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SUMMARY

As with any measurement procedure, the performance of a subjective classification procedure must be
evaluated. Observers have to be trained and their performance has to be assessed, preferably on a
regular basis, to guarantee sufficient consistency and accuracy of classification results. The current
paper is a study of observer performance where observers were asked to classify the gait of cows from
video recordings. Gait was classified in nine ordered categories (ranging from 1=normal gait to
9=severely abnormal gait) and also as a continuous fraction by putting a mark on a paper strip (the
left end corresponding to 0=normal gait and the right end to 1=severely abnormal gait). The use of
statistical models and methodology for analysis of these visual scores is demonstrated and discussed.
Observers were assessed by comparing their classification results with the results of an expert. Models
and methodology take proper account of typical features of the data, i.e. the fact that data are
discrete scores or continuous scores with an upper and lower bound, the variance heterogeneity and
non-linearity of model terms that arises from this, and the dependence between repeated classifi-
cations of videos of the same cow. Results of the analyses are summarized in simple tables and plots.
These are useful tools to indicate possible flaws in judgement of an observer, that may be corrected by
further training. When a high standard is developed, which usually takes the form of the opinion of
one or more experts, this methodology can be applied prior to any experiment where responses are
ordered subjective scores.

INTRODUCTION

The literature on gait, posture and locomotion of
animals is largely concerned with the association be-
tween scores for gait and other traits, such as repro-
ductive performance (Sprecher et al. 1997), or with the
influence of treatments, such as different amounts of
concentrates (Manson & Leaver 1988), on scores for
gait. In the current paper, attention is focused on the
reliability of the scoring system. As part of an animal
welfare study of the Institute for Animal Science
and Health and the Research Institute for Animal
Husbandry in The Netherlands, the gait of cows was
visually assessed at several farms. Subsequently, to
evaluate observer performance, nine observers were
asked to classify video recordings of the gait of 50

different cows. Assessment of the observers on the
basis of their classification results of the video re-
cordings is the subject of the current paper.
All video recordings were classified five times in

five successive sessions by each observer. To form an
impression of the effect of further training, after dis-
cussion with an expert observer, the videos were
classified once more, again five times in five sessions.
Visual assessment was performed in two ways: by
classification into nine discrete ordered categories
(from 1=normal to 9=severely abnormal) and as a
continuous fraction (from 0=normal to 1=severely
abnormal) by putting a mark on a paper strip (left
end=0=normal and right end=1=severely abnor-
mal). The aforementioned sequence of five sessions/
discussion/five sessions was followed for the discrete
scores (1,…, 9) first, and for the continuous scores
(fractions) afterwards, employing the same video re-
cordings. In all sessions the video recordings were
offered in a (different) random order.
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Although five repeat sessions to classify 50 videos
per session puts a strain on observers, the resulting
data set is moderately sized for current purposes
and results based on model calculations are to be
preferred over tables of raw means. In the choice
of model the fact that the data are either discrete
scores or fractions, with associated non-linearity of
model terms and heterogeneity of variances, and that
repeated observations of the same cow will be corre-
lated, had to be accounted for. For each observer
separate analyses of the data collected before and
after further training were performed, i.e. discussion
with the expert. Simultaneous analysis of data, for
instance analysis of scores from several observers,
would be feasible. However, such an analysis is more
complex while little extra information is extracted
from the data. Discrete scores (1,…, 9) and continu-
ous scores (fractions) were analysed separately. The
statistical analyses offered useful tools, in the form of
tables and plots, to evaluate observer performance.
The expert’s results were used as a ‘gold standard’,

i.e. as a measure of the true score for a video record-
ing. In a discussion between expert and observers,
after classification was finished, there was general
agreement on the expert’s discrete scores in ordered
categories for all cows except one. For the continuous
fractions (paper strip scores), the mean of the expert
was taken as the gold standard. This seemed a reason-
able choice since the expert was far more experienced
than the other observers. Moreover, to ensure that
the expert mean was sufficiently stable, it was derived
from 10 repeated classifications of each video re-
cording. For scoring systems where no gold standard
is available, attention generally focuses on measures
of variation within (repeatability) and between (re-
producibility) observers (Garner et al. 2002).
In the next section, first an overview of the data is

presented. Subsequently the model for the discrete
scores (1,…, 9) is introduced. Scores correspond to
intervals defined by threshold values on an underlying
continuous scale. This threshold model is a particular
instance of a generalized linearmixedmodel (GLMM)
and methodology developed by Keen & Engel (1997)
for GLMMs for ordered categorical data is used.
Next, the model for the continuous scores (fractions)
is presented. This is also a GLMM and methodology
developed by Engel & Keen (1994) is used. Plots and
tests for model checking are discussed. Some results
are briefly presented in passing in the Materials and
Methods section to illustrate the methodology. Re-
sults are discussed in more detail in the Results sec-
tion. However, since the main aim is to demonstrate
that the analyses offer useful tools to assess the ob-
servers, a detailed discussion of all results is not pres-
ented. Finally, in the discussion some practical
aspects, such as implementation in a monitoring
system, are addressed. Most of the technical details
are transferred to the Appendix. All the calculations

were performed with the statistical package GenStat
(GenStat Committee 2000).

MATERIALS AND METHODS

The classification data

The scoring system in nine ordered categories is de-
scribed in the Appendix of Manson & Leaver (1988).
The scores in Manson and Leaver are numbered 1.0,
1.5, 2.0,…, 4.5, 5.0 and were re-numbered 1,…, 9 in
this paper. A summary of the discrete scores is pres-
ented in Table 1a for all observers including the ex-
pert observer. Score 9 (a severely abnormal gait) did
not occur. Therefore, scores 8 and 9 were pooled and
the analyses were effectively reduced to scores 1,…, 8.
A summary of the continuous scores (fractions) is
presented in Table 1b.

A threshold model for the discrete scores

An analysis of variance (ANOVA) model with the
expert scores as levels of an explanatory factor was
adopted. However, an ANOVA model is appropriate
for a continuous response variable but not for a dis-
crete score y. Therefore an underlying continuous
variable z, that follows an ANOVA model, and is
connected to an observer’s score y by a threshold con-
cept was introduced. A particular score is assigned
when the underlying variable is in the corresponding
interval defined by two successive threshold values:

y=k when hkx1<zfhk, k=1,…, K

Here, h0<h1<…<hK are the threshold values.
Threshold values h0 and hK are equal to xO and
+O respectively; they were introduced to simplify
the notation. The number of scores K=8 (because
score 9 did not occur in the data). It was assumed that
z is normally distributed with mean g, that depends
on the expert score and the cow, and constant vari-
ance s2. The expert score will be denoted by x. For a
cow with expert score x=j, j=1,…, K :

g=bj+u

Here, bj is the observer’s mean for cows with expert
score x=j and u is the departure from that mean for
a particular cow on the underlying scale. The cow
effects u are assumed to be normally distributed with
mean 0 and variance su

2. They induce a (positive)
correlation between scores of the same cow. Note that
cows have to be representative for their expert scores
x, but may be selected on the basis of x, for instance
with over-sampling of the extremes.
The model is illustrated in Fig. 1, where the shaded

area equals the probability for a score y=3 for a
particular cow. With a different expert score or a dif-
ferent cow effect, the distribution in Fig. 1 may move
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either to the left, which increases the probabilities for
low scores, or to the right, which increases the prob-
abilities for high scores.
Scores y do not change when z and h1,…, hKx1 are

divided by an arbitrary non-zero constant, nor will
they change when an arbitrary constant is added.

Therefore, without loss of generality, but merely to
pin down the location and scale for z, it was assumed
that the underlying residual variance s2=1 and
threshold h1=0. The other thresholds h2,…, hKx1

together with b1,…, bK and su
2 will have to be esti-

mated from the data.

Table 1a. A summary of the discrete scores 1,…, 9 (columns) per observer (rows) before (B) and after (A) further
training. For observer 9 there was only one series of five repeats of 50 videos. The expert was quite familiar with the

videos and performed no repeat classifications for the discrete scores

Observer
Before/
after

Percentages for discrete scores

Number of
observations1 2 3 4 5 6 7 8 9

1 B 5.2 14.0 26.4 13.6 12.0 6.0 11.2 11.6 0 250
A 4.0 16.0 24.4 13.2 13.6 8.0 5.2 15.6 0 250

2 B 10.0 14.0 25.6 24.8 12.0 7.2 4.4 2.0 0 250
A 8.8 7.2 19.6 22.8 15.2 8.4 11.6 6.4 0 250

3 B 2.0 8.0 30.8 19.2 14.0 5.6 9.2 11.2 0 250
A 6.0 11.2 20.4 24.4 7.6 5.2 11.6 13.6 0 250

4 B 5.6 8.0 21.2 23.2 11.2 14.0 10.8 6.0 0 250
A 4.4 13.2 21.6 15.6 16.0 6.4 14.4 8.4 0 250

5 B 9.2 17.6 16.0 11.2 14.4 13.6 10.0 8.0 0 250
A 6.0 10.8 30.0 14.0 11.2 8.8 8.4 10.8 0 250

6 B 4.8 18.4 19.6 12.8 15.6 14.8 8.8 5.2 0 250
A 0 11.6 29.6 13.2 14.8 6.8 9.6 14.4 0 250

7 B 3.6 20.8 17.2 15.2 14.0 4.8 16.0 8.4 0 250
A 4.0 28.0 19.2 7.6 7.2 6.0 12.8 15.2 0 250

8 B 5.6 20.4 25.6 16.0 8.6 12.8 4.8 6.0 0 250
A 6.0 14.8 25.2 24.8 9.2 6.0 6.8 7.2 0 250

9 — 5.2 11.6 19.2 20.4 16.8 6.0 15.6 5.2 0 250
Expert — 6.0 16.0 18.0 16.0 16.0 8.0 12.0 8.0 0 50

Table 1b. A summary of the paper strip scores per observer (rows) before (B) and after (A) further training. A few
scores are missing

Observer Before/after

Percentile points

Number of
observations (median)10% 50% 90%

1 B 0.14 0.50 0.88 247
A 0.20 0.50 0.90 250

2 B 0.03 0.54 0.78 247
A 0.09 0.50 0.83 250

3 B 0.08 0.49 0.94 247
A 0.05 0.52 0.95 250

4 B 0.24 0.54 0.86 247
A 0.19 0.51 0.89 250

5 B 0.12 0.42 0.83 250
A 0.12 0.46 0.87 250

6 B 0.16 0.53 0.90 250
A 0.09 0.47 0.92 250

7 — 0.07 0.35 0.80 250
8 B 0.10 0.40 0.75 250

A 0.04 0.45 0.75 250
9 B 0.21 0.44 0.78 250

A 0.15 0.44 0.80 250
Expert — 0.12 0.37 0.79 500
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The probability for a score equal or below k for a
cow with expert score x=j is

cjk=P( yfkjx=j)=P(zfhkjx=j)

=W
hkxbjp
(s2

u+1)

� �
(1)

where W denotes the cumulative standard normal
distribution function (the standard normal prob-
ability integral) (some details are in Appendix A1).
Note that W is available in most statistical packages,
including the GenStat package used in the current
paper. The probability for a score equal to k is

Pjk=P(y=kjx=j)

=P(hkx1<zfhkjx=j)

=cjkxcjkx1 (2)

Estimates and associated confidence intervals for the
probabilities Pjk were used to evaluate observer per-
formance. The model is a particular instance of a
generalized linear mixed model ; see Keen & Engel
(1997) for additional details and references.
With an underlying logistic distribution, and with-

out random cow effects, the threshold model is also
known as the proportional odds model ; some details
are in Chapter 5 of McCullagh & Nelder (1989). An
underlying normal distribution was preferred, be-
cause inconjunctionwithnormallydistributedrandom
cow effects this yields the relatively simple expression
(1) for cumulative probabilities cjk. For an underlying
logistic distribution, expressions for cjk are only
available in an approximate form (Aitchison & Shen
1980; Engel et al. 1995).

Inference with the threshold model

Threshold values h2,…, hKx1, means b1,…, bK for
the underlying variable z and variance component su

2

for variation between cows were estimated by the
method described in Keen & Engel (1997), utilizing
procedure IRCLASS (Keen 2001), which is written
in GenStat. With these parameter estimates, esti-
mated probabilities P̂Pjk were derived from expres-
sions (1) and (2).
Standard errors and 95% confidence intervals for

probabilities Pjk were calculated by a parametric
bootstrap method (Efron & Tibshirani 1993). With
the estimated parameter values, 500 new data sets of
250 scores each were generated by simulation and
analysed. This resulted in 500 estimated values P̂Pjkl,
l=1,…, 500, for each of the probabilities Pjk. The
standard deviations of these 500 simulated estimates
provided the estimated standard errors of the original
estimates P̂Pjk. Some details about the calculations of
the confidence intervals are given in Appendix A1. As
an illustration, estimated probabilities and associated
standard errors and intervals are shown in Table 2 for
observer 4 before and after further training, i.e. before
and after a discussion with the expert. Rows corre-
spond to expert scores and columns to the scores of
observer 4. For instance, before training there was
only a probability P̂P55=0.34 for observer 4 to classify
a cow with expert score 5 in that same category. There
was a probability of P̂P54+P̂P56=0.26+0.32=0.58
that the cow was classified in a neighbouring cat-
egory. Even when the lower bounds of the confi-
dence intervals are used, offering an optimistic view
of the differences with the expert, the latter prob-
ability was still sizeable.
Simple summary statistics, such as a weighted

mean of the diagonal elements

Sjwj P̂Pjj

can be calculated from the estimated probabilities,
with standard errors and confidence intervals derived
from the bootstrap sample. Weights may be chosen
equal to the population probabilities P(x=j) for the
true scores or by weighing the consequences of mis-
classification. Since neither the probabilities P(x=j),
nor the full consequences of misclassification were
known, in this paper equal weights wj=1/K were
employed.

A model for the continuous fractions

A regression model for the observed fraction y of an
observer on the true fraction x was adopted, i.e. the
mean fraction x of the expert, with some extra fea-
tures because the scores are between 0 and 1. In con-
trast to ordinary linear regression it could not simply
be assumed that the mean m of y is a linear function
of x, because that may produce fitted values for m
below 0 or above 1. Therefore, the means m were
‘stretched’ by a transformation to values ranging
from xO to +O. A popular transformation to

θ1 θ2 θ3 θ4 θK–1
η

z

y=1 y=2 y=3 y = K

Fig. 1. The threshold model.
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achieve this is the logit transformation: logit(m)=
log(m/(1xm)). A transformation that usually pro-
duces similar results and in this case is mathemat-
ically more convenient (Appendix A2) is the probit :
probit(m)=Wx1(m), whereWx1 denotes the inverse of
the cumulative standard normal distribution func-
tion:

probit(m)=a+bprobit(x)+u

or

m=W(a+bprobit(x)+u) (3)

Here, probit(x) is the probit transform of the true
fraction x and u is a normally distributed cow effect
with mean 0 and variance su

2. Some of the notation
is similar to the threshold model, but (the smaller
number of) parameters have a different interpret-
ation. Unlike in ordinary linear regression, it could
not be assumed that the variance of y is constant and

independent of the mean m. For more extreme m, ob-
servations y will be closer to 0 or 1, and the variation
will be relatively smaller. So, a large variation in the
middle of the interval (0, 1) and small variation at the
extremes 0 and 1 was expected. This is illustrated in
Fig. 2, where the raw variance estimates are plotted
against the means per cow for the data of observer 4
after further training. Despite the ‘noise ’ in the vari-
ance estimates, because each variance is based on five
repeats only, the expected pattern is clearly there. It
was assumed that

Var(y)=s2m(1xm)

where s2, to be referred to as the residual variance
component, will be estimated from the data. Figure 2
also illustrates that there is no gain in examining a
more intricate variance-mean relationship: it would
not be possible to see the difference with the simple
variance function assumed above.

Table 2. The estimated probabilities for observer 4, before and after further training. Standard errors are in
parentheses and 95% confidence intervals in square brackets. Row numbers are expert scores and column numbers

are scores for observer 4

1 2 3 4 5 6 7 8

Before further training
1 0.39 (0.08) 0.35 (0.06) 0.23 (0.06) 0.03 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

[0.25, 0.55] [0.24, 0.47] [0.14, 0.36] [0.01, 0.10] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00]
2 0.17 (0.04) 0.31 (0.05) 0.39 (0.05) 0.12 (0.03) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

[0.10, 0.28] [0.22, 0.43] [0.31, 0.48] [0.07, 0.21] [0.00, 0.02] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00]
3 0.02 (0.01) 0.09 (0.02) 0.37 (0.04) 0.43 (0.04) 0.08 (0.02) 0.01 (0.01) 0.00 (0.00) 0.00 (0.00)

[0.00, 0.05] [0.05, 0.16] [0.29, 0.46] [0.34, 0.51] [0.04, 0.16] [0.00, 0.05] [0.00, 0.00] [0.00, 0.00]
4 0.01 (0.00) 0.06 (0.02) 0.32 (0.04) 0.47 (0.05) 0.11 (0.03) 0.02 (0.01) 0.00 (0.00) 0.00 (0.00)

[0.00, 0.03] [0.03, 0.13] [0.24, 0.41] [0.37, 0.57] [0.06, 0.19] [0.01, 0.08] [0.00, 0.00] [0.00, 0.00]
5 0.00 (0.00) 0.00 (0.00) 0.03 (0.01) 0.26 (0.04) 0.34 (0.06) 0.32 (0.05) 0.05 (0.02) 0.00 (0.00)

[0.00, 0.00] [0.00, 0.00] [0.01, 0.08] [0.18, 0.36] [0.24, 0.45] [0.23, 0.42] [0.02, 0.12] [0.00, 0.02]
6 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.04 (0.02) 0.15 (0.04) 0.46 (0.06) 0.27 (0.05) 0.08 (0.03)

[0.00, 0.00] [0.00, 0.00] [0.00, 0.01] [0.01, 0.11] [0.09, 0.26] [0.35, 0.57] [0.18, 0.38] [0.03, 0.19]
7 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.08 (0.03) 0.38 (0.05) 0.35 (0.06) 0.17 (0.05)

[0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.05] [0.04, 0.16] [0.28, 0.49] [0.25, 0.47] [0.09, 0.29]
8 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02 (0.01) 0.19 (0.05) 0.37 (0.06) 0.43 (0.07)

[0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.01] [0.00, 0.06] [0.11, 0.31] [0.26, 0.49] [0.30, 0.56]

After further training
1 0.24 (0.05) 0.54 (0.05) 0.22 (0.04) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

[0.16, 0.34] [0.44, 0.62] [0.15, 0.31] [0.00, 0.02] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00]
2 0.16 (0.03) 0.52 (0.04) 0.31 (0.03) 0.02 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

[0.10, 0.22] [0.43, 0.60] [0.25, 0.38] [0.01, 0.04] [0.00, 0.01] [0.00, 0.00] [0.00, 0.00] [0.00. 0.00]
3 0.00 (0.00) 0.09 (0.02) 0.52 (0.04) 0.24 (0.04) 0.13 (0.02) 0.02 (0.01) 0.00 (0.00) 0.00 (0.00)

[0.00, 0.01] [0.05, 0.14] [0.45, 0.59] [0.18, 0.31] [0.08, 0.19] [0.01, 0.05] [0.00, 0.02] [0.00, 0.00]
4 0.00 (0.00) 0.05 (0.02) 0.45 (0.03) 0.28 (0.04) 0.17 (0.03) 0.03 (0.01) 0.01 (0.00) 0.00 (0.00)

[0.00, 0.00] [0.03, 0.10] [0.39, 0.52] [0.21, 0.35] [0.12, 0.24] [0.01, 0.08] [0.00, 0.03] [0.00, 0.00]
5 0.00 (0.00) 0.00 (0.00) 0.08 (0.02) 0.18 (0.03) 0.36 (0.06) 0.19 (0.04) 0.17 (0.03) 0.02 (0.01)

[0.00, 0.00] [0.00, 0.00] [0.04, 0.14] [0.12, 0.25] [0.26, 0.47] [0.13, 0.28] [0.11, 0.26] [0.01, 0.05]
6 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.04 (0.01) 0.18 (0.04) 0.20 (0.04) 0.42 (0.05) 0.15 (0.04)

[0.00, 0.00] [0.00, 0.00] [0.00, 0.02] [0.01, 0.09] [0.12, 0.26] [0.13, 0.30] [0.33, 0.52] [0.09, 0.26]
7 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02 (0.01) 0.14 (0.03) 0.18 (0.04) 0.45 (0.05) 0.20 (0.04)

[0.00, 0.00] [0.00, 0.00] [0.00, 0.01] [0.01, 0.06] [0.09, 0.21] [0.12, 0.27] [0.35, 0.54] [0.13, 0.29]
8 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02 (0.01) 0.05 (0.02) 0.32 (0.04) 0.61 (0.05)

[0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.01] [0.01, 0.05] [0.02, 0.10] [0.25, 0.41] [0.50, 0.70]
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The population average over all cows with expert
score x, i.e. the expectation of y for a given expert
score x, is equal to

E(yjx)=W
a+bprobit(x)p

(s2
u+1)

� �

=W(a+b probit(x)) (4)

Note that compared with Eqn (3), averaging over
the cows (integration over u in mathematical terms)
involves shrinkage of the intercept and slope:

a=a=
p
(s2

u+1) and b=b=
p
(s2

u+1)

There are some details in Appendix A2.

Inference with the model for fractions

The intercept a, slope b, and variance components
su
2 and s2 for variation between and within cows were

estimated by a quasi-likelihood method as described
in Engel & Keen (1994), utilizing GenStat procedure
IRREML (Keen & Engel 2001). Confidence bounds
for expected fractions from expression (4) were de-
rived from a bootstrap sample. To simulate data, it
was necessary to be more specific about the distri-
bution of fractions y given a particular expert score x
and cow effect u. A beta distribution was assumed.
Some details of the simulation are given in Appendix
A2. By way of an illustration, in Fig. 3 the difference
between the expected scores of observer 4 and the true
score x (the expert’s mean score), before and after
training, are plotted against x. Ideally the curves
should be close to 0 for all x. The 95% confidence
bounds in Fig. 3 were constructed in the same way as
described in Appendix A1 for probabilities in the
threshold model. They offer a more discriminating

view of the differences between expert and observer
than mere point estimates. Systematic differences be-
tween observer 4 and the expert are smaller after fur-
ther training. However, both before and after training
observer 4 scored significantly higher than the expert.
A simple summary statistic to compare the expert

and an observer is the root of the expected mean
squared error :

RMSE(x)=
p
E(yxx)2
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Fig. 2. Raw variances against raw means per cow for con-
tinuous scores (fractions). Observer 4 after training.
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Fig. 3. The average discrepancy between observer 4 and the
expert plotted against the expert score with 95% confidence
limits for continuous scores (fractions). Curves (a) before
and (b) after further training.
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This function can be evaluated from the bootstrap
sample and is plotted in Fig. 4 for observer 4. The plot
is smoothed by fitting a spline. The RMSE combines
the systematic differences with the expert (bias) with
the variability of the observer.

Checking the fit of the models

Residuals are inspected routinely after the fit of a
model. For the threshold model Pearson residuals
were examined, which are scaled differences between
proportions of scores equal or below k or proportions

equal to k, k=1,…, K, and their values as predicted
from the model. For a cow with expert score x=j

Rjk=(Nk=nxP̂Pjk)=
p
(P̂Pjk(1xP̂Pjk))

and

rjk=(nk=nxp̂pjk)=
p
( p̂pjk(1xp̂pjk))

where Nk is the number of scores equal or below k, nk
is the number of scores equal to k, n is the total
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Fig. 4. RMSE for observer 4, (a) before and (b) after further
training, for continuous scores (fractions).
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Fig. 5. (a) Pearson residuals for cumulative probabilities
plotted against expert scores for discrete scores. Observer 4
before training. (b) Raw variances plotted against expected
variances for discrete scores. Observer 4 before training.
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number of scores for the particular cow (here n=5),
P̂Pjk=W(8̂8kxb̂bjxûu) and P̂Pjk=P̂PjkxP̂Pjkx1 are the fitted
probabilities for a score equal or below k and for a
score equal to k respectively, and ûu is a prediction for
the cow’s random effect. Details regarding predictions
ûu are given in Engel & Keen (1994) and Keen & Engel
(1997). Patterns in the sign or size of residuals may
indicate the need for a different underlying distri-
bution or a lack of homogeneity of variances on the
underlying scale. For observer 4 before further train-
ing, the residuals Rjk are plotted against the cor-
responding expert scores in Fig. 5a. There is no
indication for a marked departure from homogeneity
of variances on the underlying scale : the ranges of the
residuals for the different values of x are fairly similar.
There are some extreme residuals, which deserve close
inspection (they were retained in the analysis).
To check on the (co)variance structure induced

by the random cow effects, the raw variances of
proportions Nk/n for all cows in the sample with the
same expert score x, say Vk(x) were calculated. These
variances Vk(x) were plotted against their expected
values (Appendix A1) as derived from the analysis.
Figure 5b offers an example for observer 4 before
further training. Considering that the distribution of
a raw variance estimator will be skewed to the right,
i.e. many estimates around the true value and an
occasional estimate which is much larger, the plot
looks quite satisfactory.
For the continuous scores (fractions), the linear

relationship between probit(m) and probit(x) in Eqn
(3) was initially checked. Formally, this can be done
by adding terms to Eqn (3) that are expected to im-
prove the fit and test whether these extra terms are
needed. Common choices are quadratic and cubic
terms of probit(x). A more flexible alternative, used

here, is to add a natural cubic spline (NCS) (Green &
Silverman 1994). A NCS may be fitted as if it were a
particular set of random effects (Verbyla et al. 1999),
and is part of the standard mixed model features in
GenStat. With an approximate restricted likelihood
ratio test (Appendix A2), the need for the additional
spline term was assessed. In addition, a more informal
visual check was obtained by plotting the averages
per cow against the expected values derived from ex-
pression (4). This plot is shown in Fig. 6 for observer
4 after further training.
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Fig. 6. Raw averages per cow against fitted values for con-
tinuous scores (fractions). Observer 4 after training.
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sidual variances for continuous scores (fractions). Observer
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covariance estimates against the expert scores for continuous
scores (fractions). Observer 4 after further training.
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Subsequently the variance function was checked by
plotting raw variances per cow against expected re-
sidual variances. Such a plot is presented in Fig. 7a
for observer 4 after further training. Again, there was
confirmation that there is no need for more intricate
variance functions.
Finally, the covariance structure as induced by the

random cow effects was studied. Raw and fitted co-
variance estimates are plotted against the expert
scores in Fig. 7b for observer 4 after further training
(some details are in Appendix A2). The fitted covari-
ances were smoothed by using a spline. There is no
indication that the covariance structure induced by
the model is inadequate, although there are some
large values for the raw covariance estimates.

RESULTS

Results for discrete ordered scores

Table 2 presents a typical summary for the discrete
scores. Before further training, observer 4 regularly
classified cows into the immediately neighbouring
classes of the expert score. The probability of a dif-
ference of two classes or more was substantial for
the two lowest expert scores. Further training clearly
affected the results, but changes were not always for
the best. Results for expert score 2 have improved,
but for expert score 1 there is an even stronger prob-
ability for a higher score than before. The observer
also showed a marked tendency to underestimate

cows with expert score 4 and overestimate cows with
expert score 6. Results for the extreme scores 7 and 8
have improved.
The average probability of agreement for observer

4, which is the average of the diagonal elements in
Table 2, was about the same before and after train-
ing: 0.39 and 0.40 respectively. These probabilities
are shown in Table 3 for all observers. Clearly, stan-
dards with respect to agreement between observer
and expert should not be put too high for individual
observers, since none of them agreed for more than
47% with the expert. When a difference of 1 class
was allowed for, i.e. examining the average of the
diagonal and adjacent subdiagonal elements, per-
centages agreement were in the order of 80%. Note
that observers 2 and 8 who performed relatively
poorly, showed substantial improvement after further
training.
Fitting the threshold model may offer some prob-

lems when the number of observations for a particu-
lar score is very small. In that case some scores will
have to be pooled. Observer 6 did not assign score 1
and in the analysis (results of which are not shown)
scores 1 and 2 were pooled.

Results for continuous scores ( fractions)

Figures 3 and 4 present typical summaries of the re-
sults for the analysis of fractions. It had already been
noted that there is some improvement after further
training, but observer 4 still scored markedly and

Table 3. The proportion agreement (average of diagonal elements of e.g. Table 2) with the expert for the discrete
scores and the proportion agreement up to a difference of one class (diagonals and off diagonals), per observer
before (B) and after (A) further training. 95% confidence intervals are shown in parentheses. Observer 9 did not

repeat the five sessions

Observer Before/after Diagonals
Diagonals and 1st

off diagonals

1 B 0.38 (0.31; 0.46) 0.76 (0.58; 0.99)
A 0.39 (0.31; 0.50) 0.84 (0.62; 1.00)

2 B 0.25 (0.17; 0.34) 0.64 (0.46; 0.88)
A 0.41 (0.31; 0.51) 0.85 (0.63; 1.00)

3 B 0.45 (0.34; 0.56) 0.92 (0.67; 1.00)
A 0.47 (0.37; 0.56) 0.94 (0.73; 1.00)

4 B 0.39 (0.28; 0.51) 0.86 (0.61; 1.00)
A 0.40 (0.31; 0.49) 0.85 (0.65; 1.00)

5 B 0.38 (0.30; 0.47) 0.78 (0.59; 1.00)
A 0.45 (0.34; 0.56) 0.87 (0.64; 1.00)

6 B 0.34 (0.25; 0.45) 0.80 (0.58; 1.00)
A 0.43 (0.37; 0.49) 0.89 (0.73; 1.00)

7 B 0.34 (0.25; 0.44) 0.81 (0.59; 1.00)
A 0.42 (0.35; 0.51) 0.85 (0.66; 1.00)

8 B 0.25 (0.17; 0.36) 0.61 (0.41; 0.87)
A 0.46 (0.36; 0.56) 0.86 (0.63; 1.00)

9 — 0.39 (0.29; 0.50) 0.86 (0.63; 1.00)
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significantly higher than the expert. The discrep-
ancies for observer 4 were quite large compared with
some of the other observers as can be seen in Fig. 8.
Observers 5, 7 and 8 were generally quite close to the
expert.
Observer 4 had the largest root mean square error

(RMSE) from all observers, as can be seen in Fig. 9.
Observer 5 had a relatively small RMSE and the dif-
ference with observer 4 was substantial. Note that the
RMSE of observer 8 was relatively large for expert
scores near 1. Observer 9 showed an odd curve for the
RMSE before training because the systematic differ-
ence with the expert (Fig. 8) was positive for the first
half of the range of x and negative for the second half.
After training observer 9 had the smallest RMSE
among all observers.
The estimated intercept a and slope b from ex-

pression (4) and components of variance per observer
are given in Table 4. Values for a and b were indeed
close to 0 and 1 for observers 5, 7 and 8. Observer 2
had a relatively large cow component that was re-
duced after further training. This was not merely
a difference of opinion with the expert about the
importance of certain aspects of an animal’s gait,
since this was largely reflected by the linear part
a+bprobit(x) of the model. It suggested that some of
the considerations of this observer were not shared
with the expert at all. The residual variance compo-
nent was often distinctly reduced after further train-
ing, implying a higher repeatability.
The lack of fit test based on an additional spline

term was not significant (P=0.08) for observer 4
before training (Table 4). This was in agreement with
Fig. 6, which suggests an adequate fit for this ob-
server. Only for observer 8, after further training, was
there significant lack of fit. This slightly inflated the
estimated component for cows after further training.
The spline (not shown) meandered closely around the
curve shown in Fig. 8 and the lack of fit was of little
practical importance. Figures 7a and 7b show that
only marked departures from the assumed (co)vari-
ance structures can be detected.
In Fig. 10 the paper scores are plotted against the

discrete scores for the expert. The paper score means
corresponding to the discrete scores were nearly
equidistant, with the first mean at 0.05 and successive
means about 0.11 apart. The fitted means from an
analysis of the expert’s paper strip scores, with the
expert’s discrete scores as the levels of an explanatory
factor, were nearly the same. It might be hypothesized
that the mean for score 9 (which does not occur in our
data) is about 0.95. Possibly, the expert, who was
used to the system with discrete scores 1,…, 9, div-
ided the paper strip in about equal parts, with some
aversion for the extremes. The expert’s estimated cow
and residual variance components, with values 0.01
(0.003) and 0.008 (0.0005) respectively, were reassur-
ingly small.

Additional information from the bootstrap samples

The bootstrap samples offered an opportunity to
study some of the properties of the statistical methods
used. For the discrete scores, from results in the
literature for binary data (which is the special case
K=2 of two scores) some underestimation of the
component of variance for cows su

2 may be expected
(Breslow & Clayton 1993; Engel et al. 1995; Engel
1998; Engel & Buist 1998). Indeed, the averages of the
bootstrap samples were about 14% below the esti-
mated components. It is possible to correct for this
bias (Kuk 1995) with a more extensive bootstrap
procedure. However, the need to do so was not
pressing, particularly since the averages of the boot-
strap probabilities P̂Pjkl, l=1,…, 500, and the esti-
mates P̂Pjk were quite similar, showing that the esti-
mation procedure was fairly unbiased in this respect.
For the paper strip scores the estimated cow and re-
sidual components were practically unbiased.

DISCUSSION

It was shown how visual scores in the form of ordered
categorical data or continuous fractions can be ana-
lysed by models that account for the type of data, the
associated non-linearity and heterogeneity of vari-
ance, and the dependence between observations of the
same cow. The results of the analyses, as summarized
in tables and plots, offer useful tools to assess and
safeguard the quality of subjective observations. These
tools can be implemented in a system to monitor ob-
server performance. Many questions can be raised,
such as: how well can we expect an observer to per-
form, how well should an observer perform, how
often should observer performance be assessed, what
amount of (regular) training is needed. The answers
depend on the characteristic of interest, the degree of
accuracy that is demanded and practical experience
with the monitoring system. Results in Table 3 and
Figs 8a, b and 9a, b, for instance, suggest what degree
of agreement between observer and expert can be
reasonably expected for classification of gait with the
present amount of training. When higher observer
performance is required, analyses of classification re-
sults after further intensified training, possibly for
a larger number of potential observers, will have to
show whether this can be achieved. In a system where
observers participate over a long period, a high ex-
pertise can be built up under observer selection. In
a system where observers regularly change, possibly
a lower performance level will have to be accepted.
Rules for selection of observers can be based on ana-
lyses of results of several rounds of classification of
videos. In this paper we analysed 250 repeated scores
assigned to 50 videos. When narrower confidence
intervals are required to judge the observers, more
videos will have to be classified, possibly with less
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Fig. 8a. The average discrepancy between observer and the expert plotted against the expert score with 95% confidence limits
for continuous scores (fractions). Curves before and after training. The original data are included as well.
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Fig. 8b. The average discrepancy between observer and the expert plotted against the expert score with 95% confidence limits
for continuous scores (fractions). Curves before and after training. The original data are included as well.
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than five repeats per video. These issues are important
and may be tackled analytically or by simulation.
They were not the subject of this paper. Here we fo-
cused on the models and the methodology. They are

the building bricks of a monitoring system. How that
system should be built is still to be decided and de-
pends on the requirements, practical restrictions and
available means.
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Fig. 9a. RMSE against the expert score, before and after further training, for continuous scores (fractions).
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Fig. 9b. RMSE against the expert score, before and after further training, for continuous scores (fractions).
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With the discrete scores, cows that are inbetween
two categories may be classified on one side of a
threshold by the observer and on the other side by the
expert. So, although observer and expert may be quite
close in their opinion, theywill differ by one class.With
the continuous scores this problem is solved but at the
cost of additional variability inherent to a continuous
score. Obviously, when discrete scores correspond to
clearly separated different states of an individual or
object, i.e. states of development of an embryo, there

is no need for continuous fractions. Otherwise, which
of the two types of score is more favourable will de-
pend on how well observers are able to discriminate
between e.g. gaits of cows. The paper score method
offers a more concise summary of classification results
than the discrete scores. However, the ultimate de-
cision will largely have to depend on the opinion of
classifiers and experts about the two scoring systems.
Since classifiers and expert were used to the discrete
score system, while the paper score method was some-
thing of a novelty, it was too early to decide which
type of score is to be preferred for gait.
Care should be taken in the choice of a gold stan-

dard. In the current study the expert has a high
repeatability for the discrete scores and there was
almost full agreement with the observers in a dis-
cussion afterwards. For the paper scores there is more
variability, as illustrated by Fig. 10. The mean of 10
repeated classifications from the expert was used.
Generally, a gold standard based on several experts is
to be preferred. It is not advisable to apply method-
ology to situations where no proper gold standard is
available. For instance, routine use of the average of
all observers as a substitute for a gold standard is not
recommended.
Although the cows are viewed only briefly, some

elements in the videos, perhaps in the background,
may be recognized by an observer, possibly sub-
consciously. Videos are carefully selected, but some
underestimation of the residual variance seems un-
avoidable. Memory effects may be reduced by regu-
larly changing the videos or by manipulation of their
background. Time effects are always an issue in

Table 4. Summary of estimated intercept a, slope b, cow and residual variance components, P-value for the lack of
fit test based on the additional spline term per observer, before (B) and after (A) further training, for the continuous
fractions (paper strip scores). Standard errors are in parentheses. Observer 7 did not repeat the five sessions

Observer
Before/
after a b s2

u s2 P (spline)

1 B 0.23 (0.05) 0.82 (0.06) 0.09 (0.02) 0.047 (0.006) 0.50
A 0.23 (0.05) 0.87 (0.06) 0.09 (0.02) 0.035 (0.004) 0.20

2 B 0.13 (0.06) 0.79 (0.08) 0.21 (0.05) 0.048 (0.005) 0.40
A 0.16 (0.06) 0.89 (0.07) 0.15 (0.03) 0.036 (0.004) 0.50

3 B 0.41 (0.05) 1.10 (0.06) 0.10 (0.02) 0.032 (0.003) 0.10
A 0.44 (0.05) 1.18 (0.07) 0.13 (0.03) 0.026 (0.003) 0.16

4 B 0.45 (0.04) 0.75 (0.05) 0.05 (0.01) 0.025 (0.003) 0.08
A 0.38 (0.04) 0.93 (0.05) 0.06 (0.01) 0.021 (0.002) 0.08

5 B 0.06 (0.05) 0.91 (0.06) 0.08 (0.02) 0.034 (0.003) 0.50
A 0.16 (0.05) 0.99 (0.06) 0.09 (0.02) 0.016 (0.002) 0.50

6 B 0.30 (0.05) 0.90 (0.07) 0.11 (0.02) 0.027 (0.003) 0.39
A 0.20 (0.05) 1.08 (0.07) 0.12 (0.03) 0.016 (0.002) 0.50

7 — x0.04 (0.05) 1.04 (0.07) 0.10 (0.03) 0.050 (0.005) 0.50
8 B x0.12 (0.04) 0.87 (0.06) 0.07 (0.02) 0.064 (0.007) 0.47

A x0.09 (0.05) 0.96 (0.07) 0.13 (0.03) 0.029 (0.003) 0.02
9 B 0.03 (0.04) 0.61 (0.06) 0.08 (0.02) 0.050 (0.005) 0.50

A 0.08 (0.04) 0.83 (0.05) 0.08 (0.02) 0.021 (0.002) 0.50
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Fig. 10. Continuous scores (fractions) against discrete scores
for the expert.
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any scoring system. There is a variety of causes. For
instance, an observer may happen to start with a
number of videos with quite low scores and persist in
scoring too low for a while. These effects may occur
both in practice and during the scoring of the videos.
The videos were offered in a random order. In prac-
tice, of course, scores may be considerably clustered.
In scoring systems where a high precision has to be
attained, effects of clustering may be investigated by

offering the videos in a specific order. In practice,
some standardization may be attained by showing
some typical videos before the actual scoring starts.

We are grateful to Bonne Beerda, Harry Blokhuis,
Marc Bracke and Joop de Bree for helpful comments
on different versions of the manuscript and to Gidi
Smolders for use of his expertise on scoring of a cow’s
gait.
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APPENDIX

A1: Some details of the analysis of ordered
discrete scores

To derive expression (1) note that z is normally dis-
tributed with mean bj and variance su

2+1 for expert
score x=j.
For the threshold model the variance of a cumu-

lative proportion Nk/n for a random cow with expert
score x=j is equal to (Engel et al. (1995), expressions
(4) and (5))

cjk(1xcjk)[1+(nx1)

r{W2(cjk, cjk; r)xc2
jk}={cjk(1xcjk)}]=n

whereW2 is the cumulative density of the standard bi-
variate normal distribution (two-dimensional normal
probability integral) with correlation r=su

2/(su
2+1),

arguments cjk=(hkxbj)
p
(s2

u+1) and cjk from ex-
pression (1). This is the expected value of the the raw
variance Vk(x). Function W2 is available in many
statistical packages, including GenStat.
95% confidence intervals were derived from a nor-

mal approximation for logit transformed estimated
probabilities L̂Ljk=logit(P̂Pjk)=log(P̂Pjk/(1xP̂Pjk)). The
logit transformation, which ‘stretches’ the prob-
abilities from values between 0 and 1 to values between
xO and +O, was applied to improve the normal
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approximation. For the transformed probabilities the
familiar intervals (L̂Ljk¡1.96rstandard error of L̂Ljk),
say (Lowjk, Upjk), were calculated. The standard error
of L̂Ljk was estimated by the standard deviation
of the logit transformed bootstrap probabilities
logit(P̂Pjkl), l=1,…, 500. The intervals were trans-
formed back into intervals (1/(1+exp(xLowjk),
1/(1+exp(xUpjk)) for the probabilities Pjk. More
refined bootstrap confidence intervals are discussed
in Chapter 14 of Efron & Tibshirani (1993). These
intervals require a nested series of bootstrap samples,
which is more computer intensive. For the present
purpose, we consider the intervals obtained through
the logit transformation to be sufficiently accurate.

A2: Some details of the analysis of fractions

To derive expression (4) we introduced z=a
+b probit(x)+u+e, where u and e are indepen-
dently normally distributed with mean 0 and vari-
ances su

2 and 1 respectively. Now, P(z>0|x, u)=
W(a+bprobit(x)+u)=m, and E(y|x)=E(m|x)=
P(z>0|x)=W((a+b probit(x))/

p
(s2

u+1)), because z
is normally distributed with mean a+bprobit(x) and
variance su

2+1. The probit link was preferred over the
logit link because of this exact result.
In the bootstrap simulation the beta distribution

was fitted by equating the mean and variance of
fraction y, given the expert score x and cow effect u,
to the mean and variance of a beta distribution
with parameters A and B, i.e. m=A/(A+B) and
s2m(1xm)={A/(A+B)} {B/(A+B)}/{A+B+1}. For
each simulation, new cow effects u were sampled from
a normal distribution with mean 0 and variance ŝsu

2

(the estimated value from the analysis). Employing
the estimates âa and b̂b, the means m were derived from
(3). For each cow, A and B were calculated from m
and the estimate ŝs2 and fractions y were sampled
from the corresponding beta distribution.

The lack of fit test for an extra spline term was
obtained from the last iteration of the iterative re-
weighted restricted maximum likelihood (IRREML)
algorithm. In each step of this iteration process, a
linear mixed model was fitted to an artificial depen-
dent variable. Details are presented in Engel & Keen
(1994). From the last iteration, this artificial depen-
dent variable, and associated iterative weights, were
saved. One extra iteration was performed with and
without the additional spline term in the model. The
test was derived from the difference between the
two values of the x2rlog(restricted maximum like-
lihood) in the approximate linear mixed models. The
null-hypothesis that the component of variance for
the random part of the spline is zero is on the
boundary of the parameter space, and the P-value
was derived from a mixture of a probability point
mass of 0.5 at value 0 and probability 0.5 for a chi-
square distribution with one degree of freedom
(Morell 1998).
The covariance between any two observed fractions

on the same cow is Var(m|x)=W2(c, c ; r)xW(c)2,
where W2 is the cumulative density of the standard
bivariate normal distribution with correlation r=
su
2/(su

2+1) and arguments c=a+bprobit(x) (Engel
et al. 1995, expression (4)). The fitted covariances
were obtained by substitution of the parameter
estimates. The raw covariance estimate per cow
was defined as (nM1

2xM2)/(nx1), where n is the
number of repeated classifications per cow, M1 is
the mean of the differences (yxE(y|x)) and M2 is the
mean of the squared differences (yxE(y|x))2. The
expectation E(y|x) was evaluated for the parameter
estimates, and ŝs2

u from (4). A non-parametric
alternative for E(y|x) is a NCS in x fitted to the
cow averages. The expected value of this raw covari-
ance estimate approximates the covariance between
any two observations on the same cow with expert
score x.
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