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We study a generalized class of nonlocal evolution equations which includes those arising in

the modelling of electrified film flow down an inclined plane, with applications in enhanced

heat or mass transfer through interfacial turbulence. Global existence and uniqueness results

are proved and refined estimates of the radius of the absorbing ball in L2 are obtained in

terms of the parameters of the equations (the length of the system and the dimensionless

electric field-measuring parameter multiplying the nonlocal term). The established estimates

are compared with numerical solutions of the equations which in turn suggest an optimal

upper bound for the radius of the absorbing ball. A scaling argument is used to explain this

and a general conjecture is made based on extensive computations.

1 Introduction

In this paper we study equations which arise in the problem of a perfectly conducting

thin film flow down an inclined plane in the presence of an electric field which is uniform

in its undisturbed state, and normal to the plate at infinity (see Gonzales & Castellanos

[9] and Tseluiko & Papageorgiou [34]). In the absence of an electric field, the flow is

linearly unstable/stable depending on whether the Reynolds number R is above/below

the critical value Rc = (5 cot β)/4, where β is the angle of inclination of the plate with

the horizontal. The presence of the electric field acts to destabilize the flow even when

this is viscously dominated and stable – this phenomenon opens the way for possible

control of wave formation and physical consequences such as enhanced heat and mass

transfer (see Tseluiko & Papageorgiou [34] for numerous references). A weakly nonlinear

analysis of the Navier–Stokes equations, the electrostatics equations and associated free

surface conditions, leads to a modified Kuramoto–Sivashinsky (MKS), or a modified

damped Kuramoto–Sivashinsky (DMKS) equation which have an additional nonlocal

term due to the effect of the electric field. This equation was first derived by Gonzales &

Castellanos [9] and recently by Tseluiko & Papageorgiou [34] using formal asymptotics.

When rescaled to 2π-periodic domains, the canonical equations take the form

ut + uux ± uxx + νuxxxx + µH[u]xxx = 0, (1.1)
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where H is the Hilbert transform operator defined by

H[f](x) =
1

π
PV

∫ ∞

−∞

f(ξ)

x− ξ
dξ, (1.2)

and the integral is understood in the sense of a Cauchy principal value. (For the properties

of the Hilbert transform see for example Abdelouhab et al. [1], and Appendix A.) A plus

sign in front of the uxx term corresponds to the linearly unstable hydrodynamic regime

(the MKS equation) and a minus sign to the stable one (the DMKS equation). In

addition, ν = (π/L)2 and µ = (π/L)γ, where 2L is the length (period) of the system and

γ = 2WeC/
√

| 4
5
R − cot β|, with We and C being the rescaled electric Weber and Capillary

numbers respectively (see Tseluiko & Papageorgiou [34]). When the electric field is absent,

i.e. µ = 0, and R > Rc, we obtain the usual KS equation on 2π-periodic domains:

ut + uux + uxx + νuxxxx = 0. (1.3)

This equation arises in a variety of applications and describes the asymptotic behavior

of many physical systems. It occurs in free surface film flows (Benney [2], Hooper &

Grimshaw [13], Shlang & Sivashinsky [26], Sivashinsky & Michelson [29]), in two-phase

flows in cylindrical and plane geometries (Coward et al. [6], Papageorgiou et al. [23],

Tilley et al. [33]) flame-front instabilities and reaction diffusion combustion dynamics

(Sivashinsky [27], Sivashinsky [28]), chemical physics for propagation of concentration

waves (Kuramoto [19], Kuramoto & Tsuzuki [20], Kuramoto & Tsuzuki [21]), and

plasma physics (Cohen et al. [3]). Due to its practical applications, there have been many

computational (Frisch et al. [8], Greene & Kim [11], Hyman & Nicolaenko [14], Hyman

et al. [15], Kevrekidis et al. [18], Papageorgiou & Smyrlis [24], Smyrlis & Papageorgiou

[30], Sivashinsky & Michelson [29], Smyrlis & Papageorgiou [31]) as well as analytical

studies of this equation (Collet et al. [5], Collet et al. [4], Goodman [10], Il’yashenko [16],

Jolly et al. [17], Nicolaenko et al. [22]). The results show that the KS equation is one of the

simplest one-dimensional evolution equations exhibiting chaotic behavior. This complex

behavior emerges from a balance between active and dissipative linear terms (a negative

diffusion and a fourth derivative damping term) and the Burgers-type nonlinearity.

It was also observed numerically, and established analytically, that the solutions of

the KS equation do not grow exponentially as linear theory would predict, but remain

bounded as time goes to infinity due to a nonlinear transfer of energy from low active

modes to high dissipative ones. The existence and uniqueness of the solutions and the first

analytical estimates for the L2-norm for odd-parity solutions were obtained by Nicolaenko

et al. [22]. The approach of Nicolaenko et al. [22] was extended by several authors for the

case of general periodic solutions (Collet et al. [5], Goodman [10], Il’yashenko [16], Jolly

et al. [17]). The best known upper bound for the L2-norm of the solutions (i.e. the radius

of the absorbing ball) was obtained by Jolly et al. [17], who reworked the analysis by

Collet et al. [5]. (The approach is based on the careful selection of an appropriate gauge

function, which is constructed in Fourier space.) The analyticity properties of the solutions

of the KS equation were studied by Collet et al. [4]. They show that the solutions are

analytic in a strip around the real axis, and give a bound for the width of this strip. They
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also provide several stronger conjectures regarding the analyticity of the solutions based

on a series of numerical experiments.

The electric field induces a linear growth which is worse than the negative diffusion

but is still dominated by the fourth order damping. The numerical study of the nonlocal

KS equation was performed by Tseluiko & Papageorgiou [34], where it is observed

numerically that the solutions remain bounded and exhibit a complex behavior including

chaotic oscillations as in the case of the usual KS equation. Analytical results of global

existence, uniqueness and uniform boundedness of solutions of the MKS equation were

obtained by Duan & Ervin [7], who also obtain a bound for the radius of the absorbing

ball in L2.

In the present paper we consider the following generalization of equations (1.1):

ut + uux ± uxx + νuxxxx − µ(H ◦ ∂x)
p[u] = 0, (1.4)

on a 2π-periodic interval with ν > 0, µ � 0. Here p ∈ [3, 4) (for p = 3 equations

(1.1) and (1.4) are identical), and the operator (H ◦ ∂x)
p is defined by its symbol in

Fourier space. In particular for our purposes the Fourier transform of the nonlocal term

in equation (1.4), gives F
[
(H ◦ ∂x)

p[u]
]
(k) = |k|pû(k), with û(k) denoting the Fourier

transform of u – see property (A 7) in Appendix A. Linear stability of (1.4) follows by

writing u = ε exp [ikx+ ωt] (k ∈ �), linearizing with respect to ε and working in Fourier

space using the properties in Appendix A, to obtain

ω+(k) = k2 + µ|k|p − νk4, (1.5)

ω−(k) = −k2 + µ|k|p − νk4, (1.6)

where ω+ and ω− correspond to the MKS and DMKS equations, respectively. The

nonlocal term is always destabilizing and enhances the hydrodynamic instability (for

MKS) and can make a hydrodynamically stable flow unstable (for DMKS) if µ is

sufficiently large (for fixed ν). The extension of the nonlocal operator as defined above, to

the interval p ∈ [3, 4), enables a parametric study of the increasing instability and global

features such as the radius of the attracting set. We expressly exclude the case p = 4

because equation (1.4) becomes ill-posed when µ > ν (it becomes a fourth derivative

negative diffusion equation). In all the results presented in the sequel the dependence on

p ∈ [3, 4) is explicit and the physical problem results follow readily. In fact we derive

estimates for the L2-norm of the solution as a function of µ, ν and p.

Throughout this paper we denote by L2
per, H

k
per, k = 1, 2, . . . , the subspaces of the

Sobolev spaces L2(−π, π), Hk(−π, π) consisting of periodic functions with period 2π. We

also use L̇2
per, Ḣ

k
per to denote the subspaces of L2

per, H
k
per consisting of functions with zero

mean, and use L2
odd, H

k
odd to denote the subspaces of L̇2

per, Ḣ
k
per consisting of odd functions.

The paper is organized as follows. In § 2 we compile some relevant general results

regarding existence and uniqueness of the solutions for Cauchy problems for nonlinear

evolutionary equations on Banach spaces. In § 3 we use these results to prove global

existence and uniqueness of the solutions of the nonlocal Kuramoto–Sivashinsky equations

(1.4) in Ḣ1
per. First, we prove local results following the approach of Duan & Ervin [7]

(see also Henry [12]) and then establish global results by proving uniform boundedness
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of the solutions in Ḣ1
per on each time interval. To establish uniform boundedness of

the solutions in Ḣ1
per we first prove uniform boundedness in L̇2

per, which is done by a

modification of the method of Collet et al. [5]. After proving global existence this also

provides the existence of the absorbing ball in L̇2
per as well as estimates for its radius. As

p increases from the value 3, we can determine how the nonlocal term affects the radius

R of the absorbing ball. In particular, when we consider our bound for large values of

γ = µν−1/2 we obtain the estimate R = O
(
γ

23p−28
10(4−p) ν−21/20

)
. The corresponding estimate for

γ = 0 is R = O
(
ν−21/20

)
, in agreement with Collet et al. [5]. Both these estimates represent

improvements over those found by Duan & Ervin [7], who considered p = 3 and whose

values are O
(
γ6ν−3/2

)
and O

(
ν−3/2

)
for γ large and zero, respectively. In § 4 we compare

the analytical estimate with values obtained from numerical computations for different

values of p and guided by the computations we give a heuristic argument for the best

bound of R for large values of µ (or γ). Conclusions are given in § 5.

2 Existence and uniqueness theory for nonlinear Cauchy problems

In this section we review some basic results regarding existence and uniqueness theory of

the solutions of nonlinear partial differential equations which are relevant to our problem.

For more information see for example Henry [12] or Sell & You [25].

Consider the following Initial Value Problem for an abstract nonlinear evolutionary

equation:

∂tu+ Au = F(u, t), for u(t0) = u0 ∈ W and t � t0 � 0, (2.1)

on a Banach space W , where A is a sectorial operator. We also assume that F maps some

open subset U ⊂ Wα ×�+ into W , for some α ∈ [0, 1), and that F ∈ CLip; θ(U, W ), where

CLip; θ(U, W ) are those functions which are locally Lipschitz continuous in u and locally

Hölder continuous in t on U, i.e. for each (u1, t1) ∈ U there exists a neighborhood V ⊂ U

of (u1, t1) such that for any (v1, s1) ∈ V , (v2, s2) ∈ V ,

‖F(v1, s1) − F(v2, s2)‖ � L(‖v1 − v2‖α + |s1 − s2|θ), (2.2)

for some constants L > 0, θ ∈ (0, 1]. It is also assumed that for every bounded set B ⊂ U,

the image F(B) is bounded in W .

Let τ > 0 and I = [t0, t0 + τ) be an interval in �+.

Definition 2.1 A pair (u, I) is said to be a solution of (2.1) in the space Wα on I if

u : I → W is (strongly) continuous, u(t0) = u0, and on (t0, t0 + τ) we have (u(t), t) ∈ U,

u(t) ∈ D(A) (where D(A) is the domain of the operator A), the mapping t → F(u(t), t) is

locally Hölder continuous, u is (strongly) differentiable, and u satisfies the equation

∂tu(t) + Au(t) = F(u(t), t) (2.3)

in W , at each t ∈ (t0, t0 + τ).

The following local existence and uniqueness result holds:
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Theorem 2.2 Let A be a sectorial operator, α ∈ [0, 1), F ∈ CLip; θ(U, W ), where U is an

open subset of Wα × �+. Then for every (u0, t0) ∈ U the initial value problem (2.1) has a

unique solution in Wα on some interval I = [t0, t0 + τ), for some τ > 0.

Let (u1, I1) and (u2, I2) be two solutions of (2.1), where Ii = [t0, t0 + τi), i = 1, 2, and

τ1 � τ2. The uniqueness of solutions implies u1(t) = u2(t) for t ∈ I1. Hence (u2, I2) is an

extension of (u1, I1). If τ1 < τ2 then (u2, I2) is said to be a proper extension of (u1, I1). A

solution (u, I) is said to be a maximally defined solution if it has no proper extensions.

Theorem 2.3 Let A and F be as in Theorem 2.2 above. Then for every (u0, t0) ∈ U the initial

value problem (2.1) has a unique maximally defined solution (u, I) of (2.1) in Wα, where

I = [t0, T ). Furthermore, either T = ∞, or there exists a sequence tn → T−, n = 1, 2, . . . ,

such that (u(tn), tn) → ∂U as n → ∞. (If U is unbounded, the point at infinity is included

in ∂U, e.g. if ∂U has only the point at infinity, then limt→T− ‖u(t)‖α = ∞.)

3 Results for the MKS and DMKS equations

In this section we study the behavior of the solutions of equations (1.4) with periodic

boundary conditions. Note that the operator H ◦ ∂x is self adjoint, densely defined and

bounded below in L2
per. Hence it is sectorial, and the powers (H ◦ ∂x)

p can be considered

which are linear operators.

We will consider the solutions having a vanishing spatial integral. This assumption

is correct due to the conservation of spatial integrals, which can be seen by integrating

equation (1.4):

d

dt

∫ π

−π

u(x, t)dx = 0. (3.1)

So, if initially the spatial integral is zero, it remains zero for all time.

First, we will show local existence and uniqueness of the solutions in Ḣ1
per on some

time interval [0, T (u0)) using the results above (Theorem 2.2) and then we will show that

if T (u0) is finite then the solutions are uniformly bounded for all time in Ḣ1
per, which by

Theorem 2.3 also implies global existence.

An estimate for the upper bound of the L2-norm of the solutions in terms of the

parameters of the equation will also be obtained. This will be done using the method of

Collet et al. [5] by considering first the problem for antisymmetric (odd) solutions, and

then expanding the results for general (not necessarily odd) solutions.

3.1 Local existence and uniqueness

For equations (1.4) we fix the basic space to be the real Hilbert space L̇2
per. We define the

operator A1 : D(A1) → L̇2
per by

A1ϕ = ν∂4
xϕ± ∂2

xϕ+ aϕ, for ϕ ∈ D(A1), (3.2)

where D(A1) = Ḣ4
per, and we also define the operator A2 : D(A2) → L̇2

per by

A2ϕ = −µ(H ◦ ∂x)
p[ϕ], for ϕ ∈ D(A2), (3.3)
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where D(A2) = {ϕ ∈ L̇2
per :

∑∞
k=−∞ |k|2pϕ2

k < ∞}. (Here ϕk , k = 0, ±1, ±2, . . . , are the

Fourier coefficients of ϕ.) (Note that D(A1) ⊂ D(A2).)

Let a be chosen such that the eigenvalues of A1 are all positive, i.e.

νk4 ∓ k2 + a > 0, for all k = 0, ±1, ±2, . . . . (3.4)

Then A1 is a positive sectorial operator. By Theorem 1.4.2 in Henry [12] the operator

A
−p/4
1 is a bounded linear operator. It is easy to see that the operator A2 ◦ A−p/4

1 is also

bounded. Hence, Corollary 1.45 of Henry [12] implies that A = A1 + A2 is a sectorial

operator.

Equations (1.4) take the form

∂tu+ Au = F(u), for t > 0, (3.5)

where the nonlinear operator F : Ḣ1
per → L̇2

per is defined by

F(ϕ) = −ϕϕx + aϕ, for ϕ ∈ Ḣ1
per. (3.6)

It can be verified that F ∈ CLip(Ḣ
1
per, L̇

2
per). Therefore, by Theorem 2.2, for every u0 ∈ Ḣ1

per

there exists a unique maximally defined solution in Ḣ1
per on the interval [0, T ), where

0 < T = T (u0).

It remains to prove that the solution is uniformly bounded in Ḣ1
per on every finite

time interval. Then, from the theory in the previous section (Theorem 2.3) it follows

that T (u0) = ∞. In order to accomplish the proof, we first need to establish uniform

boundedness of the solutions in L̇2
per. This is done next, for both odd-parity and non-

parity solutions.

3.2 Uniform boundedness of the solutions in L̇2
per

In what follows we analyze the MKS equation (the plus sign is taken in (1.4)) and prove

uniform boundedness of the solutions in the L̇2
per and Ḣ1

per norms, along with estimates

for the radius of the absorbing ball. When the DMKS equation is considered, the results

are similar and are briefly discussed in the Conclusions section.

3.2.1 The antisymmetric case

First we consider the antisymmetric case, i.e., we consider the solutions in L2
odd. It is

noticed that if a solution of 1.4) is initially in L2
odd then it remains in L2

odd for all time.

Define the linear operator L = Lµ, ν:

L : f 	→ −fxx − νfxxxx + µ(H ◦ ∂x)
p[f], (3.7)

then (1.4) can be written as

ut = Lu− uux. (3.8)

If we express u as u(x, t) = v(x, t) + ϕ(x), where ϕ ∈ L2
odd is an appropriately chosen

gauge function found in the sequel, then the equation becomes:

vt = Lv + Lϕ− vvx − vϕ′ − ϕvx − ϕϕ′. (3.9)
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Multiplying the last equation by v and integrating over the interval [−π, π] gives

1

2

d

dt

∫ π

−π

v2dx =

∫ π

−π

vLvdx+

∫ π

−π

vLϕdx−
∫ π

−π

v2vxdx

−
∫ π

−π

v2ϕ′dx−
∫ π

−π

vvxϕdx−
∫ π

−π

vϕϕ′dx. (3.10)

Integrating by parts and using periodicity, yields,

1

2

d

dt

∫ π

−π

v2dx =

∫ π

−π

vLvdx+

∫ π

−π

vLϕdx− 1

2

∫ π

−π

v2ϕ′dx−
∫ π

−π

vϕϕ′dx. (3.11)

Next, define a bilinear form

(f, g)αϕ = ν

∫ π

−π

fxxgxxdx−
∫ π

−π

fxgxdx

+ µ

∫ π

−π

fxx(H ◦ ∂x)
p−2[g]dx+ α

∫ π

−π

fgϕ′dx, (3.12)

which also can be written as

(f, g)αϕ = −
∫ π

−π

f(L − αϕ′)gdx. (3.13)

Then (3.11) takes the form

1

2

d

dt

∫ π

−π

v2dx = −(v, v) 1
2ϕ

− (v, ϕ)ϕ. (3.14)

The main idea now is to find an odd function ϕ such that the bilinear form (3.13)

becomes positive definite and for large enough L2-norm of v the right-hand side of (3.14)

becomes negative.

We define the following auxiliary quadratic forms:

Rαϕ(u) = (u, u)αϕ, (3.15)

Q(u) =
ν

4

∫ π

−π

u2
xxdx+

η(γ)

4ν

∫ π

−π

u2dx, (3.16)

where γ = ν1−p/2µ, and η is a function of γ, which is defined as follows:

η(γ) =

{
1, if γ � 1,

γ4, if γ > 1.
(3.17)

Using (3.12) we can write

Rαϕ(u) = ν

∫ π

−π

u2
xxdx−

∫ π

−π

u2
xdx+ µ

∫ π

−π

uxx(H ◦ ∂x)
p−2[u]dx+ α

∫ π

−π

u2ϕ′dx. (3.18)

Proposition 3.1 There exists a function ϕ ∈ H2
odd such that for µ � 0 and ν ∈ (0, ν0(µ)),

and for all v ∈ H2
odd and all α ∈ [α0, 1]

Rαϕ(v) � Q(v), (3.19)

Rαϕ(ϕ) � C(γ, ν). (3.20)

https://doi.org/10.1017/S0956792506006760 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006760


684 D. Tseluiko and D. T. Papageorgiou

Here α0 is some fixed number in (0, 0.5) and C(γ, ν) is a function of γ and ν only, which

will be determined later.

Remark. The upper bound ν0(µ) is the unique positive solution of k0(µ, ν) = 1 where k0 is

the unique positive solution of ω+(k0) = 0. This follows from the dispersion relation (1.5)

and the fact that we are considering 2π-periodic solutions, meaning that k is a positive

integer. In general, (1.5) gives a band of unstable waves 0 < k < k0(µ, ν), which may or

may not include k = 1. Hence instability first enters when k0(µ, ν) = 1, which is in turn

solved to obtain the unique critical value of ν = ν0 (for fixed µ). If ν > ν0(µ), it can

be proved, using Poincaré inequalities, that ‖u‖2 decays to zero uniformly as t tends to

infinity. Note that for p = 3 we can solve for ν0 analytically to obtain ν0(µ) = 1 + µ.

Proof We work with the Fourier series of v and ϕ′. Since v and ϕ are odd functions with

respect to x, we get

v(x) = i
∑
n∈�

vne
inx, (3.21)

where vn are all real, and v0 = 0, vn = −v−n for n = 1, 2, . . . , and

ϕ′(x) = −
∑
n∈�

ψne
inx, (3.22)

where ψn ∈ � for all n ∈ �, and ψ0 = 0, ψn = ψ−n for n = 1, 2, . . . .

Next we will find the expressions for Rαϕ(v) and Q(v) in terms of the coefficients vn and

ψn. First, note that

1

2π

∫ π

−π

v2ϕ′dx =
1

2π

∑
k, l, m

∫ π

−π

vkvlψme
i(k+l+m)xdx

=
∑

k+l+m=0

vkvlψm =
∑
k, l

vkvlψ−k−l =
∑
k, l

vkvlψ|k+l|. (3.23)

Using (3.18) we get

1

2π
Rαϕ(v) = ν

∑
n∈�

n4v2n −
∑
n∈�

n2v2n − µ
∑
n∈�

|n|pv2n + α
∑
k, l

vkvlψ|k+l|

= −2

∞∑
n=1

ω+(n)v2n + α
∑
k, l>0

vkvl(ψ|k+l| + ψ|−k−l| − ψ|k−l| − ψ|−k+l|)

= −2

∞∑
n=1

ω+(n)v2n + 2α
∑
k, l>0

vkvl(ψ|k+l| − ψ|k−l|)

= 2

∞∑
n=1

(−ω+(n) + αψ2n)v
2
n + 2α

∑
k, l>0 k�l

vkvl(ψ|k+l| − ψ|k−l|)

= 2

[ ∞∑
n=1

(−ω+(n) + αψ2n)v
2
n + 2α

∑
k>l>0

vkvl(ψ|k+l| − ψ|k−l|)

]
, (3.24)
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where ω+(n) = −νn4 + µ|n|p + n2, as was defined above. Also,

1

2π
Q(v) =

1

2

∞∑
n=1

(
νn4 +

η(γ)

ν

)
v2n . (3.25)

To prove the first part of the proposition, we need

2

[ ∞∑
n=1

(−ω+(n) + αψ2n)v
2
n + 2α

∑
k>l>0

vkvl(ψ|k+l| − ψ|k−l|)

]
�

1

2

∞∑
n=1

(
νn4 +

η(γ)

ν

)
v2n . (3.26)

First, let N(γ, ν) be an integer, such that

−ω+(n) �
1

2

(
νn4 +

η(γ)

ν

)
for n > N. (3.27)

The inequality we need to solve takes the form

ν

2
n4 − µnp − n2 − η(γ)

2ν
� 0, (3.28)

or
1

2
x4 − γxp − x2 − η(γ)

2
� 0, (3.29)

where γ = ν1−p/2µ, as was defined before, and also x = ν1/2n.

In the general case 3 � p < 4, consideration of the large γ behavior of equation

(3.29), yields N = O
(
ν−1/2γ1/(4−p)). Note that as p → 4−, N → ∞ and the analysis breaks

down as expected. When p = 3 it can be easily verified that inequality (3.29) holds for

x > 2.2(γ + 1), which implies n > 2.2ν−1/2(γ + 1). Therefore, when p = 3, we can take

N =
⌈
2.2ν−1/2(γ + 1)

⌉
.

Next, let B = B(γ, ν) be determined as follows:

B = min
0�n�N

(
ν

2
n4 − µnp − n2 − η(γ)

2ν

)
=

1

ν
min

0�x�ν1/2N

(
1

2
x4 − γxp − x2 − η(γ)

2

)
. (3.30)

For simplicity, we denote δ = δ(γ) ≡ − min0�x�ν1/2N

(
1
2
x4 − γxp − x2 − η(γ)

2

)
.

Even though δ cannot be obtained in closed form for general p, its large γ behavior

can be calculated asymptotically, yielding

δ = O
(
γ4/(4−p)) as γ → ∞. (3.31)

When p = 3, the exact expression δ = 1+η(γ)
2

+ (72γ2 + 27γ4 + γ(9γ2 + 16)3/2)/64 follows,

which in turn implies that

δ = O
(
γ4

)
as γ → ∞. (3.32)

We choose

ψ2n = − 1

α0
B =

δ

α0ν
for n � N. (3.33)
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The remaining coefficients ψk are chosen to be nonnegative and will be specified later.

Now

−ω+(n) + αψ2n �
1

2

(
νn4 +

η(γ)

ν

)
(3.34)

for all n = 1, 2, . . . , and α ∈ [α0, 1]. We define

τn =

√
1

2

(
νn4 +

η(γ)

ν

)
(3.35)

and set wn = τnvn for n = 1, 2, . . . . Then,

1

2π
Rαϕ(v) � 2

[ ∞∑
n=1

w2
n + 2α

∑
k>l>0

wk
ψ|k+l| − ψ|k−l|

τkτl
wl

]
≡ 2

(
w, (Id + 2αΓ)w

)
. (3.36)

Hence the first part of the proposition will be proved if we find appropriate coefficients

ψk , such that (
w, (Id + 2αΓ)w

)
�

1

2
(w, w), for α ∈ [α0, 1]. (3.37)

So, we need to get (w, w) � −4α(w, Γw). The sufficient condition for this is that the

Hilbert–Schmidt norm of 4αΓ is less than 1, i.e.,

(4α)2‖Γ‖2
HS ≡ 16α2

∑
k>l>0

∣∣∣∣ψ|k+l| − ψ|k−l|

τkτl

∣∣∣∣2 < 1 (3.38)

for all α ∈ [α0, 1]. So, it is enough to find coefficients ψk such that

‖Γ‖2
HS ≡

∑
k>l>0

∣∣∣∣ψ|k+l| − ψ|k−l|

τkτl

∣∣∣∣2 < 1

16
. (3.39)

But on the other hand we need to find the coefficients ψk such that (ϕ, ϕ)αϕ is minimized

(this is needed in the estimates that come later). We can satisfy (3.39) by choosing ψk to

be constant. But then the corresponding Fourier series does not converge and the norm

of ϕ becomes infinite. Therefore, we choose ψk to be a nonnegative and non-increasing

function of k, vanishing sufficiently fast as k goes to infinity. This can be done by taking

ψ2m =

{
δ
α0ν
, if 1 � |m| � M,

δ
α0ν
f
(

|m|
M

− 1
)
, if |m| > M,

(3.40)

where M is an integer which will be chosen later (of course we should take M � N

to be consistent with (3.33)), and f ∈ C1[0, ∞] is a nonnegative non-increasing function

satisfying the conditions f(0) = 1, f′(0) = 0, sup |f′| < 1, and∫ ∞

0

(1 + k2)f2(k)dk < ∞. (3.41)

A plot of the function ϕ(x) is provided in Figure 1.
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Figure 1. The graph of the gauge function ϕ(x) for ν = 0.5, µ = 1, in physical space, when the

function f(k) in equation (3.40) is chosen as f(k) = e−k2 .

For k > l we get |ψk+l − ψk−l | = 0 if k + l � 2M and also if k + l and k − l are both

odd numbers (i.e., if k and l are of a different parity).

Next, if k and l are of the same parity and k + l > 2M, we get:

• If k − l � 2M

|ψk+l − ψk−l | =
δ

α0ν

∣∣∣∣∣f
(
k + l

2M
− 1

)
− 1

∣∣∣∣∣ =
δ

α0ν

∣∣∣∣∣f
(
k + l

2M
− 1

)
− f(0)

∣∣∣∣∣. (3.42)

Since sup |f′| < 1 then by the mean value theorem we get

|ψk+l − ψk−l | �
δ

α0ν

(
k + l

2M
− 1

)
=

δ

α0ν

(
k + l − 2M

2M

)
�

δ

α0ν

(
k + l − (k − l)

2M

)
=

δ

α0ν

l

M
. (3.43)

• Similarly, if k − l > 2M

|ψk+l − ψk−l | =
δ

α0ν

∣∣∣∣∣f
(
k + l

2M
− 1

)
− f

(
k − l

2M
− 1

)∣∣∣∣∣
�

δ

α0ν

[(
k + l

2M
− 1

)
−

(
k − l

2M
− 1

)]
=

δ

α0ν

l

M
. (3.44)

Hence, for all k > l > 0, |ψk+l − ψk−l | = 0 if k + l � 2M or if k and l are of a different

parity, and |ψk+l − ψk−l | � δ
α0ν

l
M

if k + l > 2M.
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So, we get

‖Γ‖2
HS =

M∑
l=1

∞∑
k=l+1

∣∣∣∣ψ|k+l| − ψ|k−l|

τkτl

∣∣∣∣2 +

∞∑
l=M+1

∞∑
k=l+1

∣∣∣∣ψ|k+l| − ψ|k−l|

τkτl

∣∣∣∣2. (3.45)

For the first term we get

M∑
l=1

∞∑
k=l+1

∣∣∣∣ψ|k+l| − ψ|k−l|

τkτl

∣∣∣∣2 =

(
M∑
l=1

2M−l∑
k=l+1

+

M∑
l=1

∞∑
k=2M−l+1

)∣∣∣∣ψ|k+l| − ψ|k−l|

τkτl

∣∣∣∣2

= 0 +

M∑
l=1

∞∑
k=2M−l+1

∣∣∣∣ψ|k+l| − ψ|k−l|

τkτl

∣∣∣∣2 =

M∑
l=1

∞∑
k=2M−l+1

∣∣∣∣ψ|k+l| − ψ|k−l|

τkτl

∣∣∣∣2. (3.46)

Hence

‖Γ‖2
HS =

M∑
l=1

∞∑
k=2M−l+1

∣∣∣∣ψ|k+l| − ψ|k−l|

τkτl

∣∣∣∣2 +

∞∑
l=M+1

∞∑
k=l+1

∣∣∣∣ψ|k+l| − ψ|k−l|

τkτl

∣∣∣∣2

�
M∑
l=1

∞∑
k=2M−l+1

δ2

α2
0ν

2

l2

M2
τ−2
k τ

−2
l +

∞∑
l=M+1

∞∑
k=l+1

δ2

α2
0ν

2

l2

M2
τ−2
k τ

−2
l

=
δ2

α2
0ν

2M2

M∑
l=1

l2τ−2
l

∞∑
k=2M−l+1

τ−2
k +

δ2

α2
0ν

2M2

∞∑
l=M+1

l2τ−2
l

∞∑
k=l+1

τ−2
k

�
δ2

α2
0ν

2M2

M∑
l=1

l2τ−2
l

∫ ∞

2M−l
τ−2
k dk +

δ2

α2
0ν

2M2

∞∑
l=M+1

l2τ−2
l

∫ ∞

l

τ−2
k dk. (3.47)

Now ∫ ∞

a

τ−2
k dk =

∫ ∞

a

2

νk4 + η(γ)/ν
dk <

2

ν

∫ ∞

a

k−4dk =
2

3
ν−1a−3. (3.48)

Thus, ∫ ∞

2M−l
τ−2
k dk <

2

3
ν−1(2M − l)−3 �

2

3
ν−1M−3, (3.49)

(the last step is true for 1 � l � M) and∫ ∞

l

τ−2
k dk <

2

3
ν−1l−3. (3.50)

Therefore,

‖Γ‖2
HS <

2δ2

3α2
0ν

3
M−5

M∑
l=1

l2τ−2
l +

2δ2

3α2
0ν

3
M−2

∞∑
l=M+1

l−1τ−2
l

<
2δ2

3α2
0ν

3
M−5

∫ M

0

l2τ−2
l dl +

2δ2

3α2
0ν

3
M−2

∫ ∞

M

l−1τ−2
l dl

=
4δ2

3α2
0ν

3
M−5

∫ M

0

l2

νl4 + η(γ)/ν
dl

+
4δ2

3α2
0ν

3
M−2

∫ ∞

M

1

νl5 + (η(γ)/ν)l
dl. (3.51)
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Next we estimate the integrals in the last expression:∫ M

0

l2

νl4 + η(γ)/ν
dl <

∫ ∞

0

νl2

ν2l4 + η(γ)
dl <

∫ ∞

0

1√
ν2l4 + η(γ)

dl

=

∫ a

0

1√
ν2l4 + η(γ)

dl +

∫ ∞

a

1√
ν2l4 + η(γ)

dl

<

∫ a

0

(
η(γ)

)−1/2
dl +

∫ ∞

a

1

νl2
dl = a

(
η(γ)

)−1/2
+ (aν)−1. (3.52)

Taking a = ν−1/2
(
η(γ)

)1/4
gives∫ M

0

l2

νl4 + η(γ)/ν
dl < 2ν−1/2

(
η(γ)

)−1/4
. (3.53)

Estimating the other integral, we get∫ ∞

M

1

νl5 + (η(γ)/ν)l
dl <

∫ ∞

M

1

νl5
dl =

1

4
ν−1M−4. (3.54)

So,

‖Γ‖2
HS <

8δ2

3α2
0

ν−7/2
(
η(γ)

)−1/4
M−5 +

δ2

3α2
0

ν−4M−6. (3.55)

We choose M � N such that the right hand side of the last inequality becomes less

than 1/16. This can be done since the right hand side of (3.55) is a positive function

of M that decays to zero as M → ∞. For “small” ν (that is ν ∈ (0, 1]) if we take

M � 5
2
α

−2/5
0 δ2/5η(γ)−1/20ν−7/10, the condition M � N is always satisfied. Hence, M =⌈

5
2
α

−2/5
0 δ2/5η(γ)−1/20ν−7/10

⌉
; for large γ, therefore, it follows using (3.17) and (3.31), that

M = O
(
γ

4+p
5(4−p) ν−7/10

)
. (3.56)

When p = 3 we obtain M = O
(
γ7/5ν−7/10

)
which is used later.

Next we estimate the value Rαϕ(ϕ). Using (3.18) we first note that Rαϕ(ϕ) = R0(ϕ), since

the part which is dependent on α is equal to zero due to periodicity of ϕ. Also, if

ϕ′(x) = −
∑
n∈�

ψne
inx, (3.57)

then

ϕ(x) = i
∑
n∈�

ψn

n
einx. (3.58)

Therefore,

Rαϕ(ϕ) = −4π

∞∑
n=1

ω+(n)

(
ψn

n

)2

= −4π

∞∑
k=1

ω+(2k)

(
ψ2k

2k

)2

= 4π

∞∑
k=1

(
ν(2k)2 − µ(2k)p−2 − 1

)
ψ2

2k < 4π

∞∑
k=1

4νk2ψ2
2k

https://doi.org/10.1017/S0956792506006760 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006760


690 D. Tseluiko and D. T. Papageorgiou

= 4π

M∑
k=1

4νk2ψ2
2k + 4π

∞∑
k=M+1

4νk2ψ2
2k

= 16π
δ2

α2
0ν

M∑
k=1

k2 + 16π
δ2

α2
0ν

∞∑
k=M+1

k2f2

(
k

M
− 1

)

< 16π
δ2

α2
0ν
M3 + 16π

δ2

α2
0ν

∫ ∞

M

k2f2

(
k

M
− 1

)
dk. (3.59)

Now, using the substitution t = k
M

− 1 in the integral above, we get

Rαϕ(ϕ) < 16π
δ2

α2
0ν
M3 + 16π

δ2

α2
0ν
M3

∫ ∞

0

(t+ 1)2f2(t)dt

= 16π
δ2

α2
0ν
M3

(
1 +

∫ ∞

0

(t+ 1)2f2(t)dt

)
. (3.60)

So, Rαϕ(ϕ) < C(γ, ν), where

C(γ, ν) = 16π
δ2

α2
0ν
M3

(
1 +

∫ ∞

0

(t+ 1)2f2(t)dt

)
. (3.61)

For large γ and small ν the value of C(γ, ν) is estimated using (3.31) and (3.56) to be

C(γ, ν) = O
(
γ

52+3p
5(4−p) ν−31/10

)
. (3.62)

Note that when p = 3, we get C(γ, ν) = O
(
γ61/5ν−31/10

)
. �

Now we are ready to prove uniform boundedness of the L2-norm of the solutions of

the MKS equation.

Theorem 3.2 Let µ be any positive number and ν ∈ (0, ν0(µ)). If u(x, t) is a solution of

equation (1.4) such that u(x, 0) = u0(x) ∈ H1
odd, then there is a constant K > 0 (independent

of µ, ν, u0), and a constant D > 0 (independent of µ, u0) such that

‖u‖2 � (‖u0‖2 + ‖ϕ‖2) exp(−Dt) +K

√
ν

η(γ)
C(γ, ν) + ‖ϕ‖2, (3.63)

where ϕ is the function constructed in Proposition 3.1, and C(γ, ν) is given by (3.61).

Proof Let ϕ be the function defined in Proposition 3.1. Then the bilinear form (3.13) is

positive definite. Indeed, for any nonzero function w we get (w, w)αϕ = Rαϕ(w) � Q(w) > 0.

Then, applying first the Cauchy–Shwarz inequality and then Young’s inequality for the

second term in (3.14) we obtain

1

2

d

dt

∫ π

−π

v2dx = −(v, v) 1
2ϕ

− (v, ϕ)ϕ

� −(v, v) 1
2ϕ

+
ε

2
(v, v)ϕ +

1

2ε
(ϕ, ϕ)ϕ, (3.64)
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where ε is a positive number which will be chosen later. So,

1

2

d

dt

∫ π

−π

v2dx �

∫ π

−π

v

(
L − 1

2
ϕ′

)
vdx− ε

2

∫ π

−π

v(L − ϕ′)vdx+
1

2ε
Rϕ(ϕ)

=

(
1 − ε

2

)∫ π

−π

v

(
L − 1 − ε

2 − ε
ϕ′

)
vdx+

1

2ε
Rϕ(ϕ)

= −
(

1 − ε

2

)
R 1−ε

2−ε ϕ
(v) +

1

2ε
Rϕ(ϕ)

� −
(

1 − ε

2

)
Q(v) +

1

2ε
Rϕ(ϕ). (3.65)

The last step is true when 1−ε
2−ε ∈ [α0, 1], or ε � 1−2α0

1−α0
. Inequality (3.65) implies

d

dt
‖v‖2

2 � −η(γ)

2ν

(
1 − ε

2

)
‖v‖2

2 +
1

ε
C(γ, ν). (3.66)

The Gronwall inequality (see Temam [32]) then implies:

‖v‖2
2 � ‖vt=0‖2

2 exp

[
−η(γ)

2ν

(
1 − ε

2

)
t

]
+

4νC(γ, ν)

ε(2 − ε)η(γ)
. (3.67)

Therefore

‖v‖2 � ‖vt=0‖2 exp

[
−η(γ)

4ν

(
1 − ε

2

)
t

]
+

2√
ε(2 − ε)

√
ν

η(γ)
C(γ, ν). (3.68)

Since ‖v‖2 = ‖u− ϕ‖2 �
∣∣‖u‖2 − ‖ϕ‖2

∣∣ and ‖vt=0‖2 = ‖u0 − ϕ‖2 � ‖u0‖2 + ‖ϕ‖2, we get

‖u‖2 � (‖u0‖2 + ‖ϕ‖2) exp

[
−η(γ)

4ν

(
1 − ε

2

)
t

]
+

2√
ε(2 − ε)

√
ν

η(γ)
C(γ, ν) + ‖ϕ‖2. (3.69)

Thus,

‖u‖2 � (‖u0‖2 + ‖ϕ‖2) exp(−Dt) +K

√
ν

η(γ)
C(γ, ν) + ‖ϕ‖2, (3.70)

where D = η(γ)
4ν

(
1 − ε

2

)
and K = 2√

ε(2−ε) .

We can chose ε to minimize the constant K . Since

min
0<ε�

1−2α0
1−α0

1√
ε(2 − ε)

=
1√

ε(2 − ε)

∣∣∣∣∣
ε=

1−2α0
1−α0

=
1 − α0√
1 − 2α0

, (3.71)

we get a better estimate for K if ε = 1−2α0

1−α0
:

K =
2(1 − α0)√

1 − 2α0

. (3.72)
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The constant α0 can be chosen to minimize the righthand side of inequality (3.70) to get

a better estimate. �

Remark. We also have the following estimate for ‖ϕ‖2:

‖ϕ‖2
2 = 4π

∞∑
n=1

(
ψn

n

)2

= 4π

∞∑
k=1

ψ2
2k

4k2

= π

M∑
k=1

ψ2
2k

k2
+ π

∞∑
k=M+1

ψ2
2k

k2

=
πδ2

α2
0ν

2

M∑
k=1

1

k2
+

πδ2

α2
0ν

2

∞∑
k=M+1

1

k2
f2

(
k

M
− 1

)

<
2πδ2

α2
0ν

2
+

πδ2

α2
0ν

2

∫ ∞

M

1

k2
f2

(
k

M
− 1

)
dk

=
2πδ2

α2
0ν

2
+

πδ2

α2
0ν

2M

∫ ∞

0

f2(t)

(t+ 1)2
dt

�
πδ2

α2
0ν

2

(
2 +

∫ ∞

0

f2(t)

(t+ 1)2
dt

)
= O

(
M−3C(γ, ν)

)
. (3.73)

Using the large γ and 0 < ν � 1 result (3.56), we show that ‖ϕ‖2 

√

ν
η(γ)
C(γ, ν). Thus

for the radius R of the absorbing ball in L2
odd we get the following estimate:

R = O
(√

ν

η(γ)
C(γ, ν)

)
= O

(
γ

23p−28
10(4−p) ν−21/20

)
, (3.74)

which gives, for p = 3,

R = O
(√

ν

η(γ)
C(γ, ν)

)
= O

(
γ41/10ν−21/20

)
. (3.75)

Note that in this case the equation we study is

ut + uux + uxx + νuxxxx + µH[u]xxx = 0, (3.76)

which is obtained from the following equation given on 2L-periodic interval

ut + uux + uxx + uxxxx + γH[u]xxx = 0, (3.77)

by the following rescaling (dropping the bars):

t̄ = νt, x̄ = ν1/2x, ū = ν−1/2u, (3.78)

where ν = (π/L)2 and µ = (π/L)γ (see Introduction and Tseluiko & Papageorgiou [34]).

In unscaled variables the estimate for the radius of the absorbing ball takes the following

form:

R̃ = ν1/4R = O
(
γ41/10ν−4/5

)
= O

(
γ41/10L8/5

)
, (3.79)
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which significantly improves the estimate O
(
γ6L5/2

)
obtained by Duan & Ervin [7].

Remark If µ = 0 then γ = 0 and δ = 1 which implies R = O
(
ν−21/10

)
. This value

corresponds to the case of the usual Kuramoto–Sivashinsky equation:

ut + uux + uxx + νuxxxx = 0 (3.80)

In unscaled variables the estimate for the radius of the absorbing ball in L2
odd is

O
(
ν1/4ν−21/20

)
= O

(
ν−4/5

)
= O(L8/5). This is the estimate which was obtained by Collet

et al. [5] for the case of the usual Kuramoto–Sivashinsky equation.

Remark It can be seen from the estimate (3.74) that in the general p case (recall that

3 � p < 4), the estimated radius of the absorbing ball is an increasing function of p which

blows up as p → 4−. This is expected due to the ill-posedness of the equation when p = 4.

3.2.2 The general case

For the general case, when solutions of (1.4) are not necessarily odd functions, the idea is

to consider a generalization of the gauge function ϕ. We start by introducing the following

Liapunov function:

F[u] = dist2(u, S) = inf
ψ∈S

‖u− ψ‖2
2, (3.81)

where S is the following translation-invariant set of functions:

S = {ψ : ∃a, s.t. ψ(x) ≡ ϕ(x+ a)}. (3.82)

This is equivalent to saying that

F[u] = ‖u(x, t) − ϕa(x)‖2
2, (3.83)

where ϕa(x) = ϕ(x+ a), and a = a(t) is a suitably chosen translation function:

‖u(x, t) − ϕ(x+ a(t))‖2
2 = inf

ψ∈S
‖u(x, t) − ψ(x)‖2

2, (3.84)

for all t > 0. So, a = a(t) must satisfy the optimality condition dF/da|a=a(t) = 0, which

can also be written as ∫ π

−π

uϕ′
adx

∣∣∣∣
a=a(t)

= 0. (3.85)

The function u is expressed as u(x, t) = v(x, t) + ϕa(x). Equation (1.4) becomes

vt + ϕ′
aa

′ = Lv + Lϕa − vvx − vϕ′
a − ϕavx − ϕaϕ

′
a. (3.86)

Multiplying the last equation by v and integrating over the interval [−π, π] gives

1

2

d

dt

∫ π

−π

v2dx+ a′
∫ π

−π

vϕ′
adx =

∫ π

−π

vLvdx+

∫ π

−π

vLϕadx−
∫ π

−π

v2vxdx

−
∫ π

−π

v2ϕ′
adx−

∫ π

−π

vvxϕadx−
∫ π

−π

vϕaϕ
′
adx. (3.87)
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This implies

1

2

d

dt
F[u] =

1

2

d

dt

∫ π

−π

v2dx

=

∫ π

−π

vLvdx+

∫ π

−π

vLϕadx− 1

2

∫ π

−π

v2ϕ′
adx

−
∫ π

−π

vϕaϕ
′
adx− a′

∫ π

−π

vϕ′
adx. (3.88)

Noting that the last term is zero due to our choice of a and using bilinear form (3.13) we

can write this as

1

2

d

dt
F[u] = −(v, v) 1

2ϕa
− (v, ϕa)ϕa . (3.89)

For a given t we can assume for simplicity that a(t) = 0 in (3.89) (since the right hand

side of this equality is invariant under translations a → a+ constant).

Next we want to get a result similar to Proposition 3.1 for the general case. So, let w

be any function in Ḣ2
per. This function can be decomposed as follows:

w(x) = w(0) +
1

2
[w(x) + w(−x) − 2w(0)] +

1

2
[w(x) − w(−x)]. (3.90)

So,

w(x) = w(0) + ws(x) + wa(x), (3.91)

where ws(x) = 1
2
[w(x) +w(−x) − 2w(0)] is an even 2π-periodic function of x, and wa(x) =

1
2
[w(x) − w(−x)] is an odd 2π-periodic function of x. Besides, ws(0) = 0.

Now, let us introduce the following operator:

T[f](x) =

{
f(x), if x ∈ [0, π],

−f(x), if x ∈ [−π, 0).
(3.92)

For simplicity, let us reduce our consideration to half the interval, i.e. let us assume that

all the functions are π-periodic. (We can do this reduction without loss of generality, since it

is always possible to transfer from any L-periodic intervals to 2π-periodic domains and vice

versa, without changing the form of the equation, see for example transformation (3.78).

The only impact of such transforms on the equation is that the coefficients µ and ν are

rescaled.) Then T[ws] is an odd 2π-periodic function. Also, since Rαϕa(ws) = Rαϕa(T[ws])

and Q(ws) = Q(T[ws]) we get that Proposition 3.1 holds not only for wa but for ws too:

Rαϕa (wa) � Q(wa), (3.93)

Rαϕa (ws) � Q(ws), (3.94)

for all α ∈ [α0, 1]. Next, it can be easily checked that

Rαϕa (w) = Rαϕa (wa) + Rαϕa (ws), (3.95)

Q(w) = Q(wa) + Q(ws) − π

2ν
w2(0), (3.96)
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for all α ∈ [α0, 1]. Hence, (3.93) and (3.94) imply

Rαϕa(w) � Q(w) +
π

2ν
w2(0) � Q(w) for α ∈ [α0, 1]. (3.97)

This means that with our choice of a = a(t) Proposition 3.1 holds for the general case too.

After this point the proof of the nonlinear stability becomes the same as for the

antisymmetric case. Thus the following result holds:

Theorem 3.3 Let µ be any positive number and ν ∈ (0, ν0(µ)). If u(x, t) is a solution of

equation (1.4) such that u(x, 0) = u0(x) ∈ Ḣ1
per, then there is a constant K > 0 (independent

of µ, ν, u0), and a constant D > 0 (independent of µ, u0) such that

‖u‖2 � (‖u0‖2 + ‖ϕ‖2) exp(−Dt) +K

√
ν

η(γ)
C(γ, ν) + ‖ϕ‖2, (3.98)

where ϕ is the function constructed in Proposition 3.1, and C(γ, ν) is given by (3.61).

(The constants D and K are the same as in Theorem 3.2.)

3.3 Uniform boundedness of the solutions in Ḣ1
per

To prove global existence of the solutions in Ḣ1
per it is enough (according to Theorem

2.3) to prove uniform boundedness of the solutions in Ḣ1
per. This will be established by

showing uniform boundedness of the L2-norm of uxx, which by Poincaré inequality also

implies boundedness of the L2-norm of ux.

Multiplying (1.4) by uxxxx and integrating over [−π, π] gives

1

2

d

dt
‖uxx‖2

2 + ν‖uxxxx‖2
2

= −
∫ π

−π

uxxuxxxxdx−
∫ π

−π

uuxuxxxxdx+ µ

∫ π

−π

(H ◦ ∂x)
p[u]uxxxxdx. (3.99)

Using Young’s inequality, Agmon’ inequality, the Nirenberg–Gagliardo inequalities and

the interpolation inequalities (see Henry [12], Sell & You [25], Temam [32]), the integrals

on the right hand side of this expression can be estimated as follows:

−
∫ π

−π

uxxuxxxxdx � ‖uxx‖2‖uxxxx‖2 � ε1‖uxxxx‖2
2 +

ε−1
1

4
‖uxx‖2

2, (3.100)

−
∫ π

−π

uuxuxxxxdx � ‖u‖∞‖ux‖2‖uxxxx‖2 �
√

2‖u‖1/2
2 ‖ux‖3/2

2 ‖uxxxx‖2

�

√
2

[
‖u0‖2 + 2‖ϕ‖2 +K

√
ν

η(γ)
C(γ, ν)

]
‖ux‖3/2

2 ‖uxxxx‖2. (3.101)
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Denoting for simplicity ‖u0‖2 + 2‖ϕ‖2 +K
√

ν
η(γ)
C(γ, ν) by C1 gives

−
∫ π

−π

uuxuxxxxdx �
√

2C1‖ux‖3/2
2 ‖uxxxx‖2

�
√

2C1

(
C2‖uxx‖1/2

2 ‖u‖1/2
2

)3/2‖uxxxx‖2

�
√

2C
5/4
1 C

3/2
2 ‖uxx‖3/4

2 ‖uxxxx‖2

�
√

2C
5/4
1 C

3/2
2 (ε2‖uxxxx‖2

2 +
ε−1
2

4
‖uxx‖3/2

2 )

�
√

2C
5/4
1 C

3/2
2

(
ε2‖uxxxx‖2

2 +
ε−1
2

4
‖uxx‖3/2

2

)
�

√
2C

5/4
1 C

3/2
2

(
ε2‖uxxxx‖2

2 +
ε−1
2

4

[
3

4
‖uxx‖2

2 +
1

4

])
. (3.102)

Denoting A1 =
√

2C
5/4
1 C

3/2
2 , A2 =

√
2

16
ε−1
2 C

5/4
1 C

3/2
2 gives

−
∫ π

−π

uuxuxxxxdx � ε2A1‖uxxxx‖2
2 + 3A2‖uxx‖2

2 + A2. (3.103)

Next, ∫ π

−π

(H ◦ ∂x)
p[u]uxxxxdx �

∥∥(H ◦ ∂x)
p[u]

∥∥
2
‖uxxxx‖2. (3.104)

Also, ∥∥(H ◦ ∂x)
p[u]

∥∥
2

=
∥∥(H ◦ ∂x)

p−3
[
(H ◦ ∂x)

3[u]
]∥∥

2

�
∥∥(H ◦ ∂x)

[
(H ◦ ∂x)

3[u]
]∥∥(p−3)

2

∥∥(H ◦ ∂x)
3[u]

∥∥(4−p)
2

=
∥∥(H ◦ ∂x)

4[u]
∥∥(p−3)

2

∥∥(H ◦ ∂x)
3[u]

∥∥(4−p)
2

=
∥∥uxxxx∥∥(p−3)

2

∥∥uxxx∥∥(4−p)
2

� (p− 3)ε3‖uxxxx‖2 + (4 − p)ε
− p−3

4−p
3 ‖uxxx‖2

� (p− 3)ε3‖uxxxx‖2 + (4 − p)ε
− p−3

4−p
3

(
C4‖uxx‖1/2

2 ‖uxxxx‖1/2
2

)
� (p− 3)ε3‖uxxxx‖2 + ε4‖uxxxx‖2

+ (4 − p)2C2
4 ε

− 2(p−3)
4−p

3

ε−1
4

4
‖uxx‖2

� [(p− 3)ε3 + ε4]‖uxxxx‖2

+ (4 − p)2C2
4 ε

− 2(p−3)
4−p

3

ε−1
4

4
‖uxx‖2. (3.105)

Denoting A3 = (4 − p)2C2
4 ε

− 2(p−3)
4−p

3 gives∫ π

−π

(H ◦ ∂x)
p[u]uxxxxdx � [(p− 3)ε3 + ε4]‖uxxxx‖2

2 + A3‖uxx‖2‖uxxxx‖2

� [(p− 3)ε3 + ε4]‖uxxxx‖2
2 + A3ε5‖uxxxx‖2

2 + A3
ε−1
5

4
‖uxx‖2

2

= [(p− 3)ε3 + ε4 + A3ε5]‖uxxxx‖2
2 + A3

ε−1
5

4
‖uxx‖2

2. (3.106)
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We finally obtain:

1

2

d

dt
‖uxx‖2

2 + ν‖uxxxx‖2
2 � [ε1 + ε2A1 + µ(ε3(p− 3) + ε4 + ε5A3)]‖uxxxx‖2

2

+

[
ε−1
1

4
+ 3A2 + µA3

ε−1
5

4

]
‖uxx‖2

2 + A2. (3.107)

Choosing ε1, ε2, ε3, ε4, ε5 to be sufficiently small and denoting for simplicity A4 =
ε−1
1

4
+ 3A2 + µA3

ε−1
5

4
gives:

1

2

d

dt
‖uxx‖2

2 � A4‖uxx‖2
2 + A2. (3.108)

Applying the uniform Gronwall inequality (see Temam [32]) implies that ‖uxx‖ is bounded

on the time interval [0, T (u0)) if T (u0) is finite. This also implies boundedness of ‖ux‖2.

Theorem 2.3 then gives T (u0) = ∞. Therefore the following result holds:

Theorem 3.4 For every u0 ∈ Ḣ1
per there exists a unique globally defined solution of equation

(1.4).

Now, having global existence of the solutions of (1.4), Theorem 3.3 implies existence of

an absorbing ball in L̇2
per and the following estimate for the radius of this absorbing ball:

Corollary 3.5 Let µ be any positive number and ν ∈ (0, ν0(µ)). If u(x, t) is a solution of

(1.4) such that u(x, 0) = u0(x) ∈ Ḣ1
per, then there is a constant K (independent of µ, ν, u0),

such that

lim sup
t→∞

‖u‖2 � K

√
ν

η(γ)
C(γ, ν) + ‖ϕ‖2. (3.109)

(Here K , C(γ, ν), ϕ are the same as in Theorem 3.2.)

4 Numerical evaluation of the analytical results

The MKS equation (1.4) was solved numerically with periodic boundary conditions using

a modification (when p� 3) of the methods used in Tseluiko & Papageorgiou [34]. Our

main objective is to compare the analytical bound (3.109) for the radius of the absorbing

ball in the space L̇2
per, with the “exact” numerically computed value ‖u‖2. A comparison

at large values of γ (equivalently large µ = ν1/2γ) for fixed ν , is particularly amenable

due to the simple algebraic nature of the estimate in this limit (see (3.74)) – the large

γ and large µ behaviors are identical due to the fact that ν is fixed. The computations

are carried out to values of time beyond which transient behavior dies out and we can

be confident that the computed trajectories lie close to the attractor. Given values of p,

ν, and µ, the quantity max(‖u‖2)(p, ν; µ) is found over a time interval beyond transients.

This is repeated for a fixed ν = 0.5 and a range of increasing values of µ = 22, 23, . . . , 28.

The results are presented on logarithmic scales in Figures 2 and 3 for p = 3 and p = 3.2,

respectively. As can be seen from the Figures, the behavior is linear and an estimate for

the slope, providing a numerical best bound for the L̇2
per norm as a power of µ (for large
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Line of slope 3
Line of slope 4.1 (present theory)
Line of slope 6 (theory of Duan and Ervin)

Figure 2. Variation of max ‖u‖2 with increasing µ for fixed ν = 0.5, p = 3. Diamonds – numerical

computation (solid line is of slope 3); dashed line – current theoretical estimate as given by equation

(3.74); dashdot line – estimate of Duan & Ervin [7].
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m
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Computational data
Line of slope 3/(4p) = 3.75
Line of slope (23p28)/(10(4p)) = 5.7
(present theory)

Figure 3. Variation of max ‖u‖2 with increasing µ for fixed ν = 0.5, p = 3.2. Diamonds – numerical

computation (solid line is of slope 3/(4 − p) = 3.75); dashed line – current theoretical estimate as

given by equation (3.74).
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µ), is determined. The numerical results give the behavior

max(‖u‖2)(p = 3, ν = 0.5; µ) = O
(
µ3

)
, (4.1)

max(‖u‖2)(p = 3.2, ν = 0.5; µ) = O
(
µ3.75

)
= O

(
µ

3
(4−p)

)
. (4.2)

Our corresponding analytical estimates (the values are 4.1 and 5.7, for p = 3, 3.2,

respectively) are also given in the Figures along with the estimate of Duan & Ervin [7]

when p = 3. The analytical results overestimate the numerically constructed bound, but

the present estimates are better than those found in the literature.

As indicated in (4.1)–(4.2), the numerically computed large µ estimates are O
(
µ

3
(4−p)

)
.

This can be understood by the following order-of-magnitude argument valid for large µ.

Considering the equation

ut + uux + uxx + νuxxxx − µ(H ◦ ∂x)
p[u] = 0, (4.3)

a balance must take place between the nonlinearity, the fourth order diffusion and the

nonlocal term (the unsteady term provides a time scale a posteriori). We have, then,

[u]

[t]
∼ [u]2

[x]
∼ [u]

[x]4
∼ µ

[u]

[x]p
, (4.4)

which in turn provides the scalings

[t] ∼ µ− 4
4−p , [x] ∼ µ− 1

4−p , [u] ∼ µ
3

4−p . (4.5)

These scalings suggest that as µ increases typical amplitudes increase and at the same time

the spatial scale over which the solution varies, decreases; in addition, the solution varies

over typical time scales which are also decreasing asymptotically. This behavior places

severe restrictions on the numerical parameters. Taking the case p = 3, for example, we

observe that doubling the value of µ requires a decrease of the time-step by a factor of 24

and a doubling of the number of modes. In accordance with the scalings (4.5), in order

to resolve the solution for the largest value µ = 256, we used a time-step of 1.16 × 10−11

and 214 Fourier modes. As p increases the situation worsens as evidenced by (4.5).

As shown in Figures 2 and 3, the values of ‖u‖2 follow the scaling for u shown in

equation (4.5). This is consistent with the numerical solutions which exhibit pulses of

width O
(
µ− 1

4−p
)

and height O
(
µ

3
4−p

)
whose net contribution over the interval [−π, π] gives

‖u‖2 = O
(
µ

3
4−p

)
. This pulse behavior is indicated in Figures 4 and 5 for p = 3 and

µ = 16 and 32 respectively. There are approximately 28 pulses for µ = 16 and 52 pulses

for µ = 32, while the pulse heights are approximately equal to 2 × 104 and 1.5 × 105;

these numerical observations are in agreement with the scaling laws (4.5) and have been

confirmed for all the computations presented here.

These findings enable us to formulate the following conjecture.

Conjecture 4.1 Let ν ∈ (0, ν0(µ)) and p ∈ [3, 4) be fixed. If u(x, t) is a solution of (1.4) such

that u(x, 0) = u0(x) ∈ Ḣ1
per, then for µ sufficiently large

lim sup
t→∞

‖u‖2 = O(µ
3

4−p ). (4.6)

Note that the values of µ need not be too large for (4.6) to hold. The numerical results

give values of approximately 2.
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Figure 4. The solution u(x, t) after 20000 time-steps; µ = 24, ν = 0.5, p = 3.
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Figure 5. The solution u(x, t) after 20000 time-steps; µ = 25, ν = 0.5, p = 3.

5 Conclusions

We have studied a class of nonlocal Kuramoto–Sivashinsky (KS) equations arising in

interfacial electrohydrodynamics. Two modifications of the well-known KS equation are

afforded by the model: (i) the addition of a nonlocal Hilbert transform term that enhances
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the usual second derivative negative diffusion (equation (1.4) with the plus sign), and,

(ii) the case when the nonlocal term is the only term providing instability (equation (1.4)

with the minus sign), all other linear terms being diffusive. We have presented in detail

rigorous results for case (i). In particular we proved global existence and uniqueness of

the solutions in Ḣ1
per by first proving local results and then establishing global results

by proving uniform boundedness of the solutions in Ḣ1
per on each time interval. We

also established uniform boundedness of the solutions in Ḣ1
per after proving uniform

boundedness in L̇2
per, using a modification of the method of Collet et al. [5]. Along

with global existence, this proves the existence of an absorbing ball in L̇2
per and provides

estimates for its radius. Our estimates improve those of Duan & Ervin [7], for p = 3, who

used a different gauge function. An evaluation of the rigorous estimates valid at large

values of the electrical parameter µ, as compared to numerical solutions of the equations

is also carried out (see Figures 2, 3). The numerical work indicates that an optimal L̇2
per

solution bound arises; this is explained by a simple scaling argument. A conjecture valid

for all p (and verified by extensive numerical simulations) is made regarding these findings.

In case (ii) results which parallel those above have been obtained when µ is larger than

the threshold value µ0(ν; p) above which linearly unstable modes enter – for example

when p = 3, we can take µ0 = 2
√
ν. (When µ < µ0 the value of ‖u‖2 decays to zero

as t → ∞.) The main differences are technical and result in other expressions for the

quantities N, M, δ and C(γ, ν) and in turn result in different estimates for the radius of

the absorbing ball. The large γ (note that γ = ν1−p/2µ) behavior of this radius is identical

to that given for case (i) – see estimate (3.74).
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Appendix A: Properties of the Hilbert Transform

Here we list some important properties of the Hilbert transform. The Hilbert transform

operator H is defined by

H[f](x) =
1

π
PV

∫ ∞

−∞

f(ξ)

x− ξ
dξ, (A 1)

where the integral is understood in the sense of Cauchy principal value.

The Hilbert transform H : L2(I) → L2(I) (or H : Hk(I) → Hk(I)) is a linear, invertible,

bounded operator from L2 to L2 (and from the Sobolev space Hk to Hk).We note:

∂x ◦ H = H ◦ ∂x, (A 2)

H−1 = −H, (A 3)∫
I

u(x)H[v](x)dx = −
∫
I

v(x)H[u](x)dx, (A 4)
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I

u(x)H[u](x)dx = 0, (A 5)

‖H[u]‖ = ‖u‖, (A 6)

F
[
H[u]

]
(k) = −i sign (Re k)û(k). (A 7)

Here F is the Fourier transform operator and I is either � or a periodic interval.

For periodic functions on [−π, π] we have

H[f](x) =
1

2π
PV

∫ π

−π

f(ξ) cot
(x− ξ

2

)
dξ. (A 8)
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