
J. Fluid Mech. (2012), vol. 712, pp. 41–60. c© Cambridge University Press 2012 41
doi:10.1017/jfm.2012.393

Shape effects on turbulent modulation by large
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We investigate dilute suspensions of Taylor-microscale-sized particles in homogeneous
isotropic turbulence. In particular, we focus on the effect of particle shape
on particle–fluid interaction. We conduct laboratory experiments using a novel
experimental technique to simultaneously measure the kinematics of fluid and particle
phases. This uses transparent particles having the same refractive index as water,
whose motion we track via embedded optical tracers. We compare the turbulent
statistics of a single-phase flow to the turbulent statistics of the fluid phase in a
particle–laden suspension. Two suspensions are compared, one in which the particles
are spheres and the other in which they are prolate ellipsoids with aspect ratio 2.
We find that spherical particles at volume fraction φv = 0.14 % reduce the turbulent
kinetic energy (TKE) by 15 % relative to the single-phase flow. At the same volume
fraction (and slightly smaller total surface area), ellipsoidal particles have a much
smaller effect: they reduce the TKE by 3 % relative to the single-phase flow. Spectral
analysis shows the details of TKE reduction and redistribution across spatial scales:
spherical particles remove energy from large scales and reinsert it at small scales,
while ellipsoids remove relatively less TKE from large scales and reinsert relatively
more at small scales. Shape effects are far less evident in the statistics of particle
rotation, which are very similar for ellipsoids and spheres. Comparing these with fluid
enstrophy statistics, we find that particle rotation is dominated by velocity gradients on
scales much larger than the particle characteristic length scales.

Key words: homogeneous turbulence, particle/fluid flow, suspensions

1. Introduction
Particle–turbulence interaction is central to many natural and industrial processes,

such as sediment transport, plankton dynamics, combustion, and papermaking. Recent
studies have led to significant advances in predicting the dynamics of small particles
in high-Reynolds-number turbulence. These advances unite the classical theoretical
work of Stokes, Jeffery and Batchelor with the new capabilities enabled by direct
numerical simulation of turbulence. For particles smaller than the Kolmogorov length
scale (η), simulations can include point particles whose coupling with the fluid phase

† Email address for correspondence: bellani@mech.kth.se
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is described by the equations of Maxey & Riley (1983) for spheres, and Jeffery (1922)
for ellipsoidal particles.

Numerical studies using this point-particle approach have shown that even moderate
volume fractions (φv > 0.01 %) of small particles can affect the fluid-phase turbulence
(Squires & Eaton 1990; Elghobashi & Truesdell 1993; Elghobashi 2003; Ferrante
& Elghobashi 2004). Particles modulate turbulence by altering both the production
and dissipation of turbulent kinetic energy (TKE). This causes the TKE spectrum to
pivot, showing increased energy at large wavenumbers and decreased energy at small
wavenumbers. Such spectral pivoting has also been observed in laboratory studies
(Schreck & Kleis 1993; Geiss et al. 2004; Yang & Shy 2005; Poelma, Westerweel &
Ooms 2007).

The point-particle approach discussed above can no longer be applied when
suspended particle sizes approach or exceed the Kolmogorov length scale (Balachandar
& Eaton 2010). In such cases, there is no longer a scale separation between the
turbulence and particle size scales. As the community works to address the more
complicated case of large particles, there is a need for high-resolution laboratory
measurements and numerical simulations to identify the mechanics of interphase
coupling.

1.1. Finite-size effects
The analysis of finite-size particles is complicated because particles are large enough
that the ambient turbulence cannot be approximated as simple (linear) shear (Qureshi
et al. 2007). Furthermore, inertia might become important in the flow around the
particle, so that the Stokes flow assumption might not be valid (e.g. see recent work of
Calzavarini et al. 2012, and references therein).

Taylor-microscale-sized spherical particles have been investigated in detail using
numerical simulations by Burton & Eaton (2005), Lucci, Ferrante & Elghobashi (2010)
and Yeo et al. (2010), as well as by Bagchi & Balachandar (2003) for fixed particles.
These simulations resolved the details of the three-dimensional unsteady wake around
each particle as it responded to the ambient turbulent velocity field. Results showed
that wakes were always in a transient state, and yielded larger average strain rates
near the particles than would be found in a single-phase turbulent flow. This additional
strain influences the TKE budget in two competing ways: increasing shear production
of turbulence and increasing viscous dissipation. The work by Burton & Eaton (2005),
Lucci et al. (2010) and Tanaka & Eaton (2010) all showed a net decrease in TKE.

For finite-size particles, the Stokes number no longer serves as a single parameter
which collapses the dynamics, see for example the work by Eaton (1991), Kim,
Elghobashi & Sirignano (1998), Ouellette, O’Malley & Gollub (2008), Saw et al.
(2008), Xu & Bodenschatz (2008), Eaton (2009) and Lucci et al. (2010). This
is because the effects of particle size and inertia become decoupled when particle
diameter exceeds η, since the particle boundary directly alters the local velocity field
through the no-slip and impermeability conditions. Indeed Lucci et al. (2010) show
that particles with the same Stokes number but different sizes have different effects on
turbulence. They find that separate parameters should be used to describe the particle
inertia and size independently. Specifically, they suggest that total surface area is the
most relevant parameter to describe size effects.

1.2. Non-spherical particles
The studies mentioned above focus on spherical particles, as do the vast majority
of investigations. However, non-spherical particles are also of practical concern in
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numerous scientific and engineering areas. The most common non-spherical particles
considered in the literature are polymers. Results for long-chain flexible polymers
include drag reduction and spectral pivoting (see Virk et al. 1967; Benzi et al. 2005;
Liberzon et al. 2005). In this paper, we focus on the case of slightly aspherical
non-deformable particles. These have been less well-studied, but are important for
environmental engineering, e.g. sediment transport (Garcia 2008), pollen dispersion
(Sabban & Van Hout 2011), and plankton dynamics (Jumars et al. 2009), as well as
industrial applications, e.g. paper pulp (Lundell, Söderberg & Alfredsson 2010).

The dynamical behaviour of non-spherical particles is more complicated than
that of spheres; for example, drag forces and torques depend on particle Reynolds
number and instantaneous particle orientations. In quiescent flow, this effect can give
rise to particle aggregation by differential settling, an effect that is not found for
monodisperse spheres (Koch & Shaqfeh 1989). Compared to spheres, non-spherical
particles also exhibit additional mechanisms that couple translation and rotation.
These mechanisms include the minor-axis instability described by the ‘tennis racket
theorem’ in solid mechanics, and orientation-dependent wake structures that can be
significantly different from those of spheres (see Loth 2008, and references therein).

As a result of these complications, particle relaxation time scales differ between
spherical and aspherical particles. Furthermore, aspherical particles have multiple
orientation-dependent relaxation times, although for some particular orientation
distributions a relaxation time scale can be defined (see Zhang et al. 2001). While
particle relaxation time scales typically refer to translational motion, particles also
have rotational relaxation times. Mortensen et al. (2007) have shown that the rotational
response time of spheres is one third of the translational response time. For non-
spherical particles the relaxation time strongly depends on the axis about which the
particle rotates, complicating the definition of a single response time.

To investigate the rotational motion of non-spherical particles, one can use the
analytical expressions of Jeffery (1922) which give the torque experienced by non-
inertial ellipsoids in creeping shear flow. Based on this solution several numerical
simulations of ellipsoidal particles in turbulent channel flows have been performed
(e.g. Zhang et al. 2001; Mortensen et al. 2008a,b). Their simulations show that, in
the near-wall region, ellipsoidal particles tend to align with the mean flow direction,
whereas in the core of the channel the orientation tends to be more isotropic. The
alignment in the near-wall region increases with increasing particle aspect ratio and
inertia. Recent work of Lundell (2011) on inertial ellipsoids has shown that particle
inertia can lead to chaotic rotational behaviour even in creeping flow.

When non-spherical particles are large, Jeffery’s equations might fail to accurately
describe their dynamics, due to significant inertial effects. There are currently very
few studies on finite-size, inertial, non-spherical particles. Loth (2008) surveyed and
organized a diverse collection of analytical and empirical results describing drag
on non-spherical particles; the work of finding such relationships continues, e.g. in
the recent direct numerical simulation (DNS) studies by El Khoury, Andersson &
Pettersen (2010) and Zastawny et al. (2012). Turbulence in the ambient flow adds
an additional layer of complexity by altering wake structure and the distribution of
particle orientations. For the case of spherical particles, the influence of ambient
turbulence on wake structure has been well-studied (e.g. Clamen & Gauvin 1969;
Bagchi & Balachandar 2003, 2004; Moradian, Ting & Cheng 2009). To our
knowledge, the dynamics of non-spherical finite-size particles freely moving in
turbulence has not yet been experimentally investigated.
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FIGURE 1. Experimental setup. Each of the 16 clusters seen in the pump array photo (a) has
four synthetic jets, and the jets make an 8× 8 Cartesian grid. (b) The origin and orientation of
the coordinate system, and the laser sheet which defines the plane in which measurements are
made.

1.3. Present work
To understand the dynamics of large, inertial, non-spherical particles in turbulent flow,
we have developed an experimental technique with which we can simultaneously
measure the angular velocity of arbitrarily shaped particles and the velocity field in the
surrounding fluid. We use this technique to study the interaction of large (Taylor-scale)
spherical and non-spherical particles in homogeneous isotropic turbulence (HIT). For
both ellipsoids and spheres, we measure the effects of the particles on the turbulent
flow (e.g. spectral pivoting) and the angular velocity statistics of the particles. We
work with particles that are very near neutral buoyancy (specific gravity = 1.02) so
that we can translate the results to particles of environmental interest: plankton and
cohesive sediment aggregates (‘flocs’).

In § 2 the experimental facility, particles, and measurement methods are presented.
In § 3 single-phase flow measurements are discussed. Results for turbulent modulation
by particles are given in § 4 and statistics of particle rotation rates in § 5. In § 6 the
results are discussed. Finally, conclusions are summarized in § 7.

2. Experimental method
2.1. Turbulence tank

Experiments are performed in a rectangular tank of dimensions 80 cm × 80 cm ×
162 cm. The tank is filled with tap water, which is filtered to 5 microns and purified
by a flow-through UV filter when experiments are not being run. The origin of
the coordinate system is at the centre of the tank, z is oriented along the longest
dimension of the tank, and y is vertical (as shown in figure 1b). The instantaneous
velocity vector U(x, y, z, t)= (U,V,W) is defined so that U,V and W are aligned with
the x-, y- and z-axes, respectively.

Turbulence is generated by two arrays of pumps located at both ends of the tank,
in x–y planes at z = 81 cm and z = −81 cm. Each pump array has 64 individual
pumps (see figure 1a) that are triggered in a random sequence. The pumps follow
a randomizing algorithm developed by Variano & Cowen (2008) that maximizes the
shear production of turbulence. The test section is in the tank centre, surrounding the
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plane of symmetry between the pump arrays. This symmetry is a primary contributor
to isotropy in the flow; the other main contributor is the use of a stochastic stirring
pattern. By preventing mean velocity gradients from persisting, the stochastic stirring
greatly reduces tank-scale circulation. Such circulation is an unwanted effect of any
turbulence generation method. By reducing the tank-scale circulation, the flow we
measure has a mean velocity close to zero.

In addition to large-scale isotropy, this turbulence tank has a large homogeneous
region in the tank centre. The size of this region is estimated as 30 cm×30 cm×30 cm
(see Variano & Cowen 2008; Bellani 2011 for more details). This region is much
larger than the turbulent integral length scale (≈7 cm), which means that the flow
statistics measured there will be unbiased by spatial gradients, even in the most
energetic turbulent events. Furthermore, particle statistics measured in this test section
will accurately represent the effects of homogeneous isotropic turbulence, and not
include the signature of flows in other regions of the tank. This can only be
accomplished with a large homogeneous region because particle motion depends in
part on the history of the flow. Any particle in the measurement domain will have
already travelled through a large region of homogeneous turbulence identical to that in
the test section, and thus the motion we measure will reflect this flow exclusively.

The Reynolds number achieved here is Reλ ≈ 270 (defined with respect to the Taylor
microscale) or equivalently ReΛ ≈ 1500 (defined with respect to the integral length
scale). This Reynolds number is high enough to establish a clear inertial subrange in
the two-point fluid velocity statistics. The details of the flow will be discussed further
in § 3.

2.2. Particles
Particles are made of a hydrogel that is 99.5 % water (Agarose 5 g l−1), and they are
manufactured by injection moulding. This particular hydrogel solution has been chosen
so that particles are near neutrally buoyant and have a refractive index very close
to the surrounding water. The index of refraction is 1.337 at 20 ◦C, and the density
ρp = 1020 kg m−3.

Two shapes are considered here: spheres of diameter ds = 8 mm, and prolate
ellipsoids whose polar and equatorial axes are le = 16 and de = 8 mm, respectively.
These particle sizes were chosen to correspond to eddy sizes in the inertial subrange.
While the particles do not follow Stokes flow in our experiments, we compute a
Stokes-based response time as a point of reference. Particle response time can be
defined in two ways, both of which use the Stokes model for drag on a sphere in
creeping flow. The first method considers that particles in a uniform steady flow are
predicted to exponentially approach steady-state velocity with characteristic time scale
τp(1) = ρpd2

s /18µ, where µ is fluid viscosity. The second method is to normalize the
particle terminal velocity (in a quiescent fluid) by gravitational acceleration, giving
τp(2) = (ρp − ρf )d2

s /18µ, where ρf is the fluid density. The two definitions become
equivalent when ρp � ρf , but diverge notably for near-neutrally buoyant particles.
Herein we use the first definition, and note that for neutrally buoyant particles, τp(1) is
the time scale of exponential approach to the ambient fluid velocity, while τp(2) = 0.

The spherical particles have τp,s = ρpd2
s /18µ = 3.64 s. The Stokes-based response

time of the ellipsoidal particles is computed using the expression derived by Zhang
et al. (2001) for randomly oriented ellipsoidal particles:

τp,e = τp,sλ
log(λ+√λ2 − 1)√

λ2 − 1
, (2.1)
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35° 35°

Camera 1 Camera 2 Tilting adapters

Prisms

FIGURE 2. Imaging setup for stereoscopic PIV. Solid line indicates laser light-sheet.

where λ= le/de is the particle aspect ratio and τp,s is the relaxation time of a sphere of
diameter de. In this case, λ = 2, which gives τp,e = 1.5τp,s = 5.46 s. For large particles
that do not passively follow the flow, the slip velocity (and thus particle Reynolds
number) can be defined in a variety of ways (e.g. see Xu & Bodenschatz 2008; Lucci
et al. 2010; Calzavarini et al. 2012). We compute particle Reynolds number using the
fluid-phase turbulent velocity scale u′ = (urms+ vrms+wrms)/3 (as in Xu & Bodenschatz
(2008)), and the particle diameter. For the ellipsoidal particles, we use the diameter
of the sphere that has the same average Stokesian response time as an ensemble of
randomly oriented ellipsoids (Clift, Grace & Weber 1978). The corresponding values
of particle Reynolds number are reported in table 2 below. If particles are not entirely
passive, then this velocity scale may be an overestimate; we investigate the issue of
particle slip velocity in Bellani & Variano (2012).

2.3. Measurement technique and phase discrimination
Simultaneous fluid- and particle-phase velocity measurements are performed using
stereoscopic particle-image velocimetry (PIV). Two cameras (Imager PRO-X, 1600
× 1200 pixels, both fitted with a 50 mm Nikkor lens and Scheimpflug/tilt
adapter) view a 1 mm thick laser light sheet, capturing a measurement volume of
14 cm × 8 cm × 0.1 cm centred in the tank. They view the measurement area from
opposite sides, each at an angle of 35◦ relative to the laser’s forward-scatter direction.
To avoid image distortion by the air–glass–water interface at the tank walls, two 35◦

prisms filled with water are attached to the walls (see figure 2).
The images we collect simultaneously capture the particles, tracers embedded within

the particles, and passive tracers within the fluid phase (10 µm silver-coated glass
spheres). A particular challenge in this setup is to match the imaged intensity of the
fluid-phase tracers and the tracers embedded in the particles. This is accomplished
through careful choice of the viewing angle (35◦), viewing orientation (forward-
scatter), tracer size, tracer coating, laser power, camera aperture, and angle of linear
polarizing filters. Figure 3(a) shows a typical image where both fluid tracers and a
large particle are visible. Differences in background intensity allow us to isolate the
particle phase from the fluid phase, and perform analysis separately on each phase (see
figure 3b).

Stereoscopic PIV applied to the images provides two-dimensional arrays of three-
dimensional velocity vectors, with 61 × 109 measurement points equally spaced by
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FIGURE 3. (a) Large spherical particle moving freely in turbulence. The tracers embedded
in the particle can be distinguished above the higher background intensity in the particle. (b)
Output of PIV measurements in the fluid and the particle phase. In the fluid phase, the grey
scale indicates the magnitude of the out-of-plane velocity component, whereas the streamlines
are based on the in-plane components. In the particle, arrows show velocities measured by
following tracers embedded in the solid body.

1.3635 mm grid sizes. This grid spacing is approximately equal to the laser sheet
thickness. Statistics of the flow field are computed from at least 510 independent
velocity fields acquired at 0.5 Hz (which corresponds to 17 min or 378 eddy turnover
times). Statistics for the particle-laden cases are computed from 680 vector fields;
this increase relative to the single-phase case compensates for reduced fluid-phase
data when particles are present. For all cases, we confirm that the amount of data is
sufficient to provide converged statistics.

We create particle suspensions by dispersing 1.5 l of particles in the 1037 l volume
of the turbulence tank. This gives a volume fraction of φv = 0.14 %. For this volume
fraction, the suspension regime is considered dilute, which means that particle–particle
interactions can be neglected (Elghobashi 1994). We use the same volume fraction for
both spheres and ellipsoids, thus the number density of ellipsoids is half that of the
spheres, and the total surface area of spheres in the tank is 17 % larger than that for
ellipsoids.

2.4. Rotation measurements
We calculate the angular velocity of particles from the vector field within each particle
and the equation of solid-body motion. The angular velocity Ω can in principle be
determined from the velocity measured at any two locations XM and XN within a
particle:

UN = UM +Ω × (XN − XM). (2.2)

Stereoscopic PIV provides the necessary values UM, UN , XM and XN . However, since
all points M and N are located in the same plane (z = 0), (2.2) is over-determined
in Ωz and under-determined in Ωx and Ωy. Hence, to solve the system we need at
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least three non-aligned points. By including a third point P in the analysis, all three
components of Ω can be determined according to the system

UN

VN

WN

UM

VM

WM


=



UM

VM

WM

UP

VP

WP


+



0 0 −(YN − YM)

0 0 −(XN − XM)

(YN − YM) (XN − XM) 0
0 0 −(YM − YP)

0 0 −(XM − XP)

(YM − YP) (XM − XP) 0


·

Ωx

Ωy

Ωz

 . (2.3)

Solving this equation gives one measurement of Ωx, one of Ωy, and four
measurements of Ωz; we take the mean of the four estimates as our estimate of
Ωz.

For each particle measured in this experiment, we obtain the velocity of significantly
more than three interior points. These additional data are used to improve precision
and accuracy in the measured Ω . We do this by calculating a value of Ω using
every possible triplet of points M, N and P where PIV data were available. From
this ensemble of estimates of Ω we take the median as the best estimate of Ω ,
and the standard deviation as the uncertainty on Ω . A global optimization based on
singular-value decomposition was also tested, and performed less well when compared
to known rotation values. These results, and the related benchmark tests, are discussed
in work in preparation by three of the present authors (Meyer, Collignon and Variano).

We also note that this measurement technique is optimized for computing the
rotational, rather than translational, component of particle motion. Future extensions
of this technique will allow analysis of translation statistics such as slip velocities and
particle Reynolds number.

3. Single-phase measurements
We begin by investigating a single-phase turbulent flow without suspended particles,

which will serve as a base case. The velocity statistics measured in this single-
phase flow are summarized in table 1. The probability density function (p.d.f.) of
fluctuating velocities is shown in figure 4. These results indicate large-scale isotropy,
as the p.d.f. is not skewed and all three velocity components have the same variance.
Figure 4 also shows the super-Gaussian behaviour of fluctuating velocities often seen
in turbulence (e.g. Tsinober 2004). The spatial distribution of velocity statistics (not
shown) demonstrates homogeneity in x and y.

We decompose velocity into a temporal mean U(x) and a fluctuating component
u′(x, t), with the magnitude of the turbulent velocity fluctuations defined as urms(x) =√
u′ (x, t)2. The overbar denotes the linear time-average operator, and herein is

considered equivalent to the expectation value 〈·〉 by ergodicity.
The mean flow is one order of magnitude smaller than the turbulent velocity

fluctuations. Quantitatively, we compare the mean flow kinetic energy M2 = U
2 +

V
2 +W

2
to the turbulent kinetic energy (TKE) k = 1

2(u
2
rms + v2

rms + w2
rms) and compute

the quantity I =M/
√

2k = 0.079± 0.053.
Longitudinal variations in fluctuating velocities are used to calculate two-point

statistics, from which we find dissipation rate, integral length scale, and power spectra.
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FIGURE 4. Probability density functions of the U (◦–), V (�- -) and W (4· -) velocity
components in dimensional (a) and normalized (b) form. In (b), the solid line is a normal
distribution φn = (1/

√
2π)e−ξ

2/2, and the y-axis has a logarithmic scale to highlight the
behaviour of the tails.

Mean flow magnitude M ≡
√

U
2 + V

2 +W
2

0.3 ± 0.2 (×10−2 m s−1)

Velocity fluctuations in x
√

u2
rms 2.02 ± 0.04 (×10−2 m s−1)

Velocity fluctuations in y
√
v2
rms 2.05 ± 0.04 (×10−2 m s−1)

Velocity fluctuations in z
√

w2
rms 2.50 ± 0.06 (×10−2 m s−1)

Turbulent kinetic energy k = 1
2 (u

2
rms + v2

rms + w2
rms) 7.2 ± 0.1 (×10−4 m2 s−2)

Mean flow to turbulence ratio I =M/
√

2k 0.079 ± 0.053

Longitudinal integral
length scale

Λx 71.7 (×10−3 m)

Taylor microscale λx 12.2 (×10−3 m)
Eddy turnover time T =Λx/urms 3.3 (s)
Dissipation rate (from λx) ε = 15ν u2

rms/λ
2
x 4.83 (×10−5 m2 s−3)

Kolmogorov time scale τη = (ν/ε)1/2 0.14 (s)
Kolmogorov length scale η = (ν3/ε)

1/4 0.38 (×10−3 m)
Reynolds number (based on Λx) ReL = (Λxurms)/ν 1577
Reynolds number (based on λx) Reλ = (λxurms)/ν 269

TABLE 1. Flow statistics from single-phase measurements. The parameters denoted by
the overbar are average quantities over the entire measurement domain, and the intervals
correspond to the 95 % confidence intervals. The integral length scale and the Taylor
microscale are computed from the longitudinal two-point correlation, from which the
dissipation rate and the Kolmogorov scales are computed using the definitions given in
Pope (2000). ν, kinematic viscosity (µ/ρ, where µ is dynamic viscosity).
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FIGURE 5. Longitudinal autocovariance R11 (a) and correlation function f (b). The dashed
line shows the standard error.

Central to these analyses is the autocovariance:

R11(x, t, δx)= 〈u′(x, t)u′(x+ δx, t)〉, (3.1)

where δx is a variable separation in x. The average of R11 over space is shown in
figure 5(a). By introducing the autocorrelation function f (δx) = R11(δx)/u2

rms (shown in
figure 5b) we can compute the integral length scale Λx = limL→∞

∫ L
0 f (δx) dδx. Here

L is limited by the length of the measurement domain, and is equal to 140 mm.
However, for the single purpose of computing the integral length scale we have
extrapolated the values of f to δx = 420 mm using an exponential fit to the last third
of the data, so that the integral length scale Λx = 71.7 mm is estimated by integrating
over a domain of ∼6Λx.

The Taylor length scale λx and dissipation rate ε are related by ε = 15νu2
rms/λ

2
x in

high-Reynolds-number homogeneous isotropic turbulence. We determine these values
in two ways. First, we calculate λx from the autocorrelation function as λx =
[−0.5f ′′(0)]−0.5. Second, we compute ε from the slope of the second-order structure
function. The two approaches show a good agreement, giving ε ≈ 0.5 cm2 s−3. The
turbulent scales that follow from ε are summarized in table 1.

Following Pope (2000), we can define the longitudinal wavenumber spectrum E11(κ)

as:

E11(κ)= 2
π

u2
rms

∫ ∞
0

f (δx) cos(κδx) dδx. (3.2)

Particular care is needed when computing spectra from a window of finite size (length
L) such as in PIV measurements (where δx ∈ [0,L]). This is because spectral distortion
can occur due to side-lobe leakage (Bendat & Piersol 2010). In order to suppress
that, before computing the spectrum according to (3.2), the correlation function
is premultiplied by a tapering function at(δx) that declines linearly from at(0) = 1
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FIGURE 6. Longitudinal spectrum calculated using (3.3). The dashed lines show the
magnitude of the random error for the spectral estimate.

to at(L)= 0. Thus E11 is computed as:

E11(κ)= 2
π

u2
rms

∫ L

0
at(δx) f c(δx) cos(κδx) dδx, (3.3)

where f c(δx) is the circular correlation function. From a mathematical point of view,
(3.3) is equivalent to computing the spectrum from:

E11(κ)= 1
Nt

Nt∑
i=1

(
1
L

X∗i (κ)Xi(κ)

)
, (3.4)

where Xi(κ) is the Fourier transform of u′(x, ti). Although estimating the spectra from
(3.4) is computationally more efficient, it requires the interpolation of the missing
vectors in the velocity field, which can cause significant distortion if the number of
interpolated vectors is larger than 10 % of the total (see Poelma, Westerweel & Ooms
2006). This is usually not a problem for single-phase measurements, where typically
the number of missing vectors is lower than 5 %; however the distortion can become
significant when analysing the particle-laden flow, due to the large gaps in the fluid-
phase velocity fields created by the particles (in our measurements on the order of
10 % of vectors are blocked by particles). Instead, computing the two-point correlation
does not require any interpolation of the velocity fields, thus here we compute the
spectra using (3.3).

The one-dimensional power spectrum is shown in figure 6. The spectrum shows
a power-law decay with −5/3 slope which extends for more than one decade. The
exponential decay range begins near κη < 0.1, as predicted by the K41 theory for
Reλx = 270 (see the model spectrum in Pope 2000). Uncertainty in the spectrum will
be important when evaluating the effect of particles. This can be quantified by the
relative random error er = √1/Nt, where Nt = 510 in our case giving a random error
of ∼5 %.
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Single phase Spheres Ellipsoids

Particle aspect ratio — 1 2
Volume fraction φv 0 0.0014 0.0014
(dp, lp)/η — 21, 21 21, 42
(dp, lp)/λx — 0.65, 0.65 0.65, 1.3
(dp, lp)/Λx — 0.11, 0.11 0.11, 0.22
τp/τη — 26 39
τp/T — 1.1 1.6
Rep = u′dp/ν — 175 229

TABLE 2. Definition of the three experimental cases and key governing geometric and
kinematic parameters.

Single phase Spheres Ellipsoids

Mean flow magnitude, M
(×10−2 m s−1)

0.3 ± 0.2 0.5 ± 0.2 0.4 ± 0.2

TKE, k (×10−4 m2 s−2) 7.2 ± 0.1 6.2 ± 0.1 7.0 ± 0.1
TKE variation relative to

single phase (%)
0% −15 % −3 %

urms (×10−2 m s−1) 2.01 1.94 2.02
vrms (×10−2 m s−1) 2.05 1.87 2.02
wrms (×10−2 m s−1) 2.5 2.29 2.44
Skewness of u 0.01 0.03 0.16
Skewness of v 0.15 0.23 0.05
Skewness of w 0.10 0.26 0.27
Flatness of u 3.80 3.74 4.75
Flatness of v 3.63 3.96 3.68
Flatness of w 4.62 5.43 5.59

TABLE 3. Summary of single-point fluid-phase velocity statistics for the three cases.

4. Turbulence modification by particles
Here we compare the dynamics of particle-laden flows with the single-phase flow. A

key goal is to measure the effect of particle shape on turbulence modulation. Thus we
hold volume and mass fraction of the suspension constant while varying the particle
shape. Physical and geometrical characteristics of the particles have been described
in § 2.2. A summary of the governing parameters for the three cases (single phase,
spherical and ellipsoidal particle-laden) is shown in table 2.

4.1. Effect of particles on one-point statistics
In table 3 the turbulent statistics of the fluid phase are shown for both particle
suspensions and single-phase flow. Homogeneity and isotropy of the flow are not
notably affected by the particles. Most notably, the turbulent kinetic energy (averaged
over space) is decreased in both particle-laden cases. Spherical particles provide a
15 % reduction of TKE, while only a 3 % reduction is observed for ellipsoidal particles.
The TKE modulation observed in the measurement volume is due to the integrated
effects of particles throughout the stirred tank. That is, particles affect production
and dissipation of TKE everywhere, which in turn alters the TKE flux into the
measurement volume. Thus the results reported herein are for a range of turbulent
Reynolds numbers (ReT), albeit a narrow range due to the tank’s high degree of spatial
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FIGURE 7. Longitudinal autocovariance R11 (a) and correlation function f (b) for the three
cases. For clarity, only every fourth data point is shown for the particle-laden cases.

homogeneity. Future measurements can more precisely isolate single values of ReT by
observing spatial or temporal decay patterns, as discussed in Poelma et al. (2007) and
Lucci et al. (2010).

One advantage of the experimental method used herein is that TKE production is
spread over a wide range of spatial scales. This prevents the turbulence generation
mechanism from obscuring the effects of turbulence modulation by suspended
particles, which is a common risk in DNS of steady-state turbulence, as discussed
in Lucci et al. (2010).

4.2. Two-point statistics and spectra
More information about the structure of turbulence can be obtained by considering the
velocity autocorrelation function and power spectrum. These are computed following
the procedure described in § 3, and are shown in figures 7 and 8.

Figure 7(a) shows the longitudinal two-point correlation in dimensional form so
that the difference in energy between the three cases can be observed. As already
discussed, both particle-laden cases have a lower variance than for the single phase.
The autocorrelation function is shown in figure 7(b). The difference between these
curves can be more easily evaluated by transforming them to power spectra.

The longitudinal power spectra are shown in figure 8; for both cases, particle-laden
flow has less TKE than single-phase turbulence at small wavenumbers, and more at
large wavenumbers. Of these two effects, the TKE deficit at small wavenumbers is
greater in magnitude than the excess TKE at large wavenumbers (note logarithmic
axis). This results in flatter slopes for both particle-laden cases than for single-phase
flow. Such pivoting has also been observed in experiments by Schreck & Kleis (1993),
Geiss et al. (2004), Yang & Shy (2005) and Poelma et al. (2007). We interpret
the observed pivoting using the phenomenology described by Lucci et al. (2010)
and Tanaka & Eaton (2010). This would predict that both particle types alter the
turbulent cascade by generating shear at particle surfaces. In our data, the two particle
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Single phase
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FIGURE 8. Energy spectrum for single-phase (solid line), spherical particles (◦) and
ellipsoidal particles (4).

10–3

10–2

10–1

0–5 5
10–4

100

FIGURE 9. Fluid-phase velocity p.d.f.s for the three cases and the normal distribution
(dashed line)

types appear to have different effects on the turbulent cascade, and thus the turbulent
spectrum. Ellipsoids appear to remove energy from large-scale motions and re-inject
almost all of it at smaller scales. Spheres apparently remove even more energy from
large scales, and inject relatively less back into small scales. This results in the
significant TKE decrease observed in the spherical-particle case.

Another useful comparison can be made by looking at the velocity p.d.f.s (figure 9).
Here the main difference occurs in the tails, for |ξ | > 3, as the tails for the spherical
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100

0 0.5 1.0 1.5 2.0 2.5 3.0

FIGURE 10. Particle rotation p.d.f.s (symbols) and fluid enstrophy p.d.f.s (lines). Ω2
z is

shown for spheres (◦) and for ellipsoids (4). ω2
z computed from velocity fields filtered at λc:

1.33 mm (−); 4 mm (·); 8 mm (− · −); 16 mm (−−).

µ (rad2 s−2)

ω2
z filtered at λc = 1.3 mm 11.116 11.146 11.17

ω2
z filtered at λc = 4 mm 5.676 5.686 5.69

ω2
z filtered at λc = 8 mm 3.116 3.126 3.13

ω2
z filtered at λc = 16 mm 1.306 1.316 1.32

Ω2
z spheres 0.266 0.316 0.34

Ω2
z ellipsoids 0.186 0.236 0.28

TABLE 4. Expected values (µ) of Ω2
z and ω2

z /4 with their respective 95 % confidence
intervals.

particle case seem to decay slightly faster than the others. This means that rare,
high-speed events are dampened by the presence of spherical particles, far more than
by ellipsoids, which instead tend to be closer to the single-phase measurements.

5. Particle rotation
We compute particle rotation statistics from 819 independent measurements of

spheres and 513 of ellipsoids. For each measurement we determine the instantaneous
rotation rate vector Ω = (Ωx,Ωy,Ωz) as explained in § 2.4. Statistics of Ω shown on
table 4 and figure 10 are very similar for both particle types, which is surprising given
their different impact on fluid-phase turbulence.

To better understand the cause of observed Ω values, we compare particle rotation
and fluid velocity gradients. We compute fluid enstrophy ω2 (where ω = ∇ × U) from
the PIV data and compare its statistics to that of particle rotation rates. Owing to their
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finite size, we can expect that particles do not respond to velocity gradients smaller
than their characteristic dimensions, hence it is necessary to analyse fluid enstrophy
at different length scales. Here we obtain enstrophy statistics from velocity fields
smoothed with a Gaussian filter with four cutoff wavelengths: λc = 1.3 mm (spatial
resolution of the raw data), 4 mm (half particle diameter), 8 mm (sphere diameter
and ellipsoid minor axis), and 16 mm (ellipsoid major axis). Planar PIV allows us to
extract only one component of the fluid enstrophy (ω2

z ), thus we compute this and
compare it to the z-component of particle rotation (Ωz).

The means of Ω2
z and ω2

z/4 (to keep notation simple, we skip the factor of 4
from now on, so all statistics of ω2

z are intended to be statistics of ω2
z/4), with their

respective 95 % confidence intervals, are shown in table 4. The mean and standard
deviation of ω2

z decrease monotonically as the cutoff wavelength increases but are
higher than the average rotation rates of both spherical and ellipsoidal particles. In
figure 10 we plot the p.d.f.s of Ωz of both spherical and ellipsoidal particles together
with the p.d.f.s of the fluid enstrophy computed from the filtered velocity fields. The
similar rotational dynamics of the two types of particle shapes is evident from this plot.
Interestingly, p.d.f.s for both particle shapes do not match the p.d.f. of fluid enstrophy
computed from velocity fields filtered at the particle scale. To match the curves, we
would need fluid enstrophy computed for velocity fields smoothed with a filter with a
much larger wavelength than the particle dimensions.

Reduced r.m.s. of particle rotation rates compared to r.m.s. of fluid rotation rates
has been reported in a recent numerical study by Zhao & Andersson (2011) for small
heavy particles. They showed that this reduction is due to two effects: preferential
concentration in low-vorticity regions and the time-lagged response of the particles
to ambient flow. Either of these two effects is possible in our flow, as well as a
third: the large size of the particles effectively filtering out the effect of small-scale
high-vorticity fluid motion, as discussed above. It is not yet known whether large
near-neutrally buoyant particles can show preferential concentration, and the current
study can neither confirm nor rule out the presence of this effect. The effect of time
lag is certainly present for the flow measured here. To examine this effect, we compute
the particle rotational relaxation time and compare it to the characteristic time scale of
vortices at the particle scale.

We estimate the particle rotational relaxation times τr as one third of the relaxation
time for translation (see Zhao & Andersson 2011, for the derivation of τr). This yields
τr = 1.21 s for spheres and τr = 1.76 s for ellipsoids. The time scale of vortices at the
particle size is computed as τ(dp) = (d2

pε
−1)

1/3 and equals 1.09 s based on the sphere
diameter and 1.72 s based on the ellipsoid polar diameter. Thus the time scales of fluid
motion at the particle scale are very similar to the particle rotational relaxation time,
and about one third of the particle translational relaxation time. This relatively slow
reaction time implies that particle rotation is set by fluid motions at large spatial scales,
as these motions have time scales similar to the particle relaxation time. In contrast,
fluid motions at the particle scale do not persist long enough for the particle to come
to equilibrium with their (relatively higher) vorticity.

6. Discussion
Recent studies on large spherical particles suggest that turbulence modulation is

governed by the particle inertia and the total wetted surface area in the particle phase
(Lucci et al. 2010; Tanaka & Eaton 2010; Lucci, Ferrante & Elghobashi 2011). The
data presented in the previous sections suggest that shape can also play an important
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role in turbulence modulation. We find it more likely that the difference in TKE
reduction between ellipsoidal and spherical particles is caused by shape-dependent
differences in particle dynamics, than by relatively small differences in total surface
area or particle inertia in our experimental setup.

To understand the mechanism of shape sensitivity in turbulence modulation, we
consider two possible explanations for the observed 15 % reduction in TKE by
spheres, which far exceeds the 3 % reduction caused by ellipsoids. Hypothesis (i)
is that ellipsoids tend to align preferentially with the principal axis of fluid strain,
in such a way that they cause very little additional dissipation relative to the single-
phase case. Hypothesis (ii) is that ellipsoids produce wakes and that these wakes are
more energetic than those produced by spheres, such that ellipsoids increase the total
amount of TKE production in a flow more than spheres do.

Inspection of the p.d.f. tails in figure 9 lends support to hypothesis (i), as it shows
that extreme velocity events are not affected by ellipsoids, but are significantly damped
by spheres. We consider this indicative of a process in which spheres cause additional
dissipation, rather than ellipsoids causing additional production. However, preliminary
data on fluid statistics conditioned on distance to the particle boundary show that TKE
enhancement near the particle surface is greater in the case of ellipsoids than spheres,
thus supporting hypothesis (ii). A detailed analysis of the flow gradients around the
particles would advance these lines of inquiry by allowing us to more directly quantify
the production and dissipation mechanisms present in particle wakes. This requires
data at a finer spatial resolution than presented here, which instead has been optimized
to measure global effects on turbulence modulation. Hence, the analysis of velocity
gradients is left as future work.

The observation that particle shape has no measurable effect on particle rotation
statistics is rather surprising. We explain it through the evidence that spheres and
ellipsoids respond primarily to velocity gradients on scales much larger than their
characteristic size. This implies that the particles are not responding to those scales
that include shape-dependent local flow modifications. Further analysis of this issue
will include forthcoming data that capture Lagrangian time series of particle rotation.

7. Conclusions
We report an experimental technique with which we simultaneously measure

rotation rates of arbitrarily shaped particles and the velocity field in the surrounding
fluid. This provides experimental data heretofore only available from DNS, particularly
the particle rotation rates.

We establish a turbulent flow which is homogeneous and isotropic at high Reynolds
number, and use this to understand the effects of particles suspended in the flow. The
main goal of this work is to evaluate the effect of particle shape on turbulence–particle
coupling. To this end, we measure both spherical particles and prolate ellipsoids with
aspect ratio 2. For relevance to environmental applications, we use particles that are
nearly neutrally buoyant and roughly equal in size to the Taylor microscale, i.e. in
between the largest and smallest scales in the turbulent inertial subrange.

We find that spherical particles provide a 15 % TKE reduction relative to a flow
without particles. This is a much larger impact than shown by the ellipsoidal particles,
which cause a reduction of only 3 %, despite having the same volume fraction and
nearly the same total surface area as spheres. The reason for this lies in the details of
the flow near the particle surface, which lead to changes in production and dissipation
of TKE, as well as redistribution of TKE across scales. Our spectral analysis indicates
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that spheres remove TKE from large scales and reinsert significantly less at smaller
scales, while ellipsoids shift TKE from large scales to small scales without much net
loss. Ellipsoid preservation of TKE may indicate that they have a negligible effect
on production and dissipation, or that their additional production and dissipation are
nearly in balance. Fluid-phase velocity p.d.f.s indicate that ellipsoids do not alter
the likelihood of extreme velocity events, while spheres make such occurrences less
frequent.

We compute statistics of particle rotation rates and compare these to fluid enstrophy
statistics, from which two main conclusions are evident: (i) rotation rate statistics
of spheres and ellipsoids are nearly equivalent; (ii) for the parameters studied here,
rotational dynamics of spheres and ellipsoids are determined by velocity gradients
occurring on a larger scale than their physical size.
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