
Organised Sound 9(2): 137–150 © 2004 Cambridge University Press. Printed in the United Kingdom. DOI: 10.1017/S1355771804000226

Musical pattern generation with
variable-coupled iterated map networks

BRET BATTEY

Center for Digital Arts and Experimental Media, University of Washington, Seattle, WA 98195, USA
E-mail: bbattey@u.washington.edu
URL: http://www.BatHatMedia.com/

This paper introduces the concept of variable-coupled
iterated map networks and explores its application to
generation of musical textures. Such networks consist of one
or more interlinked nodes. Each node consists of an iterated
map function with a time-delay factor that schedules
successive iterations. The value broadcast by a node can drive
the variables and time-delay factor of any other nodes in the
network, including itself. Lehmer’s Linear Congruence
Formula, an iterated map normally used for production of
pseudo-random numbers, is explored for its own potential as
a pattern generator and is used as the iterated map in the
nodes in the examples presented. The capacity of these
networks to produce richly gestural behaviours and mid-term
modulation of behaviour is demonstrated.

I. INTRODUCTION

Iterated maps, also known as nested functions, are
functions in which a given map is repeatedly applied to
an object. When each iteration of the map expresses
an advance of the state of a system in time, such func-
tions are called finite-difference equations, expressed
generically in the form Xt+ 1= f (Xt). X0 is the initial
condition, often called the seed. Such equations
can exhibit some or all of a wide range of decay,
steady-state, growth, periodic, and chaotic behaviours
and fractal patterns (Kaplan and Glass 1995; Wolfram
2002). Compositional applications of specific func-
tions of this type have been explored (for example in
Gogins 1991; Leach and Fitch 1995).

A single iterated map attains its rich palette of
behaviours through the mechanism of feedback, i.e.
the previous state is the basis for the next state.
However, natural systems often consist of numerous
layers of nested feedback mechanisms. Acknowledg-
ing this, one is led to the idea of networking iterative
maps serially and with feedback and meta-feedback
linkages. Each iterative map will then be a semi-
autonomous process, generating a sequence of states
while potentially influencing and being influenced
by other iterative maps in the network. In this case,
the behaviour of each node will be related to the
behaviour of the other nodes by the implicit logic of
the system. It seems possible, then, that the behaviour
of a networked node will be of greater interest than

that of a node standing alone, but also that the rela-
tionships between the nodes – a multi-dimensional
data flow arising from the whole system – could prove
perceptually interesting when mapped to sonic materi-
als. Given the examples we see in nature, we have
reason to suspect that richly patterned behaviours
can emerge from such systems. We can even hope
that such systems could be configured to exhibit an
alteration of activity plateaus, periods of dynamic
change, and recurring self-similar elaborations. In
other words, such networks may demonstrate higher-
order change. This could be musically useful given that
higher-order change – variation in the nature of the
variations, if you will – is a crucial aspect of traditional
musical form and gesture.

The behaviour of coupled iterative maps has
been formally explored to some degree. The one-
dimensional systems described in (Palacios 2001) and
the coupled map lattice approach (Kaneko 1993) use
some form of coupling function to alter the state of
nodes based on the state of surrounding nodes. Thus
they are related to but distinct from the variable-
coupled networks described here, in which the state of
a node can alter the variables in another node but
does not directly alter that node’s state. The idea of
networked iterative maps also has conceptual points
of contact with areas of inquiry such as neural nets,
mutually inhibited artificial neuron systems (Laine
1997, 1999), and boolean networks (Kaplan and Glass
1995).

2. LEHMER’S LINEAR CONGRUENCE
FORMULA

Though a wide range of iterated maps are available
for musical exploration, the following investigation
utilises Lehmer’s Linear Congruence Formula
(LLCF). The formula can be expressed as xt+ 1=
(xta+ b) modulo m. LLCF is widely utilised as a
pseudo-random sequence generator. By setting m to
the word size of the computer and carefully choosing
optimal values for a and b, LLCF will generate
an effective pseudo-random sequence (Ames 1992).
However, by choosing values of a and b that are not

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

138 Bret Battey

optimal for randomisation, LLCF is useful as a
pattern generator. With this approach, LLCF is
capable of exhibiting a wide range of behaviours, from
steady states to simple periodicity to highly complex
patterns exhibiting self-similarity.

Figure 1 presents examples of patterns generated by
LLCF over subsequent iterations. Figure 2 depicts the
output space of LLCF as a is varied from 0 to 3. Both

examples were generated with m= 1. With these
charts, some basic observations can be made regarding
the scenario where m= 1. In the case of a< 1, each xt

is scaled downward by a, so with b= 0, the result will
always be an exponential decay from x0 towards 0, i.e.
xt= x0 at. Of course, with b> 0 and a= 0, the system
always resolves immediately to b since the past terms
are zeroed. When a+ b< 1.0, xt converges to a steady

Figure 1. A subset of possible behaviours exhibited by Lehmer’s Linear Congruence Formula with seed x0= 0.5 and m= 1.0.
(a) a= 0.7, b= 0.0; (b) a= 0.9, b= 0.1; (c) a= 0.98, b= 0.4; (d) a= 1.23, b= 0.92; (e) a= p, b= 0.25.

Figure 2. A map of a segment of the a-parameter space of Lehmer’s Linear Congruence Formula. With m= 1.0 and b= 0.75,
a varies from 0 to 3. At each increment of a, the seed x0 was chosen randomly between 0 and 1, the system was iterated
200 times, and the points were plotted in the corresponding column. Grey levels indicate how often a point was generated,

with darker points indicating higher occurrence.

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

Musical pattern generation 139

state. When a+ b>1.0, simple periodicity arises. It is
clear that the most complex behaviour arises when
a> 1. Any b> 1 functions the same as b mod 1,
so there is no need to consider cases other than
0<= b<= 1.

The author has used LLCF for generating pitch,
amplitude and rhythmic patterns in both interactive
and non-realtime algorithmic compositions. In a
typical application, m matches the data range of the
particular parameter being controlled, i.e m might
be set to 128 and the output of the formula mapped
directly to MIDI velocity. This type of approach,
though quite simple and direct, can in itself prove
fruitful. However, it also has the shortcoming that it
provides no high-level modulation of behaviour. It
should be noted at this point that linear modulation of
the variables in the formula does not linearly impact
the system. Rather, small changes in the variables typi-
cally cause dramatic changes in the behaviour of the
system. So the approach of modulating a variable to
induce predictable change over time is not applicable
in most configurations of LLCF.

3. VARIABLE-COUPLED MAP NETWORKS

A variable-coupled map network is composed of one
or more nodes, each consisting of an iterated map
function with implementation of a time delay variable
that schedules the timing of subsequent iterations of
the function. The state of a node, broadcast when the
function is iterated, can be routed to inputs on any
node in the network, including the originating node.
Potential types of node inputs include direct access to
the node state, control of variables of the iterated map
function, and control of the delay time. In all of the
examples in this paper, each node operates indepen-
dently, in the sense that the option of setting the node
state directly is not utilised; the state changes only
via normal iteration of the node and not by direct
alteration by an external input.

Except where otherwise noted, the networks in this
paper were implemented in LISP, leveraging Rick
Taube’s Common Music musical data classes and
MIDI-file output (Taube 2003). For simplicity, the
model was restricted to iterated functions in which
both outputs and inputs range in value between zero
and one. This allowed direct connection of outputs
to inputs without rescaling issues. Each node variable
could receive only one input. Each node contained
inputs for the function variables. It also contained
input for a delay scalar, which was mapped to the
range between minimum and maximum delay times
established when the node was initialised. When a
node was updated at its scheduled time, first the
current state of the node was broadcast from the node
output and target inputs were updated. Then, based
on the current value of the node’s variables – which
may have been updated in the broadcast step – the new

state was calculated and the next update of the node
was scheduled.

Thus, since we are using LLCF as the iterated map
in these examples, m, a, b and x will all remain in the
range from 0 to 1 – the range in which a single LLCF’s
behaviour is simple and short-term periodic.

For the purposes of creating note patterns, the itera-
tion of a node can be used to trigger a function, such as
one to generate a note. There are numerous possible
approaches to this, but the model used here was that
the state value of the triggering node determined the
pitch of a triggered note. Other nodes in a network
might be used to determine duration, amplitude, or
other parameters for a sound. Or, multiple nodes may
provide data for controlling and directing a more
complex sound-generating function.

Note that the following observations of network
behaviours are specific to the use of LLCF as the iter-
ated map and likely will not apply when a different
map is utilised.

4. SELF-DRIVEN NODES

We will use the term driven to describe a node that
receives data at its variable inputs. Undriven describes
a node that receives no inputs. We will use the term
autonomous to describe a node that has no inputs
from other nodes, and semi-autonomous to describe
nodes that have inputs from other nodes. Clearly, an
autonomous node may be undriven, meaning that it is
a simple iterative map function. However, an autono-
mous node may also be driven, meaning that the out-
put of the node is routed to one or more of its own
inputs. In this case we can say that that the node is
self-driven.

Using LLCF for the map type in a node, there are
three different self-driven node configurations avail-
able. These can be described in the following short-
hand, where a node label (‘1’ in this case) appears on
the left and an arrow points to the target node and
variable name appearing on the right. [1 → 1a] repre-
sents the routing of the output of the node 1 to the
a-variable input of node 1. Note that this effectively
transforms the node function into xt+ 1=(xt

2+ b)mod
m. [1 → 1b] transforms the node function into xt+ 1=
(xt a+ xt)mod m. [1 → 1a, 1b] transforms the node
function into xt+ 1=(xt

2+xt)mod m.
Figure 3 presents output maps of these three con-

figurations. [1 → 1a] generates stable states or short-
term periods for all values of b. [1 → 1b] emphases
exponential climbing behaviours with lower values of
a, breaking up into more complex patterns as a moves
towards 1. [1 → 1a, 1b] emphasises exponential climbs
across the full range of seed values, and it is susceptible
to falling into a 0-state, from which it cannot escape.

Note that [1 → 1a, 1b] provides inputs for all node
variables, making the node fully driven, in contrast
with the other two configurations which are partially

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

140 Bret Battey

driven. In the fully driven condition, the initial value of
the variables is irrelevant; the initial seed for the node
is the only determinant of its behaviour. This is due to
the fact that the initial step – broadcasting of node
states – will set all variables prior to the first iteration,
when they will be referenced. Figure 3 shows that for
[1 → 1a, 1b], the system is extremely sensitive to the
initial state, meaning that significantly different beha-
viour arises with only a small shift in the seed. This
means that the same configuration and initial values
may produce a different output stream on a different
operating system or even in different software on the
same operating system, since even very small differ-
ences introduced in the sequence of floating point
values will produce different subsequent values.

Figure 4 and audio example 1 on the Organised
Sound Volume 9 CD present a glimpse of the temporal
behaviour of the [1 → 1a, 1b] configuration.

5. NETWORKS WITH TWO NODES

We can describe a variable-coupled map network itself
as being fully driven when all nodes in the network
are fully driven. With two nodes, this leaves us with
one fully cross-driven configuration, meaning a con-
figuration in which no node is self-driven. We depict
the node connections as follows, with the outer set of
brackets enclosing the whole network:

[[1 → 2a, 2b], [2 → 1a, 1b]]

There are two mixed-drive configurations, in which
self- and cross-connections are both utilised:

[[1 → 1a, 2b] [2 → 1b, 2a]]
[[1 → 1b, 2a] [2 → 1a, 2b]]

Because these systems drive all variables, the only
way to establish their behaviour is through setting of
the initial seeds. As it turns out, both the cross-driven
example and the example in which a is cross-driven
will generate the same pattern relative to their respec-
tive seeds, i.e. they will move in parallel. In the case of
[1 → 1a, 2b], [2 → 1b, 2a], on the other hand, the two
nodes quickly converge on the same value and from
then on generate the same sequence. In other words,
these fully driven networks do not exhibit significantly
different patterns from autonomous nodes, and one
must be aware of the potential for network configura-
tion to lead to convergence of node behaviour.

There are numerous potential configurations of
partially driven networks of two nodes. A subset of
these is hierarchical networks in which there is no
feedback between nodes. Control flows from one node
to another and not back. These arrangements would
be [[1 → 2a]], [[1 → 2b]], and [[1 → 2a, 2b]]. As there is
no feedback, neither LLCF node will depart from its
simple cyclical behaviour. The upper node of the

Figure 3. Outputs of functions that can be derived by linking
the output of an LLCF node to one or more of its own
inputs: [1 → 1a], [1 → 1b] and [1 → 1a, 1b]. For each col-
umn, a random seed was chosen and the map was iterated
thirty times initially to discard initial transients. Then the
map was iterated 200 times and the points were plotted in
the corresponding column. Grey levels indicate how often
a point was generated, with darker points indicating more
frequent occurrence. The fourth plot demonstrates that
[1 → 1a, 1b] exhibits the same general characteristics even as

we zoom in on a narrower range of seed values.

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

Musical pattern generation 141

hierarchy will modulate the lower node between
different short-term periodic patterns.

The node at the bottom of the hierarchy can
self-drive, as in [[1 → 2a] [2 → 2b]]. The bottom node
in these configurations will usually generate patterns
in the class of those generated by a self-driving
autonomous node. Or each node can be partially self-
driving, but still arranged in a hierarchy of control,
such as: [[1 → 1a, 1b, 2a] [2 → 2b]].

We break the hierarchical pattern by establishing
feedback from low in the hierarchy to the node at the
top of the hierarchy, as in [[1 → 1a, 2a] [2 → 1b]]. In
these configurations, there is a strong tendency for the
top and bottom node to lock into a parallel pattern.
An exception is the configuration [[1 → 2a] [2 → 1a]],
which always creates simple cycles or steady states.

6. THREE OR MORE NODES

As more nodes are added, potential coupling patterns
expand rapidly and it becomes increasingly difficult
to provide any kind of analytical generalisation
regarding the connections. In practical usage, trial-
and-error is the most likely method for discovering
compositionally useful patterns. One can develop a
heuristic sense of how different systems behave,

particularly with the help of the above observations
regarding single and dual node configurations. A plot-
ter for visualising output patterns is helpful, particu-
larly as it can help reveal non-audible nodes that are
converging or not behaving in a predicted manner.

Figure 5 and audio example 2 present a partially
driven network of three nodes. The network contains
feedback to all nodes, so it is not hierarchical. How-
ever, given the symmetry of the system around node 2
and the fact that node 2 is used to trigger notes, one
might interpret this as a system in which nodes 1 and 3
form a higher hierarchical level driving node 2. In any
case, though the configuration produces some new
behaviour vocabulary, it does not provide any mid-
term modulation of behaviour.

Now that we have three nodes, we can leverage this
data to control additional sound parameters. Audio
example 3 was generated with the figure 5 configura-
tion, but whenever a note was generated, the current
states of nodes a1 and a3 determined note amplitude
and duration, respectively. Now a much richer and
arguably more musical sequence is generated. Even
with a constant delay time for all nodes, this approach
often provides an engaging and surprisingly gestural
articulation of the line. Note that the rendering pro-
cess for all audio examples for this article discarded
notes with durations shorter than 0.05 seconds.

Figure 4. Diagram, initialisation, output, and note triggering of a network in which the output of an LLCF node sets the a and
b values for the next iteration of the same node. The time-delta input for the node controls the time between iterations. In this
case, this time factor remains constant since no nodes are connected to the time-delta input. Italicised numbers are node labels.
In the trigger description, the • symbol indicates a mapping of a node output to data, in this case, the mapping of node 1 to a

two-octave range of MIDI notes.

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

142 Bret Battey

Hierarchy is one way to approach providing mid-
term modulation of behaviour. Figure 6 and audio
example 4 present a partially driven network consist-
ing of a bottom tier of three nodes, each of which
is driven in the a parameter by a single, self-driven
control node. The control node runs at a slower rate
than the bottom tier nodes. Because this control node
is driving its own b variable, it will normally produce
relatively complex behaviour. Nodes a1 and a3 are
both fully driven, and their outputs, though not identi-
cal, clearly modulate together to create similar classes
of behaviour as the control node changes. a2 is
autonomous with regards to its b variable, so the
individual configuring the system can control that
variable to tune behaviour. Notice in both the graphs
and the rendered audio that there are now plateaus of
different behaviours.

Figure 7 and audio example 5 extend the idea of the
previous example by establishing two fully autono-
mous control nodes with symmetrical control of the
two outer nodes of the lower tier. The two control
nodes again run at a slower rate than the lower tier,
but they also run at different rates from each other.
Given that control descends from the upper level to a1
and a3 and then to a2, the network could also be inter-
preted as a 3-tier system of descending control. How-
ever, the nodes a1, a2 and a3 all operate at the same
speed and provide duration, note trigger and pitch,
and amplitude, respectively, so they can also be inter-
preted to form a single tier. The audible outcome of
the network is rich and shifting in gestural character.

In figure 8 and audio example 6, the above network
is elaborated to be fully driven with upward links
breaking the strict descending hierarchy.

Figure 5. A partially driven, non-hierarchical system of three nodes.

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

Musical pattern generation 143

Figure 6. A hierarchical node provides ongoing modulation of behaviour of a tier consisting of three cross-driven nodes.

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

144 Bret Battey

Figure 7. A two-tier system of descending control.

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

Musical pattern generation 145

Figure 8. The figure 7 network elaborated to be fully driven with both descending and ascending control flow.

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

146 Bret Battey

Figure 9. A self-driving node that also drives its own delay time.

Figure 10. A fully driven network of two nodes, including time-modulation.

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

Musical pattern generation 147

7. SYSTEMS WITH TIME DELAY
MODULATION

As we have seen, even with a constant-delay network,
modulation of amplitude and duration of note events
can produce a rich rhythmic vocabulary. However,
modulation of the delay times of individual nodes will
clearly be of value towards generating greater rhyth-
mic diversity. If we approach this by allowing one
node to change the timing characteristic of other
nodes, it also adds a profound dimension to the inter-
action of the nodes, adding considerably to the com-
plexity and richness of the behaviour. One of the
most striking results of this approach is the network’s
capacity to make complex but gesturally coherent
rhythmic sequences on a completely unquantised time
continuum.

In figure 9 and audio example 7, the figure 4 con-
figuration is presented with one connection added: a
link from the output of the node to its own time-delta
input. The time-delta input is a scalar between 0 and 1,
and it is mapped to the time-delay range of the node.
The time-delay range, defined by a minimum delay
time and a maximum delay time, is defined at node

initialisation. In the figure 9 example, the minimum
delay time is 0. This obviously could be problematic in
some contexts, since a very large number of notes
could be generated, overflowing the system. Although
this particular example works with a delay time of 0,
the following examples are more typical in that they
use a non-zero minimum delay. In the case of figure 9,
the resulting behaviour is simple: as the node’s state
rises, its delay time rises. In the given musical map-
ping, there is a direct correspondence between rise in
pitch and an increase in duration.

In figure 10 and audio example 8, two nodes are
arranged in a fully driven system. In contrast to the
early discussions of dual-node networks, here each
node modulates the other’s delay time. Each node
triggers its own sequence of notes with the duration set
by the opposite node. The two nodes exhibit similar
behaviour, but not in unison or parallel.

Figure 11 and audio example 9 present a partially
driven system of three nodes in which the delay time
for all three is modulated by another node. The net-
work exhibits distinct plateaus and shifts of behaviour
even without a clear higher-level control node

Figure 11. A partially driven network of three nodes.

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

148 Bret Battey

Figure 12. A fully driven, time-modulated feedback network.

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

Musical pattern generation 149

modulating activity. But what happens if one expands
the system to include a hierarchical tier? Figure 12 and
audio example 10 present a fully driven system with
one upper-tier control node and three lower-tier nodes
with feedback from the lower to upper tier. This simple
system generates a significant diversity of behaviour
and rhythmic gesture.

8. MORE COMPLEX NETWORKS

Figure 13 depicts a complex network involving seven
nodes organised into four tiers with a strongly

Figure 13. A more complex network consisting of four levels of descending control and limited upward feedback. Node d1
controls the maximum delay time of node c1.

descending flow of control, with some upward feed-
back. The author’s implementation files for this net-
work are labelled HMG, short for the half-joking label
high-modernism generator. One may listen to audio
example 11 to understand why. At that point the
reader can decide for him or her self whether the out-
put of the network suggests that the variable-coupled
map network approach has powerful musical poten-
tial. Of course, one might argue that the relative ease
of this means of generating a potentially never-ending
output in this style is a not-so-subtle slight on the
depth of the style itself.

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

150 Bret Battey

In contrast to the previous examples, this example
was implemented in MAX/MSP. A more complex
output triggering mechanism was established in
which the state of the triggering node was mapped to
a two-octave octatonic scale and the base octave was
determined by another node. Both nodes a1 and c1
triggered notes, the latter providing the slower, sparser
line, since maximum delay time was greater for nodes
higher in the hierarchy. It should be noted that a trans-
lation of the set-up into the LISP implementation used
for the earlier examples did not replicate the MAX/
MSP results. This is due in part, no doubt, to the
extreme sensitivity of the processes to small changes in
state, as described earlier. It may also be due to the
differences in the order in which nodes were assessed
and data updated in the MAX/MSP environment.

Audio example 12 presents a compositional applica-
tion of the same network topology in an excerpt from
my work Writing on the Surface for computer-realised
sound and video. The percussive materials in this
selection were compiled from fifteen- to twenty-second
segments generated by the network in which the net-
work controlled a large ensemble of virtual percussion
instruments. The instruments were divided into three
groups based on pitch range, and different tiers were
responsible for driving different groups. Slow tiers
controlled lower pitch instruments. The network con-
trolled pitch inflection, amplitude, and duration of
notes, but also the choice of the specific instrument
from a group and the location of the sound in quadra-
phonic space. By using my extensions to Common
Music that enabled generation of animation scripts
for the 3-D Studio Max animation software (Battey
2001), the same algorithms were also mapped to the
creation and animation of a dynamic and complex
composition of visual objects.

9. CONCLUSIONS

We have examined a range of configurations of
variable-coupled iterated maps using Lehmer’s Linear
Congruence Formula. Such networks have proven
capable of exhibiting complex behaviour, including
plateaus and transitions between distinct temporal
patterns. The addition of time modulation signifi-
cantly expands the richness of the behaviours of such
networks.

This paper has provided only an initial exploration
of the potentials of such networks. LLCF itself
generates a certain vocabulary, and that vocabulary
is expanded by self-driving. Elements of that vocabu-
lary arise throughout the different configurations of
LLCF nodes. However, there are numerous other
iterated maps that can be explored, each potentially
providing a different base vocabulary. A network

could consist of homogenous nodes or a heteroge-
neous mix of iterated map types. Further, while the
systems in this paper were limited to a numerical range
from 0 to 1, one can also explore wider data ranges.
Quantised duration schemes could also be devised
as an alternative to the continuous time expression
approach used here. Large networks could be devised
in which whole clusters of nodes function together in
a particular role, and clusters could be arranged in
both hierarchical and non-hierarchical relationships.

Variable-coupled iterated map networks also
exhibit some of the disadvantages that arise when
working with nonlinear dynamics. As we have seen,
the extreme sensitivity of the iterated maps to initial
conditions and variations in floating point data
handling mean that specific configurations will not
necessarily reproduce the same results in different
software or operating systems. Further, our tools for
analysing nonlinear dynamics are quite limited;
in most cases, uses of such systems for generation
of musical materials will involve a trial-and-error
approach.

ACKNOWLEDGEMENTS

The author would like to thank Gary Nelson, who
demonstrated the usefulness of LLCF as a pattern
generator while the author was his student at Oberlin
Conservatory in the late 1980s.

REFERENCES

Ames, C. 1992. A catalog of sequence generators: account-
ing for proximity, pattern, exclusion, balance, and/or
randomness. Leonardo Music Journal 2(1): 55–70.

Battey, B. 2001. An animation extension to Common Music.
Proc. of the Eighth Biennial Symp. on Arts and Technology
at Connecticut College, pp. 6–11.

Gogins, M. 1991. Iterated functions systems music.
Computer Music Journal 15(1): 40–8.

Kaplan, D., and Glass, L. 1995. Understanding Nonlinear
Dynamics. New York: Springer-Verlag.

Laine, P. 1997. Generating musical patterns using mutually
inhibited artificial neurons. Proc. of the 1997 Int.
Computer Music Conf., pp. 422–5.

Laine, P. 1999. Motor neuron based virtual drummer. Proc.
of the 1999 Int. Computer Music Conf., pp. 194–6.

Leach, J., and Fitch, J. 1995. Nature, music, and algorithmic
composition. Computer Music Journal 19(2): 23–33.

Kaneko, K. 1993. Theory and Application of Coupled Map
Lattices. Chicester, NY: John Wiley & Sons.

Palacios, A. 2001. Cycling chaos in one-dimensional
coupled iterative maps. International Journal of
Bifurcation and Chaos 12(8): 1,859–68.

Taube, R. 2003. Common Music 2.4.0. http://
commonmusic.sourceforge.net/

Wolfram, S. 2002. A New Kind of Science. Champaign, IL:
Wolfram Media.

https://doi.org/10.1017/S1355771804000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000226

