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The theory of slow viscous flow around a slender body is generalized to the situation
where the ambient fluid has a yield stress. The local flow around a cylinder that is
moving along or perpendicular to its axis, and rotating, provides a first step in this
theory. Unlike for a Newtonian fluid, the nonlinearity associated with the viscoplastic
constitutive law precludes one from linearly superposing solutions corresponding
to each independent component of motion, and instead demands a full numerical
approach to the problem. This is accomplished for the case of a Bingham fluid,
along with a consideration of some asymptotic limits in which analytical progress is
possible. Since the yield stress of the fluid strongly localizes the flow around the body,
the leading-order slender-body approximation is rendered significantly more accurate
than the equivalent Newtonian problem. The theory is applied to the sedimentation
of inclined cylinders, bent rods and helices, and compared with some experimental
data. Finally, the theory is applied to the locomotion of a cylindrical filament driven
by helical waves through a viscoplastic fluid.

Key words: non-Newtonian flows, plastic materials, slender-body theory

1. Introduction
Slow viscous flow past a cylinder is a classical problem in fluid mechanics and is

associated with Stokes’ observation that there is no solution for a Newtonian fluid with
zero Reynolds number in an infinite domain. The resolution of the Stokes paradox,
which partly laid the foundation for the modern theory of matched asymptotic
expansions (Hinch 1991), is that inertia must play a role sufficiently far from the
cylinder (Lamb 1932). The viscoplastic version of the problem has been considered
since the 1950s, with detailed numerical computations conducted by, for example,
Roquet & Saramito (2003) and Tokpavi, Magnin & Jay (2008). The key feature of
a viscoplastic fluid is its yield stress: material only flows like a fluid if the stresses
exceed a critical yield threshold. The consequence for a cylinder moving through a
viscoplastic fluid is that there is no motion if the force on the object is insufficient
to yield the fluid. In a related manner, viscoplasticity is also expected to resolve the
Stokes paradox without the need for inertia, since the stress decays away from the
cylinder, and so sufficiently distant material must eventually become rigid.

† Email address for correspondence: drh39@cam.ac.uk
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Previous studies of a cylinder moving through viscoplastic fluid have considered
motion perpendicular to the axes. In the plastic limit (when the yield stress dominates
the viscous stress, as must be the case close to the initiation of motion), this problem
reduces to determining the critical load on a cylindrical pile embedded in cohesive soil,
which was solved by Randolph & Houlsby (1984) using the method of sliplines. Our
first aim in this current paper is to consider the more general situation of creeping
viscoplastic flow around an infinitely long cylinder that translates at an arbitrary
angle to its axis and can also rotate at an arbitrary rate. We achieve this by exploring
analytically various asymptotic limits, and by providing full numerical solutions for
the motion of a cylinder through a Bingham fluid inclined at an arbitrary angle.
Note that, unlike for a Newtonian fluid, the nonlinearity inherent in the viscoplastic
rheology prohibits the simple linear superposition of the independent cylinder motions
to construct general solutions.

More broadly, our goal in this paper is to provide the viscoplastic analogue of
slender-body theory for slow viscous flow (e.g. Keller & Rubinow 1976), for which
the local flow around a cylinder provides a crucial stepping stone. The viscous
theory underscores analyses of elongated particles or fibres in suspension (Tornberg
& Shelley 2004) and the propulsion of micro-organisms by flagella (Taylor 1952;
Hancock 1953; Lighthill 1975; Lauga & Powers 2009), the latter of which has also
enjoyed generalization to motion through granular media (Hosoi & Goldman 2015).
From a theoretical standpoint, the great advantage of a viscoplastic fluid is that flow
past an object becomes localized to the vicinity of that object. Indeed, under the
assumption that the localization around a cylindrical filament is sufficiently strong
(i.e. the yield surfaces lie at distances of the order of the object’s radius), and that
it is sufficiently slender (i.e. its radii of curvature are much larger than its radius),
the dynamics of the filament locally reduce to that of flow around a relatively long
and straight cylinder. This reduction is equivalent to classical resistive force theory
(Hancock 1953; Lighthill 1975; Gray & Hancock 1979), but is made much more
effective here by the flow-localizing effect of the yield stress.

We apply the results of our analysis to two sets of problems. First, we consider
the inertialess sedimentation of rods, that are either straight and inclined, or bent
symmetrically into v-shapes. We extract the threshold for motion, together with the
speed and direction of motion, for a given inclination angle and ratio of driving force
and yield stress. We compare these theoretical predictions with the results of some
simple experiments of sedimenting cylinders in Carbopol gel. We also compare with
previous experimental studies of viscoplastic sedimentation and fractionation (Jossic &
Magnin 2001; Madani et al. 2010).

Second, we explore the motion of a cylindrical filament that is twisted into a helix.
We again examine how such an object falls under the action of a force, this time
directed along the helix axis, and extract the fall speed and rotation rate for different
helical pitch angles. Qualitative comparison is again made with a simple experiment
of a sedimenting helix in Carbopol gel. We then apply our results to describe
locomotion of a swimming helix, as in classical studies of biological locomotion
through a Newtonian fluid (Taylor 1952; Hancock 1953). In this model, the helix is
propelled forwards when it exerts a torque around its axis, forcing it to turn.

2. Slender-body formulation
2.1. Governing equations

Consider an infinitely long cylindrical filament moving through an incompressible
Bingham fluid. We neglect gravity and inertia, and attach a local cylindrical polar
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FIGURE 1. (Colour online) Sketch of the geometry. (a) The local cylindrical configuration.
(b) A slender curved filament with circular cross-section wrapped around another cylinder
to form a helix.

coordinate system (r, θ, z) to the body, as illustrated in figure 1(a). The cylinder
translates at velocity Ux̂ + W ẑ and rotates around its axis with angular velocity
Ω̃ . Under the assumption that axial variation in the flow field is weak and can be
ignored, the dimensionless governing equations for the fluid velocity in cylindrical
polar coordinates (u(r, θ), v(r, θ),w(r, θ)) and pressure p(r, θ) are

1
r
∂

∂r
(ru)+

1
r
∂v

∂θ
= 0, (2.1)

∂p
∂r
=

1
r
∂

∂r
(rτrr)+

1
r
∂

∂θ
τrθ −

τθθ

r
,

1
r
∂p
∂θ
=

1
r2

∂

∂r
(r2τrθ)+

1
r
∂

∂θ
τθθ , (2.2a,b)

0=
1
r
∂

∂r
(rτrz)+

1
r
∂

∂θ
τθz, (2.3)

where τij is the deviatoric stress tensor, and subscripts indicate tensor components. The
Bingham law relates the stress to the strain rate γ̇ij,

τij =

(
1+

Bi
γ̇

)
γ̇ij for τ > Bi, (2.4)

and γ̇ij = 0 otherwise. Here, the strain rate is related to the velocity field by

{γ̇ij} =

 2ur vr + (uθ − v)/r wr
vr + (uθ − v)/r 2(vθ + u)/r wθ/r

wr wθ/r 0

 , (2.5)

where subscripts of r and θ on the velocity components denote partial derivatives,
and γ̇ =

√
(
∑

ij γijγij)/2 and τ =
√
(
∑

ij τijτij)/2 denote the tensor second invariants.
We incorporate the incompressibility condition directly by defining a streamfunction
ψ(r, θ) such that u= r−1∂ψ/∂θ and v =−∂ψ/∂r.
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To arrive at this dimensionless system, we use the radius of the filament, R, and
the translation speed of the cylinder, U =

√
U2 +W2, to remove the dimensions of

length and velocity, respectively, while the stresses and pressure are scaled by µU/R,
where µ is the (plastic) viscosity. These scalings introduce the Bingham number,

Bi=
τYR
µU

, (2.6)

where τY is the yield stress.
With this scaling of the variables, the cylinder translates in the (x, z)-plane with

unit dimensionless speed at an angle φ to the x axis; the Cartesian translation velocity
is cos φx̂+ sin φẑ (see figure 1a). The cylinder also rotates around its axis with the
dimensionless rotation rate Ω ≡ Ω̃R/U . Consequently, we impose

(u, v,w)= (cos θ cos φ, Ω − sin θ cos φ, sin φ) at r= 1. (2.7)

In the far field, the stresses must eventually fall below the yield stress and the fluid
must plug up, such that (u, v, w)→ (0, 0, 0). We exploit this fact to introduce a
finite computational domain in which we set (u, v, w) = (0, 0, 0) at an outer radius
r = Ro. Provided this boundary lies well beyond the yield surface, we expect that
its precise location has no effect. Importantly, when Bi=O(1) the yield surfaces are
expected to occur at radii of order one, underscoring the strong localizing effect of the
yield stress on the flow around the cylinder and rendering accurate the leading-order
approximation of slender-body theory.

2.2. Forces and torque
On the surface of the cylinder (r= 1), the fluid exerts the force (τrr, τrθ , τrz)|r=1. This
leads to a net drag per unit length of x̂Fx + ẑFz, with[

Fx
Fz

]
=

∮ [
(−p+ τrr) cos θ − τrθ sin θ

τrz

]
r=1

dθ =
∮ [

2τrr cos θ + (rτrθ)r sin θ
τrz

]
r=1

dθ,

(2.8)

where the latter expression follows from an integration by parts, and provides a
convenient form for calculation of the forces without first calculating the pressure
field. If the cylinder rotates (Ω 6= 0), there is also a torque given by

T = r2
∮
τrθ(r, z) dθ. (2.9)

The force balance (and, in particular, the integral of (2.2b) in θ ) demands that T is
independent of r.

The two drag components, Fx(φ, Ω, Bi) and Fz(φ, Ω, Bi), and torque, T(φ, Ω, Bi),
are the key ingredients when fully formulating slender-body theory. For the
applications in § 4, we consider straight or bent rods, or a helix, and the net force
and torque on these objects follow immediately from Fx(φ, Ω, Bi), Fz(φ, Ω, Bi) and
T(φ,Ω,Bi). The remaining step in applying the slender-body theory is to ensure that
the object is either force-free in a certain direction or torque-free, which ultimately
prescribes either the translation direction, rotation rate or swimming speed.
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874 D. R. Hewitt and N. J. Balmforth

For a slender body with a twisted centreline, the drag force and torque vary
with position along the centreline. Integrating these quantities over the arc length
then provides an estimate for the total force and torque acting on the body. This
leading-order calculation corresponds to the resistive force theory of viscous fluid
mechanics, which is often considered to be a poor approximation in view of non-local
logarithmic corrections to the viscous-flow solution due to the finite aspect ratio of
the body (e.g. Lauga & Powers 2009). Here, no such logarithmic corrections are
expected because of the localization of the flow by the yield stress, provided that
Bi is not small and there are no significant effects stemming from the ends of the
object.

2.3. Some numerical details
We solve the equations numerically using an extension of the augmented Lagrangian
scheme described by Hewitt & Balmforth (2017). The key extension here is to
combine the Stokes-like solver used there for the streamfunction with a similar
(but lower-order) scheme for the axial velocity w. These equations reduce in the
Newtonian limit to a biharmonic equation for ψ and Laplace’s equation for w; for
non-zero Bingham number, the equations are instead solved iteratively. We omit
further details of the augmented Lagrangian scheme, which has been described in
numerous previous studies (e.g. Saramito & Wachs 2017).

Given Bi, φ and Ω , the equations are solved by adopting truncated Fourier series
for the angular dependences and using standard second-order finite differences in
the radial direction, giving a band-diagonal matrix problem. When Ω = 0, solutions
can be computed directly by matrix inversion. When Ω 6= 0, however, and as a
consequence of working with a streamfunction rather than with pressure, we cannot
directly impose the constraint that the torque T is independent of radius (see (2.9)).
Instead, we enforce the constraint by iterating the net azimuthal flux around the
cylinder until the radial variation in the calculated torque falls below a tolerance of
0.5 %. The resultant nested iterative scheme is qualitatively similar to that employed
by Hewitt & Balmforth (2017) to enforce a condition of zero net force in a related
problem.

3. Breaking the problem down

The problem outlined in § 2 can be broken down into pieces to understand its
constituents in more detail, although the nonlinearity of the viscoplastic flow law
forbids us from simply superposing these pieces to build general solutions. These
pieces correspond to some idealized examples that have received attention in the
existing literature, as well as some that have not, and lead to some special limits in
which analytical progress is possible to build asymptotic or exact solutions.

3.1. Newtonian limit
In the limit Bi→ 0, the yield stress becomes unimportant over the regions near the
cylinder where the viscous stresses remain high. Only further away do those stresses
decline to permit viscoplasticity to affect the flow. Thus, the solution is composed
of a near-field Newtonian region and a far-field viscoplastic one. Despite this, the
Newtonian solution is controlled by the far-field conditions, owing to the presence of
logarithmically diverging corrections. In this manner, the problem is directly analogous
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to the removal of the classical Stokes paradox, with viscoplasticity here taking the role
of inertia.

Over the Newtonian region we may compute a solution perturbatively by adopting
asymptotic solutions in the sequence 1, (log Bi−1)−1, . . . , as in the classical problem
of Stokes flow past a cylinder (e.g. Hinch 1991). The leading two orders, ψ ∼ψ0 +

(log Bi−1)−1ψ1 and w∼w0 + (log Bi−1)−1w1, satisfy the Newtonian problems, ∇4ψ0 =

∇
4ψ1 = ∇

2w0 = ∇
2w1 = 0, subject to the no-slip conditions on the cylinder. The

remaining arbitrary constants in the solutions are fixed by demanding a match to the
far-field solution where r=O(Bi−1) and (u,w)→ 0. We thus find

ψ ∼ sin θ cos φ
[

r−
2r log r− r+ r−1

2 log Bi−1

]
−Ω log r, (3.1a)

w∼ sin φ
(

1−
log r

log Bi−1

)
, (3.1b)

without any need to calculate explicitly the viscoplastic far-field structure. Given (3.1),
the drag force and torque can be computed from (2.8)–(2.9) to be[

Fx
Fz

]
∼−

2π

log Bi−1

[
2 cos φ
sin φ

]
and T ∼−4πΩ. (3.2a,b)

Note that the drag force and torque are decoupled in this limit: the drag is independent
of the rotation rate Ω and the torque is independent of translation.

3.2. No transverse motion
If the cylinder moves with only axial translation (i.e. φ = π/2) and rotation, some
analytical progress is possible because the flow is independent of the polar angle θ .
Integration of the force-balance equations (2.2b) and (2.3), together with the condition
τ = Bi at the yield surface, gives expressions for the non-zero stress components,

(τrz, τrθ)=−
rp

r
Bi
(

C, S
rp

r

)
=

(
1+

Bi
γ̇

)
(wr, vr − v/r), (3.3)

where γ̇ 2
= w2

r + (vr − v/r)2 in this limit, and (C, S) = (cos Υ , sin Υ ), with Υ a
parameter defined such that the yield surface is the circle r= rp. The drag and torque
are thus

Fx = 0, Fz =−2πrpCBi, T =−2πr2
pSBi, (3.4a−c)

from (2.8) and (2.9). Given that w = v = 0 at r = rp, the integral of (3.3) gives the
velocity components,

w=
rpBi
C

[
C2 log

(rp

r

)
− 1+

√
S2 +C2(r/rp)2

]
(3.5)

and

v =
rBi
2

{
S

(
r2

p

r2
− 1

)
+ ln

[
(1+ S)(

√
C2 + S2(r/rp)2 − S)

(1− S)(
√

C2 + S2(r/rp)2 + S)

]}
. (3.6)
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876 D. R. Hewitt and N. J. Balmforth

Finally, the parameter Υ and location of the yield surface r = rp follow from the
implicit relations implied by the boundary conditions in this limit, w= 1 and v =Ω
at r= 1.

For large yield stress, Bi � 1, the yield surface approaches the surface of the
cylinder and we arrive at the relations

(w, v)∼ (1, Ω)
(

rp − r
rp − 1

)2

and (Fz, T)∼−2πBi(C, S), (3.7a,b)

with

Ω ∼ tanΥ and rp ∼ 1+
√

2[(1+ S2)CBi]−1/2. (3.8a,b)

Thus the region of flow around the cylinder is localized to a narrow layer of width
O(Bi−1/2) when Bi� 1. If also Ω� 1, the thickness of that yielded annulus increases
like O(Ω1/2), while the axial drag force decreases like O(Ω−1) and the torque
approaches T ∼ −2πBi. That is, unlike in the Newtonian limit discussed above,
rotating the cylinder in the plastic limit reduces the drag.

Conversely, for small yield stress, Bi � 1, the location of the yield surface rp
becomes large and the parameter Υ becomes small:

rp ∼
1

Bi log Bi−1 and S∼ 2ΩBi(log Bi−1)2. (3.9a,b)

This leads to the force Fz and torque T quoted in (3.2) with φ =π/2.
In the absence of rotation (Ω = 0), the solution is more explicit:

w= 1+ Bi(r− 1− rp log r) and Bi−1
= 1− rp + rp log rp, (3.10a,b)

which, for Bi� 1, gives rp→ 1 +
√

2Bi−1/2, w→ (1 − ξ)2 and Fz ∼ −2πBi, where
ξ = (r− 1)Bi1/2/

√
2.

3.3. No axial motion
3.3.1. Pure transverse motion

In the absence of axial motion (φ = 0), the problem reduces to two-dimensional
flow around a circle. This limit without rotation was discussed at length by Tokpavi
et al. (2008). In general, the two-dimensional structure of the flow field in this limit
precludes analytical progress except in the limits of small or large Bi.

Sample numerical solutions with no rotation (Ω = 0) are shown in figure 2,
together with a collection of data that highlight how certain flow features vary with
the Bingham number. The density plots in the figure show log10 γ̇ , with the plug
regions in black and superposed streamlines (i.e. ψ = constant) in the frame of the
ambient fluid. As Bi is increased, flow becomes more localized to the cylinder, but
unlike in the problem without translation, the fluid remains yielded over a region
of O(1)-extent, even as Bi→∞ (figure 2d). Over the bulk of those regions, shear
rates are low but finite and the fluid deforms in the manner of ideal plasticity:
two triangular plugs remain attached to the front and back of the cylinder, and
rigidly rotating cells survive at the centre of the plastic zones. The plastic zones are
buffered from the cylinder and plugs by high-shear boundary layers within which
viscous stresses remain important. As illustrated in figure 2(e), the width of these
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FIGURE 2. (Colour online) (a–c) Density plots of the logarithmic strain rate log10(γ̇ ) in
the (x, y)-plane (showing only y> 0), for a cylinder translating in the x-direction (φ = 0),
with (a) Bi = 0.0625, (b) Bi = 1 and (c) Bi = 1024 (note the different axis scales). The
(blue) curves show streamlines, ψ = constant, in the frame of the ambient fluid. (d) The
distance from the centre of the cylinder to the furthest yield surface along the x (red
circles) and y (blue crosses) axes; the slipline predictions (

√
2 and 2+ (π/4)) are shown

by dashed lines. (e) The widths of the boundary layer against the cylinder (red circles) and
the outer free shear layer (blue crosses), both along x= 0. ( f ) The force |Fx(Bi)|, together
with the Newtonian (blue dots; (3.2a)) and plastic (red dashed; (3.11)) predictions.

boundary layers decreases with the Bingham number, in agreement with viscoplastic
boundary-layer theory (appendix A; see also Balmforth et al. (2017)).

The solution for the plastic zones can be constructed using the method of
characteristics, or slipline theory; see Randolph & Houlsby (1984). In this construction,
there are two families of orthogonal characteristic curves, the sliplines, whose local
tangents make angles of ϑ and (π/2)+ ϑ with the x-axis. The curves are normally
referred to as either α or β lines, and have the Riemann invariants, p ± 2Biϑ . As
illustrated in figure 3(a), Randolph and Houlsby’s slipline construction proceeds
by placing centred semicircular fans of the characteristics of radius 1 + (π/4) at
the points (0, ±1). These fans are then extended immediately below or above by
continuing the circular arcs as the involutes of other circles and adding new straight
sliplines that meet the cylinder tangentially (i.e. the fans become non-centred and
follow the cylinder surface). The plastic regions are terminated by straight sliplines
of unit slope that meet at (x, y)= (±

√
2, 0).

The slipline stress solution predicts that

Fx =−4(π+ 2
√

2)Bi, (3.11)

as Bi→∞ (Randolph & Houlsby 1984). The drag force Fx for general Bi is plotted
in figure 2( f ), and recovers the slipline prediction for Bi> 10 or so.

3.3.2. Transverse motion and rotation
Sample solutions with both transverse motion and rotation are shown in figure 4;

corresponding results for the drag force and torque are presented in figure 5. The
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FIGURE 3. (Colour online) Slipline solutions for (a) Ω = 0 and (b) Ω = 1.6. The two
families of sliplines are shown with different colours (α-lines are red; β-lines are blue).
Plugs are shaded light grey.
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FIGURE 4. (Colour online) Density plots of log10 γ̇ on the (x, y)-plane, overlaid by
streamlines, for a cylinder translating with unit velocity in the x-direction (φ = 0) and
rotating with angular velocity (a,e) Ω = 0.4, (b, f ) Ω = 0.8, (c,g) Ω = 1.6 and (d,h)
Ω = 12.8. The upper row (a–d) is for Bi= 1; the lower row (e–h) is for Bi= 2048.

inclusion of rotation desymmetrizes the velocity field about the x-axis, strengthening
the recirculating cell above the cylinder (for anticlockwise rotation) and weakening
that below. Eventually, for sufficiently large Ω , the lower cell disappears, which, for
Bi� 1, leaves a thin boundary layer coating the cylinder.
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FIGURE 5. (Colour online) (a) Force and (b,c) torque for a cylinder translating with unit
velocity in the x-direction (φ = 0) and rotating with angular velocity Ω . The data are
scaled as indicated. The vertical dashed lines mark Ω=1. Other lines show predictions for
Bi� 1: the horizontal dashed line in (a) shows the force for pure translation (3.11), and
the red solid lines show the force and torque for solutions with a rigidly rotating upper
plug (3.12). The different colours/symbols indicate data for Bi = 2n with n = 8 (black
cross), n = 9 (blue circle), n = 10 (red star), n = 11 (green square) and n = 12 (grey
diamond).

In the limit Bi � 1, it is again possible to construct slipline solutions bordered
by viscoplastic boundary layers. For sufficiently small Ω the rotation of the
cylinder has no effect on the stress field, leaving a slipline pattern equivalent to
the non-rotating case, but with an asymmetrical velocity field; see figure 4(a). An
immediate consequence is that, to leading order in Bi−1, the drag force remains as in
(3.11) and, because the torque vanishes for Ω = 0, T�O(Bi). In fact, the numerical
results indicate that T = O(Bi1/3) over this range of Ω (see figure 5b), highlighting
its origin within the viscoplastic boundary layers.

For large Bi, the Ω=0 stress solution is eventually replaced by a second, alternative
stress pattern for higher Ω in which a rigidly rotating plug attached to the cylinder
takes the place of the upper fan. The alternative pattern is feasible because the no-slip
condition on the cylinder, with velocity field x̂+Ω(yx̂+ xŷ), can be accommodated by
rigid rotation about a centre (0, y0), with y0=Ω

−1. The rigidly rotating plug demands
a circular arc of failure, which broadens into a viscoplastic shear layer in the Bingham
computation of figure 4(g). The broadened arc merges with the viscoplastic boundary
layer underneath the cylinder, leaving intact an underlying plastic zone. The stress
solution makes the transition between the two patterns over a window of rotation rates
around Ω= 1 (see e.g. figure 4f,g), with the second stress pattern becoming accessible
once the centre of rotation y0 =Ω

−1 lies close to or inside the cylinder.
The slipline solution corresponding to the alternative stress-field pattern is illustrated

in figure 3(b). The upper circular failure arc must correspond to a slipline in ideal
plasticity, and therefore continues one of the straight sliplines that leave tangentially
from the lower half of the cylinder. This in turn is met by other sliplines to join the
fan underneath the cylinder, which persists in the reorganization of the plastic flow.
The requirement that there is no net pressure drop around the sliplines that border the
region of deformation (i.e. the union of the circular failure arc and the outer periphery
of the fan) demands that the fan and circular failure arc intersect along sliplines that
make angles of ±(π/4) with the x-axis (BC and DE in figure 3b). It follows from
geometrical considerations that the radius of the rigidly rotating plug is R= 1+ y0/

√
2.

Further details of this slipline construction can be found in appendix B. Moreover, a
calculation using the resultant slipline stress-field solution, also outlined in appendix B,
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gives

Fx =−Bi
[

2π+ 4
√

2+
(2+ 3π)

Ω

]
, T =−

1
2

Bi
[

4π−
(3π+ 2)
Ω2

]
(3.12a,b)

and Fz = 0, for Bi� 1.
As Ω is increased still further, the rigidly rotating slipline pattern persists until the

circular failure arc approaches the cylinder and the plug becomes consumed by the
adjacent viscoplastic boundary layer (figure 4h). At this stage, the torque approaches
the limit −2πBi expected for pure rotation. Simultaneously, the drag force abruptly
falls off (see figure 5a) for Ω . 20. The residual drag stems from a ‘squeeze’ flow
driven by the translation of the cylinder inside the rotationally induced boundary layer:
continuity demands that the radial velocity of the cylinder forces an O((rp − 1)−1)
correction to the angular velocity with an associated shear stress of O((rp − 1)−2).
The radial derivative of this stress must be balanced by an angular pressure gradient,
giving p∼ O((rp − 1)−3). Finally, because the boundary layer has thickness rp − 1∼
O(Bi−1/2Ω1/2) (see § 3.2), and in view of (2.8), we find Fx∼O(Ω−3/2Bi3/2) for Ω� 1.

4. Cylinders, rods and helices
4.1. Angled motion of a cylinder

A collection of numerical solutions for viscoplastic flow around a cylinder for
varying B and φ are shown in figure 6. In these non-rotating solutions, the yield
stress increases from left to right, and the orientation of motion with respect to
the cylinder axis (φ) from top to bottom. The plots show density maps of log10 γ̇ ,
overlaid by streamlines in the (x, y)-plane (upper half) and contours of axial velocity
w (lower half). The location of the yield surfaces for these and other solutions are
shown in figure 7, while figure 8 shows results for the drag forces on the cylinder.

Figure 6(a,h) shows that solutions are relatively insensitive to the flow angle over
a large range of φ. Indeed, the stress pattern of the solutions broadly mirrors that for
pure transverse motion (φ = 0; § 3.3.1). This behaviour is clearest for Bi� 1, where
the outer yield surface remains close to the transverse limit over most of the range
of φ (figure 7c), and only decreases towards the much smaller axial limit when φ
becomes close to π/2. The persistence of this stress pattern reflects how the addition
of axial motion for φ� 1 constitutes a regular perturbation of the transverse-motion
problem: the axial velocity w and associated axial drag Fz scale with φ in this limit,
but the feedback on the transverse flow and transverse drag Fx (which occurs through
the constitutive law and γ̇ ) is O(φ2).

For φ closer to π/2, however, the flow pattern adjusts more noticeably, and rather
abruptly for (π/2)− φ = O(Bi−1) in the plastic limit Bi� 1. In this limit, the axial
flow becomes restricted to a boundary layer against the cylinder, surrounded by a
delocalized transverse flow with much weaker deformation rates characteristic of an
almost perfectly plastic region (see figure 6i). The outer plastic flow persists very
close to φ = π/2, supporting a finite transverse drag Fx that exceeds the axial drag
Fz even when the cylinder’s motion is almost aligned with its axis (figure 8c). Only
for (π/2)− φ = O(Bi−1) does Fx eventually drop to zero (figure 8d). Some analysis
of this limit is provided in appendix C.

The disparity between Fx and Fz for (π/2)−φ�O(Bi−1) leads to a drag anisotropy
that becomes embedded in the variation of the orientation angle α of the force
(figure 8b). This angle remains small (less than ∼π/7) over most of the range of φ,
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FIGURE 6. (Colour online) Density plots of logarithmic strain rate log10(γ̇ ) for flow
around non-rotating cylinders moving at an angle φ, together with streamlines in the (x, y)
plane (i.e. ψ = constant; blue, shown for y>0) and contours of the axial velocity w (green,
shown for y< 0). From left to right, the yield stresses are (a–c) B= 0.0625, (d–f ) B= 1
and (g–i) B = 256. From top to bottom, the angle of motion is (a,d,g) φ = π/8, (b,e,h)
φ =π/4, and (c, f,i) φ = 19π/40.
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FIGURE 7. (Colour online) The outermost yield surface for (a) Bi=1, (b) Bi=256 and (c)
Bi= 2048. The surfaces correspond to inclination angles of φ= 0 (black, circles), φ=π/4
(blue, stars), φ = 3π/8 (green, squares), φ = 19π/40 (grey, diamonds) and φ = π/2 (red,
triangles).
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FIGURE 8. (Colour online) The drag force on a cylinder moving at an angle φ to the
x-axis. (a) The magnitude of the force, scaled by the Bingham number, |F|/Bi. (b) The
orientation of the force relative to the x-axis α= tan−1(Fz/Fx). (c) The components of the
drag Fx/Bi (black) and Fz/Bi (blue) for 16Bi6 210. (d) A magnification of the same data
(showing 26 6 Bi 6 210), for φ→π/2. The red dashed line shows |Fx| = 9π(π/2− φ)Bi2

(see appendix C).

but increases sharply near φ = π/2 where the transverse force Fx drops sharply.
Consequently, in situations where the angle of the force is prescribed rather than the
direction of motion, as in the examples that will be described presently, any variation
in α must be accommodated by a sensitive tuning of φ near π/2: it is only when
α .π/7 that φ can vary over its full range.

4.2. Sedimentation of rods
4.2.1. An inclined straight rod

Consider a straight rod falling under the action of a force such as gravity. The force
makes an angle of (π/2)−α with the cylinder axis (i.e. the z-direction; see figure 1a).
The drag F = Fxx̂ + Fzẑ must therefore also point in this direction to balance the
applied force. Thus the angle α= tan−1(Fz/Fx) and magnitude |F̃| are specified in this
problem, rather than the angle φ and speed U of the resulting motion. It is therefore
more natural to define a yield-stress parameter based on the dimensional applied line
force |F̃| (e.g. the weight per unit length), rather than our previously defined Bingham
number Bi= τYR/(µU). More specifically, we define an Oldroyd number

Od=
Bi
|F|
=
τYR
|F̃|

. (4.1)

Then, given the switch in the specified physical parameters, we must translate our
results by a suitable two-dimensional interpolation from the (φ, Bi)-parameter plane
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FIGURE 9. (Colour online) Numerical solutions for a cylinder whose axis is inclined at
an angle of (π/2)− α to an applied force, with strength gauged by the Oldroyd number
Od: (a) the fall speed V; (b) the angle of motion Ψ = φ− α relative to the applied force;
(c) the angle of motion π/2 − φ relative to its own axis. For Od > Odc(α), the force
on the cylinder is not sufficient to yield the fluid and there is no motion, leading to the
white areas at the top of the plots. The critical value Odc(α) is shown in (d), together with
the limits of transverse (short blue dashed) and axial (long red dashed) orientation, and a
set of experimental data for headless machine screws sedimenting through a Carbopol gel
(see appendix D). Stationary rods are indicated by open circles and moving rods by filled
circles, and the shading represents

√
V (in

√
cm s−1), according to the colour scheme

indicated.

to the new parameters, (α, Od)≡ (tan−1(Fz/Fx), Bi/
√

F2
x + F2

z ). We thereby arrive at
the dimensionless fall speed V and angle Ψ to the force direction:

V(α,Od)=
µU
|F̃|
≡

Od
Bi(α,Od)

and Ψ (α,Od)= φ(α,Od)− α. (4.2a,b)

These quantities are plotted in figure 9(a,b). As Od→ 0, the weight of the cylinder
becomes much larger than the yield strength of the material and solutions approach
the Newtonian limit, with limiting drag components (Fx, Fz) = |F|(cos α, sin α) ∼
2π(2 cos φ, sin φ)/ log Bi−1 (see (3.2)). The fall speed and angle thus approach

V ∼
log Od−1

4π

√
1+ 3 sin2 α and Ψ ∼ tan−1(2 tan α)− α, (4.3a,b)

for Od→ 0.
Conversely, above a critical threshold value Odc (figure 9d) the cylinder cannot exert

sufficient stress on the material to move, and so remains stationary. This threshold
value increases with orientation angle α, and lies between two limiting values for
transverse (α = 0) and axial (α = π/2) sedimentation. These can be calculated for
Bi� 1 from the asymptotic values of the force components in (3.7) and (3.11),

Odc =
Bi
|F|
→

{
(4π+ 8

√
2)−1 α→ 0,

(2π)−1 α→π/2.
(4.4)
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FIGURE 10. (Colour online) Comparison of experimental data from Madani et al. (2010)
(points) with theory (lines) for the critical dimensionless force 1/Od at which cylinders
of aspect ratio (length/radius) L/R start to move. (a) Straight cylinders with axis aligned
with the force (black circles) or side on to the force (blue squares) together with
our corresponding predictions for an infinite cylinder (dashed lines). The corresponding
experimental results of Jossic & Magnin (2001) are also shown by stars. (b) Bent
cylinders, in the orientations shown, where the force acts in the direction of the arrows,
for different ratios of the shortest distance between ends S to the length L, together with
the corresponding predictions (lines). The data are for cylinders with aspect ratios between
L/R= 20 and L/R= 40. All of the experimental data of Madani et al. (2010) have been
divided by a factor of two.

The angle Ψ of motion relative to the force (figure 9b) does not provide a clear
sense of how the cylinder moves. Figure 9(c) instead shows the angle of motion
relative to the cylinder’s own axis ((π/2)−φ; see figure 1a), which reveals that, close
to the initiation of motion (Od→ Odc), the cylinder slides almost along its axis for
any inclination angle α greater than approximately π/7. Conversely, if the cylinder
is oriented closer to the perpendicular (α . π/7), it can drift in a wide range of
directions. Both of these features are a consequence of the drag anisotropy for Bi� 1
discussed in the previous section: the resistance to motion in the transverse direction
is larger than that in the axial direction over almost the entire range of angles φ of
motion relative to the axis.

Sedimentation of cylindrical rods was studied experimentally by Madani et al.
(2010) in centrifuge experiments using Carbopol gel. They measured the critical force
(i.e. 1/Odc) for the initiation of motion. Figure 10(a) shows their data for straight
rods orientated either parallel (α=π/2) or perpendicular (α= 0) to the force against
the aspect ratio of the rods, L/R, where L is the rod length; our slender-body theory
applies for L�R. Like the theoretical predictions in (4.4), the two orientations lead
to critical values of Od that are different by a factor of order unity (the factor is
approximately 5 in the experimental data, and predicted theoretically to be close to 4).
Curiously, however, both sets of experimental data are different from the theory by
a factor of approximately two (this has been scaled out in the data in figure 10; see
caption). We are not sure of the origin of this discrepancy, particularly since Tokpavi
et al. (2009) report far better agreement with theory for their own experiments in the
perpendicular orientation (α = 0). Indeed, a separate set of experiments by Jossic &
Magnin (2001) also measured the critical forces on cylinders in both the perpendicular
and parallel orientation; their data are also shown (as stars) in figure 10(a), and are
more consistent with the theoretical results.

We also performed our own simple experiments of the sedimentation of inclined
rods, and the data are presented in figure 9(d). The experiments are conducted using
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headless machine screws immersed in an aqueous Carbopol gel, as described in more
detail in appendix D. The figure reports the sedimentation speed observed for screws
of different size for varying orientation, distinguishing between rods that did or did not
move over the duration of the experiments. This distinction picks out an estimate of
the critical threshold Odc, which compares well with the theoretical predictions. The
screws in these experiments had aspect ratios L/R lying between 13 and 33. Despite
the simplicity of the experiments, further observations of the fall direction also agree
qualitatively with the theoretical predictions. These are discussed in more detail in
appendix D, along with some other points of disagreement with theory.

4.2.2. A bent rod
For a simple model of a bent rod, we assume that the axis is straight except

for an abrupt corner at the midpoint, the effect of which on the flow dynamics is
negligible. We further orientate the object so that the centreline is contained in a
vertical plane and is symmetrical about the horizontal; i.e. we consider the ‘scallop’
and ‘v’ orientations illustrated in figure 10(b). Thus, over half of the length of the
rod the centreline makes an angle α with respect to the force, while over the other
half the angle is equal and opposite. Such configurations were also examined by
Madani et al. (2010) in their experimental study.

Figure 10(b) shows these experimental data together with the theoretical predictions,
for both the ‘scallop’ and ‘v’ orientations. The degree of the bend is measured by
the ratio S/L between the shortest distance between the ends of the rod S and the
original length L. When S→ L the rods are straight, whereas for S/L→ 0 the rods
become bent into two, potentially violating the slender-body assumptions (which
leads us to truncate the plot at S/L = 0.2). Theoretically, the critical force depends
only on the angle α, as was shown in figure 9(d). However, the two orientations
differ in their definition of that angle, leading to the two curves in the figure: for the
‘scallop’ arrangement, α= sin−1(S/L), whereas α= cos−1(S/L) for the ‘v’ orientation.
Once again, there is rough agreement between theory and experiment in terms of the
dependence of Odc on S/L, notwithstanding the same disconcerting factor of two.

4.3. Helices
For the flow around a turning and translating helix, we must again translate our
computational results for the velocity field and drag relative to the local orientation
of the filament. As illustrated in figure 1(b), we embed the helix inside a virtual
cylindrical surface of radius RH , and let (s, t) denote axes that lie along and tangential
to it. We further let Φ denote the pitch angle of the helix (i.e. the angle between
the centre line of the filament and the t-axis). We first consider both sedimentation
and locomotion of helices with arbitrary pitch angle (§§ 4.3.1 and 4.3.2), in which
case the slender-body theory is valid when RH � R. Then, in § 4.3.3, we consider
locomotion driven by relatively long spiral waves with Φ → π/2; in this case the
theory applies for RH/R=O(1).

The dimensional velocity U(cos φ, sin φ) associated with axes aligned with the
filament corresponds to a translation speed Ṽs in the s-direction and a turning rate
ω̃ in the t-direction that are given by

Ṽs =−U cos(φ +Φ), ω̃=
U
RH

sin(φ +Φ). (4.5a,b)
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The dimensionless force on the helix is also resolved into the (s, t)-directions as[
Ft
Fs

]
=

[
Fz(φ, Bi) cosΦ + Fx(φ, Bi) sinΦ
Fz(φ, Bi) sinΦ − Fx(φ, Bi) cosΦ

]
. (4.6)

4.3.1. The spiral of a sedimenting helix
When the helix is subjected to an axial force (in the s-direction), the helix drifts in

that direction along a spiral path. The force Ft is unbalanced and must therefore be
eliminated, which demands that

Φ =−tan−1

(
Fz

Fx

)
=π− α, (4.7)

where the last equality follows from noting that both φ and α must lie in the range
[π/2, π] in this scenario. As for the sedimenting rod, the dynamics is naturally
described in terms of the Oldroyd number (4.1). Hence we must transform the input
parameters from (φ, Bi) to (Φ, Od) ≡ (−tan−1(Fz/Fx), Bi/

√
F2

x + F2
z ). The output

quantities are then the dimensionless fall speed and turn rate,

Vs =
µṼs

|F̃|
=

Od cos[φ(Φ,Od)+Φ]
Bi(Φ,Od)

, ω=
µRHω̃

|F̃|
=

Od sin[φ(Φ,Od)+Φ]
Bi(Φ,Od)

,

(4.8a,b)

shown in figure 11(a,b).
In the Newtonian limit Bi→ 0 (§ 3.1), the limiting drag components imply

(Vs, ω)∼
log Od−1

4π
(1+ sin2 Φ, sinΦ cosΦ). (4.9)

Conversely, for higher Od (weaker force) we again encounter a critical yield stress
Odc above which there is no motion. Indeed, the critical stress Odc(Φ) as a function
of pitch angle is the same as the critical stress Odc(α) in terms of the inclination of
straight cylinders. Furthermore, the motion of the helix is affected by exactly the same
drag anisotropy as straight cylinders for Od→Odc (see figure 11c). That is, for pitch
angles that are close to π/2 (i.e. for long loosely wound helices), the angle of motion
φ spans almost its full range, and so the spiral taken by any filament of the helix is
different from the curve itself. But for helices with Φ<π/2, φ→π/2: the helix turns
such that each filament moves almost axially, and the helix falls via a corkscrewing
motion.

We performed a simple experiment of a sedimenting helix in Carbopol gel to
confirm the latter prediction, as shown in figure 12. The upper image shows the
helical corkscrew used, while the lower shows successive snapshots of the centreline
as the helix spirals vertically downwards (plotted to the right in the figure). As
illustrated by the near perfect alignment of the snapshots, the helix falls in almost the
direction of the filament axis to perform a corkscrew motion. Note that we are unable
to make any further quantitative comparison with theory as the Carbopol is better
modelled as a Herschel–Bulkley fluid rather than using the Bingham law (precluding
a direct comparison of the fall speed, for example). Nevertheless, the relatively slow
sedimentation speed (less than 1 cm min−1), suggests that the helix is close to the
onset of motion. The Oldroyd number, however, is Od = τYR/(Mg) ≈ 0.095, which
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FIGURE 11. (Colour online) (a) The velocity Vs and (b) the angular rotation ω for helix
with pitch Φ sedimenting along its axis. (c) The angle of motion φ−π/2 of each filament
of the helix to its own axial direction. Small angles indicate a nearly corkscrewing motion.

0

1

5 10 15 20

FIGURE 12. (Colour online) An image of a helix falling through Carbopol, and a plot
showing successive snapshots of the centreline. The helix has mass M ≈ 10.6 g, axial
length 14 cm, radii R ≈ 1.2 mm and RH ≈ 3.4 mm, pitch angle Φ ≈ 32◦, and falls
vertically (to the right in the plots) with a speed of 0.83 cm min−1.

is greater than the critical threshold of 0.083 for motion at the pitch angle of the
corkscrew, Φ ≈ 32◦ = 0.18π rad. Given that the corkscrew is made of smooth steel,
this discrepancy might point to a reduction of Odc due to effective slip on its boundary
(cf. Jossic & Magnin 2001). Alternatively, the radius of the helix RH ≈ 3.4 mm is
not that much larger than the filament radius R ≈ 1.2 mm, which suggests that the
slender-body limit may be inaccurate.

4.3.2. Swimming with helical waves
In Taylor and Hancock’s model of the locomotion of a micro-organism driven by

helical waves propagating down a cylindrical flagellum (Taylor 1952; Hancock 1953),
the filament spirals around the cylinder surface under the action of an imposed turning
moment with Ft 6= 0, driving a swimming speed Vs. Force balance along the surface,
however, now demands that the axial force Fs vanishes, or, given (4.6),

Φ(φ, Bi)= tan−1

(
Fx

Fz

)
≡

π

2
− α. (4.10)

In this situation, the imposed turning velocity RHω̃ provides a characteristic velocity
scale. We therefore introduce a modified Bingham number,

Bi∗ =
τYR
µRHω̃

=
Bi

sin(φ +Φ)
, (4.11)
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FIGURE 13. (Colour online) Calculations for a swimming cylindrical filaments propelled
by helical waves. (a) The pitch angle Φ(φ,Bi), calculated from (4.10). (b) The swimming
speed Vs(Φ,Bi∗). (c) The swimming speed for different Bingham numbers between Bi∗=
0.003 and Bi∗= 1995, together with the Newtonian (red, long dashed) limit, the speed for
perfect ‘corkscrewing’ (blue dashed) and the prediction for Φ→π/2 given in § 4.3.3 (for
Ω→ 0; green, short dashed).

given (4.5b), and write the dimensionless velocity along the cylindrical surface as[
Vt
Vs

]
=

1
RHω̃

[
Ṽt

Ṽs

]
=

[
1

−cot(φ +Φ)

]
. (4.12)

We now map the input parameters from (φ, Bi) to (Φ, Bi∗), and then determine
the swimming speed Vs(Φ, Bi∗) from (4.12). Figure 13 shows the results of this
computation.

In the Newtonian limit (Bi→ 0 or Bi∗→ 0), we find that tan α= (tan φ)/2= cotΦ,
given the limits in § 3.1. Hence

Vs→
sinΦ cosΦ
1+ cos2 Φ

, (4.13)

which is equivalent to the result quoted by Hancock (1953).
For higher Bi∗, the swimming speed increases and, at a particular pitch angle,

attains a maximum that can exceed the turning velocity of the helix (i.e. Vs > 1; see
figure 13b,c). For pitch angles that are sufficiently below π/2, the speed converges
to the curve

Vs = tanΦ, (4.14)

in the plastic limit Bi∗ � 1 (figure 13c). This limit corresponds to a perfect
‘corkscrewing’ motion, and follows from (4.12) with filaments of the helix moving
along their axis (φ =π/2). The corkscrewing behaviour is once again a consequence
of the drag anisotropy Fx>Fz outlined in § 4.1. When Bi� 1 (and hence Bi∗� 1), the
force angle α is small over most of the range of φ, and so, given (4.10), the pitch Φ
must be close to π/2. Hence variation in Φ away from π/2 must be accommodated
by a sensitive tuning of φ very near π/2. In other words, over much of the range of
pitch angles, φ is very close to π/2 and the filament translates almost along its axis
in a corkscrewing motion.

With a perfect corkscrewing motion, the swimming speed could in principle diverge
for pitch angles approaching π/2. As illustrated in figure 13(c), this is not achieved
for our model swimmer because, as Φ becomes closer to π/2, the angle φ is
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redirected away from π/2. The swimming speed Vs thus deviates off the corkscrew
curve (4.14) and decreases as Φ approaches π/2. The descent of the swimming speed
corresponds to the main range of φ in the plots of the drag components (figure 8b,c),
where 0<α.π/7. Given this range of α, an optimal speed for Bi� 1 of Vs ≈ 2.14
results from (4.14), at a pitch angle of Φ ≈ 1.12.

4.3.3. Long helical waves
When locomotion is driven by relatively long helical waves, the pitch of the helix is

close to π/2 and the z-axis of the filament almost aligns with the s-axis of the helix.
In this setting, we may assume that RH/R=O(1). In the local Cartesian coordinates
of the filament, the rigid turning and translation of the helix driven by angular rotation
ω̃ then provides the dimensional surface velocity field,

(RH −R sin θ)ω̃ x̂+R cos θω̃ ŷ+W ẑ≡ U(cos θ cos φ, Ω − sin θ cos φ, sin φ), (4.15)

where W = Ṽs is the dimensional locomotion speed. The latter expression in (4.15) is
simply a dimensional version of the generic boundary condition in (2.7), where U =
√

U2 +W2 as before but now

U =RHω̃ and Ω =
Rω̃
U
. (4.16a,b)

In this long wave limit, the condition Φ→π/2 is expected to demand that φ� 1 (cf.
figure 13), and so the surface velocity (4.15) is

U(cos θ, Ω − sin θ, φ), (4.17)

with

W
U
= Vs ≈ φ, U ≈RHω̃ and Ω ≈

R
RH

. (4.18a−c)

Solutions in this limit can therefore be calculated by computing the motion of a
cylinder at small φ, but with arbitrary rotation rate Ω , to determine the drag force,

Fx(φ, Ω, Bi)x̂+ Fz(φ, Ω, Bi)ẑ≈ Fx(0, Ω, Bi)x̂+ φF′z(Ω, Bi)ẑ, (4.19)

with

F′z(Ω, Bi)≡
[
∂

∂φ
Fz

]
φ=0

. (4.20)

But, as before, α = (π/2)−Φ, and so

φ(Ω, Bi)≈
(

1
2
π−Φ

)
Fx(0, Ω, Bi)

F′z(Ω, Bi)
, (4.21)

which is the dimensionless swimming speed. Note that, in the Newtonian limit, the
results in (3.1) imply that φ ∼ 2((π/2) − Φ), which is equivalent to the Φ → π/2
limit of (4.13).

Figure 14(a) shows computations of the speed coefficient Fx(0, Ω, Bi)/F′z(Ω, Bi) for
varying radius ratio Ω and different yield stresses. For Ω→ 0, the helix is loosely

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

72
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.726


890 D. R. Hewitt and N. J. Balmforth

10-1 100 101 102 100 101 102 103

101F x
/F

z�

Ø
m

ax
, (

F x
/F

z� ) m
ax

102

101

102(a) (b)
Ø-1/2

Ø

¡Bi1/3

Bi

FIGURE 14. (Colour online) (a) Computations of the speed coefficient
Fx(0, Ω, Bi)/F′z(Ω, Bi) in (4.21) for varying Ω and Bi = 4 (black circles), Bi = 16
(blue stars), Bi = 64 (red crosses), Bi = 256 (green squares) and Bi = 1024 (grey
diamonds), together with the high-Bi limit for Ω = 0 from the data in figure 8 (red
dashed). (b) The (interpolated) maximum speed coefficient (Fx/F′z)max (blue squares) and
corresponding radius ratio Ωmax for which this is attained (black stars).

wound and (4.21) reduces to the Φ→π/2 limit of the analysis in § 4.3.2. The speed
increases towards a maximum value when the helix is more tightly wound (larger Ω),
before decreasing again towards zero as Ω→∞.

In the loosely wound limit, the swimming speed is insensitive to the radius ratio
and approaches a finite value for large yield stress. One expects this result for Bi� 1
because the stress fields of the underlying plasticity solutions are independent of Ω
until the rotation rate becomes sufficiently large to force a change in the slipline
pattern (see § 3.3.2). In addition, when the flow pattern contains a significant nearly
perfectly plastic region, the stresses, and therefore the drag components, are all
expected to scale with Bi, such that the speed is independent of Bi in the plastic
limit. Only when the plastic flow outside the cylinder is replaced by a boundary-layer
flow for larger Ω (see § 3.3.2 and figure 4) does the speed become more strongly
dependent on the yield stress. In this very tightly wound limit, the transverse drag
is Fx ∼ Bi3/2Ω−3/2 (see § 3.3.2), while the axial drag scales with Fz ∼ φBiΩ−1,
because τrz ∼ Bi wr/|vr| ∼O(φBi/Ω). Hence, φ ∼ Bi1/2Ω−1/2, which captures the final
decay of the swimming speed for Ω � 1 in figure 14(a). A maximum value of the
speed is attained between these two limits, for O(1) <Ω <O(Bi1/3), where the axial
drag decays like Fz ∼ φBiΩ−1 but the stress state is still given by the modified
slipline solution in § 3.3.2 and the transverse drag remains O(Bi). The speed grows
over this intermediate range, and attains a maximum value (Fx/F′z)max ∼ Bi1/3 when
Ω =Ωmax ∼ Bi1/3 (figure 14b).

5. Summary
In this paper we have formulated viscoplastic slender-body theory to describe the

slow (inertialess) flow of a yield-stress fluid around a thin cylindrical filament. For
Newtonian Stokes flow, the linearity of the problem means that a general solution
can be found by breaking things down into the constituent components of motion
(transverse and axial motion plus rotation) and then suitably superposing the results.
The nonlinearity of the constitutive law means that such a superposition is not possible
here, forcing us to consider all the possible combinations independently. The theory
does, however, simplify matters by exploiting the slenderness of the filament to reduce
the problem to that of the local flow around a cylinder, which is inclined relative
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to its direction of motion and rotates. We solved this problem numerically using a
specially designed technique to deal with the yield stress (an augmented Lagrangian
scheme). We also provided some exact or asymptotic solutions in different analytically
accessible limits.

We applied the theory to the sedimentation of a straight or bent rod, and compared
the results with both existing experiments (Jossic & Magnin 2001; Tokpavi et al.
2009; Madani et al. 2010) and some simple experiments of our own. We further
considered flow around a helix, by exploring both the spiral fall of a vertical helix
and the locomotion of a cylindrical filament driven by helical waves. The latter
makes a non-Newtonian generalization of the model of Taylor (1952) and Hancock
(1953) for a swimming microscopic organism with a flagellum. We found that, as the
strength of the yield stress increases, an optimal swimming speed arises for a certain
pitch angle of the helix, which is connected to a near corkscrewing motion of the
helix. This results because the drag opposing transverse motion is typically higher
than that opposing axial motion, and may have application to biological organisms
such as spirochetes that are observed to perform a corkscrewing motion in gel-like
materials (Wolgemuth et al. 2006).
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Appendix A. Two-dimensional viscoplastic boundary-layer theory
As suggested by Piau (2002) and confirmed by Tokpavi et al. (2008), the boundary

layers against the solid surface of the cylinder in the limit of transverse motion have
a thickness of O(Bi−1/2). As predicted by Oldroyd (1947) and shown by Balmforth
et al. (2017), on the other hand, the free viscoplastic shear layers have a thickness
of O(Bi−1/3) and a structure with self-similar form. For a shear layer with a curving
centreline, however, the theory outlined by Balmforth et al. (2017) is strictly only
valid when the curvature κ � O(1) (despite an erroneous statement to the contrary
contained in that paper). In this appendix, we briefly outline the correct generalization
to order-one curvatures.

We resolve the boundary layer in terms of a local coordinate system (s, n = εη)
based on arc length s and a stretched transverse coordinate η, and introduce the
velocity field (U , εV), where ε =Bi−1/3. The force balance can then be expressed as

ε
∂τss

∂s
+ (1− εκη)

∂τsn

∂η
− 2εκτsn = ε

∂p
∂s
, (A 1)

ε
∂τsn

∂s
+ (1− εκη)

∂τnn

∂η
+ εκ(τss − τnn)=

∂p
∂η
. (A 2)

The components of the deformation rate tensor scale as

γ̇ss =
2

1− εκη

(
∂U
∂s
− εκV

)
, γ̇nn = 2

∂V
∂η
, γ̇sn =

1
1− εκη

(
ε
∂V
∂s
+ κU

)
+

1
ε

∂U
∂η
,

(A 3a−c)

which, in view of the constitutive law, τij = γ̇ij(1+ ε−3γ̇ −1), guide the stress scalings,
τsn = ε

−3 sgn(Uη)+ ε−1τ̌sn(s, η) and (τss, τnn)= O(ε−2). To account for the third term
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on the left of (A 1) and maintain a consistent balance in that equation at O(ε−1), we
now introduce the pressure scaling,

p=∓
2
ε3
ϑ +

1
ε2

P(s, η), (A 4)

where ϑ(s) is the angle that the centreline of the boundary layer makes with the
x-axis, so that κ = ∂ϑ/∂s. The first term in the pressure solution (A 4), which is
missing in Balmforth et al. (2017), reflects how p± 2Biϑ is, to leading order, constant
along the boundary layer. But that centreline must be equivalent to a slipline, and
p± 2Biϑ is simply the corresponding Riemann invariant. With this correction to the
pressure solution, the remainder of the boundary-layer theory proceeds as outlined by
Balmforth et al. (2017).

Appendix B. Sliplines for rotating and translating cylinders

The notation in this appendix refers to figure 3(b). Let Θ denote the angle of the
line BC, and p0 the pressure at the base of the fan. Since the circles of the fan are
β-lines, and ϑ = −π/2 along the α-line x = 0, the pressure within the fan is p =
p0 + 2Biϑ + πBi. It follows that the pressure along BC is p= p0 + (π+ 2Θ)Bi. The
circular failure arc CD is an α-line with pressure p= p0 + (π+ 4Θ − 2ϑ)Bi. Along
DE (with ϑ = 2π − Θ) we therefore have p = p0 − (3π − 6Θ)Bi, implying that the
pressure in the fan must be p= p0+ 2Biϑ − (7π− 8Θ)Bi. On returning to the α-line
x = 0 cutting through the base of the fan (now with ϑ = 2π + (π/2)), we therefore
find the pressure p= p0 − 2(π− 4Θ)Bi. Eliminating the pressure drop then demands
that Θ =π/4.

In x> 0, the involutes of circles that extend the β-lines from the centred fan above
y = −1 can be taken to have the parametric form, x = sin ϑ + (a − ϑ) cos ϑ and
y= (a−ϑ) sinϑ − cosϑ , where a is the horizontal location of the curve along y=−1
(with ϑ = 0), which also determines the polar angle θ = (π/2)− a at the intersection
with the cylinder (where ϑ = a). Given that the α-line BC has ϑ =π/4, the geometry
demands that the radius of the rigidly rotating plug is R= 1+ (y0

√
2/2), and that of

the centred fan is (π/4)+ (y0

√
2/2).

We now quote the local force and torque along the closed contour ABCDEA, whose
integrals set the total force and torque upon the cylinder (without inertia, there can be
no net force or torque on the rigid plug attached to the cylinder). A key feature of
this computation is that along the sliplines the normal force is given by the pressure p
and the tangential (anticlockwise) force is the shear stress −Bi. Thus, the local force
and torque on a line element of length ds are

f =
(
−Bi cos ϑ − p sin ϑ
−Bi sin ϑ + p cos ϑ

)
ds and r× f , (B 1a,b)

where the position vector r, pressure p and line element ds break down into

AB: r=
(

sin ϑ
−cosϑ

)
,

p= p0 + (π+ 2ϑ)Bi,
ds= dϑ, 0<ϑ < 1

4π;
(B 2)

BC: r=
1
√

2

(
s+ 1
s− 1

)
,

p= p0 +
3
2πBi ϑ = 1

4π,

0< s< 1
2 y0
√
(2); (B 3)
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CD: r=
(

R sin ϑ
y0 − R cos ϑ

)
,

p= p0 + 2(π− ϑ)Bi,
ds= R dϑ, 1

4π<ϑ <
7
4π;

(B 4)

DE: r=
1
√

2

(
s− 1
−s− 1

)
,

p= p0 −
3
2πBi ϑ = 7

4π,

−
1
2 y0
√
(2) < s< 0; (B 5)

EA: r=
(

sin ϑ
−cosϑ

)
,

p= p0 − (5π− 2ϑ)Bi,
ds= dϑ, 7

4π<ϑ < 2π.
(B 6)

These furnish the net force and torque quoted in the main text.

Appendix C. Translation inside the axial yield surface
When flow is contained within the yielded region generated by axial motion, for

(π/2)− φ= δ� 1, we have the axial velocity field given in § 3.2: w∼ 1+Bi(r− 1−
rp log r). Let (φ − (π/2), u, v)= δ(1, u1, v1)+ · · · , w= w0(r)+ δ2w2 and (u1, v1)=
(ψθ/r,−ψr). Then,

τrz ∼−Bi
rp

r
+ δ2

(
w2r +

Biγ̇ 2
⊥

2w2
0r

)
, τθz ∼

δ2rpw2θ

r(rp − r)
, (C 1a,b)(

τrr
τrθ

)
∼

rp

rp − r

(
2(ψθ/r)r

ψr/r−ψrr +ψθθ/r2

)
(C 2)

and

γ̇ 2
∼ (w0r + δ

2w2r)
2
+ δ2γ̇ 2

⊥
, γ̇ 2

⊥
≡ 4(ψθ/r)2r + (ψrr −ψr/r−ψθθ/r2)2. (C 3a,b)

The boundary conditions at r= 1 still imply w2 = 0 and (ψθ ,−ψr)= (cos θ,− sin θ),
but the corrections perturb the position of the plug to r = rp + δ

2rp2. Given that u=
v =w= 0 and γ̇ = 0 on this boundary, an expansion about r= rp furnishes

w2 =w2r + rp2w0rr =ψ =ψr = γ̇
2
⊥
= 0 at r= rp. (C 4)

After eliminating the pressure from the planar force-balance equations, we find[
∂

∂r
1
r
∂

∂r
r2

(rp − r)
∂

∂r
−

4
r
∂

∂r
1

(rp − r)
+

1
r(rp − r)

∂

∂r

]
r
∂

∂r

(
Ψ

r

)
= 0, (C 5)

given that a separable solution is possible with ψ =Ψ (r) sin θ , Ψ (1)=Ψr(1)= 1 and
Ψ (rp)=Ψr(rp)= 0. At the following order, the axial problem gives

(rw2r)r +
rp

r(rp − r)
w2θθ =−

[
r3γ̇ 2
⊥

2Bi(rp − r)2

]
r

, (C 6)

with w2(1, θ) = w2(rp, θ) = 0 and rp2 = −rpw2r(rp, θ)/Bi, illustrating how the lateral
translation perturbs the axial flow and yield surface.

For Bi� 1, the solution is more directly obtained and explicit: the axial velocity
is

w∼ (1− ξ)2, r= 1+ Bi−1/2ξ
√

2. (C 7a,b)
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Continuity, planar force balance and the constitutive law demand that, at leading
order,

Bi1/2

√
2

uξ + vθ ∼ 0,
∂p
∂ξ
∼ 0 and

∂p
∂θ
∼

Bi1/2

√
2

∂

∂ξ
τrθ ∼

Bi3/2

2
√

2

(
vξ

1− ξ

)
ξ

, (C 8a−c)

with boundary conditions u= δ cos θ and v ∼ 0 at ξ = 0, and (u, v)= (0, 0) at ξ = 1.
Various integrals therefore give

u= (1− ξ)3(1+ 3ξ)δ cos θ and v = 6
√

2Bi1/2ξ(1− ξ)2δ sin θ. (C 9a,b)

It follows that the pressure is p∼ 9Bi2δ cos θ , and the drag force is

Fx ∼
Bi1/2

√
2

∮ [
∂τrθ

∂ξ

]
ξ=0

dθ ∼−
∮

p cos θ dθ ∼−9πBi2δ (C 10)

(see figure 8d). The δ2w2 correction (C 7) now satisfies

w2ξξ ∼−9
√

2B3/2
[(1− 3ξ)2]ξ sin2 θ. (C 11)

Hence, given w2 = 0 at ξ = 0 and 1,

w∼ (1− ξ)2 + 27
√

2δ2Bi3/2ξ 2(1− ξ) sin2 θ, (C 12)

which implies a shift in the yield surface of

rp ∼ 1+ Bi−1/2(
√

2+ 27δ2Bi3/2 sin2 θ). (C 13)

Note that the pressure solution p ∼ 9Bi2δ cos θ is only much less than O(Bi)
when δ� Bi−1. For δ > O(Bi−1), the continuity of the axially varying pressure into
the region outside the boundary layer and the force balance suggest that the stress
components cannot remain below the yield stress, regardless of the indeterminacy of
the stress state if τ < Bi. In other words, once the angle φ becomes further from
π/2, the stress exerted by the boundary-layer flow must force the fluid to yield over
an order-one region beyond.

The flow pattern which then emerges combines the boundary layer around the
cylinder in which the axial velocity mostly remains localized, with an almost perfectly
plastic region beyond, as seen in figure 6(i). As r→ 1, the outer plastic flow satisfies
the stress conditions τrz →−Bi with all other τij → 0, and is forced purely by the
radial velocity of the cylinder u→ δ cos θ , tolerating an arbitrary slip in v and w.
The plastic flow speeds are therefore O(δ), with O(Bi) deviatoric stress components
and pressure.

Although the boundary layer retains the O(Bi−1/2) thickness of the planar
viscoplastic boundary-layer problem (appendix A), it is dominated by the axial
shear stress τrz ∼−Bi rather than the planar component τrθ . It follows that, to O(δ),
the axial velocity profile is again given by (C 7). Moreover, the planar boundary-layer
equations in (C 8) remain valid, but with continuity with the outer plastic flow
demanding that p= O(Bi). Thus, τrz ∼ Bivξ/|wξ | = O(Bi1/2), and the angular velocity
is v = O(Bi−1/2), which greatly exceeds the O(δ) cylinder motion for δ� O(Bi−1/2).
However, the contribution of the boundary-layer flow to the radial velocity is O(Bi−1)
and cannot correct the leading-order term u ∼ δ cos θ due to the cylinder motion
if δ � O(Bi−1). Thus, for 1� δ � O(Bi−1), Fz ∼ −2πBi and Fx is dictated by the
O(Bi) pressure distribution stemming from the outer O(δ) plastic flow (cf. figure 8c).
Evidently, when δ = O(Bi−1) the boundary-layer flow adjusts the radial velocity and
consumes the outer plastic flow.
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Appendix D. Sedimentation experiments

For a laboratory study of the fall of inclined rods, we conducted experiments using
headless machine screws immersed in an aqueous solution of Carbopol Ultrez 21
(concentration of approximately 0.5 % by weight, neutralized with sodium hydroxide).
The screws had lengths of L≈ 4.9 cm and varying maximum radius R, ranging from
1.5 to 3.9 mm. A Herschel–Bulkley fit to the flow curve measured in a rheometer
(MCR501, Anton Paar, with roughened parallel plates) suggested a yield stress of
approximately 38 Pa. The Carbopol was placed in a small tank (length 33 cm, depth
12 cm and width 5 cm), the screws introduced at varying orientations, and the fluid
surface levelled with a scraper. A camera took photographs of the fall of the screws,
and the time-dependent position of the centre was extracted from the images.

In experiments of this kind, one practical concern is that effective slip may occur
over the surface of a smooth rod (e.g. Poumaere et al. 2014; Jalaal, Balmforth &
Stoeber 2015) and thereby change the sedimentation dynamics. This motivated our
use of steel screws for which the grooved surface, though complicating the detailed
geometry, likely clogs up with Carbopol. A no-slip condition is thereby introduced
at a position close to the maximum radius of the screw R. The clogged Carbopol
slightly modifies the effective mass of the rod: if the screw originally has mass M,
and assuming that the grooves are fully clogged, the effective mass can be estimated
as

M∗ =M
(

1−
ρc

ρs

)
+πρcR2L, (D 1)

where ρc and ρs are the density of Carbopol and steel, respectively (1 and 8 g cm−3).
The adjusted Oldroyd number is Od= τYRL/(M∗g).

If the screw had not noticeably fallen over a time of approximately 103 s, that
inclination of the rod was noted as being below the critical value Odc. Otherwise,
the fall speed was measured as a function of orientation angle from consecutive
images. There are a number of potential issues with these measurements: although the
geometry of the screw may eliminate slip, the object is not truly cylindrical and small
bubbles can become trapped on the surface. The screws also have finite length, which
potentially introduces additional dynamical effect from the ends. More awkwardly,
Carbopol is known to have a non-ideal rheology that may affect sedimentation
(Tabuteau, Coussot & de Bruyn 2007; Putz et al. 2008). Finally, the flow curve
measured in the rheometer may not provide a particularly accurate estimate of the
yield stress (even were there a unique value for this property). These issues potentially
explain a significant amount of scatter in the measurements of fall speed. They may
also contribute to another observed effect: the gradual tilting of the screws towards
the vertical as they fall. This effect, which is illustrated in figure 15, is not expected
in our Re→ 0 theory, and may well have an inertial origin: the slower, lighter rods
re-orientate less than the faster, heavier ones. From an experimental perspective,
the tilt is convenient, allowing multiple speed values for different inclinations to be
extracted during a single fall. Aside from this effect, and in agreement with theoretical
predictions, rods with appreciable inclinations fall nearly along their axes, whereas
almost horizontal rods fall in a wider range of directions.
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FIGURE 15. (Colour online) Snapshots (unequally spaced in time) of the centrelines of
the four heaviest screws during sample falls. The spacing in time was roughly inversely
proportional to the fall speed (cf. figure 9d), and ranged from a few hundred seconds for
the less tilted screws to a few seconds at higher inclinations.
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