Simulation and Calibration:
Mitigating Uncertainty

Deborah Haar*t

Calibrating a simulation is a crucial step for certain kinds of simulation modeling, and it
results in a simulation that is epistemically different from its pre- or uncalibrated coun-
terpart. This article discusses how simulation model builders mitigate uncertainty about
model parameters that are necessary for modeling through calibration and argues that the
simulation outcomes after calibration are physically meaningful and relevant. When eval-
uating the epistemic status of computer simulations, comparisons between computer sim-
ulations and traditional experiments need to consider this important methodological step.

1. Introduction. One main area of philosophical investigation of computer
simulations concerns their epistemic strength. This research has been advanced
by considering their features and methodology but also through comparisons
with traditional experiments. In this article, I bring together these two strands
to argue that aspects of computer simulation, such as its ‘motley’ nature (Wins-
berg 1999) and the iterative aspect of simulation model building (Humphreys
2004), have epistemic implications for the comparisons between computer
simulation and experiment. I show that the epistemic strength of a simulation
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depends crucially on how it is constructed, notably whether the model is cal-
ibrated. This article thus considers in detail the process of simulation calibration
and how it can yield information about the target system that is physically
meaningful and relevant. Understanding the impact of calibration on simula-
tions shows that comparisons between computer simulation and experiment
need to be sensitive to the distinction between calibrated and uncalibrated or
precalibrated models.

A point of comparison between simulations and traditional experiment
centers on the notion of ‘materiality’ (Guala 2002, 2005; Morgan 2003; Parker
2009). Arguments focused on materiality consider whether simulations have
the kind of relationship with the target found between experiments and the
target and, if not, why the relationship found in simulations is epistemically
relevant for modeling. Guala (2002) states that since they are materially sim-
ilar to the target system, experiments do not have to model the system that is
being studied and can black box the details. Experiments are thus superior to
simulations because experiments have the same material causes as the system
that is being studied. A computer simulation, in contrast, would not be mate-
rially similar but only formally similar.

Parker (2009) argues that simulations are material experiments since they
are run on a physical system and we intervene on them by initializing the
system. However, rather than the materiality of a simulation or experiment,
relevant similarities justify the inferences made about the target system.
Furthermore, Parke (2014) pushes back on the idea that differences between
simulations and experiment could serve as the basis for general epistemic
evaluations about simulations. Whether an inquiry is classified as an exper-
iment, simulation, or some hybrid of the two, this is not relevant to our eval-
uation of its epistemic power. What is relevant to the quality of the inferences
made using the tool are the details of the inquiry and how well our tool of
inquiry captures the relevant features of the target system. In other words,
context matters.

Although similarly critical of arguments appealing to mere materiality,
Roush (2018) argues for a contextual difference between experiment and
simulation in which materiality can play a role. She argues that computer
simulations are always epistemically inferior to experiment in cases where
relevant information about the target system is missing. When comparing
the epistemic value of simulations and experiments under an epistemic ‘other
things equal’ (OTE) condition, Roush recognizes that the epistemic value of a
simulation or experiment depends on the specifics of the system being in-
vestigated. Roush situates her argument in the case in which there is enough
information to begin constructing a simulation but there are some crucial
unknowns about the target of investigation. In this case, Roush argues, ex-
periments are epistemically superior to simulations because experimenters
can black box the relevant unknowns. That is, if they can assure the internal
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validity of the experiment, they can run the experiment without having to
speculate about the unknowns.'

The simulator cannot simply refrain from including the unknown fea-
tures of the system in the simulation since these crucial unknowns influence
the outcomes of the simulation. To account for the unknowns, Roush states
that they could make some arbitrary choice about the unknown structure,
but this would make the results meaningless. Or they could program mul-
tiple simulations based on different hypotheses about the unknown struc-
ture, but this would result in a simulation model that would give theoretical
results based on the model. Neither option would tell us what happens in the
system we are investigating. Another possibility would be to use informa-
tion that was not available to the experimenter, but then we would not be
comparing simulation and experiment under the OTE condition. Rather than
materiality, background knowledge is the “crucial and neglected factor that
must be held equal” (Roush 2018, 4891).

This article looks at simulation model building and how the modeler
deals with uncertainty about the target. Broadly speaking, during the model-
building process, modelers go from a general theoretical model to a dynamic
computational model by discretizing continuous theoretical equations that are
not analytically tractable, rendering them solvable through numeric methods.
Details relative to the target system as well as ad hoc elements are added to
the model during this process. This description of simulation methodology
may make it seem like modeling is a single linear two-step process of first
discretizing equations and then adding details to the model. It also suggests
that we have all the information we need at the outset of the modeling task.

However, simulation model building is an iterative process.” Simulation
model building requires the use of the model while it is still in construction
to make adjustments based on its output and to generate information about
the target system to be included in the simulation model. These tasks are
part of the process of calibration that will be discussed in detail in section 2.
During calibration, modelers mitigate uncertainty about the target system. I
present a case study of the calibration of a simulation of a hydrocarbon res-
ervoir in petroleum engineering, which shows how new information about
the target system is gained during the model’s construction. In section 3, I
argue that a well-calibrated model can provide physically meaningful infor-
mation about the target. In section 4, I argue that epistemic comparisons un-
der epistemic background conditions such as proposed by Roush (2018) are

1. Roush later argues that the justification for black boxing is the assumption that the
experimental object and the target system are of the same natural kind.

2. See Morgan (1999), Winsberg (1999), and Humphreys (2004) for descriptions of
simulation model building.
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not epistemically relevant comparisons of simulation and experiments because
comparison under these conditions forces us to misconstrue simulation model
building. There is an epistemic difference between a calibrated model and pre-
or uncalibrated model, and comparisons between simulation and experiments
need to account for this distinction.

2. Simulations and Uncertainty. Computer simulations are dynamical
computer-based models capable of representing complex natural systems
such as galaxy formation and the earth’s climate. Computer simulations are
especially useful when the system of interest cannot be intervened on experi-
mentally (e.g., galaxies). Computer simulations are also used in cases where
information is sparse (Winsberg 1999). In these cases, constructing a computer
simulation model is partly a process of including what we already know about
the system into a computational model, such as any theoretical models of
the system (mathematical equations describing the dynamics) and specific
measurement data about the system, but it is also a process of mitigating
uncertainty with respect to the unknowns.

Different types of unknowns can affect simulation model building. There
may be uncertainty about whether all the relevant properties of the target
system have been included in the model. This kind of uncertainty concerns
what I will refer to as a model’s completeness.® There is another kind of un-
certainty that reflects imprecision of value (Oberkampf and Roy 2011; Roy
2019).* This kind of uncertainty concerns what I will refer to as the param-
etrization of the model. If Roush (2018) is correct, then the only way to get
meaningful information about the system when there are unknowns is to con-
duct an experiment. However, simulators mitigate uncertainty during model
building by calibrating their models to data of the target system.

Measurement instruments have been considered the traditional target of
calibration. More recently, the target of calibration has been extended to in-
clude objects such as certain procedures of data analysis, economic models,
and simulations (Soler et al. 2013). A measurement instrument is calibrated
by comparing the known value of a property of an object with the value mea-
sured by the measurement instrument. The results of the comparison of the
calibration object and the measurement output inform us about the reliability
of the measurement instrument (Franklin 1997).

3. A model is never fully complete; the target system can never be fully represented by
the model, but the modeler endeavors to include all the relevant parameters.

4. Roy (2019) defines uncertainty in the second sense only. It can be the case that we do
not have any information about the value of a given parameter. That situation is also in-
cluded in the parametrization of a model.
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Simulation model calibration involves comparing the simulation output
for a set of properties to the values for the same properties measured in the
target system. To discuss more concretely how calibration may be used to
mitigate uncertainty, I will use an example of the application of numerical
flow simulation for the optimization of a subsurface hydrocarbon reservoir.
Although this example is drawn from the field of petroleum engineering, it
is relevant to the present discussion. Computer simulation methodology is
advanced in this field, and simulations are used precisely in cases where
there exist the types of unknowns that are of interest.

In petroleum engineering, computer simulations of subsurface hydrocarbon
reservoirs are used to model the reservoir to solve predictive-type questions
such as ‘what is the number and placement of wells required for commercially
optimal extraction of this resource’? Computer simulations are used to model
reservoirs because of their capacity to quantify uncertainty in predictions
resulting from unknowns or poorly understood features of the reservoir.
A key feature of computer simulation methodology is that building a sim-
ulation is an iterative process; constructing the simulation requires running
it to aid in its own construction. Running the simulation helps the modeler
determine the level of detail justified in the model and the fidelity of model
output that might be reasonably expected.

During the construction of a hydrocarbon reservoir simulation, modelers
must address the uncertainty about the model’s completeness and parame-
trization to have a simulation that can be applied to the kinds of problems it
is being built to solve. While much empirical data about a subsurface res-
ervoir can be gained through measurements, due to their complex nature,
and financial constraints, important features of the reservoir remain unknown
to modelers when they construct the simulation. To address these unknowns,
the modelers calibrate the simulation. This ‘tuning’ of the model is carried out
with two purposes in mind. One is to determine the model’s completeness:
Are there any properties, such as a geological fault, missing from the model
or that are superfluous? A second purpose is to better parametrize the model:
to make better estimates of the values of certain properties that exist in the
target system and must be specified in the model. The examples I will use
to illustrate parametrization are porosity and permeability.’

A reservoir simulation model is composed of a static model and a tran-
sient model. The static model is typically a three-dimensional geological
representation constructed from direct and indirect measurements. The tran-
sient model describes the reservoir’s hydrodynamic states of pressure and
saturation within the particular spatial domain and time period of interest.

5. The porosity of the rock is the percentage of void space in the rock, and permeability
is the capacity of the rock to transmit fluids.
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The simulation is based on fundamental equations that provide a system of
partial differential equations (PDEs), the solution of which (finite difference
or finite element) describes the flow within the reservoir, the reservoir ‘re-
sponse’. This procedure gives us approximate solutions to exact equations.®

Geologic structures and petrophysical properties that are important fea-
tures of the reservoir and relevant for modeling can be unknown. A good
example of an uncertainty that affects model completeness is a fault repre-
senting a flow barrier. Empirical data about the presence of faults can some-
times, but not always, be gained from seismic surveys or intersecting wells.
However, these data alone are often not enough to prove the existence of a
fault or whether a fault impedes fluid flow and therefore should be included
in the model with an associated value of transmissivity. An example of pa-
rameter uncertainty is the uncertainty concerning the parameter values of
the porosity and permeability in various locations in the reservoir. Reservoir
simulations must contain values for these two essential features of the res-
ervoir, but it is technically and financially not feasible to take measurements
of these properties throughout the reservoir.

Mitigating the impacts of uncertainties is a task that is undertaken during
calibration, which in reservoir simulation is called production data history
matching.” History matching is achieved by first forming an ‘objective’ func-
tion by taking the difference between field measurements and model predic-
tions. In the objective function (OF)

i=1

X, refers to the observation being matched, X, are the measured values for
that observation and X, are the simulated values, and w; is the weight assigned
to the observational data. For instance, you could have information about
pressure from two different wells, and w; indicates how much each one con-
tributes to the error function.® Then the parameter sensitivity is explored
throughout the parameter uncertainty space. A goal of history matching is
to find parameter values that minimize the OF. The lower the OF value,
the less mismatch between the historical data and the simulated output of
the parameters being matched. The OF is then minimized through systematic

6. The general description here is one from a mathematical model (the PDEs) to a nu-
merical model (the PDEs discretized nonlinear algebraic equations) and finally to a com-
puter model (discretized and linearized).

7. Before the use of simulations, history matching was done manually.

8. To avoid overfitting during history matching, some of the observational data are re-
served for the verification and validation of the simulation in the final stages of the sim-
ulation model’s development.
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adjustment of the selected parameters on the basis of uncertainty and impact
using one of many optimization techniques.

During history matching, ideally only data that are least accurately known
are updated, and the updating is constrained within limits that are defined in
advance by experts of that area (Ertekin, Abou-Kassem, and King 2000, 350).
The selection of parameters to match depends on the available empirical data
and the objective of the calibration. Pressure and flow rates are common param-
eter values used to history match when adjusting permeability and porosity
values. As part of the optimization process, changes are made to the proba-
bility distribution function (PDF) initially assigned to the parameters for which
there is uncertainty. Such adjustments result in updated (‘posterior”) parameter
distributions.

There are different techniques and strategies at the engineer’s disposal
for sampling model parameter uncertainty space: Monte Carlo method is
one example. When using Monte Carlo methods, the history matching pro-
cess looks like this: (1) randomly sample model parameters using the ini-
tial PDFs, (2) run the simulation with these values for the historical period,
(3) compute the OF, (4) store the value of the OF and all parameters, and
(5) repeat 14 until the space is properly sampled. Each parameter set gen-
erated using the Monte Carlo method is a model of the target system. Using
Monte Carlo methods, the modeler does not converge on one model. The mod-
eler selects a cutoff value for the OF.” All parameter sets that result in an OF
value that meets this cutoft value form a subset of the reservoir model param-
eter space. This set is analyzed further by looking at the mean and standard
deviation of the values. The analysis of the subset of parameters is used to
update the unknown parameter values (e.g., for porosity and permeability).
These updated values are referred to as the parameters’ posterior PDFs.

The reservoir simulation case demonstrates how simulators deal with
uncertainty about unknowns in the system. By comparing the model output
with historical data from the target system, the simulation is used to generate
empirically informed estimates of the unknown parameters as well as indicate
whether some feature of the target system is missing. The quality of these
estimates determines the ability of the simulation to make meaningful pre-
dictions about the target system.

3. The Meaningfulness and Relevance of Simulation Outcomes. Simu-
lators must model the salient properties of the target system including any
unknowns that influence the system. According to Roush, the simulators have
two options to model the unknowns while not violating the OTE condition.

9. Many factors determine the cutoff value selected, such as the uncertainty associated
with the empirical data.
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They could make some arbitrary choice about the unknown structure, but
this would make the results meaningless. Or they could program multiple
simulations based on different hypotheses about the unknown structure,
but this would just give us the mathematical consequences of the theoretical
model. Neither option would tell us what happens in the system being mod-
eled. In Roush’s example, she essentially is considering a simulation that
has not been calibrated.

However, the outcomes of a calibrated simulation model, when put to
answer the question the simulation was designed to solve, are neither mean-
ingless nor merely theoretical. That is, properly calibrated models can tell
us something about what is the case about the physical system being sim-
ulated. There are two reasons for this. First, in the reservoir simulation case
presented, the features being calibrated are known to be real properties of
physical reservoir.'” Second, the updated estimates for the parameter values
and inclusion or exclusion of features to the model are supported empirically
by the historical data, as well as the functioning of the simulation itself (this
justification rests on background knowledge of the team putting together the
simulation). The posterior PDFs for porosity and permeability are not set
arbitrarily but depend on the set of simulation models that fall under the OF
cutoff. These values are generated from the models that produce results that
are most like the historical data gathered from the reservoir. Postcalibration
the simulation is intended to be a better representation of the physical res-
ervoir and better reflect the uncertainties associated with the reservoir, pre-
cisely so that it can answer the investigative question.

Calibration is also not merely a theoretical exercise. A theoretical exercise
would involve developing a theoretical model and solving the foundational
equations for some initial values. However, the problem that uncertainties
create for simulators is a type of inverse problem. This problem arises when
a model describing a system cannot be fully parametrized given the informa-
tion that is known. Solving inverse problems starts with the data about the
system, and then we work backward to find the best set of parameters for
the model. In the case of a reservoir simulation, calibrating the model by his-
tory matching is the modeler’s way of solving the inverse problem.

Calibration requires that we run the simulation with a particular set of
parameter values to generate outcomes (X,) that will be compared to the his-
torical data (X,,). It could be argued that the way we generate the new param-
eters during the parameter space exploration is a kind of theoretical exercise
since we are picking parameters to see what happens when they are modeled.

10. This is not the case for all simulation calibrations or all elements of a simulation
model. In climate simulations, for example, some of the elements included in the model
do not correspond to any real feature of the system under study.
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However, the parameter space is not entirely theoretical; the parameter space
is constrained by known physical limits of geological and petrophysical prop-
erties as well as the properties of the particular reservoir being modeled. Fur-
thermore, it has been convincingly demonstrated that simulating is not nec-
essarily a theoretical exercise since plenty of nontheoretical information can
be included in a simulation model (Winsberg 2003; Lenhard 2007).

4. Calibrated Simulations: Background Knowledge and ‘Other Things
Equal’. I have shown that simulators are able to mitigate uncertainty in a
meaningful and empirically relevant way by calibrating a simulation to his-
torical data. Contrary to what Roush (2018) asserts, when there are unknowns
it is not the case that we can only turn to experiments to answer a determinate
question; the simulator could calibrate the simulation model. What does this
mean for the Roush (2018) claim about the epistemic superiority of experi-
ments? [ agree with the modified claim that, when there are unknowns, exper-
iments are epistemically superior to any simulation precalibration. However,
in the kind of simulation I am considering, an uncalibrated simulation is one
that is only partially constructed. What we should compare are experiments to
calibrated simulations. Yet comparing them under the epistemic OTE condi-
tion requires assumptions about simulation methodology that are false.

In the initial statement of the epistemic OTE condition, Roush asserts that
in comparisons between simulation and experiment background knowledge
must be held equal (2018, 4891). This suggests that to fulfill the epistemic
OTE condition, the simulator and experimenter must merely possess the same
background knowledge. In the article she indicates further what the epistemic
OTE condition amounts to by stating how it can be violated. To model the
system, Roush says that the simulator would have to use more knowledge that
the experimenter needed or actually existed (4895). Later she states, “Holding
other things equal, the simulator must make more specific commitments about
the unknown structure and dynamics of the world in order to give an answer
to the question” (4895). So while the epistemic OTE condition stipulates
that the simulator and experimenter simply must have shared background
knowledge, we see that it is in fact a stronger epistemic condition. It is vi-
olated if the simulator either uses more knowledge or makes more commit-
ments about the unknowns than the experimenter.

As a first pass, it is worth noting that the OTE condition appears to be
violated in the most trivial way by the simulator and the experimenter. Both
the simulator and experimenter will require the application of knowledge
and experience that is particular to their method of investigation. Simulators
need to know details about computer programming that will be beyond the
scope of the programming knowledge the experimenters will need to do their
analysis, and likewise for the experimenter and experimental setup. Simula-
tors must discretize the equations that are being used to represent the target
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system. Experimenters need to know how to use their particular measure-
ment devices. Considering all the information that is particular to simulation
model construction and experimental setup, on this reading of the epistemic
OTE condition we could never epistemically compare simulations to exper-
iments because they would never meet the OTE condition.

However, suppose we ignore knowledge that is particular to each inves-
tigation type and just consider the knowledge that is available about the target
system. Roush states that the OTE would be violated if the simulators use
more knowledge in their model. The epistemic OTE condition could be un-
derstood then as one that stipulates that they cannot use information that is
not included in the set body of knowledge possessed by both the simulator
and experimenter. This point is partially echoed in the second example of
how the epistemic OTE is violated by having to make assumptions.'" Consid-
ering that the calibrated simulation contains estimates about the unknown
parameters, would comparing the calibrated simulation to experiments not
be an epistemic OTE scenario?

Comparing a calibrated simulation to an experiment seems to violate the
OTE condition because a calibrated simulation uses more knowledge than
the experimenter, but comparing experiment to an uncalibrated simulation,
the simulation is not even fully constructed. Calibration takes place during the
model-building phase of the simulation, and unlike the model-building phase
of an experiment, it already yields new insights into the target system and the
existing data. The historical data necessary for calibration would be available
to the experimenter before the experiment, and any new information gained
about the target system (such as the posterior PDFs for porosity and perme-
ability) could in principle be shared with the experimenter before any exper-
imental run. The experimenter would have to determine whether or how to
incorporate this information into the experimental setup. In the case in which
the experimenter chooses not to incorporate this information, it does not seem
correct to argue that the calibrated simulation and experiment are not episte-
mically equal since they have access to the same information. Although we
are assuming the simulator and experimenter are investigating the same ques-
tion, it does not mean they have to proceed in exactly the same way.

Penalizing calibrated simulations for using empirically based estimates
for the unknowns generated during calibration reveals a faulty assumption
about the two methodologies—namely, that there is a clear epistemic and meth-
odological distinction between the setup of an experiment and the run of the
experiment and likewise for simulations. Methodologically and epistemically

11. That simulators must make assumptions at all should not be an epistemic strike
against them unless assumptions are always liabilities. The process of calibration can
be viewed an effort to put the assumptions on surer footing.
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we can distinguish the experimental setup from the experimental run in that
new information is gained experimentally from experimental runs, not from
the experimental setup. However, this is not exactly the case for simulations.
Simulation will be run numerous times during the model-building phase. It is
not run merely to check for computational matters such as whether the sim-
ulation terminates but, as we see during calibration, to generate new informa-
tion about the target system. Rejecting calibrated simulations from the com-
parison on the basis of the epistemic OTE condition then demands that we
misconstrue simulation methodology (by rejecting calibration) and relegates
the generation of new information to only the running of an experiment or the
final version of the simulation.

5. Conclusion. In the case where there are unknowns about the system
under investigation, investigators have more options than just running an
experiment; they can calibrate a simulation that can then be used to yield
meaningful results about the target system. Simulators deal with uncertainty
about important unknowns of the target system through calibration during
the simulation model’s construction. This process yields empirically informed
estimates about unknowns. When epistemically comparing simulations to
experiments, the proper comparison is between calibrated simulations and
experiments. Comparing calibrated simulations to experiments should be
allowed on the epistemic OTE condition since calibrated simulations make
use of information that is also available to the experimenter. Arguing that
calibrated simulations violate the OTE depends on a misunderstanding of
the methodology of simulations. Given that calibration is a method to deal
with uncertainty before running the final simulation, it is not obvious that
experiments will always be epistemically superior to simulations when there
are unknowns.
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