphism
φ∗ : SpecE→ g∗̄

1
that is an isomorphism over the open subset Isom(V2, V1)×Hom(V1, V2) ⊂ g∗̄

1
due to Corollary 3.10.2(a). Similarly, φ∗ is an isomorphism over the open subset Hom(V2, V1)×
Isom(V1, V2) due to Corollary 3.10.2(b).

Since the complement to the union of these two open subsets has codimension 2 in g∗̄
1
, we

can apply Lemma 3.11.2 below. Note that the irreducibility of SpecE is guaranteed by Corollary
3.10.4. It remains only to check that the ratio of the above isomorphisms is the identity birational
isomorphism between the varieties Isom(V2, V1)×Hom(V1, V2) and Hom(V2, V1)× Isom(V1, V2).

The composition h ◦ h∗ ∈ Ext2D!∗GO
(Gr×V)(E0 ∗ ICω1 , E0 ∗ ICω1) is multiplication by the first

Chern class of the normal line bundle N to the divisor supp(E0 ∗ ICω1) in supp(ICω1 ∗ E0). Recall
that Grω1 � PN−1. The line bundle N is pulled back from the line bundle O(1) on PN−1 �
Grω1 . Recall also that the restriction of the determinant line bundle L from Gr to Grω1 is also
isomorphic to O(1). We conclude that h ◦ h∗ = c1(L).

On the other hand, in the equivariant Satake category

DGO
(Gr) ∼= DGLN

perf (Sym(glN [−2])) ∼= D
G0̄
perf(A

•),

the first Chern class c1(L) ∈ Ext2DGO
(Gr)(IC0 ∗ ICω1 , IC0 ∗ ICω1) ⊂ A2 corresponds to the iden-

tity element (shifted by 2) Id ∈ Hom(V2, V1)∗⊗Hom(V2, V1).
The lemma is proved. �

Lemma 3.11.2. Let π : X → An be a morphism from an irreducible affine algebraic variety to an

affine space. Let f, g ∈ C[An] be such that the codimension of the closed subvariety An � (Uf ∪
Ug) in An is at least 2, where Uf = {u ∈ An | f(u) 
= 0}. Assume, moreover, that each of the

morphisms π−1(Uf )→ Uf and π−1(Ug)→ Ug, induced by π, is an isomorphism. Then π is an

isomorphism.

Proof. Let Xf = π−1(Uf ) (respectively, Xg = π−1(Ug)), and write j : Uf ∪ Ug ↪→ An (respec-
tively, jX : Xf ∪Xg ↪→ X) for the open embedding. We have the commutative diagram

C[An] � �
j∗

��

π∗
��

Γ(Uf ∪ Ug,OUf∪Ug) {u⊕ v ∈ C[Uf ]⊕ C[Ug] | u|Uf∩Ug = v|Uf∩Ug}
(π|Xf

)∗⊕(π|Xg )∗

��

C[X] � �
j∗X �� Γ(Xf ∪Xg,OXf∪Xg) {ũ⊕ ṽ ∈ C[Xf ]⊕ C[Xg] | ũ|Xf∩Xg = ṽ|Xf∩Xg}

The map j∗ in this diagram is an isomorphism by the assumption of codimension at least 2. The
map j∗X is injective since X is irreducible. The assumptions imply also that the vertical map
(π|Xf

)∗ ⊕ (π|Xg)
∗ on the right is an isomorphism. It follows that the vertical map π∗ on the left

must be an isomorphism, as required. �
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3.12 Restriction to Gr × V0

The existence of the desired equivalence Φ1,1 of Theorem 3.6.1 follows from Lemmas 3.9.2 and
3.11.1. The equivalences Φ0,2 and Φ2,0 are obtained by conjugating with �±1

right. It remains to
check their compatibility with monoidal structures.

We denote by j̄0 (respectively, j̄−1) the closed embedding Gr×V0 ↪→ Gr×V (respectively,
Gr× tV0 ↪→ Gr×V). We also denote by j0 the locally closed embedding Gr× (V0 � tV0) ↪→
Gr×V. Our goal in this section is a description in terms of Φ1,1 of the endofunctors j̄0∗j̄!0,
j0∗j!0 : D!∗GO

(Gr×V)→ D!∗GO
(Gr×V).

Recall the setup and notation of § 3.4. We have the natural morphisms

p : QA → Hom(V1, V2)×Hom(V2, V1) = Πg∗̄1,

q : QA → Hom(V ′
1 , V2)×Hom(V2, V

′
1) = Πg∗̄1;

p(A,A′, A′′, B,B′, B′′) = (A,B), q(A,A′, A′′, B,B′, B′′) = (A′, B′).

We also have the natural morphisms

p, q : GQ→ G0̄, p(g1, g′1, g2) = (g1, g2), q(g1, g′1, g2) = (g′1, g2).

Clearly, p, q : QA → Πg∗̄
1

are equivariant with respect to p, q : GQ→ G0̄. Hence we have the
convolution functor

p∗q∗ : CohG0̄(Πg∗̄1) = Coh(G0̄\Πg∗̄1)
q∗−→ Coh(GQ\QA)

p∗−→ Coh(G0̄\Πg∗̄1) = CohG0̄(Πg∗̄1)

(in particular, p∗ involves taking GL(V ′
1)-invariants). We will actually need the same-named

functor p∗q∗ : DG0̄
perf(G

•
1,1)→ D

G0̄
perf(G

•
1,1) defined similarly using the dg-algebra with trivial dif-

ferential G•
1,1⊗C[Hom(V1, V

′
1)] (the grading on C[Hom(V1, V

′
1)] is trivial, and if we disregard the

grading, then G•
1,1⊗C[Hom(V1, V

′
1)] � C[QA]).

We also have a GQ-invariant subvariety QA
0 ⊂ QA given by the equation that A′′ is non-

invertible. The restriction of p, q to QA
0 will be denoted by p0, q0. As above, we obtain the functor

p0∗q∗0 : DG0̄
perf(G

•
1,1)→ D

G0̄
perf(G

•
1,1).

Proposition 3.12.1. (a) There is an isomorphism of functors

j̄0∗j̄!0 ◦ Φ1,1 � Φ1,1 ◦ p∗q∗ : DG0̄
perf(G

•
1,1)→ D!∗GO

(Gr×V).

(b) The isomorphism in (a) can be extended to the following commutative diagram of

morphisms:

j̄−1∗j̄!−1 ◦ Φ1,1 ∼ ��

��

		

Φ1,1 ◦ (
detV1⊗ (p∗q∗) ◦ (det−1V ′

1 ⊗−)
)

��
· det A′′





Φ1,1
Id �� Φ1,1

j̄0∗j̄!0 ◦ Φ1,1
∼ ��

��

Φ1,1 ◦ p∗q∗

��

(c) There is an isomorphism of functors

j0∗j!0 ◦ Φ1,1 � Φ1,1 ◦ p0∗q∗0 : DG0̄
perf(G

•
1,1)→ D!∗GO

(Gr×V).
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Proof. (a) The support of IC(ν,μ) lies in Gr×V0 if and only if ν is a negative partition (0 ≥
ν1 ≥ · · · ≥ νN ) (see [FGT09, Proof of Proposition 8]). So D!∗GO

(Gr×V0) is generated by the
collection of objects IC(ν,μ) where ν is a negative partition. Thus we see that j̄0∗ is a fully faithful
functor whose image is generated by {IC(ν,μ) | ν ≤ 0} and j̄!0 is the right adjoint of j̄0∗. Recall
that V ∗

ν denotes an irreducible representation of GL(V ) obtained by applying the corresponding
Schur functor to V ∗. The result of application of the same Schur functor to V ∗

1 (respectively,
V ′∗

1 , V
∗
2 ) will be denoted by V ∗

1,ν (respectively, V ′∗
1,ν, V

∗
2,ν). Since

IC(ν,μ) = Φ1,1(V ∗
1,ν ⊗G•

1,1⊗V ∗
2,μ) = Φ1,1(V1,ν∗ ⊗G•

1,1⊗V2,μ∗)

(where ν∗ = (−νN ,−νN−1, . . . ,−ν2,−ν1) for ν = (ν1, . . . , νN )), we have to show that p∗q∗ lands
in the subcategory DG0̄,≥

perf (G•
1,1) ⊂ DG0̄

perf(G
•
1,1) generated by objects {V1,λ⊗G•

1,1⊗V2,μ | λ ≥ 0}
and to construct the adjunction isomorphism

Hom
D

G0̄
perf(G

•
1,1)

(V1,λ⊗G•
1,1⊗V2,μ, V1,λ′ ⊗G•

1,1⊗V2,μ′)

∼−→Hom
D

G0̄
perf(G

•
1,1)

(V1,λ⊗G•
1,1⊗V2,μ, p∗q∗(V ′

1,λ′ ⊗G•
1,1⊗V2,μ′))

for a partition λ. Equivalently, we have to construct an isomorphism(
(V ′∗

1,λ⊗V ′
1,λ′)⊗C[Hom(V ′

1 , V2)×Hom(V2, V
′
1)]⊗ (V ∗

2,μ⊗V2,μ′)
)GL(V ′

1)×GL(V2)

∼−→ (
V ∗

1,λ⊗ p∗q∗(V ′
1,λ′ ⊗C[Hom(V ′

1 , V2)×Hom(V2, V
′
1)]⊗V2,μ′)⊗V ∗

2,μ

)GL(V1)×GL(V2)

:=
(
V ∗

1,λ⊗V ′
1,λ′ ⊗C[QA]⊗ (V ∗

2,μ⊗V2,μ′)
)GQ .

Recall that QA = Hom(V1, V
′
1)×Hom(V ′

1 , V2)×Hom(V2, V1). We apply Lemma 3.13.1(c) below
to U1 = V2, U2 = V1, U3 = V ′

1 , ν = λ (in the notation of § 3.13) to obtain an isomorphism

V ′∗
1,λ⊗C[Hom(V2, V

′
1)]

∼−→ (
C[Hom(V2, V1)⊗V ∗

1,λ⊗C[Hom(V1, V
′
1)]

)GL(V1)

whose inverse induces the desired adjunction isomorphism.
We still have to check that the essential image of p∗q∗ lies in the subcategory DG0̄,≥

perf (G•
1,1) ⊂

D
G0̄
perf(G

•
1,1) generated by {V1,λ⊗G•

1,1⊗V2,μ | λ ≥ 0}. We consider the homomorphism G•
1,1 →

C killing all the generators, and for M ∈ DG0̄
perf(G

•
1,1) we set z∗0M := C⊗L

G•
1,1

M ∈ DG0̄(C) (‘the
fiber at 0 ∈ Hom(V1, V2)×Hom(V2, V1)’). Note that z∗0p∗q∗ lands in the category generated by
{V1,λ⊗V2,μ | λ ≥ 0}, that is, the category of modules with polynomial action of GL(V1). Indeed,
recall that GQ acts on QA via

(g1, g′1, g2)(A
′, A′′, B) = (g2A′g′−1

1 , g′1A
′′g−1

1 , g1Bg
−1
2 ).

Since we impose the conditions B = 0 = A := A′A′′, the action of GL(V1) on z∗0p∗q∗N (for a free
dg-G•

1,1-module N) comes from its action on functions of A′′, and the latter action is polynomial.
Finally, we claim that if the action of GL(V1) on z∗0M is polynomial, then M lies in the

subcategory generated by {V1,λ⊗G•
1,1⊗V2,μ | λ ≥ 0}. To this end we apply the Koszul equiv-

alence κ : DG0̄
fd (Λ) ∼−→D

G0̄
perf(G

•
1,1) of § 3.8. It is easy to see that if the action of GL(V1) on the

total cohomology of K ∈ DG0̄
fd (Λ) is polynomial, then K lies in the subcategory Pol ⊂ DG0̄

fd (Λ)
generated by the G0̄ � Λ-modules with polynomial action of GL(V1) and trivial action of Λ.
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Now κ(Pol) is the subcategory DG0̄,≥
perf (G•

1,1) ⊂ DG0̄
perf(G

•
1,1). And if the action of GL(V1) on z∗0M

is polynomial, then M � κ(K), where the action of GL(V1) on the total cohomology of K is
polynomial. This completes the proof of (a).

(b) As α∗j̄−1∗j̄!−1 � j̄0∗j̄!0α∗ (in the notation of § 3.10), we deduce an isomorphism of functors

j̄−1∗j̄!−1 ◦ Φ1,1 � Φ1,1 ◦ (
detV1⊗ (p∗q∗) ◦ (det−1V ′

1 ⊗−)
)
: DG0̄

perf(G
•
1,1)→ D!∗GO

(Gr×V).

Thus the upper and lower rectangles of the diagram in (b) are commutative by construction.
We have to prove the commutativity of the big curved quadrangle. The endofunctors j̄0∗j̄!0,
j̄−1∗j̄!−1 of D!∗GO

(Gr×V) are equipped with the structure of idempotent comonads. The desired
commutativity follows from the fact that, given two idempotent comonads T0, T1 : C→ C, there is
at most one morphism of functors χ : T1 → T0 such that ε1 = ε0 ◦ χ for the counits εi : Ti → IdC.
Indeed, χ = T0(ε1) ◦ χ1, where χ1 is defined as the composition

T1
∼= T1 ◦ T1

χ◦T1−−−→ T0 ◦ T1.

We claim that χ1 is an isomorphism uniquely defined as the inverse to the morphism ε0 ◦ T1 : T0 ◦
T1

∼−→ T1. In effect, the composition

T1
∼= T1 ◦ T1

χ◦T1−−−→ T0 ◦ T1
ε0◦T1−−−→ T1

equals the composition

T1
∼= T1 ◦ T1

ε1◦T1−−−→ IdC ◦ T1 = T1

which in turn equals IdT1 . Conversely, the composition

T0 ◦ T1
ε0◦T1−−−→ T1

∼= T1 ◦ T1
χ◦T1−−−→ T0 ◦ T1

equals the composition

T0 ◦ T1
∼= T0 ◦ T1 ◦ T1

T0◦χ◦T1−−−−−→ T0 ◦ T0 ◦ T1
∼= T0 ◦ T1

which in turn equals IdT0◦T1 .
This completes the proof of (b), but we would like to give one more independent argument

that will prove useful later on.
Recall that we have to prove the commutativity of the big curved quadrangle. To this end

we change the setting to the base field Fq as in the proof of Lemma 3.9.1. That is, we replace
D!∗GO

(Gr×V) by the equivalent equivariant derived category of sheaves on (Gr×V)F̄q
as in

[BF08, Proposition 5] (in particular, choosing an isomorphism C � Q̄	). However, we preserve the
notation D!∗GO

(Gr×V) for this category in order not to overload our notation (anyway, it will
only be used during the current proof). All the irreducible perverse sheaves IC(λ,μ) carry a natural
Tate Weil structure by [FGT09, Proposition 11]. They (along with their Tate twists) generate
a subcategory9 D̂!∗GO

(Gr×V) of the mixed version Dmix
!∗GO

(Gr×V) of D!∗GO
(Gr×V). We

will use a particular dg-model of D̂!∗GO
(Gr×V) viewed as a category enriched over complexes

equipped with an action of the Frobenius automorphism Fr. Note that the absolute values of the
eigenvalues of Fr lie in

√
qZ, and hence our complexes carry an additional grading according to

the absolute values of the eigenvalues of Fr. If we forget the mixed structure and remember only

9 Closed with respect to taking cones and direct summands.
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this additional grading, we obtain a category D̃!∗GO
(Gr×V) enriched over complexes equipped

with an additional grading. Its localization with respect to quasi-isomorphisms will be denoted
D̃!∗GO

(Gr×V).
On the other hand, we consider the category DG0̄×C×

perf (G•
1,1) of perfect G0̄ × C×-equivariant

dg-G•
1,1-modules and its localization (with respect to quasi-isomorphisms) DG0̄×C×

perf (G•
1,1). Here

all the generators of G•
1,1 have weight 1 with respect to the action of C×. Then the standard mod-

ification of our construction of the equivalence Φ1,1 : DG0̄
perf(G

•
1,1)

∼−→D!∗GO
(Gr×V) produces

a functor Φ̃1,1 : DG0̄×C×
perf (G•

1,1)→ D̃!∗GO
(Gr×V) and its localization Φ̃1,1 : DG0̄×C×

perf (G•
1,1)

∼−→
D̃!∗GO

(Gr×V).
We have the similar diagram of morphisms of functors DG0̄×C×

perf (G•
1,1)→ D̃!∗GO

(Gr×V)
with commutative upper and lower rectangles

j̄−1∗j̄!−1 ◦ Φ̃1,1
∼ ��

��

��

Φ̃1,1 ◦ (
detV1⊗ (p∗q∗) ◦ (det−1V ′

1 ⊗−)
)

��
· det A′′





Φ̃1,1
Id �� Φ̃1,1

j̄0∗j̄!0 ◦ Φ̃1,1
∼ ��

��

Φ̃1,1 ◦ p∗q∗

��

and we have to prove the commutativity of the big curved quadrangle. The endofunctors
detV1⊗ (p∗q∗) ◦ (det−1V ′

1 ⊗−), Id, p∗q∗ of DG0̄×C×
perf (G•

1,1) are given by their respective ker-

nels K1,K2,K3 in D
G2

0̄
×C×

perf (G•
1,1⊗G•

1,1). Note that the equivariance with respect to C× (as
opposed to (C×)2) suffices since all the three functors under consideration commute with the
shifts of the additional grading. Similarly, all the three functors on the constructible side com-
mute with the Tate twists. All three kernels are pure of weight 0, that is, their additional
gradings coincide with their cohomological gradings. The category of pure weight 0 objects in

D
G2

0̄
×C×

perf (G•
1,1⊗G•

1,1) is equivalent to the abelian category of G2
0̄
× C×-equivariant G1,1⊗G1,1-

modules (the equivalence being obtained by taking cohomology). Therefore, the morphisms
of functors (detV1⊗−) ◦ (p∗q∗) ◦ (det−1V ′

1 ⊗−)→ Id and p∗q∗ → Id arise from the morphisms
between the respective kernels that are injective as morphisms of G1,1⊗G1,1-modules. We have to
compare certain morphisms to Φ̃1,1K3, and we know that their compositions with the monomor-
phism Φ̃1,1K3 → Φ̃1,1K2 coincide, hence the desired equality of morphisms. This completes our
second proof of (b).

(c) This follows from the comparison of the distinguished triangles

(j̄−1∗j̄!−1 → j̄0∗j̄!0 → j0∗j!0) ◦ Φ1,1

and

Φ1,1 ◦ (
detV1⊗ (p∗q∗) ◦ (det−1V ′

1 ⊗−)→ p∗q∗ → p0∗q∗0
)
.

The proposition is proved. �
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3.13 Some invariant theory
Let U1, U2, U3 be vector spaces of dimensions n1, n2, n3. The irreducible polynomial (respectively,
antipolynomial) representations of GL(Ui) are realized in the Schur spaces SλUi (respectively,
SλU

∗
i ), where λ is a partition with �(λ) ≤ ni. We will also write Sλ∗Ui for SλU

∗
i , where

λ∗ = −w0λ = (−λni ,−λni−1, . . . ,−λ2,−λ1)

for λ = (λ1, . . . , λni). We set SλUi = 0 = Sλ∗Ui for �(λ) > ni. We denote by Hom≤n2(U1, U3) ⊂
Hom(U1, U3) the subvariety formed by all the homomorphisms of rank at most n2.

Lemma 3.13.1. The composition of homomorphisms induces the following isomorphisms of

GL(U1)×GL(U3)-modules.

(a) C[Hom≤n2(U1, U3)] ∼−→ (
C[Hom(U1, U2)]⊗C[Hom(U2, U3)]

)GL(U2)
.

(b) If n1 ≤ n2, for a partition ν,

SνU1⊗C[Hom(U1, U3)] ∼−→ (
C[Hom(U1, U2)]⊗SνU2⊗C[Hom(U2, U3)]

)GL(U2)
.

(c) If n3 ≤ n2, for a partition ν,

C[Hom(U1, U3)]⊗SνU
∗
3

∼−→ (
C[Hom(U1, U2)]⊗SνU

∗
2 ⊗C[Hom(U2, U3)]

)GL(U2)
.

Proof. (a) We have C[Hom(Ui, Uj)] =
⊕

m≥0 Symm(U∗
j ⊗Ui) =

⊕
λ SλUi⊗Sλ∗Uj as a GL(Ui)×

GL(Uj)-module. Also, C[Hom≤r(Ui, Uj)] =
⊕

	(λ)≤r SλUi⊗Sλ∗Uj as a GL(Ui)×GL(Uj)-
module. Clearly, (Sλ∗U2⊗SμU2)GL(U2) = Cδλμ . So the two sides of (a) are isomorphic as
GL(U1)×GL(U3)-modules. On the other hand, the morphism in question is injective since the
composition morphism Hom(U1, U2)×Hom(U2, U3)→ Hom≤n2(U1, U3) is dominant. Hence the
morphism in question is an isomorphism.

(b) We consider a copy U ′
2 of U2, we tensor both sides of (b) with Sν∗U ′

2, and take the direct
sum over all partitions ν with �(ν) ≤ n2. Then we have to prove that the morphism

γ : C[Hom(U1, U
′
2)]⊗C[Hom(U1, U3)]

→ (
C[Hom(U1, U2)]⊗C[Hom(U2, U

′
2)]⊗C[Hom(U2, U3)]

)GL(U2)
,

induced by the composition of arrows of the D4-quiver in

U1

��	
	

	
	

�� 









U ′
2

�������	U2
�� �� U3

(3.13.1)

is an isomorphism. Now the statement can be reduced to (a) using the substitution U3 � U3 ⊕ U ′
2.

Alternatively, the condition n1 ≤ n2 guarantees that the morphism from the representation space
of the D4-quiver to the representation space of the dashed A3-quiver is dominant. Hence γ is
injective. The surjectivity of γ follows, for example, from [LP90, Theorem 1].

(c) This is dual to (b). �
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3.14 The monoidal property of Φ2,0

Recall the notation of § 3.4. The monoidal structure
A∗ on D

G0̄
perf(G

•
2,0) is defined via the kernel

C[QA]•2,0: a GQ-equivariant dg-C[H]•2,0-module. The monoidal structure
!
� on D!GO

(Gr×V)

transferred to D
G0̄
perf(G

•
2,0) via the equivalence Φ2,0 is also defined via a kernel K• (a GQ-

equivariant dg-C[H]•2,0-module). We have to construct an isomorphism of GQ-equivariant
dg-C[H]•2,0-modules C[QA]•2,0

∼−→K•.
We denote by C[Hloc]•2,0 the localization of C[H]•2,0 defined as C[H]•2,0[det−1A,det−1A′,

det−1A′′]. We define K•
loc := C[Hloc]•2,0⊗C[H]•2,0

K• and C[QA
loc]

•
2,0 := C[Hloc]•2,0⊗C[H]•2,0

C[QA]•2,0.

We have Φ2,0G•
2,0 � �−1

rightE0. Also, for F ∈ D!GO
(Gr×V), we have �−1

rightE0

!
� F = j̄0∗j̄!0F.

Thus Proposition 3.12.1(a) yields an isomorphism of functors Φ2,0(G•
2,0

A∗ −) ∼−→ (Φ2,0G•
2,0)

!
�

Φ2,0−. This isomorphism yields in turn an isomorphism of kernels C[QA
forg]

•
2,0

∼−→K•
forg, where

the subscript forg denotes the restriction of the dg-module structure from C[H]•2,0 to C[Hforg]•2,0 :=
Sym(Hom(V1, V2)[−2])⊗Sym(Hom(V2, V1))⊗ Sym(Hom(V ′

1 , V2)[−2])⊗Sym(Hom(V2, V
′
1)).

According to Proposition 3.12.1(b), the following diagram of functors D
G0̄
perf(G

•
2,0)→

D!GO
(Gr×V) commutes:

j̄−1∗j̄!−1 ◦ Φ2,0 ∼ ��

��

Φ2,0 ◦ (
detV1⊗ (p∗q∗) ◦ (det−1V ′

1 ⊗−)
)

· det A′′
��

j̄0∗j̄!0 ◦ Φ2,0
∼ �� Φ2,0 ◦ p∗q∗

Hence the diagram

C[QA
forg]

•
2,0

∼−−−−→ K•
forg⏐⏐�· det A′′
⏐⏐�· det A′′

C[QA
forg]

•
2,0

∼−−−−→ K•
forg

commutes as well, and in particular the multiplication by detA′′ is injective on K•, and hence
K• ↪→ K•

loc.
Now since Φ2,0

loc : DG0̄
perf(A

•) ∼−→DGO
(Gr) ∼= Dloc

!GO
(Gr×V) (see Lemma 3.10.1 and Corollary

3.10.2) coincides with the equivariant Satake equivalence, and the latter is monoidal, we obtain
an isomorphism of localized kernels C[QA

loc]
•
2,0

∼−→K•
loc as GQ-equivariant C[Hloc]•2,0-modules.

By the argument in the second proof of Proposition 3.12.1(b) (using the additional grading
and purity of K•), it remains to verify that this isomorphism restricts to the desired iso-
morphism from C[QA]•2,0 ⊂ C[QA

loc]
•
2,0 to K• ⊂ K•

loc. For this verification it suffices to restrict the
scalars to C[Hforg]•2,0. But we have already seen that over C[Hforg]•2,0 we obtain an isomorphism
C[QA

forg]
•
2,0

∼−→K•
forg.

This completes the proof of the monoidal property of Φ2,0.
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3.15 Fourier transform
We have the Fourier transform functors (along V)

FT: D!GO
(Gr×V)→ D∗GO

(Gr×V), FT: D∗GO
(Gr×V)→ D!GO

(Gr×V),

FT: D!∗GO
(Gr×V)→ D!∗GO

(Gr×V).

Strictly speaking, the Fourier transform goes not to D?GO
(Gr×V), but to D?GO

(Gr×
(V ∗⊗F)). However, we identify V ∗ with V using our choice of (self-dual) basis e1, . . . , eN ,
and accordingly change the action of GO = GL(N,O) by composing it with the automorphism
g 	→ tg−1. Note that the resulting Fourier transform to D?GO

(Gr×V) is independent of the
choice of basis in V .

To describe the effect of FT on the coherent side, we identify V1
∼= V ∗

1 and V2
∼= V ∗

2 using
our bases. Furthermore, we identify

Hom(V1, V2) ∼= Hom(V ∗
2 , V

∗
1 ) ∼= Hom(V2, V1), A 	→ B := −tA,

Hom(V2, V1) ∼= Hom(V ∗
1 , V

∗
2 ) ∼= Hom(V1, V2), B 	→ A := tB.

Thus we obtain an ι-equivariant transposition isomorphism

τ : G•
2,0 = Sym(Hom(V1, V2))⊗Sym(Hom(V2, V1)[−2])

→ Sym(Hom(V1, V2)[−2])⊗Sym(Hom(V2, V1)) = G•
0,2,

where ι : G0̄ → G0̄ is an automorphism (g1, g2) 	→ (tg−1
1 , tg−1

2 ). We denote the extension of

scalars via τ by ϕτ : DG0̄
perf(G

•
2,0)→ D

G0̄
perf(G

•
0,2). Clearly, the functor ϕτ :

(
D

G0̄
perf(G

•
2,0),

A∗ )→(
D

G0̄
perf(G

•
0,2),

B∗ )
is monoidal. Also, by the standard properties of the Fourier transform, the

functor

FT:
(
D!GO

(Gr×V),
!
�

)→ (
D∗GO

(Gr×V),
∗∗ )

is monoidal. Thus the monoidal property of Φ0,2 is a corollary of the following proposition.

Proposition 3.15.1. The functors FT ◦ Φ2,0 : DG0̄
perf(G

•
2,0)→ D∗GO

(Gr×V) and Φ0,2 ◦ ϕτ are

isomorphic.

Proof. Going over the construction of equivalences of Φ0,2,Φ2,0, we see that it suffices to construct
the isomorphisms FT(E0) ∼−→ E0 (evident), and

FT(−left ∗ • ∗ −right) ∼−→ ι(−left) ∗ FT(•) ∗ ι(−right) (3.15.1)

(left and right convolution functors DGO
(Gr)×D!∗GO

(Gr× V )×DGO
(Gr)→ D!∗GO

(Gr×
V )). Here ι : DGO

(Gr)→ DGO
(Gr) is a monoidal autoequivalence induced by the automor-

phism ι : g 	→ tg−1 of GF. Note that the Satake equivalence intertwines ι : DGO
(Gr)→ DGO

(Gr)
with the same-named autoequivalence of Rep(GLN ). Also note that ι : DGO

(Gr)→ DGO
(Gr)

is induced by the automorphism L 	→ L⊥ of Gr. Here L⊥ := {v ∈ V : (v, L) ∈ O}, and (·, ·)
stands for the F-bilinear pairing on V such that (ei, ej) = δij . Now the existence of the desired
isomorphism (3.15.1) follows from the definitions of FT and convolutions (3.2.3) and (3.2.4). �
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3.16 The monoidal property of Φ1,1

The argument is very similar to that of § 3.14. We introduce

C[H]•1,1 = Sym(Hom(V1, V2)[−1])⊗Sym(Hom(V2, V1)[−1])⊗Sym(Hom(V ′
1 , V2)[−1])

⊗Sym(Hom(V2, V
′
1)[−1])⊗Sym(Hom(V1, V

′
1)[−1])⊗Sym(Hom(V ′

1 , V1)[−1]).

Then the monoidal structure ⊗G•
1,1

on DG0̄
perf(G

•
1,1) is defined via the kernel C[Δ]•1,1: the diagonal

G0̄-equivariant dg-G•
1,1-trimodule. The fusion monoidal structure � on D!∗GO

(Gr×V) trans-

ferred to DG0̄
perf(G

•
1,1) via the equivalence Φ1,1 is also defined via a kernel K• (a G0̄-equivariant

dg-G•
1,1-trimodule). Note that we have a different equivariant structure than for K• (in the nota-

tion of § 3.14) because of the different compatibility with the Hecke action. We have to construct
an isomorphism of G0̄-equivariant dg-G•

1,1-trimodules C[Δ]•1,1
∼−→ K•.

We have Φ1,1G•
1,1 � E0. Also, we have an isomorphism of endofunctors E0 �− ∼=

Id: D!∗GO
(Gr×V)→ D!∗GO

(Gr×V). Thus we obtain an isomorphism of functors
Φ1,1(G•

1,1⊗G•
1,1
−) ∼−→ (Φ1,1G•

1,1) � Φ1,1−. This isomorphism yields an isomorphism of kernels

C[Δforg]•1,1
∼−→ K•

forg (the notation is explained in § 3.14).
The following diagram commutes:

IC(−1N ,1N ) � Φ1,1 ∼ ��

��

Φ1,1 ◦ (
detV1⊗−⊗ det−1V ′

1

)
· det A′′

��
E0 � Φ1,1

∼ �� Φ1,1

Hence the diagram
C[Δ]•1,1

∼−−−−→ K•
forg⏐⏐�· det A′′
⏐⏐�· det A′′

C[Δ]•1,1
∼−−−−→ K•

forg

commutes as well, and the rest of the argument proceeds just as in § 3.14.
This completes the proof of the monoidal property of Φ1,1 along with Theorem 3.6.1.

4. A coherent realization of DGL(N−1,O)(Gr)

4.1 Notation
We consider a complex vector space V̄1 with a basis e2, e3, . . . , eN . We consider the Lie superalge-
bra gl(N − 1|N) = gl(V̄1 ⊕ΠV2). We have a decomposition gl(N − 1|N) = ḡ0̄ ⊕ ḡ1̄, where ḡ1̄ =
ΠHom(V̄1, V2)⊕ΠHom(V2, V̄1), and ḡ0̄ = End(V̄1)⊕ End(V2). We set Ḡ0̄ = GL(V̄1)×GL(V2).
We consider the dg-algebra Ḡ• = Sym(ḡ1̄[−1]) with trivial differential, and the triangulated cat-
egory D

Ḡ0̄
perf(Ḡ

•) obtained by localization (with respect to quasi-isomorphisms) of the category
of perfect Ḡ0̄-equivariant dg-Ḡ•-modules. Finally, we set ḠO = GL(N − 1,O).

Theorem 4.1.1. There exists an equivalence of triangulated categories Φ̄ : DḠ0̄
perf(Ḡ

•) ∼−→
DḠO

(Gr) commuting with the left convolution action of the monoidal spherical Hecke category

PervGL(N−1,O)(GrN−1) ∼= Rep(GLN−1) and with the right convolution action of the monoidal

spherical Hecke category PervGL(N,O)(GrN ) ∼= Rep(GLN ).
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The proof will be given in § 4.4 after some preparations in §§ 4.2 and 4.3.
Similarly to § 3.8, we define Λ̄ := Λ

(
Hom(V̄1, V2)⊕Hom(V2, V̄1)

)
. We consider the derived

category D
Ḡ0̄
fd (Λ̄) of finite-dimensional complexes of Ḡ0̄ � Λ̄-modules. We have the Koszul

equivalence functors

κ̄ : DḠ0̄
fd (Λ̄) ∼−→D

Ḡ0̄
perf(Ḡ

•), SD
Ḡ0̄
fd (Λ̄) ∼−→ SD

Ḡ0̄
perf(Ḡ

•).

We also consider the degeneration gl(N − 1|N) of the Lie superalgebra gl(N − 1|N) (defined
as in § 1.5), and the derived category of bounded complexes of integrable gl(N − 1|N)-modules

SDint(gl(N − 1|N)) ∼= SD
Ḡ0̄
fd (Λ̄). The following corollary of Theorem 4.1.1 is proved just like

Corollary 3.8.1.

Corollary 4.1.2. (a) The composed equivalence

Φ̄ ◦ κ̄ : DḠ0̄
fd (Λ̄) ∼−→DḠO

(Gr)

is exact with respect to the tautological t-structure on D
Ḡ0̄
fd (Λ̄) and the perverse t-structure on

DḠO
(Gr).

(b) This equivalence is monoidal with respect to the tensor structure on D
Ḡ0̄
fd (Λ̄) and the

fusion � on DḠO
(Gr).

(c) The equivariant derived category DḠO
(Gr) is equivalent to the bounded derived category

of the abelian category PervḠO
(Gr).

In case N = 2, both Theorem 4.1.1 and Corollary 4.1.2(a) were proved in [BF18] by a rather
different argument.

4.2 Constructible mirabolic restriction
Clearly, V0 � tV0 is a single GO-orbit, and the stabilizer of the vector e1 ∈ V0 � tV0 is the
mirabolic subgroup MO ⊂ GO. Hence DGO

(Gr× (V0 � tV0)) ∼= DMO
(Gr). We will denote

Gr = GrGLN
by GrN to distinguish it from GrN−1 := GrGLN−1

. We will also denote by
Gr⊂N ⊂ GrN (respectively, Gr⊂N−1 ⊂ GrN−1) the closed subvariety classifying the sublattices in
the standard one V0 (respectively, in V̄0 := Oe2 ⊕Oe3 ⊕ · · · ⊕OeN ). It is a union of the Schu-
bert varieties numbered by the negative partitions of length ≤ N (respectively, ≤ N − 1). The
category PervGL(N,O)(Gr⊂N ) (respectively, PervGL(N−1,O)(Gr⊂N−1)) is monoidal and the Satake
equivalence takes it to the monoidal category of polynomial representations of GLN (respectively,
GLN−1).

We have a closed embedding ς : Gr⊂N−1 ↪→ Gr⊂N , (L̄ ⊂ V̄0) 	→ (Oe1 ⊕ L̄ ⊂ V0).

Lemma 4.2.1. (a) The functor ς ! : DGL(N,O)(Gr⊂N )→ DGL(N−1,O)(Gr⊂N−1) is monoidal.

(b) For a negative partition λ we have ς !ICλ = ICλ[|λ|] in the notation of § 3.13 (i.e. if λ1 < 0,

then ς !ICλ = 0, and if λ1 = 0, then ς !ICλ = IC(λ2≥···≥λN )[λ2 + · · ·+ λN ]).

Proof. (a) The Grassmannian of sublattices Gr⊂N (respectively, Gr⊂N−1) is the union of con-

nected components
⊔

n∈N
Gr⊂,(−n)

N (respectively,
⊔

n∈N
Gr⊂,(−n)

N−1 ) parametrizing sublattices of

codimension n. Clearly, ς(Gr⊂,(−n)
N−1 ) ⊂ Gr⊂,(−n)

N . Moreover, ς(Gr⊂,(−n)
N−1 ) is a connected com-

ponent of the intersection of the Levi Grassmannian GrGL1×GLN−1
⊂ GrN with Gr⊂,(−n)

N . We
have the monoidal functor of hyperbolic restriction to the Levi Grassmannian; see for example,
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[BD, 5.3.28 at p. 213]. Since (MF · ς(Gr⊂,(−n)
N−1 )) ∩Gr⊂,(−n)

N = ς(Gr⊂,(−n)
N−1 ), the hyperbolic

restriction to the component ς(Gr⊂,(−n)
N−1 ) coincides with the corestriction ς !.

(b) We have (SλV
∗
1 )GL1 = SλV̄

∗
1. Now the desired claim follows from [BD, Proposition 5.3.29].

�

Recall that the monoidal Hecke category DGL(N,O)(GrN ) = DGO
(Gr) acts by left convo-

lution on D!∗GO
(Gr×V). In particular, the monoidal subcategory DGO

(Gr⊂N ) ⊂ DGO
(Gr)

acts on D!∗GO
(Gr×V). We define the action of DGO

(Gr⊂N ) by the left convolution on
DGO

(Gr× (V0 � tV0)) as follows: A ∗ F := j!0(A ∗ j0∗F) (in the notation of § 3.12). Also, the
monoidal Hecke category DGL(N−1,O)(GrN−1) acts by left convolution on DGL(N−1,O)(GrN ).

Finally, we denote by ResGL(N−1,O)
MO

: DMO
(GrN )→ DGL(N−1,O)(GrN ) the functor of restriction

of equivariance under GL(N − 1,O) ↪→MO.

Lemma 4.2.2. We have a compatible system of isomorphisms for all A ∈ DGL(N,O)(Gr⊂N ) and

F ∈ DGO
(Gr× (V0 � tV0)) ∼= DMO

(Gr):

ResGL(N−1,O)
MO

(A ∗ F) ∼−→ ς !A ∗ ResGL(N−1,O)
MO

(F).

Proof. Comparison of definitions. �

4.3 Coherent mirabolic restriction
Recall the subcategory D

G0̄,≥
perf (G•

1,1) ⊂ DG0̄
perf(G

•
1,1) generated by {V1,λ⊗G•

1,1⊗V2,μ | λ ≥ 0}
introduced in the proof of Proposition 3.12.1(a). The equivalence Φ1,1 : DG0̄

perf(G
•
1,1)

∼−→
D!∗GO

(Gr×V) restricts to the same-named equivalence DG0̄,≥
perf (G•

1,1)
∼−→D!∗GO

(Gr×V0), and

the functor p∗q∗ : DG0̄,≥
perf (G•

1,1)→ D
G0̄,≥
perf (G•

1,1) (in the notation of § 3.12) is isomorphic to Id. Thus
we have a natural morphism Id ∼= p∗q∗ → p0∗q∗0 (again in the notation of § 3.12) of endofunctors of
D

G0̄,≥
perf (G•

1,1). Composing with another copy of p0∗q∗0, we obtain a morphism p0∗q∗0 → p0∗q∗0 ◦ p0∗q∗0
of endofunctors of DG0̄,≥

perf (G•
1,1) that is easily seen to be an isomorphism. Indeed, according

to Proposition 3.12.1(c), Φ1,1 takes p0∗q∗0 to j0∗j!0, and j0∗j!0
∼−→ j0∗j!0 ◦ j0∗j!0. Inverting the

isomorphism p0∗q∗0
∼−→ p0∗q∗0 ◦ p0∗q∗0, we obtain an isomorphism p0∗q∗0 ◦ p0∗q∗0

∼−→ p0∗q∗0 that,
together with the morphism Id→ p0∗q∗0, equips p0∗q∗0 with a structure of (idempotent) monad
in DG0̄,≥

perf (G•
1,1).

We denote the dg-algebra with trivial differential G•
1,1⊗C[Hom≤N−1(V1, V

′
1)] (the grading

on C[Hom≤N−1(V1, V
′
1)] is trivial) by F• (here Hom≤N−1(V1, V

′
1) ⊂ Hom(V1, V

′
1) stands for the

subvariety formed by the non-invertible homomorphisms). It is acted upon by GQ. By Theorem
3.6.1 and Proposition 3.12.1, we have an equivalence of categories Φ′ from the Kleisli category
(see [Mac98, VI.5]) D(p0∗q∗0) of the monad p0∗q∗0 in DG0̄,≥

perf (G•
1,1) to DGO

(Gr× (V0 � tV0)). For
the modules V1,λ⊗G•

1,1⊗V2,μ, V1,λ′ ⊗G•
1,1⊗V2,μ′ over the monad p0∗q∗0 (here both λ,λ′ are

partitions), we have

HomD(p0∗q∗0)(V1,λ⊗G•
1,1⊗V2,μ, V1,λ′ ⊗G•

1,1⊗V2,μ′) =
(
V ∗

1,λ⊗V ′
1,λ′ ⊗F•⊗ (V ∗

2,μ⊗V2,μ′)
)GQ .

Recall the equivalence DGO
(Gr× (V0 � tV0)) ∼= DMO

(Gr). By an abuse of notation, we
will denote the composed equivalence D(p0∗q∗0)

∼−→DMO
(Gr) also by Φ′.
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On the other hand, we consider a full subcategory DḠ0̄,≥0
perf (Ḡ•) ⊂ DḠ0̄

perf(Ḡ
•) generated by the

free modules V̄1,λ⊗ Ḡ•⊗V2,μ for partitions λ (of length ≤ N − 1). We construct an equivalence

Φ: D(p0∗q∗0)
∼−→D

Ḡ0̄,≥0
perf (Ḡ•) as follows. We consider the variety P of sextuples

A ∈ Hom(V1, V2), B ∈ Hom(V2, V1), Ā ∈ Hom(V̄1, V2),

B̄ ∈ Hom(V2, V̄1), b ∈ Hom(V1, V̄1), a ∈ Hom(V̄1, V1),

such that A = Āb, B̄ = bB, a = BĀ. Clearly,

P � Hom(V1, V̄1)×Hom(V̄1, V2)×Hom(V2, V1).

V1

A 		

�
�

�

b

��

V̄1
Ā

��

a

��

�


�

V2

B��

B̄��� � � � � � �

We have the natural morphisms

p : P→ Hom(V1, V2)×Hom(V2, V1) = Πg∗̄1, q : P→ Hom(V̄1, V2)×Hom(V2, V̄1) = Πḡ∗̄1;

p(A, Ā, a, b, B, B̄) = (A,B), q(A, Ā, a, b, B, B̄) = (Ā, B̄).

The variety P is acted upon by GP := GL(V1)×GL(V̄1)×GL(V2):

(g1, ḡ1, g2)(A, Ā, a, b, B, B̄) = (g2Ag−1
1 , g2Āḡ

−1
1 , g1aḡ

−1
1 , ḡ1bg

−1
1 , g1Bg

−1
2 , ḡ1B̄g

−1
2 ).

We have the natural morphisms

p : GP→ G0̄, p(g1, ḡ1, g2) = (g1, g2); q : GP→ Ḡ0̄, q(g1, ḡ1, g2) = (ḡ1, g2).

Clearly, the morphisms p : P→ Πg∗̄
1
, q : P→ Πḡ∗̄

1
are equivariant with respect to p : GP→ G0̄,

q : GP→ Ḡ0̄. Hence we have the convolution functor

q∗p∗ : CohG0̄(Πg∗̄1) = Coh(G0̄\Πg∗̄1)
p∗−→ Coh(GP\P)

q∗−→ Coh(Ḡ0̄\Πḡ∗̄1) = CohḠ0̄(Πḡ∗̄1)

(in particular, q∗ involves taking GL(V1)-invariants). We will actually need the same-named
functor q∗p∗ : DG0̄

perf(G
•
1,1)→ D

Ḡ0̄
perf(Ḡ

•) defined similarly using the dg-algebra with trivial
differential

Sym
(
Hom(V1, V2)[−1]⊕Hom(V̄1, V1)[−1]

)⊗SymHom(V̄1, V1)

(the grading on SymHom(V̄1, V1) is trivial, and if we disregard the grading, then
Sym

(
Hom(V1, V2)[−1]⊕Hom(V̄1, V1)[−1]

)⊗SymHom(V̄1, V1) � C[P]).
Now recall that D(p0∗q∗0) is a full subcategory of D

G0̄
perf(G

•
1,1). The desired func-

tor Φ: D(p0∗q∗0)→ D
Ḡ0̄
perf(Ḡ

•) is nothing but the restriction of q∗p∗ to the full subcat-

egory D(p0∗q∗0) ⊂ DG0̄
perf(G

•
1,1). The full subcategory D(p0∗q∗0) is generated by the objects

p0∗q∗0(V1,λ⊗G•
1,1⊗V2,μ) ∼=D(p0∗q∗0) V1,λ⊗G•

1,1⊗V2,μ (the left- and right-hand sides are isomor-
phic in the Kleisli category D(p0∗q∗0)) with λ running through the set of partitions. For a
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partition λ we have

Φ(V1,λ⊗G•
1,1⊗V2,μ) = V̄1,λ⊗ Ḡ•⊗V2,μ

in the notation of § 3.13 (i.e. if λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0) and λN > 0, then
Φ(V1,λ⊗G•

1,1⊗V2,μ) = 0, and if λN = 0, then Φ(V1,λ⊗G•
1,1⊗V2,μ) = V̄1,(λ1≥···≥λN−1)⊗ Ḡ•⊗

V2,μ). Hence Φ(V1,λ⊗G•
1,1⊗V2,μ) actually lies in D

Ḡ0̄,≥0
perf (Ḡ•) ⊂ DḠ0̄

perf(Ḡ
•). It remains to check

that Φ is fully faithful.
For partitions λ,λ′, we have to check that the following morphism is an isomorphism:(
V ∗

1,λ⊗ p0∗q∗0(V
′
1,λ′ ⊗C[Hom(V ′

1 , V2)×Hom(V2, V
′
1)]⊗V2,μ′)⊗V ∗

2,μ

)GL(V1)×GL(V2)

:=
(
V ∗

1,λ⊗V ′
1,λ′ ⊗C[Q0]⊗ (V ∗

2,μ⊗V2,μ′)
)GQ =

(
SλV

∗
1 ⊗Sλ′V ′

1 ⊗C[Q0]⊗ (V ∗
2,μ⊗V2,μ′)

)GQ

∼−→ (
SλV̄

∗
1 ⊗Sλ′ V̄1⊗C[Hom(V̄1, V2)×Hom(V2, V̄1)]⊗ (V ∗

2,μ⊗V2,μ′)
)GL(V̄1)×GL(V2)

.

V1

A 		

�
�

�A′′

��

b

��

V̄1

a′ ��

Ā

��

a

��

�


�

V2

B��

B′

��

�
�

�

B̄��

V ′
1

A′

��

B′′
���
�
�
�
�

b′
��

�
�

�

The desired isomorphism is equal to the composition of the following three. The first is induced
by

C[Hom≤N−1(V1, V
′
1)]

∼−→ (
C[Hom(V1, V̄1)]⊗C[Hom(V̄1, V

′
1)]

)GL(V̄1);

see Lemma 3.13.1(a). The second is induced by the inverse of

Sλ′ V̄1⊗C[Hom(V̄1, V2)] ∼−→ (
C[Hom(V̄1, V

′
1)⊗Sλ′V ′

1 ⊗C[Hom(V ′
1 , V2)]

)GL(V ′
1);

see Lemma 3.13.1(b). The third is induced by the inverse of

C[Hom(V2, V̄1)]⊗Sλ∗ V̄1
∼−→ (

C[Hom(V2, V1)⊗Sλ∗V1⊗C[Hom(V1, V̄1)]
)GL(V1);

see Lemma 3.13.1(c).

4.4 Proof of Theorem 4.1.1
We consider an F-linear automorphism ξ of V : ξ(e1) = e1, ξ(ei) = tei for i = 2, . . . , N , and the
same-named induced automorphism of Gr. It is given by the action of an element diag(1, t, . . . , t)
of the diagonal Cartan torus TF. Note that diag(1, t, . . . , t)MO diag(1, t−1, . . . , t−1) ⊃MO.
Hence ξ∗ acts on the equivariant category DMO

(Gr) (by restricting equivariance from
diag(1, t, . . . , t)MO diag(1, t−1, . . . , t−1) to MO). Clearly, ξ∗ acts on the equivariant cat-
egory DGL(N−1,O)(Gr) as well. Recall that ResGL(N−1,O)

MO
: DMO

(Gr)→ DGL(N−1,O)(Gr)
denotes the functor of restriction of equivariance under GL(N − 1,O) ↪→MO. We denote
by AvMO

GL(N−1,O) : DGL(N−1,O)(Gr)→ DMO
(Gr) the corresponding right adjoint ∗-averaging

functor.

Lemma 4.4.1. (a) Given F ∈ DGL(N−1,O)(Gr), for n� 0 the canonical morphism ResGL(N−1,O)
MO

AvMO

GL(N−1,O) ξ
n∗ F → ξn∗ F is an isomorphism.
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(b) ξ∗ is an auto-equivalence of DGL(N−1,O)(Gr), and hence the natural functor from

DGL(N−1,O)(Gr) to colimξ∗ DGL(N−1,O)(Gr) is an equivalence.

(c) The restriction of equivariance functor ResGL(N−1,O)
MO

: DMO
(Gr)→ DGL(N−1,O)(Gr)

induces the same-named equivalence of the colimits ResGL(N−1,O)
MO

: colimξ∗ DMO
(Gr)→

colimξ∗ DGL(N−1,O)(Gr) ∼= DGL(N−1,O)(Gr).

Proof. It suffices to prove (a) for an irreducible perverse F ∈ DGL(N−1,O)(Gr). This in turn
follows from the fact that, for any GL(N − 1,O)-orbit O ⊂ Gr and n� 0, the shift ξ−nO

becomes MO-invariant. Indeed, MO is generated by its radical UO and GL(N − 1,O). As n
grows, U(n)

O := diag(1, t−n, . . . , t−n)UO diag(1, tn, . . . , tn) forms a system of shrinking subgroups
of UO, and we take n big enough so that the action of U(n)

O on O is trivial (recall that the action
of UO on any Schubert subvariety of Gr factors through a finite-dimensional quotient group).

(b) is evident, and (c) follows from (a) and (b). �

On the coherent side we consider an endofunctor η of DḠ0̄,≥0
perf (Ḡ•) obtained by tensoring with

the polynomial representation det(V̄1) of GL(V̄1). The full embedding DḠ0̄,≥0
perf (Ḡ•) ↪→ D

Ḡ0̄
perf(Ḡ

•)

gives rise to an equivalence of colimits colimη D
Ḡ0̄,≥0
perf (Ḡ•) ∼−→ colimη D

Ḡ0̄
perf(Ḡ

•) ∼= D
Ḡ0̄
perf(Ḡ

•).
Composing the inverse of Φ with Φ′ (in the notation of § 4.3), we obtain an equivalence

Φ̄′ : DḠ0̄,≥0
perf (Ḡ•) ∼−→DMO

(Gr). According to Lemma 4.2.2, the equivalence Φ̄′ : DḠ0̄,≥0
perf (Ḡ•) ∼−→

DMO
(Gr) intertwines the endofunctors η and ξ∗, and hence induces the desired equivalence

Φ̄ : DḠ0̄
perf(Ḡ

•) ∼−→DGL(N−1,O)(Gr) between the colimits. Theorem 4.1.1 is proved.

5. Loop rotation and quantization

5.1 Graded differential operators and convolutions
We have H•

Gm
(pt) = C[�]. We consider the algebra D of ‘graded differential operators’ on

Hom(V2, V1): a C[�]-algebra generated by Hom(V2, V1) and Hom(V1, V2) with relations [h, h′] =
[f, f ′] = 0, [h, f ] = 〈h, f〉� for h, h′ ∈ Hom(V2, V1), f, f ′ ∈ Hom(V1, V2). It is equipped with the
grading deg f = deg h = 1, deg � = 2. We denote by D•

1,1 this graded algebra viewed as a dg-
algebra with trivial differential. We will also need two more versions of D•

1,1 differing by the
gradings of generators: in D•

0,2 we set deg f = 0 and deg h = 2, while in D•
2,0 we set deg f = 2

and deg h = 0.
Recall the setup and notation of § 3.4. So we have another copy V ′

1 of V1, we rebaptize the
algebra D of ‘graded differential operators’ on Hom(V2, V1) as D21, and along with it we consider
D21′ (‘graded differential operators’ on Hom(V2, V

′
1)) and D1′1 (‘graded differential operators’

on Hom(V ′
1 , V1)). Note that D21

∼= D12 (‘graded differential operators’ on Hom(V1, V2)), and
similarly D21′ ∼= D1′2, and D1′1 ∼= D11′ .

We have morphisms

mA : Hom(V ′
1 , V2)×Hom(V1, V

′
1)→ Hom(V1, V2), (A′, A′′) 	→ A′A′′,

mB : Hom(V ′
1 , V1)×Hom(V2, V

′
1)→ Hom(V2, V1), (B′′, B′) 	→ B′′B′.
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They give rise to the functors

D
GL(V ′

1)×GL(V2)
perf (D1′2)×DGL(V1)×GL(V ′

1)
perf (D11′)→ D

GL(V1)×GL(V2)
perf (D12),

(M1′2,M11′) 	→
(
mA

∗ (M1′2 �M11′)
)GL(V ′

1)
,

D
GL(V ′

1)×GL(V1)
perf (D1′1)×DGL(V2)×GL(V ′

1)
perf (D21′)→ D

GL(V2)×GL(V1)
perf (D21),

(M1′1,M21′) 	→
(
mB

∗ (M1′1 �M21′)
)GL(V ′

1)

(here mA∗ and mB∗ stand for the direct images in the category of D-modules).
We will actually need the corresponding functors on the categories of dg-modules

A∗ : DG0̄
perf(D

•
2,0)×DG0̄

perf(D
•
2,0)→ D

G0̄
perf(D

•
2,0),

B∗ : DG0̄
perf(D

•
0,2)×DG0̄

perf(D
•
0,2)→ D

G0̄
perf(D

•
0,2).

The multiplicative group Gm acts on Gr×V as loop rotations. The goal of this section is the
following theorem.

Theorem 5.1.1. There exist monoidal equivalences of triangulated categories

(
D

G0̄
perf(D

•
2,0),

A∗ ) ∼−−−−→
Φ2,0

�

(
D!GO�C×(Gr×V),

!
�

)
	
⏐⏐��right 	

⏐⏐��right

D
G0̄
perf(D

•
1,1)

∼−−−−→
Φ1,1

�

D!∗GO�C×(Gr×V)

	
⏐⏐��right 	

⏐⏐��right(
D

G0̄
perf(D

•
0,2),

B∗ ) ∼−−−−→
Φ0,2

�

(
D∗GO�C×(Gr×V),

∗∗ )
(5.1.1)

(the vertical and middle row equivalences are not monoidal). The horizontal equivalences com-

mute with the actions of the monoidal spherical Hecke category PervGO�C×(Gr) ∼= Rep(GLN )
by left and right convolutions.

The proof will be given in § 5.3.

5.2 Construction of equivalences
We set E•

�
:= Ext•

Ddeeq
!∗GO�Gm

(Gr×V)
(E0, E0) (a dg-algebra with trivial differential). Since it is an

Ext-algebra in the de-equivariantized category, it is automatically equipped with an action
of GLN ×GLN = GL(V1)×GL(V2) = G0̄, and we can consider the corresponding triangulated
category D

G0̄
perf(E

•
�
). Similarly to Lemma 3.9.2, there is a canonical equivalence DG0̄

perf(E
•
�
) ∼−→

D!∗GO�Gm(Gr×V). It remains to construct an isomorphism φ•
�
: D•

1,1
∼−→ E•

�
.

Note that E•
�

is a C[�]-algebra, and E•
�
/(� = 0) = E• = G•

1,1 = Sym(g1̄[−1]), so that E•

acquires a Poisson bracket from this deformation. We claim that this Poisson bracket arises from
the canonical symplectic form on g∗̄

1
. Indeed, the isomorphism φ∗ (see the proof of Lemma 3.11.1)

over Isom(V2, V1)×Hom(V1, V2) and Hom(V2, V1)× Isom(V1, V2) is Poisson. Here the Poisson
structure on these open subsets arises from the deformations A•

�
,B•

�
which in turn arise from
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the loop-rotation-equivariant Satake category DGO�Gm(Gr). The corresponding Poisson brack-
ets are the standard ones on the cotangent bundles T ∗Isom(V2, V1), T ∗Isom(V1, V2), as follows
from [BF08, Theorem 5].

Now D•
1,1 is a unique graded C[�]-algebra with D•

1,1/(� = 0) = Sym(g1̄[−1]) such that the
corresponding Poisson bracket on Sym(g1̄[−1]) is the standard one. Thus φ•

�
and Φ1,1

�
are

constructed.

5.3 Restriction to Gr × V0 with loop rotation
Similarly to § 3.12, our goal in this section is a description in terms of equivalence of Theorem
5.1.1 of the endofunctors j̄0∗j̄!0, j0∗j!0 : D!∗GO�C×(Gr×V)→ D!∗GO�C×(Gr×V). To this end
we will need the algebra H of ‘graded differential operators’ on Hom(V1, V2)⊕Hom(V1, V

′
1)⊕

Hom(V ′
1 , V2) defined similarly to D of § 5.1. It is equipped with the grading where the gener-

ators from Hom(V2, V1), Hom(V1, V2), Hom(V ′
1 , V2) and Hom(V2, V

′
1) have degree 1, while the

generators from Hom(V1, V
′
1) and Hom(V ′

1 , V1) have degrees 2 and 0 respectively, and deg � = 2.
We denote by H• this graded algebra viewed as a dg-algebra with trivial differential. If we
denote the similar dg-algebras of ‘graded differential operators’ on Hom(V1, V2), Hom(V1, V

′
1)

and Hom(V ′
1 , V2) by D•

12, D•
11′ and D•

1′2, then H• = D•
12⊗D•

11′ ⊗D•
1′2. Since the canonical line

bundle on an affine space carries a canonical flat connection, the algebras D•
ij admit (GL(Vi)×

GL(Vj))-equivariant anti-involutions. Thus we can identify H• ∼−→D•
12⊗ (D•

11′ ⊗D•
1′2)

op.
The algebra H• has a cyclic holonomic left dg-module Q• of ‘delta-functions along the

subvariety cut out by the equationA = A′A′′’; see (3.4.1). We also consider the GL(V1)×GL(V ′
1)-

equivariant cyclic D•
11′-module D•

11′0 corresponding to the D11′ := DHom(V1,V ′
1)-module given

by

D11′/(D11′ ⊗ detV1⊗ det−1V ′
1)(detA′′) = IndD11′

OHom(V1,V ′
1)

(OHom≤N−1(V1,V ′
1)).

We define the following endofunctors of DG0̄
perf(D

•
1,1):

D
G0̄
perf(D

•
1,1) = D

GL(V ′
1)×GL(V2)

perf (D•
1′2) �M 	→ p∗q∗M

:=
(
Q•⊗D•

11′⊗D•
1′2

(D•
11′ ⊗M)

)GL(V ′
1) ∈ DGL(V1)×GL(V2)

perf (D•
12) = D

G0̄
perf(D

•
1,1),

D
G0̄
perf(D

•
1,1) = D

GL(V ′
1)×GL(V2)

perf (D•
1′2) �M 	→ p0∗q∗0M

:=
(
Q•⊗D•

11′⊗D•
1′2

(D•
11′0⊗M)

)GL(V ′
1) ∈ DGL(V1)×GL(V2)

perf (D•
12) = D

G0̄
perf(D

•
1,1).

Then, similarly to Proposition 3.12.1, one proves the following proposition.

Proposition 5.3.1. (a) There is an isomorphism of functors

j̄0∗j̄!0 ◦ Φ1,1
�
� Φ1,1

�
◦ p∗q∗ : DG0̄

perf(D
•
1,1)→ D!∗GO�C×(Gr×V).

(b) There is an isomorphism of functors

j0∗j!0 ◦ Φ1,1
�
� Φ1,1

�
◦ p0∗q∗0 : DG0̄

perf(D
•
1,1)→ D!∗GO�C×(Gr×V).

Now, using Proposition 5.3.1 in place of Proposition 3.12.1, one checks the monoidal prop-
erties of Φ2,0

�
and Φ0,2

�
similarly to the monoidal properties of Φ2,0 and Φ0,2 checked in §§ 3.14

and 3.15, respectively. This completes the proof of Theorem 5.1.1.
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5.4 D-modules and DGL(N−1,O)�C×(Gr)
Similarly to § 5.1, we consider the dg-algebra (with trivial differential) D̄• of ‘graded differential
operators’ on Hom(V2, V̄1). Then, similarly to Theorem 4.1.1, one proves the following theorem.

Theorem 5.4.1. There exists an equivalence of triangulated categories Φ̄� : DḠ0̄
perf(D̄

•) ∼−→
DḠO�C×(Gr) commuting with the left convolution action of the monoidal spherical Hecke cat-

egory PervGL(N−1,O)�C×(GrN−1) ∼= Rep(GLN−1) and with the right convolution action of the

monoidal spherical Hecke category PervGL(N,O)�C×(GrN ) ∼= Rep(GLN ).
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