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We describe a stochastic dynamic programming approach for “real option”-based
valuation of electricity generation capacity incorporating operational constraints
and start-up costsStochastic prices of electricity and fuel are represented by re-
combining multinomial tree$senerators are modeled as a strip of cross-commodity
call options with a delay and a cost imposed on each option exewesé#lustrate
implications of operational characteristics on the valuation of generation assets
under different modeling assumptions about the energy commodity pvieefind

that the impacts of operational constraints on real asset valuation are dependent on
both the model specification and the nature of operating characteristics

1. INTRODUCTION

The restructuring of the electric power industry has become a global trend since the
early 1990sAs a resultelectricity markets emerged in many regions and countries
In the United Statedor instance electricity wholesale markets have been estab-
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lished in California PennsylvaniaNew JerseyMaryland (PJM), New York, and
New EnglandIn the emerging power marketsne of the crucial issues is the de-
termination of the market-based value of generation capacity in a competitive mar-
ket environment with volatile electricity priceBhe importance of capacity valuation
is underscored by the needs of many large utility companies required to divest gen-
eration assets in order to ensure competit®unch a valuation is also essential for
investors and market participants contemplating investment in or acquisition of new
generation assets

Under the traditional regulatory regimelectricity prices were set by the reg-
ulators based on cost of servidevestments in generation capacity by the utilities
were subject to approval by the regulators based on integrated resource planning
and upon approvalwere allowed to earn a fixed return on investment through reg-
ulated electricity tariffsThe economic viability of such investment opportunities
could be determined by means of a discounted cash(@®F) method Under this
approachthe DCF analysis is coupled with a production simulation model that
produces the projected cash flow of the generation unit under consideration given
the resource portfolio and the forecasted loHdwever this paradigm is being
changed by the restructuring of the electricity supply industBéectricity prices in
many regiongsat least at the wholesale leyate no longer set by policy makers but
rather by market forcedt has also been recognized in literatyey., Dixit and
Pindyck[5]) that the traditional DCF method tends to undervalue assets in the pres-
ence of uncertainty since that approach tends to ignore the value of real gptions
as turning off a plant when the price is too low the presence of well-developed
financial and physical markets for electrigitiie payoffs of an electric power plant
can be modeled in terms of a financial instruments on electrigifancial methods
can be applied to value the financial instruments, &imas the power plantin Deng
Johnsonand Sogomoniafé], a real options approach is proposed to value elec-
tricity generation asset$n particular they construct a spark-spread option-based
valuation for fossil-fuel power plant§hey demonstrate that the option-based val-
uation provides a much better approximation to the observed market valuation than
does DCF valuationHowever some operational characteristicsich as start-up
costs ramp-up constrainfgnd operating-level-dependent heat rate not explic-
itly taken into consideration in their work

Although it is important to identify and account for the embedded real options
in valuing generation asseti$ is of equal importance to recognize that physical
operating characteristics of a real asset often impose restrictions on exercising these
embedded option3 he constraints on exercising the real options translate into trans-
action costs borne by the asset owrtleus reducing the asset valugnoring oper-
ating characteristics in the valuation of a real asset would almost certainly lead to
overvaluationIn a typical power asset sales transaction such as the one completed
in April 1999 between Pacific Gas & Electric and Southern Energy which totaled
$801 million even a 1% overvaluation would cause a loss of millions of dollars from
a purchaser’s point of viewt is therefore important to account for operational
constraints when applying financial option pricing methodology to value real assets
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In this article we explicitly incorporate operational characteristics associated with a
power plant into the real options valuation appraathe methodology that we
employ is to formulate a stochastic dynamic progr@DP) for the asset valuation
problem based on a discrete-time lattice price motleils approach has its root in
the binomial option pricing model developed by Cé¥oss and Rubinsteirf2].
Tseng and BarfZl 2] have pursuedndependentlya similar approach that focuses on
the short-term-generation asset valuation problEney simulate power prices and
solve a unit commitment problem with constraints such as start-up and shutdown
costs minimum run time and maximum ramp rate over a relatively short time ho-
rizon. That approacthoweveris computationally infeasible for the long-term asset
valuation problemwhich we addresswith a time horizon of years and granularity
of days

Another task of this article is to investigate the interaction between different
modeling assumptions concerning the commodity price models and the effects of
operational characteristics in valuing real asd#fstake the classic geometric Brown-
ian motion price model and examine the asset valuation problem with operational
constraints and then compare the valuation results with those obtained under mean-
reversion price model8Ve find that the significance of overvaluation resulting from
ignoring operational characteristics varies under different assumptions regarding
the price processes for electricity and for the generating fuel

The remainder of the article is organized as folloW first describe an asset
valuation problem for a fossil-fuel power-generating asset incorporating operating
characteristics in a deregulated electric power industry in Sectidvezhighlight
several key characteristics that we take into consideration in the asset valuation
problem In Section 3 we construct approximations to two different continuous-
time price models for electricity and the generating fuel by using discrete-time multi-
nomial lattice processe®/e then develop a stochastic dynamic programming model
based on the lattice price processes to incorporate operational constraints into the
valuation problem and prove some structural properties of the solutions to the SDP
In Section 4 we present results from numerical experiments to illustrate how sig-
nificant each of the operational characteristics of a power plant is in terms of affect-
ing the valuation result at different operating efficiency lev@ls further demonstrate
that the significance of such impacts on power asset valuation by operating charac-
teristics is sensitive to the assumptions on price dynamics of electricity and the
generating fuelFinally, we conclude with observations and remarks

2. PROBLEM DESCRIPTION

With electricity markets established in more and more regions and coy mtideket

force urges participants of power markets to develop market-based approaches for
the valuation of power assetuch as generation and transmission as¥éereas
financial economic theories provide useful tools for capturing the embedded option
value of such assetsve note that physical assets differ from financial assets in
several important aspectsirst, although providing similar benefits to the owpar
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physical asset usually involves more significant transaction costs than does a finan-
cial assetSecondthe value of the optionality associated with operating a physical
asset at different time epochs is often interrelated through intertemporal operational
constraintsThis fact makes the closed-form financial option pricing formulas overly
simplistic approximations of the operational option valuHserefore it is impor-

tant for us to explicitly take into account the operational characteristics when con-
structing an option-value-based approach for valuing real assets

In the context of a deregulated power industityancial option pricing theory
recently has been applied in the valuation of fossil-fuel electricity generation assets
Afossil-fuel power plant converts a generating fuel into electricity at a certain con-
version ratewhich is termecheat rate Roughly speakingheat rate measures the
number of units of the fuel needed for generating one unit of electritity owner
of a merchant power plarft.e., a power plant sells its output into at least one spot
marke} has the right but not the obligation to generate electricity by burning fuel at
any point in time during the lifetime of the power platipon executing such op-
erational rights over timghe owner receives the spot price of electricity less the
heat-rate-adjusted generating fuel cost by sellmgchasing electricifffuel at spot
market pricesrespectivelyA rational power plant owner would only exercise the
operational right at timé when the electricity price less generating fuel cost is
positive at that timeRecall that aspark spread call optiois an option that yields its
holder the positive part of electricity price less the “strike” heat-rate-adjusted fuel
price at its maturity timeTherefore the payoff obtainable to a rational merchant
power plant owner at timeis the same as that of a properly structusedrk spread
call optionwith strike heat rate being set at the operating heat rate level of the power
plant This observation leads to a spark spread option-based valuation of a fossil-fuel
power plant which values the underlying plant by summing up the value of the
corresponding set of spark spread call options with maturity time spanning the life-
time of the plantlt is demonstrated that such a spark spread option-based valuation
provides a much better approximate to the observed market valuation than does DCF
valuation(e.g., Deng et al[4]).

The financial-option-based valuation approach makes simplifying assumptions
regarding the operational characteristics of a power plaassumes that a power
plant can be instantly turned on or shut dowrere are no fixed operating costs but
only variable production costs involved in the operations of a power jdauat the
operating efficiency of a power plant is at a constant leMelwever these assump-
tions are not very realisti¢n operating a fossil-fuel power plamhany operational
characteristics can potentially affect the flexibilityiz. optionality) of the power
plant(e.g., Wood and Wollenber§l3]). We elaborate on three of thefirst, fixed
costs are usually incurred whenever a power plant is turned on from the “off” state
For a steam-generating unfor instance water in the boiler needs to be boiled
before the unit can generate electriciynd the amount of fuel required to boil the
water often depends on how long the unit has been shut ginahis start-up costs
are involved in the process of turning a power-generating unit on and the costs could
be time dependenSometimesthere are also costs associated with the process of
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shutting down a power plant which are callgtlitdown costsSecondupon turning
on a power-generating uniin general a power plant often has several generating
units but for the ease of expositipwve assume that a power plant only has one
generating unjt we usually do not get the output electricity immediately because a
short period of timde.g., the time for boiling water in the boilgis needed for the
generating unit to start from the “off” state and reach certain operating output.levels
This time is often called theamp-up timeThird, regarding the operating efficiency
of a power plantthe converting rate at which a power plant transforms the gener-
ating fuel into electricity indeed differs with output levelhis converting rate is
calledoperating heat rateThe power plant is more efficient when being operated at
the rated full-capacity level than at a low-output levidlus the operating heat rate
of a power plantis a function of its output levéVe will explicitly incorporate these
operational characteristics of a fossil-fuel power plant into its valuation and explore
the effects of them on the valuation

In principle one can formulate the operation of a power plant incorporating all
operational characteristics as a full-fledged dynamic programming problem-
ever the computational complexity makes such an approach prohibitively difficult
to implement What we choose to do is to model the above characteristics under
simplifying assumptionssSpecifically we model the start-yfshutdown costamp-up
time, and output-dependent operating heat rate as follows

 Start-up/shutdown cost: We assume that fixed costg,,;andcyown are in-
curred each time a power plant is turned on andrefpectivelyThe cost to
start up a generating unit depends on how long the unit has been turned off
(i.e., the longer the unit is ofthe more heat is dissipated from its bojlgus
a higher cost would be incurred when reheating the watez simplify this
effect assuming that,,is a constant

< Ramp-up time: Similar to the case of start-up coste length of the ramp-up
time also depends on how long the power plant has beef@ffeflect this
aspectto first ordewe approximate the ramp-up time by assuming that when-
ever a power plantis turned on from the “off” statigere is a fixed delay time
of lengthD between that turn-on point and the time point at which usable
electricity is generatedMoreover during the ramp-up perigdhere is a cost
incurred at a rate of, dollars per unit timewhich is generally a function of
the cost of the fuel burned to ramp up the plant

¢ Output-dependent operating heat rate While a power plantis in operation
its operating efficiency measured by its operating heat rate varies with the
output levej namely the operating heat rate is output dependent rather than a
constant over timéNhen operated at its rated maximum capacity lgtred
power plant is very efficienti.e., operating heat rate is at the low end of the
heat rate rangewhen operated at its rated minimum capacity lethe power
plant is very inefficien{i.e., operating heat rate is at the high end of the heat
rate rangg The operating heat rate of a generating unit is often modeled as
a quadratic function of the electricity output quantig/g., see Wood and

https://doi.org/10.1017/50269964803172014 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803172014

160 S.-J. Deng and S. S. Oren

Wollenberg[13]). To approximate this dependeneye make a simplifying
assumption on output level and the operating heat &ecifically we as-
sume that a power plant has only two possible output Igtieils can be easily
generalized to the case withpossible output leve)sone being the rated
capacity levelQ per unit of time called maximum output leveWith an op-
erating heat rate ofir; the other one being the minimum capacity le@el
(Q < Q) per unit of time(i.e., the minimum output level possible in order to
keep a power plant being operationaiith a corresponding heat rate f.
We make 0< Hr = Hr to reflect the fact that a fossil-fuel power plant is more
efficient when operated in a high-output level than in a low-output lael
also assume that the switching between the maximum capacity level and the
minimum capacity level is instantaneous and costless

With the above assumptionse proceed to the formulation of a stochastic dynamic
programming problem for the valuation of power generation capacity

3. A STOCHASTIC DYNAMIC PROGRAMMING FORMULATION

As a common feature in almost all commodity pricesean reversion appears in
energy prices as wele.g., Schwart4 10]). In addition to mean reversioalectricity
prices also exhibit phenomena such as juyspgkes and stochastic volatilitye.g.,
Deng[3]). However in this article we model the mean-reversion aspect of the
electricity price only More specifically we investigate the effects of operational
characteristics on valuation of generation capacity under the assumption of mean-
reverting electricity price similar to those made in Deng ef4ll

Let the state space beR?, representing the logarithm of the prices of the two
underlying commoditied_et X; and¥, denote the natural logarithm of the prices of
electricity and the generating fugh S¢, In S%), respectivelyFrom here onwe use
natural gas as one example of the generating fudlthe assumptions on the gen-
erating fuel price are also applicable to other fossil fuels such as\W@aassume
that X, and Y, evolve according to two correlated continuous-time stochastic pro-
cesses defined by the following stochastic differential equatiSBES:

dX, = k1 (1)(6,(1) — X)dt + oy (1) dWH,

1
dY; = ko (1) (02(t) — Yo)dt + o (1) dW2, @

wherek;(t) (i = 1,2) is the mean-reversion coefficiemk(t) (i = 1,2) is the long-

term mean functioyw; (t) (i = 1,2) is the instantaneous volatility functipandw!
andW? are two correlated standard Brownian motions with instantaneous correla-
tion p(t) andp (t)dt = Cov(dW?, dW?).

One can formulate the asset valuation problem as a stochastic dynamic program
based on the continuous-time stochastic price procé¥sg%: t = 0} and take into
consideration the operational constrairtitowever such an approach would en-
counter difficulty when trying to solve the Hamilton—Jaccobi—Bellman equations
because of the operational constraints and the fact that action Gplaicd will be
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defined in Sect3.2) is a discrete set rather than a continuous d& choose the
approach of discretizing the continuous-time price proce§s$gsY;) : t = 0} into a
recombining lattice process denoted{b¥;, Y;) : t = to, t, t5, t3,...} with ty=0. The
size of the state space fpX;, Y;} grows only as a polynomial function of the number
of time stepsWe then formulate the valuation problem of a generation asset as a
discrete-time stochastic dynamic programming problem incorporating operational
constraints involving start-up costamping-up timeand different heat rates under
different output levels

We start with the construction of the discrete-time price processes and then
present the model formulation

3.1. Construction of the Discrete Price Processes

As one of our goals is to investigate the effects of price process assumption on asset
valuation we construct discrete-time log-price processes for two types of continuous-
time price processes Brownian motion process and a simple mean-reverting
process A multitude of existing literature in finance has addressed the issue of
discretizing two or several correlated geometric Brownian mot{ens, Boyle[1]
and He[7]). Li and Kouvelis[8] present a discretization of one mean-reverting
processWe provide an extension in Sectiori2 to discretize two correlated mean-
reverting processes

We consider a time horizon which starts at 0 and ends atTirliée divide the
interval[0, T ] into N subintervals[0, t; ], (t1, t2],..., (ty_1, tn = T ] of equal length
At =T/N. We assume that the states of the price processes change value pnly at
(i=12,...,N) and the state vectdiX;, Y;) takes on a finite set of valug@/ith the
understanding th&tx;, Y;) denoteg X, Y, ) (i = 0,1,2,...,N), we rewrite the pro-
cesseg(X, V)t =to, ty,..., tn} @s{(X,Y;):i =0,1,...,N}. By properly defining
the states and the state transition probabiljitves are able to show that the corre-
sponding discrete-time Markov proc€$X;, Y;)} converges in distribution to either
the geometric Brownian motion procesqé&xis (2)] or the mean-reverting pro-
cesse$Eqgs (1)].

3.1.1. Brownian motion process. Suppos€(X,,Y,):t= 0} are two corre-
lated Brownian motions with constant coefficients for méan H,) and volatility
(04, 07), and correlatiorp as defined in the following SDEs

dX, = pdt+ oy AW,

. (2)
dY; = podt+ o dW?,

whereW,! andW? are two correlated standard Brownian motions with an instanta-
neous correlatiop [viz. p dt = Cov(dW?!, dW?)].

We construct a discrete-time Markov vector process as a recombining trinomial
lattice, that is starting from each log-price state vectoX,,Y;) at timet (t =
0,1,2,...,N —1), there are three possible states to reach at titné as illustrated
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Ficure 1. Lattice price modelstrinomial tree(left pane) versus quadrinomial
tree(right pane).

in the left panel of Figure IThe values of the three possible stateg,,,Y,.,)
(j =1,2,3) are given as follows

P
3

X, + plAt+al\/;\/It (j=12

th+1 = Xt + “lAt (] = 2)

/|3
X+ 1At — oy EVAt (j=293),
\

’
3 — 1 ®3)

: 2
Y= Yt"’HzAt_U'le_Pzﬁm (1=2)

3 1
\Yt+p2At—p02\/;\/Tt+az\/l—p2\/;\/ﬁ (j=23),

whereps, Uy, o1, 0o, andp are parameters if2). Define the state transition proba-
bility P, = (pd, p?, p2) from state(X,,Y;) to state(X,, 4, Y;+1) as follows

1
pi=pi=pi=3 t=012...N-1 @)

where p! is the probability of going from statéX,Y,) to state (X...,Yd )
(j=123).

Let A,, denote the timer state space of the Markov proceg¥,,Y,):n =
0,1,...,N}. ThenA, is given by

Xij=Xo+ Ny At — (i — 2))Ax
An= (Xi,j,Yij): 2n — 3i (i—2))\V3 j=01,...,i
=0 Yi,j:Y0+np2At7<T 1—,;2+T,;>AY
(5)

B
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whereAy = ol\lg\/ﬁ andAy = o,VAt. It has been showf7] that the processes
{(Xn,Ya):n=0,1,...,N} defined converge in distribution to the Brownian motion
processe$2) with initial condition (X, Y;) = (X, Yy) asN — co.

3.1.2. Mean-reverting process. Similar to the Brownian motion casee
use a recombining quadrinomial lattice process to approximate a mean-reverting
processFor the ease of expositipwe start with taking parameters(t), xo(t),
01(1), 65(1), o1(t), o2(t), andp (1) in (1) to be constantg X;, Y;) denotes the log-price
state vector attimg(t=0,1,..., N). Following (X, Y;), there are four possible states
(X{1, Y1) (j=1,2,34) attimet + 1 (t=0,1,...,N—1) as shown in the right panel
of Figure 1 The values of the four statéX/,, Y1) (j =1,2,3,4) are
(Xt]:i—l’Yt]-%-—l) = (X + Ulm’ Y, + Uzm)
(XersYord) (X1, Y& = (X + Ulm, Y — Uzm) (©)
re (Xt3+1,Yt3—1) = (Xt - Ulm’ Y — Uzm)

(X1, Y4 ) = (X — oy VAL, Y, + VAL,

The state transition probabilitiep?, p?, p2, pf} from state (X,Y;) to state
(X¢+1, Yir1) are chosen to match the local first and second momerts) ofiamely

E[Xer1 — Xel (Xi, YOI = Ka(61 — X0 At

E[Yirs — Y (X, YOI = #2(6, — YA,
E[(Xer — X)21(X, YO = 024, 7
E[(Yirs — Y02 (X, Y] = 02 At,

E[(Xer1 = Xo) (Vo1 — Yt)|(xt9Yt)] = po o At + 0(At),

where ki, k2, 01, 0, 01, 05, and p are parameters ifl). Specifically {ptj =
1,2,3,4} solves the following system of equatignvsherep; is the probability of
mOVIng from(xt’Yt) to (xtj+1’Ytl+l) (J = 15 2’3’4):

pi+pE+pdtpl =1
(pi + p? — p? — p) o VAL = k(6 — X)) At,
(Pt — p? — p? + pi) o VAL = k(6 — V)AL,
(pt + p? + pd + p)of At = of AL, ®)
(pt+p? +pd + phof At = o2 At,

(pt — p? + p? — pt) oo At = poyo, At + 0(At),
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whereo(At) = [k1(6; — X ) At][ k»(6, — Y;)At]. The solution ta(8) is
_ 1+p n [ k1(01 — X;) " Kka(02 — Yy) | k1(01 — X)) k(62 — V)

1 At + At
! 4 i 40'1 40'2 _\/_ 40—10-2 ’
1- [ k1(0; — X Ko(0,— Ye) ] Kk1(0; — X ) ko(0, — Y,
ptzz P I (04 ) _ (2 ) m_ (60, 1) K2(0, ) At,

4 i 40’1 40'2 ] 40'10'2

1+ [ k1(6, — X Kko(0,—Y,) ] Kk1(0; — X ) ko(0, =Y,
pf’= p 1( 1 t) n 2( 2 t) \/E-F 1( 1 t) 2( 2 t) At,

4 i 40, 4o, | doyi0,

1- [ Kk1(6, — X Ko(0—Y,) ] Kk1(0; — X ) ko(0, =Y,
pt4: p (6, +) _ 2(6> +) VAT — 1(01 ) K2(0, +) At

4 40, 40, o0,

(9)

The state space diX,,Y;) is a subset of(X, + mo; VAL, Y, + no,VAt):mn =
—t,—t+2,—t+4,...,t—4,t—2,t}. We next need to determine the rangerdind
n for which the components in solutioi®) are all between 0 and. WhenN is
sufficiently large p! € (0,1) for j = 1,2,3,4 is equivalent to

1 mi, T NK, T
0= Jo ) T)

N

P 1 mKlT nKzT
OS_Z+Z 1- N 1+ N =1

1 mi, T Nk, T
Os§+—<1+ 1><1+'|<\|2>5L

P 1 mKlT nKzT
OS—Z+Z 1+ N 1- N =1

A sufficient set of conditions for(10) to hold is |m| = [(1— \/m)/xlT]N
and [n| = [(1— V|p|)/k,TIN. Let m, and i, denote the integer parts of
min(t,[(1 — \p|)/xk. TIN) and min(t,[(1 — V| p|)/x2TIN), respectively

Forallt=0,1,...,N, the state space 0K, Y,) at timet, denoted by, is given
by the following set

(10)

A= U {(Xo+ moVAL Yy + nopVAL) :m= —m, —m, + 2,..., M — 2, M},

ne{—ng:2:n}
(11)

where{—n,: 2: n,} represents the sequencdef,, —n, +2,—n, +4,...,n,— 2,0 }.
Whent < min(m, ii,), we set the state§X/,,,Y,},)} att + 1 reachable from
(X;,Y;) according to(6) and the transition probabilitie® according to(9) for all
(X, Y;) € M;. Whent > min(my, i,), if (X;,Y;) is in the interior of the mesh, [i.e.,
X; € (Xo — Moy VAL, Xo + Mo VAL andY; € (Yo — Moo VAL Yo + ReopVAL)],
then we define the subsequent stafle§, 1, Y., 1)} at staget + 1 reachable from
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(X:,Y;) according td6) and the transition probabilities according 8; if (X, Y;) is

on the boundary of,, then we need to increase the number of states emanating from
(X:,Y;) and choose the corresponding set of probabilfti®$ so that(7) holds true

For instancewhenX; = Xo — Mo VAt or X; = Xo + M o1V At, we increase the

number of subsequent transition stdtxﬁl,%Ll) from four to six let

Y3 =Y, + opVAtandY3it =Y, — ouVAL (j=1,2,3). 2
The transition probabilitieép! :j = 1,2,...,6} are given by the solution of
S e e e R
(—pt = p? = 3p¢ — 3p* — 5p? — 5pf)aa VAL = k(6 — X)) AL,
(pt = p2 +pe— pi + p? — PP oo VAL = 12(6, — V)AL,
(13)

(pt+ p2+ 9p2 + 9pf* + 25pP + 25pf) oAt = g2 At,
(pt+pf+pd+pf+pd+pd)ofAt = oAt
(—pt + p?— 3pd + 3pft — 5p? + 5pd) o0, At = poyo, At + 0(Al).

Notice that we can manage to have @l to be between 0 and 1 since there are
six unknowns and five nonidentical equations(iIB).We construct the states
{(X{,1,Y! 1)} and the probabilitieB, ={p/ :j =1,2,..., J} in the same manner when
Y, takes the boundary values &f. Through this constructigrwe obtain a Markov
chain{(X;,Y;):t = 0,1,2,...,N} with transition probabilit{P;:t = 0,1,2,...,N}
satisfying(7) in every statg X, Y;) for all t.

Proposition 3L provides a set of sufficient conditions for a continuous-time
Markov chainwhich has sample paths being right-continuous with left IifRIELL ),
to converge in distribution to the strong solution of a system of SDEs

Suppose; is the strong solution of SDEEK, = b(X;)dt + o (X;)dW with X, =
Xo € R", whereW, is a standard Brownian motion R"; b(X;) ando (X,) aren x 1
andn X nmatricesrespectivelyLeta= (a" (X;))nxn,denote the matrix (X)) o (X;)7.
For anyh > 0, define a Markov chaifY,,, m=0,1,2,...}, taking values ir§, C RY,
with IT,(X, dy) being its sequence of transition probabilitigsat is

P(Yfion € AlYmn = X) = (x,A) forxe S,,ACRY

ProrosiTioN 3.1. Define a continuous-time Markov proceX8 by X{" = Yif,/ny,
where[t/h] is the largest integer no greater thayht (i.e., we mak&!" constant on
intervals[mh (m+ 1)h]). Also, defineii'j‘(x) = Jig—xi=1(¥i = X)) (y; — X)) In(X, dy)
andb(X) = fjg—x=1(¥i — %) s(X, dy). Let Z,(Y) denote the conditional random
variable (Y 1n — Yol Y form=0,1,2,....
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If for each i, j, ande > 0O,

(i) aj(x) =a;(Rh+ o(h)
(i) b"(x) =hbi()h+ o(h)
(i) |Zm(Yho)|is bounded by some deterministic functigh)zwith probability
1, 0Yh, €S, m=0,1,2,..., moreover)imuoz(h) = 0
(iv) X8 = %o,
then we haveX{" converging in distribution t&; with X, = %o as h— 0.
Proor. See Appendix A u

The fact that the processf;, Y;) :t=0,1,..., N}, defined by(6) and(9) in the
interior of A, and properly defined on the boundary &f for all t, converge in
distribution to the corresponding mean-reverting processes is then a corollary to
Proposition 3L.

CoroLLARY 3.2. Consider the continuous-time mean-reversion processes
{(X;,Y;):0 =t = T} which are the strong solution of the SDEs (1) with constant
parameterse,, K, 64, 65, o1, 0, andp and initial value( X, Yy) = (Xo, Yo). Suppose

|p| < 1. Then, the Markov processf,Y;):t=0,1,...,N} defined by (6) and (9)

in the interior of A, and properly defined on the boundary &f with (Xq,Yy) =

(X0, Yo) converge in distribution t§(X;,Y;):0=t =T} asAt — 0.

Proor. Since the parameters, k», 604, 6,, o1, 05, andp are constanighe strong
solution to the SDEEL) exists for any initial valugéXo, Y) = (Xo, Yo). As long as we
can verify that the Markov proce$6X;,Y;):t=0,1,...,N} defined by(6) and(9)
satisfies the four conditions in Propositiori 3the claim of this corollary is true by
applying that propositionLet h = At = T/N. Without loss of generalityconsider
At < 1. By the construction of(X;,Y;): t=0,1,..., N} through(6) and(9), or (12)
and(13), we know that condition$), (ii), and(iv) in Proposition 3L are satisfied
Moreover |(Xe1 — X Xo)| = aoy VAt and |(Yei 1 — Yi|Yo)| = ao, VAt for some
constantx for all t, which means that conditiofiii ) is also satisfiedThereforethe
convergence in distribution is established u

Corollary 32 holds true wher(t), k,(t), 61(t), 02(t), o1(1), o»(t), andp(t) in
(1) are simple functions df since a simple function is a piecewise constant function

3.2. Valuation of a Power Plant with Operational Constraints

Suppose the logarithm of the electricity and the natural gas prices evolve according
to the Markov processdsX;,Y;):t=0,1,..., N} constructed in SectionB Recall

from Section 2 that there is a deléyr ramp-up period ofD (called theramp-up

time) before a power plant can output electricity after the plant is turned on from
the “off” state Without loss of generalitywe assume thay = D/At is an integer
Letw, € Wy ={0,1,2,...,Ky} denote the operational state of the power plant at
timet. Then w, takes orKy + 1 possible values
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e w; = 0: This means that the power plant is in the “off” state at time

« W, =i:Fori €{1,2,...,Ky — 1}, it means that the power plantés but in the
ith stage of theamp-upperiodD at timet.

* W, = Ky: This means that the power plantda and readyto generate elec-
tricity outputs at timd.

Whereas the value of a power plant certainly depends<gyY;) andw, at each
time stept (t =0,1,...,N), it also depends on the action taken by the power plant
operatorAssume that the plant operator can only take the following three possible
actionsa; (i = L1111l ) at timet.

* a,="full” : The operator runs the power plant at full-capacity leVék plant
generateQAt units of electricity in timeAt with an operating heat rate Bir
if itis not in the ramp-up periadtherwiseit generates 0 units of electricity

e q; = “low”: The operator keeps the power plant running at the minimum
capacity levelThe plant generate3At units of electricity in timeAt with an
operating heat rate ¢r if it is not in the ramp-up periodtherwiseit gen-
erates 0 units of electricity

e gq;, = “off” : The operator turns the power plant off from the “on” state

The admissible control sé& = A(X,, Y;,w;) isA={a,,a,,a, } for all timetin
our formulation The operator of the power plant seeks to maximize the expected
total profit of the power plant with respect to the random price ve($8rS®) over
the operating time horizon by making optimal decisions regarding whether to turn
on or shut down the generating unit as well as how to operate thelmiler the
risk-neutral probabilitiegthe expected total profit of a power plant over its operating
time horizon yields the value of the power plant during that time period

Let R, = R(a, X, y,w): A X R? X Wy — R! denote the operating profit of the
power plant during time periodin state(x, y,w) if the operator takes acticm The
operational characteristics described in Section 2 are reflected in the following def-
initions of R;. We assume that the ramp-up cost rate (y) per unit of time where
¢ () : R = R!is a positive increasing function

(a,=a;: —Cear— G (V)AL

R(a, X,Y;,0) =& =ay:  —Csare— G (YDAt 0O(X,Y,),
lay=ay: 0
(&, =a,: —C(Y)At

R(a, X, Y,w) = fa=ap:  —G(Y)At 0O(X,Y),w=12,....Ky—1 (14)
L& =ay: —Caown
(a,=a;: QAt[exp(X,) — Hr exp(Y)]

R(a, X, Y,w) = 1 a =a;:  QAt[exp(X,) — Hrexp(Y)] 0O(X,Y,), w=Kjy.
a=ay: —Cgown

\
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The plant operator seeks to maximize the expected suRi®bver the life span of
the power plant by choosing a series of most profitable actiand = 0,1,...,N}
from the admissible control sefté.:t = 0,1,...,N}. The value of the power plant at
time k (0 = k = N), which is a function of the initial state6X,, Y., w), is thus
given by

{a €A i t=k k+1,...,

N
Vi(X, y,w) = max }E{E e "TRWAR(a, X, Yo, W) [ (X, Yi) = (X, ) |,
N t=k

(15)

whereE,[ - |( Xy, Yi) = (X, y)]is the conditional expectation operator conditioning on
(X, Y) andr is the constant discount ratéhe value functionv;(x, y,w) can be
solved through recursive equatiof6), (17), and (18) by a standard backward
induction algorithm for SDP problems

« If the operating state of the power plant is “offViz. w = 0),

a=a:  —Csarr— & (Y)At+ e B [Vira(Xer, Yer1, 1]
Vi(Xi, Y,0) = max) & =au:  ~Cstan~ G (YAt + e "™ E [Vie1(Xiv 1, Vi1, 1)]
Clazan: e MEVaa(Xe 1 Yo, 0).
(16)
« If the state of the power plant is ramp up(i.e, w=1,...,Ky — 1),
a=a: —Y)At+e "E [V X, YW+ 1)]
Vi (X, Yy, W) = max a=a;: —c(Y)At+e "E[Vii( X, Y, W+ 1)]
Clazan —Count BV (X, Yor ).
(7)

« If the state of the power plant is “readWiz. w = Ky),
ar=a;: Qatfexp(X,) — Hr exp(Y)] + e "Ey[Vis 1(Xer 1, Yo 1, Kn)J

Vi( X, Yi, Ky) = maxq ac=ay:  QAt[exp(X;) — Hrexp(Y)] + € "B [Vis1(Xir1, Yie1, Kn )]
at

a=an: —Ciaownt € ME[Vira(Xer1, Vs, 0],
(18)
whereE,[ -] is just an abbreviated notation Bf[ - | (X, Y;) = (X, y)].
The boundary conditions are
Vis1(X, y,w) = 0, Ox,y) ERZw=0,1,...,Ky. (19)

3.3. Structural Property of Value Function and Optimal Policy

We start by proving a useful lemma and using it to show, thia¢ach time step the
value functionV,(x, y,w) is continuousand increasing ixx and decreasing in (or
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equivalentlyincreasing inx,—y)) for all the states ofv. We then demonstrate that
if the operating profit functiomiR(a, x, y, w) satisfies certain conditionthen optimal
decisions at each tintealso have monotonic properties

We begin with a few notations and definitians

We define a partial order22” on R? as follows For two vectors(x,, y;) and
(Xo, ¥2), We say thatxy, y1) = (X, y») if and only if x; = x, andy; = y,. A Borel
measurable sdt) C R? is called anupper set(or increasing setif (x,y) € U
wheneverx,y) = (X, §) and(X, ) € U. Letf(x, y,w) be a real function defined on
A X W, whereA C R? andW C R f(x, y,w) is increasing ir(x, y,w) if f(x, y,w) =
f(X, ¥,W) whenever(x,y) = (X, ¥) andw = W. f (X, y,w) is said to havéncreasing
differencen (x, y) andwif, for any(x, y), (%X, ¥) € Aand(x,y) = (X, ¥), f (X, y,w) —
(X, 9,w) =f(x,y,W) — f(X, §,W) whenevew = W.

Recall thatA, denotes the timéstate space of the Markov procg6X;, Y;) : t =
0,1,...,N} defined by eithef3) and(4), or (6) and(9).

With the help of Lemma B in Appendix B we obtain the following properties
of the value functiorV;(x, y,w).

ProrosiTiON 3.3. At each time step( = 0,1,...,N), Ow=0,1,...,Ky, we have
Vi(X, ¥, W) continuous in(x, y) and \{(Xy, Y1, W) = Vi(Xz, Y2, W) whenevelxy, y;) =
(X2, ¥2).

Proor. See Appendix B |

We next turn to the discussion of the monotonic optimal decision ruktsus
define a rank order for the three actions to be

a > ay > . (20)

Let ai'(x, y,w) denote the optimal solution @¢16)—(18) at timet given the timet
state(X;, Yi,W;) = (X, y,w) (if the optimal solution is not uniquehen we set
ai (x,y,w) to be the largest oneWe saya;(x, y,w) is increasing in(x, y,w) if

ai(x,y,w) > aj(x, ¥,W) whenever(x,y) = (X, §) andw = W.

ProrosiTION 3.4. Assume that operating profit function & x, y,w) satisfies the
following conditions:

1. R(a %, y,w) is increasing in(x, y,w) for all a € A,
2. R(a, x, y,w) has increasing differences in pairs{a (x, y,w)}, {x, (a, y,w)},
{y, (& x,w)}, {w, (& x, y)}, {(a, x), (y,w)}, {(a, y), (x,w)}, and{(a,w), (X, y)},

and,0= p < 1in (7). Then, at each time steptt=0,1,...,N), given any(x,y) >

(%, ¥) where(x, y) and(X, §) € A, (recall thatA, denotes the time-t state space of the
Markov proces$(X;,Y;):t=0,1,...,N} generated by (3) and (4), or (6) and (9)),
we have the following:

(@) V(X y,W) = (X, ,W) = Vi (X, y,W') = (X, §,w') whenever v w', Dw,
w e Wy.
(b) The optimal action & x, y,w) is increasing in(x, y,w).
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Proor. See Appendix C |

Remark 3.5.Condition A provides a set of sufficient conditions for function
R(a, X, y,w) to satisfy conditions stated in Propositiom:3

Condition A

1. QHr > QHr andc, (y) = QHre?.
2. Cdown= 6 -

3. QHr(e” —e%) =c(y) — ¢ (9).

For discussion purposgse assume thahe conditions in Proposition 3.4 are
satisfiedn the remainder of this sectioRroposition 34 says that the optimal action
a; (X, y,w) at timet within any operational stateis a threshold type of control on the
X —Y plane with both lattice price models introduced in Sectidh Bhis implies
that there exist optimal action regions with bound8g(w) on theX — Y plane
wherea denotes the action anddenotes the operational state

When a power plant is in theff state(i.e., w = 0), a turn-on boundar "(0) =
{(x7, yi°) - for every givernx{, ¥ = SURe(y,: a*(x, v, 0=a; Y (Vi = —oo if the set{y;:
ai (x¢, v;,0) = a,} is empty} consists of points whose coordinates, y;*) are such
that for eachx, the corresponding; is the largesy, for which the optimal action
ai (x{", y,0) isa, (viz. to turn a plant fronoffto on). (Note that there is no difference
between actiong, anda,, in statesv=0,1,..., Ky because of our assumption about
no cost or time delay in switching betweapanda,,. We set the optimal actioa*
to bea, whenever* = a, = a, sincea, > a,.) The optimal actiora;(x, y,0) at any
point (X, y) in the state spack, can be inferred from the relative position ©f, y)
with respect tB?"(0): a;i (X, y,0) is to turn on the planta,) (or keep the plantin the
off state(qy, )) if and only if there existéx;’, yi') € BP"(0) such thatx, y) = (X", y;")
(Or (Xt*v yt*) = (X’ Y))

Similarly, the turn-off boundaryB®(w) in a ramp-upstatew (w = 1,2,...,
Kn — 1) is given by the sefi(x{", yi') : for every giverx, yi = infyc(y, . arxt, yow=ay 1 Y
(yi = +oo if the set{y;:ai (X, y,,w) = ay } is empty}. The optimal action
a; (x,y,w) at any point(x, y) in the state spaca, is to turn off the plan{a,,) (or
keep the plantimamp up(a,)) if and only if there exist$x;", yi') € B2 (w) such that
(X7, 1) = (X, y) (0r (%, y) = (X, 7).

In theon-and-readystatew = Ky, in addition to a turn-off boundarg°™(Ky,),
there may exist a switching bounda@§""“"(Ky, ). (“Switching” means that the out-
put level of a power plant is switched between maximum capacity level and mini-
mum capacity level By inspecting the value functiof18) atw = Ky, we know that
actiona, dominates actiom, wheneverQ[exp(x) — Hr exp(y)] > Q[exp(x) —
Hr exp(y)] anda,, dominates, otherwise Thus a switching boundaryf it exists,
coincides with the curvE, which is independent of time

I'={(x,y): Qlexp(x) — Hr exp(y)] = Q[exp(x) — Hr exp(y)]}. (21)

HoweverI' N A, may be empty due to the fact thaf is a discrete seffo avoid
confusionwe stick to the generic notations used in previous paragraphs for describ-
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ing BSV°h(Ky ) andBPf(Ky, ). Ifthere exists dx, y) € A, such thag; (X, y, Ky), then
BN (K ) ={(x¢, y¢) : for every givernx{’, i = SURe(y,: ar(x, yi. kn)=ay Y (Vi = —0
if the set{y;: af (x/, i, Kn) = a,} is empty} andBC™(Ky) = {(x{, yi') : for every
givenx(', Vi = infyery . arix v k) =ayy Y (W = oo if the set{y;: ar(x", yi, Kn) =
ay } is empty}; otherwise the switching boundar"*“(K ) does not exist and
the turn-off boundary i§(x", y;) : for every giverx{, yi' = infyc(y . ax(xt, v, k) =y} Y
(yi = +oo if the set{y;:ai (X", y;, Kn) = @y} is empty}. The optimal action at
any point(x,y) in A; can also be inferred based @§"'"*"(Ky) and B?"(Ky)
accordingly

LetAbe asetin\;. Given any pointX, §), we definexa( ) = supex: (x yyear X,
Xa(Y) = infycix: (x, yyem X Ya(R) = SURe(y: (z,y)ea ¥ @NAYA(R) = infyery. (x yyen Y-
Let AandB be two sets in\; we say thaiA = Bif (X, y) € A, Xz(y) = xa(y) and
ya(x) = yg(x). Proposition 34 also establishes a ranking order in*among all the
turn-on turn-off, and switching boundarigprovided it exists as follows

Be"(0) = BP(1) = BY"(2) = -+ = BY"(Ky — 1) = B""(Ky) = B"(Ky). (22)

Whenever the log-price vectdn S%,In S°) lies to the lower right of the bound-
ary B?"(0), a power plant operator shall turn the power plant on if the operational
state is off(w = 0) or maintain current operations if the operational state is
1,2,...,Ky + 1. The region betweeB?"(0) andB?™(1) is a“no-action” band on the
X — Y plane in the sense that if the log-price vector falls inside this p#oh it is
optimal for a power plant operator to maintain the operational state of the power
plant asisregardless ofv (w=0,1,...,Ky). If the log-price vector lies to the upper
left of the boundarie8?™(w) (w=1,2,...,Ky) or BS¥"(Ky), then depending on
the state of the power plaritis optimal for the operator to reduce the output of the
power plant to “off” or minimum capacity level depending on the state of the plant

4. NUMERICAL EXPERIMENTS

We implement this proposed methodology for valuing a fossil-fuel power plant in-
corporating operational characteristics with a set of sample paramBs section
reports the numerical results on valuing a hypothetical 100-MW natural-gas-fired
power plant over a fixed time horizon

We assume the following specific functional form for the ramp-up cost rate
functionc, (y) defined in Section 2:

Cr(y) = Qﬂey + M, (23)

whereM, is a constantThis particular form can be interpreted as folloWke cost

rate of ramping up a power plantis a constant markup to the cost rate of operating the
power plant at the minimum capacity lev&Vith this c,(y), the operating profit
functionR(a, X, y,w) of the power plant satisfies Condition A takes one period to
ramp up the power plant from the “off” state to a desired output shatithere is no
delay inincreasingdecreasing output level once the plant isTable 1 summarizes

the assumed parameter values for the underlying power plant used in our numerical
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TABLE 1. Parameters for a Hypothetical Natural-Gas-Fired Power Plant

Cstart 9 :Q Hr:Hr M; r

$8000 06:1 138:1 1 45%

illustration The maximum and the minimum capacity levels are 100 MW and 60 MW
respectivelyThe start-up cost is $80@8tart which is roughly the one-day on-peak
operating profit of a 100-MW natural gas power pldrtie ratio between the oper-
ating heat rates at the minimum and the maximum capacity levels of the power plant
is assumed to be.38: 1. The constant risk-free rateis 4.5%.

4.1. Valuation Under Different Price Models

We first examine the effects of price model specification on power plant valuation
for two different price processea geometric Brownian motiofGBM) process and
a mean-reverting process in which the logarithm of the underlying price is repre-
sented by an Ornstein—Uhlenbe€k-U) processThe assumed parameter values for
the two models are given in Tables 2 and\3liscrete-time trinomial price lattice is
constructed according t8) and (4) with the parameters specified in Table 2 to
approximate two correlated GBl&snd a quadrinomial lattice is constructed accord-
ing to (6) and(9) with the parameters in Table 3 to approximate two correlated O-U
processesThe initial prices of electricity and natural gadG) are assumed to be
$217/MW h and $316/MMBtu, which are sampled from historical market prices
When approximating either the GBM model or the mean-reversion price model for
electricity and natural gathe corresponding lattice model is built witt having a
granularity of 1 day(our model can handle the hourly granularity but the market
information for hourly prices is quite difficult to obtain for a 10-year time horijzon
The operator of the power plant makes operational decisions at all nodes of the
lattice

We compute the value for the plant over a 10-year horizon for different possible
levels ofHr, the operating heat rate at the maximum capacity levet Hr take
values of 75, 8.5, 9.5, 10.5, 11.5, 12,5, and 135 measured in MMBtYMW h. The
start-up cost is $800Btart as assumed earlier and the initial state of the plant is set

TABLE 2. Parameters for Correlated Brownian Motions

He 1% Hg 1%
Te 0.4 oy 0.3
p 0.3

https://doi.org/10.1017/50269964803172014 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803172014

INCORPORATING OPERATIONAL CHARACTERISTICS AND COSTS 173

TABLE 3. Parameters for Correlated Ornstein—Uhlenbeck Processes

K1 3 K2 2.25
01 3.2553 0> 0.87
g1 0.79 () 0.6
p 0.3

to be off. The corresponding asset valuation results are reported in Table 4 and
illustrated in Figure 2where thex axis represents the operating heat rate level and
the primaryy axis on the left represents plant capacity vallige secondary axis

onthe right represents the percentage of absolute difference in valuation between the
GBM model and the mean-reversion madinoted by, which is computed as
[Veem — Vinnil/Vint- The parameters specified in Tables 2 and 3 were selected so
that the asset valu&g;gy andV,,, Wwould match if the power plant has a heat rate of

Hr = 9.5 (which is typical for an NG-fired plantand it is operated at the maximum
capacity levelFigure 2 illustrates the sensitivity of plant value to the assumed price
processlt demonstrates that the assumption of mean-reverting price processes yields
a higher valuation for efficient power planisg., plants withHr smaller than %),
whereas the assumption of GBM price models leads to a higher valuation for inef-
ficient plants(e.g., plants withHr greater than ). The dashed curvewithout any
markers$ in Figure 2 indicates thafor inefficient power plantsthe plant value
resulting from a GBM price model could be more than doulelg., 116.2% for

Hr = 13.5) the corresponding value obtained under a mean-reverting price model
Moreover the valuation of a power plant is much more sensitive to operating effi-
ciency under the mean-reversion price models than under the GBM models

TABLE 4. Value (in Million Dollars) of an NG-Fired Power Plant Under
Alternative Price ModetsGBM versus Mean Reversion

Heat Rate Hr)

7.5 85 9.5 105 115 125 135
Veem 3192 2799 2482 2221 2003 1818 1659
Vinrvt 40.80 3212 2482 1888 1413 1049 7.68
Vit 21.8% 128% 0% 177% 417% 734% 1162%

E(Starisgm) 0.032 Q028 0024 Q022 Q019 Q017 Q016
E(Rampsgm) 0.038 Q036 Q034 Q033 Q031 Q030 Q028
E(Startnw) 0.086 Q0111 Q133 Q142 Q139 0131 Q0119
E(Rampnnt) 0.095 Q132 Q0169 Q0189 Q197 0194 Q185
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45.00 1 - #- GBM Valuation T 140.0%
. —e— MRVT Valuation
40.00 7 - - - ABS(MRVT-GBMYMRVT 1 120,09
35.00 1 ;
4 + 100.0%
& 30.00
5
S | + 80.0%
s 25.00
S
2 20,00 + 60.0%
>
£ 15.00 {
g 1 40.0%
O 10.00 1
el o + 20.09
5.00 A *
0.00 r = T T T 0.0%
75 8.5 9.5 10.5 1.5 12,5 135
Heat Rate

Ficure 2. Value of an NG-fired power plant under alternative price madeBM
Versus mean reversion

In Table 4 we also present the expected start-up gatsoted byE(Start,),
and ramp-up costslenoted byE(Ramp) incurred by a power plant under the re-
spective power price modelBoth the expected start-up and ramp-up costs in the
mean-reversion case are significantly higher than those in the GBMTaisgphe-
nomenon is demonstrated in FigureThe solid and dashed curves illustrate the
expected start-up and ramp-up costs for different heat rate levetses with tri-
angular markers correspond to the GBM price assumption and curves with square
markers correspond to the mean-reversion assumgtimintuitive explanation of
this phenomenon is that the spark spread tends to grow lageile) if the current
spread levelis largesmall in the GBM price models but not for the mean-reversion
price models Thus under the GBM price assumptigna power plant would be
turned on and off much less frequently than it would be under the mean-reversion
price assumption®©ne other observation illustrated by Figure 3 is that the expected
start-up and ramp-up costs are peaked at certain intermediate heat rates for the mean-
reversion price modelsndicating that the operational flexibility optiofi.e., the
option of turning a power plant on or offis exercised most frequently for power
plants with intermediate operating efficiencies if the underlying commodity prices
are mean reverting

4.2. Impacts of Operational Characteristics on Asset Valuation
We next examine the impacts of operating characteristics on the valuation of a power

plant under each of the two price model$ie time horizon is set to be 10 years
Again, we use the parameter values given in Tables 2 and 3
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FiGuURrE 3. Expected start-up and ramp-up costs of an NG-fired power plant under
alternative price model$3BM versus mean reversion

4.2.1. Geometric Brownian motion price model. Based on the trinomial
price lattice of electricity and natural gas constructed in Sectibywe compute the
value of the gas-fired power plant subject to the three operating constraints assum-
ing different operating heat ratéidr ). We also compute the value of the power plant
in the case where none of the three operational characteristics is consatevesl|
as in the case where only the start-up cost is ignofé@ numerical results are
reported in Table 5For instanceif the power plant under consideration has an
operating heat rate of.® MMBtu/MW h, then when operated at its best capacity
level, its value is $2482 million. If we ignore all three operating characteristitgen
the value of the power plant becomes &2million, which would be 041% higher
than the value obtained when accounting for all three operating charactefiiics
solid curve in Figure 4 illustrates the value of the underlying power glanbrpo-
rating three operating characteristiesross different heat rates against the capacity
value axis on the leffThe dashed curve with triangular markers in Figure 4 illus-
trates the percentage of overstated capacity valuation resulting from ignoring all
three physical characteristics across different heat.rélfescan see that a higher
level of operating heat rate corresponds to a higher percentage of overstatement in
valuation Note that the percentage of overstated capacity value is under 1% for
operating heat rates up to.53VIMBtu/MW h under the GBM price models

Table 5 also shows the value of the underlying power plant when only the start-up
costs are ignoredas well as the corresponding percentage of the overvaluation
These results are represented by the dashed curve with square markers in Figure 4
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TABLE 5. Value of an NG-Fired Power Plant Under GBM Price Models

Heat Rate Hr)

75 85 9.5 115 135

Power plant valug¢with 3
operating characteristigs 3192 million 2799 million 2482 million 2003 million 1659 million
Power plant value

(ignore start-up only 3196 million 2802 million 2485 million 2005 million 1661 million
Percentage of value overstated
(ignore start-up only 0.12% Q12% Q12% 011% Q011%

Power plant valugignore 3

operating characteristits 3204 million 2810 million 2492 million 2011 million 1667 million
Percentage of value overstated

(ignore 3 operating

characteristics 0.38% Q40% Q41% Q43% Q44%

Ignoring the start-up costs alone accounts for 25—-31% of the overstated value of a
power plant as compared to the overstated valuation when all three operating char-
acteristics are ignored

4.2.2. Mean-reverting price model. \We next examine the impacts of oper-
ational characteristics on the valuation of a power plant under the assumption that
both the electricity price and the natural gas price are mean revgevilrigh is a
more realistic assumption for energy commodities than the GBM assumpBtsad
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FiGURE 4. Valuation of a power plant witfwithout operational characteristics
under GBM price models
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TABLE 6. Value of an NG-Fired Power Plant Under Mean-Reversion Price Models

Heat Rate Hr)

7.5 85 9.5 115 135

Power plant valuéwith 3

operating characteristigs 40.80 million 3212 million 2482 million 1413 million  7.68 million
Power plant value

(ignore start-up only 40.89 million 3224 million 2496 million 1428 million  7.80 million
Percentage of value overstated
(ignore start-up only 0.22% Q37% 056% 105% 164%

Power plant valugignore 3

operating characteristigs 4115 million 3260 million 2538 million 1478 million 826 million
Percentage of value overstated

(ignore 3 operating

characteristics 0.85% 150% 228% 459% 760%

on the quadrinomial price lattice of electricity and natural gas constructed in Sec-
tion 4.1, the value of the underlying power plant is calculated for each of the three
cases considering all three physical operating characterisigsoring the three
operating characteristicand ignoring the start-up cost onlghe numerical results

are presented in Table Gimilar to Section 2.1, we plot the value of the power
plant accounting for all three operating characteristics for different heat rates in
Figure 5 Thex axis represents different heat rat€he solid curve with triangular
markers plots the capacity value incorporating all three operational constraints

$45.0 T+ 10.0%
$40.01 —a—Time-0 Value (3 Phy. Cnstr) T 9.0%
$35.0 --%-- % OverValue (No Start-up) 1 8.0%
- --0-- % OverValue (NoCnstr) =
& o+ 1.0%
5
s 160% &
= + 0.0%
S 4 40% =
§ 4.0% 5
38 1 3.0%
1 2.0%
I
1+ 1.0%
$00 T T T T T 0.0%
75 85 9.5 105 115 125 135

Heat Rate

FiGURE 5. Valuation of a power plant witfwithout operational characteristics un-
der mean-reversion price models
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The dashed curves with circles illustrate the percentage by which the capacity
value is overstated due to ignoring the three operating characteristiepercent-
age for which the capacity value is overstated ranges fr@&s% for the most effi-
cient plantto 0% for the least efficient plarithe dashed curve witk's in Figure 5
plots the percentage of overstated value of the power plant due to not accounting for
the start-up cosWWe can see that the impacts of start-up cost and ramp-up constraint
on capacity valuation are significant for a power plant with an operating efficiency
below a certain threshal&urthermoreignoring the start-up cost while considering
the other aspects would result in about 22—31% of the overstated capacity value of
the underlying power plant

5. CONCLUSION

To summarize the above numerical resulte conclude that the operational char-
acteristics affect the valuation of a power plant to different exteiegsending on the
operating efficiency of the power plant and the assumptions about the electricity and
the generating fuel pricetn generalthe impacts of physical operating character-
istics on the power plant valuation are far more significant under the mean-reversion
price models than they are under the geometric Brownian motion price models

Under each price modgthe more efficient a power plant,ighe less is its val-
uation affected by the operational constraints and vice vémghe examples with
mean-reverting commodity price procesghs impacts on capacity valuation range
from 0.85% for the most efficient plant to.60% for the least efficient plant with a
modest level of start-up cagtmong the three operational characteristics of a power
plant which we consider herstart-up cost and the ramp-up constraint are the two
major factors affecting the capacity valuatidime reason is twofoldr he first-order
effect of the start-up and the ramp-up costs on capacity valuation is that they directly
impose a transaction cost on exercising the embedded spark spread options in a
fossil-fuel power plant when the electricity price is greater than the fuel Tost
second-order effect of these costs is that they force the power plant to keep operating
at a loss or to forego a profit when the start-up cost cannot be justified by the ex-
pected cost-saving or the expected profit that would result from turning the power
plant off or on In other wordsthe start-up and the ramp-up costs reduce the “option
value” of a power plantOur sensitivity analysis reveals that under the mean-
reversion modeldgnoring the start-up cost alone can explain a sizable portion of
the overstated capacity value of a power pk@stcompared to the overstated value
when all three operational characteristics are ignpred

The costs associated with the operational characteristics of a power plant have
different implications on defining the best operational strategies for a power plant
with different efficiency characteristickr our numerical example under the mean-
reverting price assumptigothe embedded operational option of a power plant is
exercised most frequently when its heat rate is at an intermediate level

Animportant conclusion from our analysis is that under the GBM price process
the error introduced by ignoring operational characteristics is rather.shinédl is
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important considering that in the absence of these characteystiesspark spread
valuation models of generating capacity can be evaluated analytithis/does not
mean that we would recommend the use of GBM-based valuation, sisdadi-
cated such GBM models do not represent energy commodity prices Neler-
thelessGBM models are widely used in the energy industityus it is worth noting

that the modeling error will not be noticeably reduced by detailed consideration of
operating characteristick) the case of mean-reverting price modélsweveythe

error is more significantanging from 2% for efficient plants ta6% for inefficient
plants Considering that plant values are of the order of hundreds of million dollars
these are significant errors with large impacts on profitabilityereforein spite of

the convenience of analytic solutions available for pure spark spread valuation mod-
els the error at stake calls for the more detailed models and numerical solution
approach described in this articlehese models can be further refined by including
jumps spikes and Markovian regime switching phenomena that often characterize
energy prices

Acknowledgments

This research was supported by a grant from the University of California Energy IntitGtel) and by
the Power System Engineering Research Cet8er¢. The programming assistance of Shiming Deng
is gratefully acknowledged

References

1. Boyle, PP. (1988. A lattice framework for option pricing with two state variablelournal of
Financial & Quantitative Analysi®3: 1-12
2. Cox, J, Ross S., & Rubinstein M. (1979. Option pricing A simplified approachJournal of
Financial Economic§(3): 229-263
3. Deng S.J (1999. Stochastic models of energy commodity prices and their applicatiean-
reversion with jumps and spiked/orking PaperGeorgia Institute of Technology
4. Deng S.J, JohnsonB., & SogomonianA. (1998. Exotic electricity options and the valuation of
electricity generation and transmission asskisProceedings of the Chicago Risk Management
Conference
5. Dixit, A.K. & Pindyck, R.S. (1994). Investment under uncertaintyrinceton NJ: Princeton Univer-
sity Press
6. Durrett R. (1996. Stochastic calculus: A practical introductioBoca RatonFL: CRC Press
7. He, H. (1990. Convergence from discrete- to continuous-time contingent claims pilibesReview
of Financial Studies: 523-546
8. Li, C.-L. & Kouvelis, P. (1999. Flexible and risk-sharing supply contracts under price uncertainty
Management Scien@ks(10): 1378-1398
9. RoydenH.L. (1968. Real analysisEnglewood Cliffs NJ: Prentice-Hall
10. SchwartzE.S. (1997). The stochastic behavior of commaodity priceaplications for valuation and
hedging Journal of Finances2: 923-973
11 Topkis D. (1998. Supermodularity and complementarifyrinceton NJ: Princeton University
Press
12. Tseng C.-L. & Barz, G. (2000. Short-term generation asset valuatidnreal options approach
Working PaperUniversity of Maryland
13 Wood A. & Wollenberg B. (1984). Power generation, operation and contrélew York: Wiley.

https://doi.org/10.1017/50269964803172014 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803172014

180 S.-J. Deng and S. S. Oren

APPENDIX

A. Proof of Proposition 3.1

To prove this propositigrwe apply Theoren(7.1) of Durrett[6, p. 297] (referred to below as
Theorem(7.1)).

To apply Durrett’s Theoren(7.1), we need to verify that the four conditions stated in
Proposition 3L imply those in the theorerfirst, condition(iv) of Proposition 3L is the same
as condition(iv) in Theorem(7.1). Second conditions(i) and(ii) in Proposition 3L imply
|afl(%)/h—a; (X)| = |a;; (%) + o(h)/h—a;; (X)| — 0 ash — 0 and| b'(%)/h — b; (X)| = | b; (%) +
o(h)/h —b;(X)| — 0 ash — 0; that is conditions(i) and(ii) in Theorem(7.1) are satisfied
Finally, condition (iii ) in Proposition 3L says that the support of the conditional random
vector (Xt 1, Yer1)| (X, Yy) is uniformly bounded for all possibleX;,Y;) across all timet,
and the diameter of the support tends to Ghas> 0. This implies that conditioriii) in
Theorem(7.1) is also satisfiedTherefore Proposition 3L is true by applying Theorel(Y.1)
of Durrett[6]. u

B. Proof of Proposition 3.3

Lemma B.1. Letf(x,y): R?— R!be an arbitrary finite function increasing in x and decreas-
ing iny. For any(xy, y1) = (X2, ) in A, we have

Eil f(Xeir1, Yer DI (Xe, Vo) = (X, YOI = B[ F(Xir1, Yer D[ (Xi, Vo) = (X2, ¥2)] (B.1)
forallt (t=0,1,...,N).

ProoF. Let (Xi+1,Yi+1)[(X,y) denote the random vector ¢K;.1,Y;+1) conditioning on
(Xt,Yy) = (X, y). First, itis easy to showB.1) by definition wherf (x, y) is a simple function
Then for a general real functiof(x, y) that increases ir and decreases iy we can find a
sequence of simple functiogs,(X, y) so that limy_,.. dm(X, y) = f(X,y) (e.g., Royden[9])
and eachp(x, y) satisfieg B.1). Moreover (Xi+1, Yi+1)|(X, ¥), defined by eithe(3) and(4),
or (6) and(9), has a bounded suppofitherefore we have

r!jinoo Ei[ dm(Xes1, Yer DX Y] = Ee[ F(Xes1, Yer D) [(X, Y)] (B.2)

and(B.1) holds true forf (x, y). |

Proor of ProrosiTioN 3.3. We prove by inductionAt t = N, Ow = 0,1,...,Ky, we have
Wn (X, Y, W) = maxena, R(a, X, y,w) whereR(a, x, y,w) is defined in(14). Thus W (X, y,w) is
continuous and increasing(r, —y) sinceR(a, X, y, w) is continuous and increasing(ir, —y)
for each actiora € Ay, andVy (X, y,w) is the upper envelope function of functiofi®(a, x,
y,W):a & Ay}. Suppose we know thadt timet =n-+ 1= N, V,;1(X, y,w) is continuous and
increasing in(x,—y) for all w. Then h(x,y) = Eq[ Vot 1(Xnt 1, Yar 1, W) [ (Xn, Yn) = (X, y)] is
continuousMoreover by Lemma B1, h(x, y) is increasing in(x,—y). Thereforethe recur-
sive equation$16)—(18) imply thatV,,(x, y,w) is continuous and increasing (x,—y). H
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C. Proof of Proposition 3.4

This proposition is slightly more general than Theore®3in Topkis[11, p. 165] (referred
to below as Theorem.8.2) in the sense that we allo X A; X Wy, which is the domain of
the functionR(ay, X;, Y;, W), to be either a lattice or a nonlattice structunéhereas Theo-
rem 39.2 covers only the lattice cases

For the mean-reverting Markov process defined®yand(9), A X A; X W is a sub-
lattice of A X R? X Wy. (See Topkig11] for definitions of lattice/sublattice and related
properties) We can then apply TheoremS32 to prove the propositiar€ondition 1 says that
R(at, Xy, Y, W) is increasing in(x, y,w). Condition 2 implies thaR(ay, X, Y, w) is supermod-
ular in (a, x, y,w). The conditional random variableX, 1, Yi+1) (X, ¥) is independent o&;
andw. The distribution function of X1, Yi+1)|(X, y), denoted by, y, is stochastically in-
creasing in(x,—y) by Lemma B1. All we need to verify is thaF,  is stochastically super-
modularin(x, y); namely/y dFy yis supermodular ifix, y) for any increasing séd. With pi’s
defined by(9) in the interior ofA; and by(7) on the boundary of, in generalit is true that
JudFg g+ fudFy = fudFg y + fudFR g forall (%, §) = (X,y) in A;. Therefore all of the
conditions of Theorem.8.2 are satisfiedThen f, =, is supermodular irfx, y,w) (thus
having increasing difference (ix, y) andw) and the optimal decisiosg (x, y,w) is increasing
in (X, y,w).

For the Brownian motion casee can similarly prove the claims by inductidollowing
the steps of Topki§l1] in proving Theorem 3.2, with the property of “supermodularity”
replaced by the property of “increasing differentes u
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