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Abstract

We study a Markovian agent-based model (MABM) in this paper. Each agent is endowed
with a local state that changes over time as the agent interacts with its neighbours.
The neighbourhood structure is given by a graph. Recently, Simon, Taylor, and Kiss
[40] used the automorphisms of the underlying graph to generate a lumpable partition
of the joint state space, ensuring Markovianness of the lumped process for binary
dynamics. However, many large random graphs tend to become asymmetric, rendering
the automorphism-based lumping approach ineffective as a tool of model reduction. In
order to mitigate this problem, we propose a lumping method based on a notion of
local symmetry, which compares only local neighbourhoods of vertices. Since local
symmetry only ensures approximate lumpability, we quantify the approximation error
by means of the Kullback–Leibler divergence rate between the original Markov chain
and a lifted Markov chain. We prove the approximation error decreases monotonically.
The connections to fibrations of graphs are also discussed.
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1. Introduction

In this paper, a Markovian agent-based model (MABM) refers to a stochastic interacting
particle system (IPS) with a finite local state space. Given a graph with N vertices, we endow
each vertex with a local state that varies over time stochastically as the vertex interacts with
its neighbours. Let G = (V, E) be a graph (possibly a realization of a random graph), where
V := {1, 2, . . . , N} is the set of vertices and E ⊆ V × V is the set of edges. For simplicity,
we assume G is undirected in the sense that (u, v) ∈ E whenever (v, u) ∈ E, for u, v ∈ V ,
and all characteristics of (u, v) ∈ E are same as those of (v, u). In other words, having an
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undirected edge between two vertices u and v is assumed to be equivalent to having two
identical directed edges between u to v in opposite directions. Later in this paper, this
approach will be useful for studying connections between our methods and some notion
of morphisms between directed graphs. Let Xi(t) denote the local state of vertex i ∈ V at
time t ∈ T := [0, T] for some T > 0. For simplicity, we assume the vertices have the same
finite local state space X := {1, 2, . . . , K} for some positive integer K. We assume the
process X := (X1, X2, . . . , XN) ∈XN is a continuous-time Markov chain (CTMC), whose
transition intensities depend on G. The objective of this paper is to devise an approximately
lumpable partition of XN [10, 15, 25, 37, 38] using local symmetries of the graph G.

Recently, Simon, Taylor, and Kiss [40] introduced a novel lumping procedure based on the
automorphisms of the underlying graph G. They considered a stochastic susceptible-infected-
susceptible (SIS) epidemic process on a graph. They showed that when the automorphism
group is known, a lumpable partition can be obtained by determining the orbits of the
elements of the state space with respect to the automorphism group. The idea of lumping
using graph automorphisms is innovative. However, it is not always efficient for two reasons.
First, finding all automorphisms without additional information about the graph structure is
computationally prohibitive, especially for large graphs (see [4]). Second, there may be too
few automorphisms to engender significant state space reduction [40] as many large random
graphs tend to be asymmetric with high probability (see [27, 31, 32]). Therefore, we propose a
lumping procedure based on a local notion of symmetry [16] taking into account only local (k-
hop) neighbourhoods of each vertex. In our approach, we construct an equitable partition [21,
Chapter 9] of V by clubbing together vertices that are locally symmetric. We say two vertices
u and v are locally symmetric if there exists an isomorphism f between their respective local
neighbourhoods (the induced subgraphs) such that f (u) = v. This is less restrictive than the
existence of an automorphism g on the entire graph G mapping u to v.

Local symmetry-driven lumping allows for a more profitable aggregation than automor-
phism. Therefore, even when there are too few automorphisms, we can still achieve significant
state space reduction by means of local symmetry-driven lumping. The price we pay for this
gain is that the resultant lumped process will only be approximately Markovian. We quantify
the approximation error in terms of the Kullback–Leibler (KL) divergence rate between the
uniformization of the original process X and a Markov chain lifted from the lumped process
(details are provided in Section 5). For a particular type of lifting called π -lifting, we prove
that the approximation error decreases as we increase the number of hops in our consideration
of local symmetries.

Interestingly, the equivalence classes of the local symmetry can be shown to be the same as
the fibres of a graph fibration [9]. Therefore, the fibres can also be used to aggregate the states
of XN to achieve approximate lumpability in the same fashion as we do with local symmetry. In
addition to that, the problem of finding a lumpable partition for our MABM shares interesting
connections with other related concepts in algebraic graph theory, such as colour refinement
for directed graphs [3, 7] and coverings [1]. A discussion of these connections paves the way
for potential application of graph-theoretic algorithms to problems in applied probability, and
vice versa.

The paper is structured as follows. In Section 2, we discuss some mathematical preliminar-
ies required for the rest of the paper. We formally introduce the MABM in Section 3. The lump-
ing based on graph automorphisms and related results are presented in Section 4. In Section 5,
we extend the lumping ideas to local symmetry of graphs. Connections to graph fibrations are
explored in Section 6. The approximation error associated with local symmetry-driven lumping
is studied in Section 7. Our theoretical discussions are also complemented with some numerical
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results on Erdős–Rényi, Barabási–Albert preferential attachment, and Watts–Strogatz small-
world graphs. Finally, we conclude the paper with a short discussion in Section 8.

2. Mathematical preliminaries

Notational conventions. We use N and R to denote the set of natural numbers and the set of real
numbers. Also, we define N0 :=N∪ {0} and R+ :=R \ ( − ∞, 0]. Additionally, we denote the
set {1, 2, . . . , N} by [N]. For a set A, we denote its cardinality by |A|, and the class of all subsets
of A by 2A. Given N, K ∈N, the set of all non-negative integer solutions to the Diophantine
equation x1 + x2 + · · · + xK = N is denoted by �(N, K), that is,

�(N, K) := {x = (x1, x2, . . . , xK) ∈N0
K | x1 + x2 + · · · + xK = N}.

We use 1(.) to denote the indicator function. The symmetric group on a set A is denoted by
Sym(A).

2.1. Lumpability

We first define (strong) lumpability for a discrete time Markov chain (DTMC) for ease of
understanding. Standard references on this topic are [10, 25, 37, 38].

Let {Y(t)}t∈N be a DTMC on a state space Y = [K] with transition probability matrix T =
((ti,j))K×K , where ti,j := P(Y(2) = j | Y(1) = i). Given a partition {Y1,Y2, . . . ,YM} of Y , we
define a process {Z(t)}t∈N on [M] as follows: Z(t) = i ∈ [M] if and only if Y(t) ∈Yi, for each
t ∈N. The process Z is called the lumped or the aggregated process. The sets Yi are often
called lumping classes.

Definition 1. (Lumpability of a DTMC.) A DTMC Y on a state space Y is lumpable with
respect to the partition {Y1,Y2, . . . ,YM} of Y , if the lumped process Z is itself a DTMC for
every choice of the initial distribution of Y [25, Chapter VI, p. 124].

A necessary and sufficient condition for lumpability, known as Dynkin’s criterion in the
literature, is the following: for any two pairs of lumping classes Yi and Yj with i �= j, the
transition probabilities of moving into Yj from any two states in Yi are the same, i.e. tu,Yj = tv,Yj

for all u, v ∈Yi, where we have used the shorthand notation tu,A = ∑
j∈Atu,j for A ⊆Y . The

common values, i.e. t̃i,j = tu,Yj , for some u ∈Yi, and i, j ∈ [M], form the transition probabilities

of the lumped process Z. Let T̃ = (( t̃i,j))M×M . Since Dynkin’s criterion is both necessary and
sufficient, some authors alternatively define lumpability in terms of Dynkin’s criterion. In the
literature, the process Z is sometimes denoted as Z = agg(Y).

Now, we move to the continuous-time case. The lumped process and the notion of
lumpability for the continuous-time case are defined similarly.

Definition 2. (Lumpability of a CTMC.) A CTMC Y on a state space Y is lumpable with
respect to the partition {Y1,Y2, . . . ,YM} of Y , if the lumped process Z is itself a CTMC for
every choice of the initial distribution of Y .

The lumpability of a CTMC can be equivalently described in terms of lumpability of a linear
system of ordinary differential equations (ODEs). Consider the linear system ẏ = yA, where
A = ((ai,j)) is a K × K matrix (representing the transition rate matrix of the corresponding
continuous-time Markov chain).

Definition 3. (Lumpability of a linear system.) The linear system ẏ = yA is said to be lumpable
with respect to a partition {Y1,Y2, . . . ,YM} of Y , if there exists an M × M matrix B = ((bi,j))
satisfying Dynkin’s criterion, i.e. if bi,j = ∑

l∈Yj
au,l = ∑

l∈Yj
av,l for all u, v ∈Yi.
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An alternative approach to study the lumpability of a CTMC is via its uniformization. This
approach will be particularly useful when we discuss lumpability using local symmetries later.
Let us consider a CTMC {Y(t)}t∈T with transition rate matrix A = ((ai,j)). It is known that the
original CTMC is lumpable with respect to a given partition if and only if the uniformized
DTMC is lumpable with respect to the same partition. The uniformized DTMC Ỹ is often
denoted by unif(Y), i.e. Ỹ = unif(Y). It was proved in [19, 38] that

agg(unif(Y)) = unif(agg(Y)).

Another useful observation that will be helpful later is regarding permutation of the states.
It is intuitive that permutation of elements of the state space does not destroy the lumpability
property of a process. The proof of the following remark is straightforward, but is provided in
Appendix A for the sake of completeness.

Remark 1. Let Y be a CTMC on Y with transition rate matrix A = ((ai,j)). Let f ∈ Sym(Y)
be used to permute the states. If Y (or the linear system ẏ = yA) is lumpable with respect to a
partition {Y1,Y2, . . . ,YM}, then the process Z = f (Y) is lumpable with respect to the partition
{Ỹ1, Ỹ2, . . . , ỸM}, where Ỹi = { f (u) | u ∈Yi}.

The notion of lumpability considered here is often referred to as strong lumpability in the
literature. There is also a notion of weak lumpability [37, 38], which we do not consider.
Therefore, the term ‘lumpability’ always refers to strong lumpability in this paper. Also,
note that both the DTMC and the CTMC, and the lumped processes in Definitions 1,
and 3 are all assumed time-homogeneous. However, in general, it is possible to extend the
notion of lumpability to allow the lumped process to be Markovian, but not necessarily
time-homogeneous.

3. Markovian agent-based model

3.1. Interaction rules and the transition intensities

The most important ingredients of an MABM are the interaction rules of the agent-based
local processes Xi. These rules of interaction determine the dynamics of the process. Note that
an MABM can also be viewed as a collection of local CTMCs that are connected to each other
via the graph G. In other words, each Xi can be seen as a local CTMC, conditioned on the rest.
In this work, we assume the intensities of the local CTMC Xi depend on the local states Xj of
the neighbours of the vertex i ∈ V (such that (i, j) ∈ E). Let di = |{ j ∈ V | (i, j) ∈ E}| denote the
number of neighbours of vertex i. Additionally, we assume the intensities depend only on the
counts of neighbours for each local state a ∈X . Therefore, we define the following summary
function c that returns population counts for different configurations of local states,

c : {∅} ∪
( N⋃

l=1

X l
)

−→ {∅} ∪
( N⋃

l=1

�(l, K)

)

such that, for x = (x1, x2, . . . , xl) ∈X l, and l ∈ [N],

c(x) = ( y1, y2, . . . , yK) ∈ �(l, K) where yi = |{xj = i ∈X : j = 1, 2, . . . , l}|,
and set c(∅) =∅. Here, x is a given configuration of states of l vertices and yi is the count
of vertices (within the given configuration x) that are in the ith state. The empty set ∅ is
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used to denote the neighbourhood of an isolated vertex. An important feature of the set-valued
function c is that it is permutation-invariant in the sense that c(x) = c(x′) if the elements of x′
are permutations of the elements of x. In order to extract the neighbourhood information out of
the global configuration, we define a family of set-valued functions ni in the following way:

ni : XN −→ {∅} ∪
( N−1⋃

l=1

X l
)

for i ∈ [N],

such that, for x = (x1, x2, . . . , xN) ∈XN ,

ni(x) =
{

(xi1 , xi2 , . . . , xil ) if (i, ij) ∈ E for all j = 1, 2, . . . , l and l = di,

∅ otherwise.

The neighbourhood extraction function ni for the ith vertex takes as input x, the (global)
configuration of the states of all N vertices, and returns the tuple of states of the neighbours of
the vertex i. Having defined these two important functions, we now define the interaction rules
by means of local transition intensities. We assume the intensities depend only on the type of
local transition and the summary of the neighbourhood configuration of a vertex. Therefore,
we define the local intensity function

γ : X ×X ×
(

{∅} ∪
( N−1⋃

l=1

�(l, K)

))
−→R+, (3.1)

where we interpret γ (a, b, y) as the local intensity of making a transition from local state a to
b by a vertex when the summary of its neighbourhood configuration is y.

We are now in a position to specify the transition rate or the infinitesimal generator matrix
for our MABM X. Note that the process X jumps from a state x to y whenever one of the local
processes Xi jumps. Therefore, only one of the coordinates of the states x and y differ. Let the
KN × KN matrix Q = ((qx,y)) denote the transition rate matrix of X. The elements of the matrix
Q are given by

qx,y =
{∑

i∈[N] 1 (xi �= yi, xj = yj ∀j ∈ V \ {i}) γ (xi, yi, c(ni(x))) if x �= y,

− ∑
y �=x qx,y if x = y.

We interpret qx,y as the rate of transition from x to y, where x, y ∈XN . For ease of
understanding, we have suffixed the entries of Q by the different configurations x, y ∈XN

and interpret them as functions on XN ×XN , instead of introducing a bijection between XN

and [KN] to label the states in a linear order so that the suffixes range over the integers from
1 to KN . Note that the particular choice of bijection to label the states is immaterial for our
purposes, because such a bijection essentially yields a permutation of [KN], and in the light of
Proposition 1, does not alter lumpability properties of Q. Finally, we study the dynamics of X
via the linear system

ṗ = pQ.

The vector-valued function p gives the probability distribution of X.

3.2. Examples

Susceptible-infected-susceptible (SIS) epidemics. The SIS epidemic model [40] captures the
dynamics of an epidemic spread over a human or an animal population. It encapsulates
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binary dynamics in the sense that the local state space is written as X := {1, 2}, where 1
indicates susceptibility and 2 indicates an infected status. Infected vertices infect one of its
randomly chosen neighbours at each ticking of a Poisson clock with a fixed rate a > 0. Infected
vertices themselves recover to susceptibility at a rate b ≥ 0, independent of the neighbours’
statuses. When b = 0, the model is called a susceptible-infected (SI) model. The local transition
intensities are given by

γ (1, 2, (x1, x2)) = x2a and γ (2, 1, (x1, x2)) = b.

We set γ to zero in every other case. This fully describes the dynamics of the system.

Peer-to-peer live media streaming systems. Peer-to-peer networks are engineered networks
where the vertices, called peers, communicate with each other to perform certain tasks in a
distributed fashion. In particular, content delivery platforms such as BitTorrent, file-sharing
platforms such as Gnutella, and (live) media (audio/video) streaming platforms use peer-to-
peer networks. The main advantage of peer-to-peer systems over centralized systems is their
‘scalability’. That is, the performance of a peer-to-peer system scales well with the number of
peers by virtue of the distributed task-sharing aspect, even though the global demand increases
as more and more peers join the network. For the purposes of performance analysis, Markov
chain models are often used for such systems.

In a peer-to-peer live-streaming system, each peer maintains a buffer of length L. The avail-
ability of a media chunk at buffer index i ∈ [L] is indicated by 1, and likewise unavailability is
indicated by 0 (see [26]). Therefore, the local state space is given by X = {0, 1}L. Set K = 2L

so that {0, 1}L can be put in one-to-one correspondence with [K]. The chunk at buffer index L,
if available, is played back at rate unity and then removed. After playback, all other chunks are
moved one index to the right, that is, the chunk at buffer index i is shifted to buffer index i + 1.
The central server selects a finite number of peers at random and uploads chunks at buffer
index 1. All other peers (not receiving chunks from the server) download chunks from their
neighbours, following a pull mechanism. Note that there are also systems where the peers
push chunks into their neighbours’ buffers instead of pulling. However, we do not consider
them here. The peers contact their neighbours to download missing chunks. The neighbours
fulfil the request if the requested chunk is available. When multiple chunks are missing, the
peers prioritize the chunks in some way, giving rise to different chunk selection strategies,
such as the latest deadline first (LDF) and the earliest deadline first (EDF) strategies. Let
us introduce a function, called the chunk selection function, that captures this prioritization,
usually represented as probabilities. Let s : [L] ×X ×X be the chunk selection function. We
interpret s(i, u, v) as the probability of a vertex with buffer configuration u selecting to fill
buffer index i when it contacts a neighbour with buffer configuration v.

We assume the peer-to-peer live-streaming system described above is Markovian. That is,
the peers are assumed to maintain their private Poisson clocks at the tickings of which they
contact their neighbours for missing chunks. Let the rate of these Poisson clocks be a > 0. Let
y1, y2, . . . , yK be a linear arrangement of the states in X . Denote the jth component of yi by
yi,j, i.e. yi = ( yi,1, yi,2, . . . , yi,L). The local intensity function is then given by [26],

γ (u, u + ej, (x1, x2, . . . , xK)) = a
∑
i∈[K]

1(yi, j = 1) xis( j, u, yi) if j > 1,

where ej is the jth unit vector in the L-dimensional Euclidean space, and (x1, x2, . . . , xK) is
the population count vector of the neighbours of a vertex with different buffer configurations.
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Apart from the above transitions due to download of a chunk from a neighbour, there are two
other transitions, namely, the transition due to the shifting after playback that takes place at
rate unity irrespective of the buffer configurations of the neighbours, and the transition due to
being directly served by the server. The latter event also takes place irrespective of the buffer
configurations of the neighbours, but a rate that depends on the exact implementation set-up of
the peer-to-peer system. See [26] for a detailed account.

4. Automorphism-based lumping of an MABM

Now we discuss how graph automorphisms can be used to lump states of X. The idea was
introduced by Simon, Taylor, and Kiss [40] for SIS epidemics on graphs. The purpose of
lumping states is to generate a Markov chain on a smaller state space. However, we should
make sure that the loss of information is not too much. For instance, X is always lumpable
with respect to the partition {XN}, but if all states are lumped together, all information about
the dynamics of X is lost except for the fact that total probability is conserved at all times. On
the other hand, X is also lumpable with respect to the partition {{x} | x ∈XN}, which retains
all the information but does not yield any state space reduction. Therefore, one needs to find a
meaningful partition that yields as much state space reduction as possible with minimal loss of
information. For an MABM, population counts are very useful quantities. Therefore, in order to
retain information about the population counts, we first partition XN into {Xa | a ∈ �(N, K)},
that is,

XN = ∪a∈�(N,K)Xa where Xa := {b ∈XN | c(b) = a}, (4.1)

and then seek a lumpable partition that is ideally minimally finer than this. The partition
in (4.1) lumps together states that produce the same population counts. The size of this
partition, i.e. |{Xa | a ∈ �(N, K)}|, is

(N+K−1
K−1

)
. Note that, in the standard mean-field approach,

one assumes that X is lumpable with respect to the partition in (4.1) and studies (approximate)
master equations (Kolmogorov forward equations) corresponding to the different population
counts. Next, we refine this partition using automorphisms.

A bijection f : V −→ V is an automorphism on G if (i, j) ∈ E if and only if ( f (i), f ( j)) ∈ E,
for all i, j ∈ V (see [21]). The collection of all automorphisms forms a group under the
composition of maps. This group is denoted by Aut(G). Clearly, Aut(G) is a subgroup of
Sym(V). In order to use automorphisms to produce a partition of XN , we shall let Aut(G)
act on XN . We define the following group action (a map from Aut(G) ×XN to XN):

f · x = y ∈XN if and only if xf (i) = yi for all i ∈ [N], for f ∈ Aut(G), x ∈XN .

The rationale is that, for our purpose, an automorphism needs to preserve the local states of
vertices as well. Note that the action of the group Aut(G) defined above can be used to introduce
an equivalence relation on XN as follows: we say x and y are equivalent with respect to the
action of Aut(G), denoted as x ∼ y, if and only if there exists an f ∈ Aut(G) such that f · x = y.
The equivalence classes {X̃1, X̃2, . . . , X̃M} of the relation ∼ yield a lumpable partition of XN .
Moreover, the partition thus obtained is finer than {Xa | a ∈ �(N, K)}. We prove this in the
following.

Proposition 1. The partition {X̃1, X̃2, . . . , X̃M} induced by the equivalence relation ∼, i.e.
the quotient space XN/ ∼, is a refinement of {Xa | a ∈ �(N, K)}. That is, for each i ∈ [M],
there exists an a ∈ �(N, K) such that X̃i ⊆Xa.
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Proof. Pick any X̃i and x ∈ X̃i. Then a = c(x) ∈ �(N, K), and therefore x ∈Xa. The proof is
completed when we show that every other y in X̃i is also in Xa. Now y ∈ X̃i implies x ∼ y, and
therefore there exists an f ∈ Aut(G) such that f · x = y. From the permutation invariance of c,
we get c( y) = c( f · x) = c(x) = a, implying y ∈Xa. �
Theorem 1. The CTMC X with transition rate matrix Q (or equivalently the linear system
ṗ = pQ) is lumpable with respect to the quotient space XN/ ∼, the partition {X̃1, X̃2, . . . , X̃M}
induced by the equivalence relation ∼.

Before proving Theorem 1, we prove the following useful lemma regarding the neighbour-
hood function and the action of the group Aut(G).

Lemma 1. For all i ∈ [N] and for any z ∈XN, the following is true for all f ∈ Aut(G):

nf −1(i)( f · z) = ni(z). (4.2)

Proof of Lemma 1. Let us put f · z = x and f −1(i) = k. If dk = 0, the assertion follows
immediately because both sides of (4.2) are the empty set. Therefore, we assume dk = l > 0.
Then,

nf −1(i)( f · z) = (xi1 , xi2 , . . . , xil ) if (ij, k) ∈ E for all j ∈ [il]

= (zf (i1), zf (i2), . . . , zf (il)) if (ij, k) ∈ E for all j ∈ [il]

= nf (k)(z),

but f (k) = i, implying nf −1(i)( f · z) = ni(z). �
Now we present the proof of Theorem 1.

Proof of Theorem 1. We check Dynkin’s criterion to establish lumpability. For any two
distinct i, j ∈ [M], we check if q̃i,j =

∑
y∈X̃j

qx,y = ∑
y∈X̃j

qz,y for each distinct pair x, z ∈ X̃i.

Since z ∼ x, there exists an f ∈ Aut(G) such that f · z = x. The idea is to apply f on the states of
X̃j and then show that, for any two states x, z ∈ X̃i, there are two states y, f · y ∈ X̃j such that
the neighbourhood information is preserved, that is,∑

y∈X̃j

qx,y =
∑
y∈X̃j

∑
i∈[N]

1 (xi �= yi, xj = yj ∀j �= i) γ (xi, yi, c(ni(x)))

=
∑

f ·y∈X̃j

∑
i∈[N]

1 (xi �= yf (i), xj = yf (j) ∀j �= i) γ (xi, yf (i), c(ni(x)))

=
∑

f ·y∈X̃j

∑
i∈[N]

1 (zf (i) �= yf (i), zf (j) = yf (j) ∀j �= i) γ (zf (i), yf (i), c(ni( f · z)))

=
∑

f ·y∈X̃j

∑
f −1(i)∈[N]

1 (zi �= yi, zj = yj ∀j �= i) γ (zi, yi, c(ni(z)))

=
∑
y∈X̃j

∑
i∈[N]

1 (zi �= yi, zj = yj ∀j �= i) γ (zi, yi, c(ni(z)))

=
∑
y∈X̃j

qz,y,
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where we have used nf −1(i)( f · z) = ni(z) from Lemma 1. Denoting the common value by q̃i,j =∑
y∈X̃j

qx,y, the matrix Q̃ = ((q̃i,j)) is the transition rate matrix of agg(X). �

Remark 2. From the perspective of group theory, finding the lumping classes is equivalent to
determining the orbits of states in XN with respect to the group Aut(G). For a state x ∈XN , the
orbit of x with respect to the action of the group Aut(G), denoted as Aut(G) · x, is defined by
Aut(G) · x = { f · x | f ∈ Aut(G)}.
Example 1. (Complete graph.) The automorphism group Aut(G) for the complete graph is
Sym([N]). Therefore, any two states x, y ∈XN can be lumped together if y is a rearrangement
of components of x, i.e. y = f · x for some f ∈ Sym([N]). As a consequence, {Xa | a ∈ �(N, K)}
itself is a lumpable partition of XN .

Example 2. (Star graph.) An automorphism on a star graph leaves the central node (root)
unchanged and permutes the rest of the nodes (leaf nodes) in any possible manner. Without
loss of generality, let us assume the central node is labelled N. Then, the automorphism group
Aut(G) is given by

Aut(G) =
{g ∈ Sym([N]) | g(N) = N, g(i) = f (i) for all i ∈ [N − 1], for some f ∈ Sym([N − 1])}.

Example 3. (Cycle graph.) The automorphisms of a cycle graphs are the reflections and
rotations of the graph, forming a group that is also known as the dihedral group. Therefore,
there are 2N automorphisms. Simon, Taylor, and Kiss [40] showed that the dihedral group
leads to a non-trivial lumping of states.

Example 4. (Trees.) For a star graph, we noted that an automorphism permutes the leaves but
needs to leave the root unchanged. Similarly, for a tree, we start with the leaves. Any two leaves
connected to the same parent node can be freely permuted. However, whenever we permute
two leaf nodes that have different parents, we also need to permute the parents to preserve the
neighbourhood structure. Therefore, an automorphism on a tree necessarily maps vertices to
vertices at the same height.

5. Lumping states using local symmetry

In this section, we discuss lumping ideas based on a local notion of automorphism. In
many cases, the number of automorphisms decrease drastically as the graph grows arbitrarily
large. For instance, it is known that Erdős–Rényi random graphs tend to be asymmetric
with probability approaching unity as the size of the graph N grows to infinity [31]. Similar
statements are true for d-regular random graphs under various sets of conditions on d relative
to the number of vertices N [27], and random graphs with specified degree distributions [32].
As a consequence, the automorphism-based lumping tends to be ineffective in state space
reduction as the size of the graphs grows arbitrarily. Therefore, it is desirable to bring in
a notion of local automorphism or local symmetry that would allow swapping vertices that
are locally indistinguishable (i.e. have similar neighbourhoods), but are not so globally. This
notion of symmetry is weaker than an automorphism, which endows global symmetry on a
graph. However, the potential gain is in the ability to engender state space reduction when the
graph grows arbitrarily large, rendering automorphism-based lumping virtually ineffective. In
the following, we make these ideas precise.
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5.1. Local symmetry

There have been several attempts to formulate a more flexible notion of local symmetry.
However, the literature seems divided on this and there is not a single universally accepted
concept. In our set-up, it seems intuitive that two vertices that are locally indistinguishable in
a large graph would also behave indistinguishably and could therefore be swapped. A notion
of local symmetry identifying such vertices was proposed in [16], which we adopt in this
paper. We need a few definitions to make precise what we mean by two vertices being locally
indistinguishable.

In order to define locality, we need some notion of distance between vertices of G. Let
d(u, v) denote the smallest distance (length of the minimal path) between two vertices u, v ∈ V .
If u, and v are not connected, i.e. there is no path between them, we simply set d(u, v) = ∞.

Definition 4. Given a vertex u ∈ V , define its k-neighbourhood in G, denoted by Nk(u), as
follows:

Nk : V −→ 2V such that Nk(u) := {v ∈ V | d(u, v) ≤ k}.
Let G[Nk(u)] denote the subgraph of G induced by Nk(u). The notion of locality we adopt

in this paper hinges on these k-neighbourhoods and their induced subgraphs. If two vertices
induce isomorphic subgraphs, they are indistinguishable locally and we say they are k-locally
symmetric [16].

Definition 5. Two vertices u, v ∈ V are defined to be k-locally symmetric if there exists an
isomorphism f between G[Nk(u)] and G[Nk(v)] such that f (u) = v.

Therefore, two vertices u, v ∈ V are k-locally symmetric if their kth-order local structures
(k-hop neighbourhoods) are equivalent in the sense that there is a structure-preserving (edge-
preserving in this case) bijection between them. When k = 1, we simply say the vertices are
locally symmetric.

As with automorphisms, local symmetries also induce an equivalence relation on the set
of vertices V . We say two vertices u, v ∈ V are equivalent with respect to k-local symmetry,
denoted by u

k∼v, if there exists an isomorphism f between G[Nk(u)] and G[Nk(v)] such that
f (u) = v. The notion of local symmetry is related to the concept of views in the discrete
mathematics literature [23, 43]. The view of depth k of a vertex is a tree containing all walks
of length k leaving that vertex. However, note that, in our context, the induced subgraphs
G[Nk(u)] need not be trees. The following facts about local symmetry are useful for our study
of lumpability [16, 35].

Proposition 2. The following properties are satisfied by k-local symmetry.

(i) For u, v ∈ V, u
k+1∼ v �⇒ u

k∼v. Consequently, V/
k+1∼ , the equivalence classes of

k+1∼ ,
form a refinement of V/

k∼, the equivalence classes of
k∼.

(ii) If the equivalence classes of
k+1∼ are the same as those of

k∼, the equivalence classes of
all

k+j∼ are the same as those of
k∼, for j ∈N.

(iii) If k ≥ diam(G), the diameter of G, then, for two vertices u, v ∈ V, we have u
k∼v if and only

if there exists an f ∈ Aut(G) such that f (u) = v. That is, k-local symmetry is equivalent to
automorphism if k is at least as large as the diameter of G.

In addition to the above, it can be verified that the quotient spaces V/
k∼ are equitable

partitions [21, Chapter 9] for each k ≥ 1. We use these properties to lump states of XN in
the next section.
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5.2. Lumping states using local symmetry

The procedure to lump states in XN using local symmetry is similar to the procedure used
to lump states using automorphism. However, unlike the case with automorphism, we now
allow permutations that only need to ensure symmetry locally. That is, in order to lump states
using k-local symmetry, we allow permuting two vertices u and v in V if and only if u and v
are k-locally symmetric. Therefore, define

�k(G) := { f ∈ Sym(V) | f (u) = v if and only if u
k∼v, for u, v ∈ V}.

We refer to |�k(G)| as the number of k-local symmetries. It can be verified that �k(G), for each
k ≥ 1, forms a group under the composition of maps. Therefore, we can let the group �k(G)
act on XN . We define the action of �k(G) as follows:

f · x = y ∈XN if and only if xf (i) = yi for all i ∈ [N], for f ∈ �k(G), x ∈XN .

Note that a state x in XN is taken to y if and only if the local states of all vertices are
preserved and two vertices are swapped only when they are k-locally symmetric. The above
action induces the following partition of the state space: two states x, y ∈XN are said to be
equivalent with respect to k-local symmetry, denoted as x

k∼y, if there exists an f ∈ �k(G)
such that f · x = y. We use the same symbol

k∼ since there is no scope for confusion. The
equivalence classes of

k∼ are obtained, as before, by determining the orbits of states in XN .
The orbit of a state x ∈XN is given by �k(G) · x := { f · x ∈XN | f ∈ �k(G)}.

The partition thus obtained (based on k-local symmetry) does not, in general, guarantee
lumpability, i.e. the X need to be lumpable with respect to XN/

k∼. Therefore, we construct
another Markov chain that approximates the lumped process and seek to quantify the approx-
imation error in the next section. The following observation is integral to the quantification of
the approximation error incurred when states of XN are lumped according to k-local symmetry
instead of automorphism.

Proposition 3. The quotient space XN/
k+1∼ is a refinement of XN/

k∼.

Proof of Proposition 3. Let X (k+1)
1 ,X (k+1)

2 , . . . ,X (k+1)
Mk+1

be the equivalence classes of
k+1∼ .

Also, denote the equivalence classes of
k∼ by X (k)

1 ,X (k)
2 , . . . ,X (k)

Mk
. Let i ∈ [Mk+1] and x ∈

X (k+1)
i . If X (k+1)

i is a singleton, the identity map is the only map in �k+1(G), but it is also in

�k(G). Therefore, x ∈X (k)
j for some j ∈ [Mk], and the assertion follows. If X (k+1)

i has at least
two elements, say, x, y, then y

k+1∼ x. By Proposition 2, we must have y
k∼x. Therefore, there exists

a j ∈ [Mk] such that x, y ∈X (k)
j . Since the choice of x, y is arbitrary, the assertion follows. �

For practical applications, one would start with XN/
1∼ and then iteratively obtain further

refinements XN /
2∼,XN/

3∼, and so on until satisfactory accuracy is achieved (assuming
we can quantify accuracy for the time being). In the light of Proposition 2, two important
remarks are in order. They emphasize the benefits of local symmetry-driven lumping over
automorphism-driven lumping.

Remark 3. In an algorithmic implementation, item (ii) in Proposition 2 provides a stopping
rule for an iterative procedure to obtain local symmetry-driven partitions. That is, we can stop
at the first instance of no improvement (the equivalence classes of

k+1∼ and
k∼ are the same). For

the sake of illustration, consider the chain graph in Figure 1. For this trivial example, notice
that going from k = 1 to k = 2 does not cause any improvement. Therefore, we can stop at
k = 1 even though the diameter is 4.
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1 2 3 4

FIGURE 1: A chain graph with 1
1∼4 and 2

1∼3 as well as 1
2∼4 and 2

2∼3.

FIGURE 2: A graph with 20 vertices for Example 5.

TABLE 1: State space reduction with k.

# of local Size of the reduced
k symmetries state space Compression level

1 2228 14362 98.63%
2 222 68800 93.44%
3 39 215040 79.49%
4 32 248832 76.27%
5 16 276480 73.63%

Remark 4. The diameters in many random graphs grow slowly as the number of vertices
goes to infinity. For instance, the diameter of Erdős–Rényi random graphs with N vertices
and edge probability λ/N, for some fixed λ > 1, grows as log N (see [36]). A similar result
holds for Newman, Strogatz, and Watts graphs too (see [12, Lemma 1.2]). In the light of
item (iii) of Proposition 2, our approach needs (at most) as many steps as the diameter of
G to produce an exactly lumpable partition of XN . Note that k ≥ diam(G) is only a sufficient
condition for XN/

k∼ to be an exactly lumpable partition. For practical purposes, we actually
achieve sufficient accuracy (including exact lumpability) even for small values of k < diam(G).
Supporting numerical results are provided later in Section 7.

In the next example, we show the amount of state space reduction that can be achieved by
means of local symmetry-driven lumping.

Example 5. Consider an SIS process on the graph with 20 vertices in Figure 2. The number of
states in this case is 220 = 1048576. However, there are plenty of local symmetries that we can
exploit to reduce the size of the state space. In Table 1, we summarize the state space reduction
achieved for increasing k. The compression level (used to quantify the reduction achieved) is
calculated as one minus the ratio of the size of the reduced state space to the size of the original
state space, i.e. 1048576.
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c
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fe

fv

FIGURE 3: Fibrations map vertices to vertices and edges to edges. When three vertices form a triangle,
fibrations also preserve the triangle structure. Therefore, one can define an isomorphism between local

neighbourhoods using fibrations.

Our local symmetry-driven lumping approach shares a close relationship with what are
known as fibrations in algebraic graph theory. We briefly describe the relationship in the
following.

6. Graph fibrations

Fibrations of graphs were first inspired by fibrations between a pair of categories [9].
Although the idea of fibrations originated from category theory, it has deep implications for
graph theory, theoretical computer science, and other mathematical disciplines. For instance,
Boldi, Lonati, Santini, and Vigna [8] discussed its interesting connections to the PageRank
citation ranking algorithm. Nijholt, Rink, and Sanders [33] explored the similarities between
dynamical systems with a network structure and dynamical systems with symmetry by means
of fibrations of graphs. Let us now define the necessary graph-theoretic concepts.

Given the graph G = (V, E), we first define the source and target maps sG, tG : E −→ V
on G such that sG(u, v) = u and tG(u, v) = v for each (u, v) ∈ E. Let H = (V ′, E′) be another
graph. The source and the target maps sH, tH are defined analogously. A map f := ( fv, fe),
where fv : V −→ V ′ and fe : E −→ E′, is called a graph morphism between G and H ( from G
to H, to be precise) if fv and fe commute with the source and the target maps of G and H,
i.e. if sH fe = fvsG and tH fe = fvtG. A morphism is called an epimorphism if both fv and fe are
surjective. Finally, we define a graph fibration as follows [9].

Definition 6. A morphism f := ( fv, fe) between two graphs G = (V, E) and H = (V ′, E′) is
called a fibration between graphs G and H ( from G to H, to be precise) if, for each edge
a ∈ E′ and for each x ∈ V satisfying fv(x) = tH(a), there exists a unique edge ax ∈ E such that
fe(ax) = a and tG(ax) = x. The edge ax thus found is called the lifting of a at x, and is denoted
by f −1

e (a). The graph G is then called fibred over H. The fibre over a vertex y ∈ V ′, denoted by
fibre(y), is the set of vertices in V that are mapped to y, i.e. fibre(y) := {x ∈ V | fv(x) = y}.

In the original paper [9], Boldi and Vigna defined colour-preserving graph morphisms
when graphs are endowed with a colouring function. In that case, fe also commutes with
the colouring function. For our present purposes, we do not require this generality and only
consider uncoloured graphs. Boldi and Vigna [9] showed that a left action of a group on G
can be used to induce fibrations. They also showed that fibrations and epimorphisms satisfying
certain local in-isomorphism property are equivalent [9, Theorem 2]. Indeed, fibrations have
a close relationship with the notion of local symmetry described in Section 5. The proof of
the following proposition follows analogously from [9, Theorem 2]. However, for the sake of
completeness, we also provide it in Appendix A.

Proposition 4. Let f := ( fv, fe) be a fibration of the graph G = (V, E), i.e. a fibration from G
to G itself. Pick two vertices x, y ∈ V. If x ∈ fibre(y), the vertices x, y are locally symmetric,
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unif
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k-local symmetry

Q

T

Tunifagg

FIGURE 4: Lifting procedure used to assess the quality of the approximation.

i.e. x
1∼y. Moreover, if the vertices x, y are locally symmetric, there exists a fibration such that

x ∈ fibre( y).

The above proposition essentially shows that the equivalence classes of local symmetry
(with k = 1) and fibres induced by a graph fibration are the same. Therefore, the fibres can also
be used to aggregate the states of XN to achieve approximate lumpability in the same fashion
as we did with local symmetry. See Figure 3.

7. Approximation error

As the lumping based on local symmetry does not ensure Markovianness of the lumped
process, we need to quantify the approximation error. In order to do so, we work with the
uniformization of X. Then we lump unif(X) to produce agg(unif(X)) according to k-local
symmetry. A direct assessment of the quality of aggregation is cumbersome. Therefore, it is
suggested [15, 20] that we lift the aggregated process agg(unif(X)) to a Markov chain on the
same state space XN as unif(X) and then compare their transition probability matrices. The
lifting allows us to use known metrics of divergence such as the Kullback–Leibler divergence
to quantify the approximation error. We follow the scheme depicted in Figure 4.

In order to fix ideas, let us lump unif(X) according to k-local symmetry, i.e. according to the
partition {X (k)

1 ,X (k)
2 , . . . ,X (k)

Mk
} of XN obtained as the equivalence classes of

k∼. We introduce
two notations in this connection. Let ηk : XN −→ [Mk] be the partition function associated
with

k∼, i.e. ηk(x) := i if and only if x ∈X (k)
i . For u ∈XN , let us denote the equivalence class

containing u by 〈x〉k, i.e. 〈x〉k :=X (k)
i if and only if x ∈X (k)

i . Note that 〈x〉k = η−1
k (ηk(x)).

Let T = ((ti,j)) be the transition probability matrix associated with unif(X). Now, since X is

not necessarily lumpable with respect to the partition {X (k)
1 ,X (k)

2 , . . . ,X (k)
Mk

}, for i �= j ∈ [Mk]
and two distinct x, y ∈X (k)

i , the quantity
∑

z∈X (k)
j

tx,z may not equal
∑

z∈X (k)
j

ty,z. In other

words, agg(unif(X)) may not be Markovian. The idea is to approximate agg(unif(X)) with
a Markov chain and then quantify the approximation error. Therefore, in order to avoid
additional notations, we proceed as if agg(unif(X)) were Markovian and estimate its transition
probabilities. If unif(X) is stationary with distribution π , i.e. if π is the solution to πT = π and
p(0) = π , a natural estimate of the transition probability of the lumped process is as follows:

t̃(k)
i,j :=

∑
u∈X (k)

i
πu

∑
v∈X (k)

j
tu,v∑

u∈X (k)
i

πu
for i, j ∈ [Mk].

That is, we estimate the transition probabilities of the (Markov chain that approximates the)
lumped process agg(unif(X)) by averaging the different values

∑
z∈X (k)

j
tx,z and

∑
z∈X (k)

j
ty,z,
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FIGURE 5: (a) Two graphs, and (b) comparisons of the expected number of infected nodes for SIS
dynamics on the graphs.

weighted by the stationary probabilities [20]. Let T̃ (k) := ((t̃(k)
i,j )). Before we proceed to explain

the lifting procedure, let us consider an example.

Example 6. Consider SIS processes on the two graphs each with 12 vertices, shown in
Figure 5. The graphs are shown in (a); in (b) we plot the expected number of infected nodes
over time calculated from the reduced system for increasing k against the true expected number
of infected nodes calculated from the original process. As one would expect, Figure 5 shows
that there is close agreement between the true expected numbers and those obtained from the
reduced systems even for small values of k.

Now, we describe how the transition probabilities of the lifted Markov chain are calculated.
There are two common ways of lifting agg(unif(X)) to a Markov chain on XN , one using
a probability vector, called π -lifting, and the other using the transition probabilities, called
P-lifting. Let us discuss π -lifting first.

Definition 7. (π -lifting.) The π -lifting of ηk(unif(X)) is a DTMC with transition probability
matrix Tπ

k := ((tπ,k
u,v )), where

tπ,k
u,v := πv∑

x∈〈v〉k
πx

t̃(k)
ηk(u),ηk(v), where u, v ∈XN .

Note that, in principle, π -lifting can be done using any probability vector as long as the
denominator remains non-zero for the choice of the candidate probability vector. Nevertheless,
the most common choice is the stationary probability vector. The reason for this choice is
the fact that the stationary probability vector achieves the minimum KL divergence rate [15].
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For this reason, in this paper we consider π -lifting with the stationary distribution for numerical
computations. Another immediate consequence of π -lifting is that the lifted Markov chain with
transition probability matrix Tπ

k given in (7) is lumpable with respect to the partition XN/
k∼ and

has π as the stationary probability. In many situations, computing the stationary distribution π

may not be straightforward. Many numerical methods can be adopted in such situations. See
Section 8 for a more detailed discussion. Now, we define the approximation error.

Definition 8. We define the approximation error to be the KL divergence rate between unif(X)
and the lifted DTMCs. Therefore, for π -lifting, the approximation error is given by

DKL(T || Tπ
k ) :=

∑
u∈XN

∑
v∈XN

πutu,v log

(
tu,v

tπ,k
u,v

)
.

Having defined the approximation error, we show that it indeed decreases monotonically
with the order of local symmetry. This is precisely the assertion of Theorem 2. However, in
order to prove Theorem 2, we need to make use of the following calculation, which we present
in the form of a lemma.

Lemma 2. For any two states u, v ∈XN, and for any k, define the ratio

ρk(u, v) :=
∑

t∈〈v〉k
πt

t̃(k)
ηk(u),ηk(v)

=
∑

p∈〈u〉k
πp

∑
q∈〈v〉k

πq∑
p∈〈u〉k

∑
q∈〈v〉k

πptp,q
.

Then, the following recursion relation holds:∑
x∈〈u〉k

∑
y∈〈v〉k

πxtx,yρk+1(x, y) = ρk(u, v)
∑

x∈〈u〉k

∑
y∈〈v〉k

πxtx,y.

Proof of Lemma 2. By the refinement property of local symmetry in Proposition 3, we can
find distinct integers i1, i2, . . . , im and j1, j2, . . . , jn in [Mk+1] such that

〈u〉k = ∪l∈[m]X (k+1)
il

and 〈v〉k = ∪l∈[n]X (k+1)
jl

. (7.1)

Therefore, we can split the summation over 〈u〉k, 〈v〉k into disjoint equivalence classes of
k+1∼ .

Within each of these equivalence classes of
k+1∼ , the quantity t̃ηk+1(x),ηk+1( y) is constant and

can therefore be pulled out of the summation. Therefore,∑
x∈〈u〉k

∑
y∈〈v〉k

πxtx,yρk+1(x, y)

=
∑

p∈[m]

∑
q∈[n]

∑
x∈X (k+1)

ip

∑
y∈X (k+1)

jq

πxtx,y

(∑
s∈〈x〉k+1

πs
∑

t∈〈 y〉k+1
πt∑

s∈〈x〉k+1

∑
t∈〈 y〉k+1

πsts,t

)

=
∑

p∈[m]

∑
q∈[n]

(∑
s∈X (k+1)

ip
πs

∑
t∈X (k+1)

jq
πt∑

s∈X (k+1)
ip

∑
t∈X (k+1)

jq
πsts,t

) ∑
x∈X (k+1)

ip

∑
y∈X (k+1)

jq

πxtx,y

=
∑

x∈〈u〉k

∑
y∈〈v〉k

πxπy

= ρk(u, v)
∑

x∈〈u〉k

∑
y∈〈v〉k

πxtx,y.

This completes the proof. �
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Note that ρk(u, v) = ρk(x, y) for any u
k∼x and v

k∼y. Therefore, we can use the shorthand
notation ρk(X (k)

i ,X (k)
j ) to mean ρk(u, v) for any u ∈X (k)

i , v ∈X (k)
j .

Remark 5. (Averaging argument.) The main implication of Lemma 2 is that the quantity
ρk(u, v) can be seen as a weighted average of ρk+1(x, y) where the x, y are in the equivalence
classes of

k+1∼ . The weights are precisely

W〈u〉k,〈v〉k (X (k+1)
ip

,X (k+1)
jq

) :=
∑

x∈X (k+1)
ip

∑
y∈X (k+1)

jq
πxtx,y∑

x∈〈u〉k

∑
y∈〈v〉k

πxtx,y
,

where we have partitioned 〈u〉k and 〈v〉k into X (k+1)
ip

and X (k+1)
jq

respectively, as shown in (7.1).

We interpret W〈u〉k,〈v〉k (X (k+1)
ip

,X (k+1)
jq

) as the weight for the cross-section X (k+1)
ip

×X (k+1)
jq

with regard to the partition of 〈u〉k and 〈 y〉k given in (7.1). Therefore, it follows from Lemma 2
that

ρk(〈u〉k, 〈v〉k) =
∑

p∈[m]

∑
q∈[n]

ρk+1(X (k+1)
ip

,X (k+1)
jq

)W〈u〉k,〈v〉k (X (k+1)
ip

,X (k+1)
jq

).

Since the weights sum up to unity, ρk(u, v) can indeed be seen as an average. Keeping this
remark in mind, we now proceed to state and prove Theorem 2 about the monotonicity of the
approximation error.

Theorem 2. For π -lifting, the aggregation of states in XN using local symmetry ensures
monotonically decreasing approximation error with increasing order of local symmetry, that is,

DKL(T || T (π )
k+1) ≤ DKL(T || T (π )

k ) for all k ≥ 1.

Proof of Theorem 2. By the refinement property of local symmetry proved in Proposition 3,
we can partition [Mk+1] = {1, 2, . . . , Mk+1} into {�1, �2, . . . , �Mk} such that

X (k)
i = ∪l∈�iX k+1

l .

Note that

DKL(T || T (π )
k ) − DKL(T || T (π )

k+1)

=
∑

i,j∈[Mk]

∑
u∈X (k)

i

∑
v∈X (k)

j

πutu,v log

(
ρk(u, v)

ρk+1(u, v)

)

=
∑

i,j∈[Mk]

(log (ρk(X (k)
i ,X (k)

j ))
∑

u∈X (k)
i

∑
v∈X (k)

j

πutu,v −
∑

u∈X (k)
i

∑
v∈X (k)

j

πutu,v log (ρk+1(u, v)))

=
∑

i,j∈[Mk]

	i,j,
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where

	i,j := log (ρk(X (k)
i ,X (k)

j ))
∑

u∈X (k)
i

∑
v∈X (k)

j

πutu,v

−
∑
p∈�i

∑
q∈�j

∑
u∈X (k+1)

p

∑
v∈X (k+1)

q

πutu,v log (ρk+1(u, v))

=
( ∑

u∈X (k)
i

∑
v∈X (k)

j

πutu,v

)
× (log (ρk(X (k)

i ,X (k)
j ))

−
∑
p∈�i

∑
q∈�j

WX (k)
i ,X (k)

j
(X (k+1)

p ,X (k+1)
q ) log (ρk+1(X (k+1)

p ,X (k+1)
q )))

≥ 0,

by Jensen’s inequality and the averaging argument given in Remark 5 and Lemma 2. This
completes the proof. �

Note that DKL(T || T (π )
k ) − DKL(T || T (π )

k+1) = 0 is achieved if (and only if) equality occurs
in Jensen’s inequality, forcing the individual 	i,j to be zeros. This is the case when the ρk and

ρk+1 are equal. There are two possibilities. First, the equivalence classes of
k∼ and

k+1∼ are the
same. In this case, by Proposition 2, the equivalence classes of all

k+j∼ , for j ≥ 2, will remain
the same. Therefore, we have already reached automorphism, and hence exact lumpability.
Second, the equivalence classes of

k∼ and
k+1∼ are different (so we are not yet at automorphism),

but exact lumpability has already been achieved at the order of local symmetry k. In both
cases, we need not refine our partition further because exact lumpability has been achieved.
Therefore, DKL(T || T (π )

k ) − DKL(T || T (π )
k+1) = 0 serves as a definite stopping rule for any

iterative algorithmic implementation of local symmetry-driven lumping.
Now, we discuss the second type of lifting, which makes use of the transition probabilities

and is called P-lifting. The following is the definition.

Definition 9. (P-lifting.) The P-lifting of ηk(unif(X)) is a DTMC with transition probability
matrix TP

k := ((tP,k
u,v )) where, for u, v ∈XN ,

tP,k
u,v :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tu,v∑
x∈〈v〉k

tu,x
t̃(k)
ηk(u),ηk(v) if

∑
x∈〈v〉k

tu,x > 0,

1

|〈v〉k| t̃(k)
ηk(u),ηk(v) if

∑
x∈〈v〉k

tu,x = 0.

The approximation error for P-lifting is defined similarly. Note that P-lifting is sharp, in the
sense that if the lumping is in fact exact, then DKL(T || T (P)

k ) = 0, whereas π-lifting is not [20].
In Figure 6, we show numerical results pertaining to Theorem 2. We consider the Barabási–
Albert preferential attachment, the Erdős–Rényi and the Watts–Strogatz small-world random
graphs. The claimed monotonicity is observed in all three cases. In fact, the KL divergence
rate decreases steeply in all three cases, for both π- and P-lifting. The figures are particularly
encouraging in that a satisfactory level of accuracy is achieved even for small orders of local
symmetry. Since one of the main purposes of aggregation is to engender state space reduction,
we need to evaluate the performance of local symmetry-driven aggregation in terms of some

https://doi.org/10.1017/jpr.2019.44 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.44


Approximate lumpability using local symmetry 665

1

K
L

 d
iv

er
ge

nc
e

K
L

 d
iv

er
ge

nc
e

K
L

 d
iv

er
ge

nc
e

K
L

 d
iv

er
ge

nc
e

K
L

 d
iv

er
ge

nc
e

K
L

 d
iv

er
ge

nc
e

2 3 4 5 6 7
Order of local symmetry

8 9 10 1 2 3 4 5 6 7
Order of local symmetry

8 9 10

1
0.0

0.00

0.02

0.04

0.06

0.0

0.2

0.4

0.6
0.04

p - lifting P-lifting

0.03

0.02

0.01

0.00

0.000

0e+00

1e-04

2e-04

0.005

0.010

0.015

0.1

0.2

0.3

0.4

2 3 4 5 6 7
Order of local symmetry

8 9 10 1 2 3 4 5 6 7
Order of local symmetry

8 9 10

1 2 3 4 5 6 7
Order of local symmetry

8 9 10 1 2 3 4 5 6 7
Order of local symmetry

8 9 10

B
ar

ab
ás

i–
A

lb
er

t
W

at
ts

–S
tr

og
at

z
E

rd
ós

–R
én

yi

FIGURE 6: Monotonicity of the KL divergence with the order of the local symmetry for the SIS dynamics
on different models of random graphs with 10 vertices. All graphs are undirected. The Erdős–Rényi
graphs are created with edge probability 0.3, while the Watts–Strogatz small-world networks are created
with rewiring probability 0.3 and each vertex having three neighbours. The infection and recovery rates

are both 0.5.

notion of compression level as well. Therefore, we define compression level C at the order of
local symmetry k as follows:

C(k) = 1 − Mk

|XN | ,

where Mk is the cardinality of the quotient space XN/
k∼, i.e. the number of equivalence

classes of
k∼. If there is no non-trivial local symmetries, the compression level is zero

https://doi.org/10.1017/jpr.2019.44 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.44


666 KHUDABUKHSH ET AL.

1
0 0.00

0.20

0.50

0.70

1.00

0.00

0.20

0.50

C
om

pr
es

si
on

 le
ve

l
C

om
pr

es
si

on
 le

ve
l

C
om

pr
es

si
on

 le
ve

l

N
um

be
r 

of
 lo

ca
l s

ym
m

et
ri

es

B
ar

ab
ás

i–
A

lb
er

t
E

rd
ós

–R
én

yi
W

at
ts

–S
tr

og
at

z

N
um

be
r 

of
 lo

ca
l s

ym
m

et
ri

es
N

um
be

r 
of

 lo
ca

l s
ym

m
et

ri
es

0.70

1.00

0.00

0.20

0.50

0.70

1.00

0

0.0

0.5

1.0

1.5

2.0

20

40

60

25

50

75

2 3 4 5 6 7
Order of local symmetry

8 9 10 1 2 3 4 5 6 7
Order of local symmetry

8 9 10

1 2 3 4 5 6 7
Order of local symmetry

8 9 10 1 2 3 4 5 6 7
Order of local symmetry

8 9 10

1 2 3 4 5 6 7
Order of local symmetry

8 9 10 1 2 3 4 5 6 7
Order of local symmetry

8 9 10

P-liftingp - lifting

FIGURE 7: As we increase the order, the number of local symmetries (the cardinality of �k) decreases
drastically. Therefore, the compression level also decreases. The simulation set-up is the same as in

Figure 6.

because the partition is simply {{x} | x ∈XN}. In Figure 7 we show how the number of local
symmetries decreases drastically as we increase the order of local symmetry. Consequently, the
compression level also falls steeply. This is expected because random graphs tend to become
asymmetric as the number of vertices increases.

Remark 6. Note that Theorem 2 holds true for a general Markov chain whenever the partition
function ηk+1 is a refinement of ηk. The fact that the partition functions ηk, ηk+1 are associated
with the equivalence relations generated by k and (k + 1)-local symmetries is only sufficient for
the validity of Theorem 2, but not necessary. In fact, similar monotonicity can be proved, in a
similar fashion, even when ηk, ηk+1 are arbitrary partition functions defined on the state space
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of a Markov chain such that ηk+1 is a refinement of ηk. Notably, such monotonicity can only
be guaranteed for π -lifting. In Appendix A, we provide a counter-example to establish that
such monotonicity fails for P-lifting when arbitrary partition functions (one being a refinement
of the other) are considered. However, this observation is about a general Markov chain. For
our MABM, we observe similar monotonicity for P-lifting using numerical computations, as
shown in Figure 6, but we cannot guarantee monotonicity in general.

8. Discussions

The idea of using Markov chain lumpability for model reduction has been discussed in
the literature for some years now. For instance, Simon, Taylor, Kiss, and Miller [28, 39, 40]
considered epidemiological scenarios, focusing mainly on binary dynamics. More general
Markovian agent-based models were considered in [6]. Lumpability abstractions were applied
to rule-based systems in [17] from a theoretical computer science perspective. While model
reduction is one of the main purposes of lumpability, it is not the only one. In a recent paper
[24], Katehakis and Smit identified a class of Markov chains, which they call successively
lumpable and for which the stationary probabilities can be computed successively by comput-
ing stationary probabilities of a cleverly constructed sequence of Markov chains (typically on
much smaller state spaces).

8.1. Coverings and colour refinements

For undirected graphs, a notion similar to our notion of local symmetry is called a covering
[1]. However, in general, finding coverings is computationally challenging [29]. In our
formulation, undirected graphs are to be treated as directed graphs with an edge set E satisfying
(i, j) ∈ E if and only if ( j, i) ∈ E. The second notion that is similar to our approach is that of
colour refinement [3, 7]. In order to draw an analogy, we think of the local states as colours,
i.e. we have a K-colouring of G, and require isomorphisms to be colour-preserving. The
objective is to devise a colouring method (given the initial colouring) that is stable in that two
vertices with the same colour have identically coloured neighbourhoods. Note that a colouring
naturally induces an equivalence relation on V . With successive refinement of colouring, we
can construct equitable partitions of V in much the same way we did with local symmetry.
The equitable partitions, in turn, can be used to yield approximately lumpable partitions
of XN . Colour refinements are convenient and are often used as a simple isomorphism check.
However, a limitation of this approach is that colour refinements are insufficient to find local
isomorphisms in certain graphs such as regular graphs. In general, a graph G is said to be
amenable to colour refinement if it is distinguishable from any other graph H via colour
refinement. A number of classes of graphs are known to be amenable [3], e.g. unigraphs, trees.
It is also known [5] that Erdős–Rényi random graphs are amenable with high probability.

8.2. Regular graphs

Large regular graphs, in general, can exhibit different dynamics. Since the vertices have
similar neighbourhoods, our local symmetry will not be able to distinguish between them.
This may lead to poor lumping. Increasing the order of local symmetry will avoid such issues.
A theoretical analysis of this special case of regular graphs is planned for future work.

8.3. Computation of the stationary distribution

Note that computation of the stationary distribution itself is cumbersome for Markov chains
on large state spaces. In many cases, the transition matrix is sparse, which makes available a
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host of numerical tools developed for sparse matrices. There are also numerical algorithms
[41], such as the Courtois method [14] or Takahasi’s iterative aggregation–disaggregation
method [42], for computing the stationary distribution. In general, the efficiency of Takahashi’s
algorithm depends on a good initial clustering of states. In our case, the computation is
facilitated by the fact that the initial quotient space XN/

1∼ is expectedly a better partition than
a random one. In a recent paper [30], Kuntz, Thomas, Stan, and Barahona derived bounds on
the stationary distribution (and moments) based on mathematical programming. In particular,
when the stationary distribution is unique, they provide computable error bounds. Sampling-
based techniques can also be used for this purpose. For instance, Hemberg and Barahona [22]
provided an algorithm that combine Gillespie’s algorithm with Dominated Coupling From The
Past (DCFTP) techniques to provide guaranteed sampling from the stationary distribution.

8.4. Markov chain enlargement

An interesting concept closely related to aggregation is Markov chain enlargement.
There are many examples where enlargement of the state space of a Markov chain can be
computationally beneficial in that it can significantly reduce the mixing time. See [2, 13] for
a discussion of how splitting up states of a Markov chain can speed up mixing. This has
implications for the performance of statistical inference algorithms that rely on the mixing
of some Markov chain, and also for optimization algorithms such as the alternating direction
method of multipliers (ADMM). França and Bento [18] showed that, for certain objective
functions, the distributed ADMM algorithm can indeed be seen as a lifting of the gradient
descent algorithm.

8.5. CTBNs and SANs

The Markovian agent-based model that we consider in this paper belongs to a more general
class of models known as interacting particle systems (IPS) in the probability literature. The
tools developed here are expected to find applications beyond what has been discussed here,
and are immediately applicable to many of the traditional IPS models arising from statistical
physics, population biology, and social sciences. Such models include contact processes, voter
models, and exclusion models. The MABM model discussed in the present paper is also
closely related to continuous-time Bayesian networks (CTBNs) [34] and stochastic automata
networks (SANs) [11]. To be specific, the local intensity functions defined in (3.1) constitute
the conditional intensity matrix (CIM) in [34]. These CIMs can be then combined into Q by
the ‘amalgamation’ operation. Another approach that is popular in the SAN literature is to give
Q a Kronecker representation [11]. We expect that the present endeavour will help to bridge
the gap between the various communities that make use of agent-based models.

Appendix A.

Proof of Proposition 1. It can be verified that {Ỹ1, Ỹ2, . . . , ỸM} indeed forms a partition
of Y . Let us denote the transition rate matrix of Z by Ã = ((ãi,j)), where ãi,j = af −1(i),f −1( j), and
f −1 is the inverse of f in Sym(Y). The proof will be complete if we show that the linear system
ż = zÃ is lumpable. Pick Ỹi, and Ỹj for i �= j, and let u, v ∈ Ỹi be arbitrarily chosen. See that
u ∈ Ỹi implies f −1(u) ∈Yi. Then,∑

l∈Ỹj

ãu,l =
∑
l∈Ỹj

af −1(u),f −1(l) =
∑
l∈Xj

as,l =
∑
l∈Xj

at,l =
∑
l∈Ỹj

af −1(v),f −1(l) =
∑
l∈Ỹj

ãv,l,
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where s = f −1(u), t = f −1(v) ∈Xi and the equality for s and t holds by virtue of the lumpability
of Y . This verifies Dynkin’s criterion for ż = zÃ. �

Proof of Proposition 4. Let us first assume x ∈ fibre(y). In order to prove the vertices x, y
are locally symmetric, we construct an isomorphism g : N1(x) −→ N1( y) between G[N1(x)]
and G[N1( y)] as follows:

g(a) := sGf −1
e (a, x), for all a ∈ N1(x).

Indeed, f −1
e (a, x) is an edge in G[N1( y)], and therefore, g(a) ∈ N1( y). In order to check whether

g is indeed an isomorphism, pick two vertices a, b ∈ N1(x) such that (a, b) ∈ E. If b = x, the
assertion follows straightforwardly. Therefore, we consider b �= x. Then, (a, b) ∈ E implies the
vertices a, b, and x form a triangle (see Figure 3).

Since f is a fibration, ( fv, f −1
e ) is also a morphism because fv and f −1

e also commute with
the source and target maps of G, i.e. sGf −1

e = fvsG and tGf −1
e = fvtG. Now, let us consider the

edge (a, b) in G[N1(x)]. Since f is a fibration, there exists a unique edge f −1
e (a, b) = (c, d) ∈ E

such that fe(c, d) = (a, b), where d ∈ fibre(b). Then,

(c, d) = (sGf −1
e (a, b), tGf −1

e (a, b)) = ( fv(a), fv(b)) = (sGf −1
e (a, x), tGf −1

e (b, x)).

Therefore, g is indeed an isomorphism between G[N1(x)] and G[N1( y)] proving x
1∼y.

Now, we prove the second part of the proposition. Let us assume x
1∼y. In order to define a

fibration f = ( fv, fe), let us first pick representatives for the equivalence classes of
1∼. Let the

injective map r : V −→ V define the representatives, that is, for each x ∈ V , we have 〈x〉1 =
〈r(x)〉1. Then, consider the following maps:

fv(x) := r(x), for all x ∈ V, and fe(a, b) = (g(a), g(b)),

where g ∈ �1 is such that g(b) = r(b). Note that the choice of g depends on (a, b). The
epimorphism f defined above is indeed a fibration [9]. This concludes the proof. �

Monotonicity fails for P-lifting

It is intuitive that the monotonic decrease of KL divergence for finer partitions should carry
over to lifting by the transition matrix. However, this is not the case, as the following counter-
example shows. Consider a transition probability matrix:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.10 0.10 0.07 0.16 0.13 0.20 0.04 0.20
0.11 0.17 0.10 0.15 0.12 0.13 0.14 0.08
0.07 0.13 0.10 0.14 0.09 0.02 0.41 0.04
0.16 0.08 0.02 0.17 0.05 0.23 0.06 0.23
0.07 0.12 0.20 0.17 0.22 0.21 0.01 0.00
0.07 0.15 0.25 0.10 0.18 0.03 0.21 0.01
0.14 0.07 0.20 0.14 0.10 0.10 0.07 0.18
0.10 0.19 0.07 0.22 0.11 0.03 0.14 0.14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now consider two partitions:

{{1, 2, 3, 4}, {5, 6, 7, 8}} and {{1, 2}, {3, 4}, {5, 6}, {7, 8}},
Clearly the latter partition is a refinement of the first. However, when we use P-lifting, the first
partition yields a KL divergence of 0.0019067, while the second partition yields a higher KL
divergence of 0.0308801.
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