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We explore alternative approaches to numerical solutions of large rational-expectations
models. We discuss and compare several current alternatives, focusing on the trade-offs in
accuracy, space, and speed. The models range from representative-agent models with
many goods and capital stocks, to models of heterogeneous agents with complete or
incomplete asset markets. The methods include perturbation and projection methods. We
show that these methods are capable of analyzing moderately large models even when we
use only elementary, general-purpose numerical methods.
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1. INTRODUCTION

The study of macroeconomic dynamics has become substantially more sophis-
ticated over the past 20 years. The first models were simple models with one
commodity, serving as both the consumption and the investment good, and with
one type of agent as in the representative-agent models, or very similar agents,
as in two-period overlapping-generations models in which agents differed only
as to age. Although these simple models provide insights on many issues, their
limitations are becoming more apparent and we now want to move beyond them.
In particular, it is desirable to add multiple goods, multiple capital stocks, hetero-
geneous agents, multiple assets, heterogeneous taxation, externalities, imperfect
competition, and asymmetric information to the conventional models. Outside of a
few special analyses, there are no examples of general dynamic, multiagent, multi-
good, stochastic, rational-expectations models that handle high- and low-frequency
economic movements, both of which are critical for understanding data and ana-
lyzing policies. We need to turn to numerical methods to solve these models. The
methods discussed in this paper move us a step in that direction.

We address the problem of computing equilibria of large rational-expectations
models. We show how extensions of methods used in the simple models can be used
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to solve more complex models. The fact that the general models considered below
can be solved numerically is obvious because one can take any of the many methods
that have been developed and apply them to these models. That is not an interesting
observation because most of these methods’ time and space requirements, such as
those of discrete state-space dynamic programming, would make them impractical
to solve on any computer. The problem is to develop methods that can solve larger
models in reasonable time using accessible resources.

This paper focuses on the application of both perturbation and projection meth-
ods to multidimensional dynamic models. In previous papers, Judd and Guu
(1993, forthcoming) examined perturbation methods that go beyond the stan-
dard linearization method, and Judd (1992) examined projection methods for
solving rational-expectations models. Both papers focused on applications to a
representative-agent, single-good model. The reader is referred to these papers and
their mathematical sources for key definitions and introductions to these methods.
In this paper, we outline how these methods can be adapted to handle multiagent
generalizations; in the case of projection methods, we stay with the single-good,
single-asset assumptions of the representative-agent model, but the perturbation
analysis includes multiple goods and multiple capital stocks. A theme of Judd
(1992) is that there are many ways to solve rational-expectations models, the best
way depending on a variety of considerations. We continue that theme by at-
tempting to determine the relationship between the most efficient method and the
characteristics of the problem. We give examples of various methods, their time
and space needs, and the accuracy of the results.

Our results point to a “production possibilities frontier” of methods for solving
rational-expectations models. If the model is stable with an ergodic distribution
concentrated in the neighborhood of some deterministic steady state, then the
Taylor-series expansion produced by perturbation methods likely will produce a
good approximation and, according to several existing examples, produce solutions
that are reliable for a nontrivial region. If the nonlinearities are substantial and/or
we need a more global approximation, we will likely use some kind of projection
method.1

The results below give some guidance as to which methods are most efficient
in terms of the trade-off between accuracy and running time. They indicate that
perturbation methods are the most efficient methods when they work, and the only
feasible method for the largest problems. Among the projection methods, the best
choice for moderate-size models appears to use complete polynomial approxima-
tions of the unknown functions, and a version of fixed-point iteration introduced by
Miranda and Helmberger (1988) to solve for the unknown coefficients. The dom-
inance of complete polynomial representation is not surprising, but the success
of fixed-point iteration is a bit surprising because it is not even locally conver-
gent in general. However, its considerable computational advantages over Newton
methods for solving nonlinear equations combined with our favorable experience
(below and in earlier papers) indicates that it should generally be considered. One
should keep in mind, however, that all of the models that we examine below have
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strong mean reversion properties in equilibrium, a property that may help explain
the success of fixed-point iteration. Because these experiments indicate that fixed-
point iteration is often valuable, future work should focus on exactly when it is
stable.

Although these conclusions are based on the analysis of simple examples, we feel
that this experience is likely to be robust to other models and that its conclusions
can serve as a reasonable guide to choosing methods for solving large models.
Hopefully, the message here is encouraging enough that analysts will feel free to
analyze large models of their choosing.

2. NUMERICAL RATIONAL-EXPECTATIONS PROBLEMS

Before we discuss various specific rational-expectations models, we should point
out the features that are inherent in numerical rational-expectations modeling.
Awareness of these features will help us to form reasonable modeling goals and
point in the direction of appropriate numerical methods.

In theory, rational-expectations models resemble dynamic interpretations of
Arrow–Debreu general-equilibrium analysis. The central focus of Arrow–Debreu
models are the time- and state-contingent equilibrium prices and consumption
patterns. The determination of equilibrium prices is the focus of standard CGE
methods. However, this is an unreasonable numerical approach in the case of
rational-expectations models. In the Arrow–Debreu approach to infinite-horizon
dynamic stochastic models, the price of each good is contingent on the date at
which it appears and the entire history of the exogenous shocks up to that date. In
the case of discrete-time and infinite-horizon, if there are exogenous shocks in each
period and the support of these shocks contains at least two points, the number of
distinct histories in an infinite-horizon model has the cardinality of the continuum,
implying that the number of distinct prices is also the size of the continuum and
that the conventional CGE approach is infeasible.

These problems can be avoided if the structural features of the economic model
are stationary, that is, do not depend on calendar time, and if we focus on stationary
rational-expectations equilibria of those stationary infinite-horizon models. Such
equilibria can be expressed in terms of decision rules for the agents [see Stokey
and Lucas (1989) for a formal discussion of recursive modeling], and the nu-
merical approach is to compute approximations of these unknown functions. For
example, a simple discrete-time problem explored in the computational literature
is

max
c

E

{ ∞∑
t=0

β t u(ct )

}
,

kt+1 = F(kt , θt ) − ct , (1)

ln θt+1 = ρ ln θt + εt+1,
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wherekt is the beginning-of-period capital stock,θt is a stationary AR(1) multi-
plicative productivity parameter [the productivity shocksεt ∼ N(0, σ 2) are inde-
pendent], andF(k, θ) is the gross (i.e., net production plus initial capital stock)
production function. In this problem, bothk andθ are needed for a sufficient de-
scription of the state. Hence, consumption is a function of bothk andθ , C(k, θ),
and the Euler equation is

u′(C(k, θ)) = βE{u(C(F(k, θ) − C(k, θ), θ̃ ))F1(F(k, θ) − C(k, θ), θ̃ ) | θ)}.
(2)

This is the problem investigated in the Taylor–Uhlig (1990) symposium and by Judd
(1992). Although we focus on generalizations of (2), our results apply also to the
commodity problems studied in earlier computational rational-expectations anal-
yses by Gustafson (1958), Wright and Williams (1984), Miranda and Helmberger
(1988), and Williams and Wright (1991).

At first, focusing on the functional equation in (2) appears to be no better because
we move from the infinite-dimensional space of contingent prices to the infinite-
dimensional space of decision rules. There is improvement, however, because there
are good finite-dimensional approximations of the equilibrium policy functions,
such asC(k, θ) when they are reasonable functions, whereas we know of no
such way to approximate the continuum of contingent prices. Numerical rational-
expectations methods, beginning with Gustafson (1958), therefore focus on finite-
dimensional approximations of policy functions and other important functions.
The finite-dimensional approximations typically parameterize the unknown policy
function2 and restrict it to lie in some finite-dimensional space, as in

Ĉ(k, θ) =
n∑

i =0

ai φi (k, θ),

where theφi comprise a basis for all candidate functions. We first must make a
choice of basis, and then solve for the unknown coefficients,a. There are several
ways to fix these unknown coefficients. Projection methods fixa by solving a set of
projection equations that try to identifya, which will nearly solve (2). Perturbation
methods construct a Taylor-series expansion around a point(k0, θ0), such as

Ĉ(k, θ) =
n∑

i =0

n∑
j =0

ai j (k − k0)
i (θ − θ0)

j ,

and use implicit-function theorems to identify the undeterminedai j coefficients.
The various approaches to solving rational-expectations models differ in three

basic ways: first, in the choice of finite-dimensional approximations to func-
tions; second, in the way the expectation in (2) is computed; and, third, in the
method used to find an approximate solution. The work discussed below touches
on two of the three critical elements—the method used to approximateC and the
method for solving the identifying conditions. We focus on various combinations
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of approximation and solution methods that appear to be promising in the context
of large rational-expectations models.

We discuss both perturbation and projection methods. They share much in com-
mon; see Judd (1996) for an extended discussion of this observation. We focus
on applications of perturbation methods to continuous-time models and appli-
cations of projection methods to discrete-time models. The dynamic economics
literature bounces between continuous- and discrete-time applications, depending
on whether one builds on the Brock and Turnovsky (1981) analysis of dynamic
macroeconomic equilibrium, or the Brock and Mirman (1972) stochastic growth
model. There is no substantive economic difference because the discrete-time unit
can be made arbitrarily small. We make our choices to focus on the simple cases;
both methods are applicable to both types of models, but perturbation analysis of
discrete-time models is much more complex notationally, and projection analysis
of continuous-time models would require us to introduce functional analytic mate-
rial of little interest to the intended reader. We leave these developments to future
work.

3. PERTURBATION METHODS

We first explore an example of perturbation methods applied to the canonical
continuous-time, stable optimal control problem. We do not define perturbation
in general here, nor do we present the mathematical foundations that justify the
formal, algebraic manipulations presented below; see Judd (1996, forthcoming)
and Bensoussan (1988) for general discussions and for citations of the formal
development of perturbation methods for control problems. Here, we take a “lin-
earize around the steady state” approach to large rational-expectations models and
extend it, via perturbation methods, to include nonlinear terms of the Taylor-series
expansion. Although the linearization approach is common, general perturbation
methods have been used only to a limited extent in economics. There are sev-
eral reasons for this. First, there is little agreement in the literature3 as to what
constitutes linearization. Second, even those who linearize deterministic mod-
els correctly4 generally fail to compute the true first-order Taylor-series approx-
imation when they approximate stochastic models; we make this precise below.
Third, there is very limited mention in the economics literature of the higher-
order terms in the expansion implicitly being constructed. In fact, Marcet (1994,
p. 111) states that “perturbation methods of order higher than one are considerably
more complicated5 than the traditional linear-quadratic case.” Below we show that
whereas computing the traditional linear-quadratic approximation involves solv-
ing a Riccati-like equation, computing those higher-order terms involves solving
only linear equations, and, therefore, that computing some higher-order terms is
in fact less demanding computationally than computing the initial linear term.

High-order expansions are useful for two reasons. First, higher-order terms are
necessary for analyzing the first-order properties of many aspects of the model; an
example of this would be the cyclical properties of risk premia that clearly involve
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how the risk-aversion coefficient moves over time, a third-order property of utility.
The second reason, and the focus of this section, is that Taylor-series expansions
that include nonlinear terms may provide good approximations over a larger region
than the linear approximation would. The fact that much effort has been extended
to compute nonlinear solutions to dynamic growth models, such as in Taylor and
Uhlig (1990), indicates that we do not believe that linear approximations are always
adequate.

In this section, we present the standard mathematical procedure for linearizing
a model around a stable steady state,6 for computing higher-order terms in the
expansion, and for computing the extra terms necessary for an asymptotically
valid expansion in stochastic models. We break down the method into the relevant
computational steps, and evaluate the computational cost of large models. We focus
on the mechanics of computing Taylor-series expansions for large, general dynamic
programming problems and the associated computational demands. Future work
will examine the quality of the approximation in various specific contexts, and on
generalizing the analysis to the case of competitive equilibrium.

Before continuing, we should warn the reader of the nontrivial notational chal-
lenge that awaits him or her in the sections below. After being introduced to tensor
notation and its application to multivariate stochastic control, the reader may de-
cide that this approach is far too burdensome to be of value. If one had to go through
these manipulations for each and every application, we might agree. Fortunately,
all of the algebra discussed below can be automated. Furthermore, the authors are
writing user-friendly programs that will take specifications of tastes and technol-
ogy (represented by some user-written subroutines) and will automatically perform
all necessary computations, including derivatives, and produce the Taylor-series
approximation discussed below. This will relieve the user of executing all of the
algebra we discuss below. This software will be available on a public archive;
the interested reader should consult the second author’s web page at http://www-
hoover.stanford.edu/bios/judd.html or contact him at judd@hoover.stanford.edu
for directions. The presentation below is meant to familiarize the reader with the
mathematical structure of the problem. To help interested readers better under-
stand the algebraic details, we have also worked out a two-dimensional example
in detail; that will also be available with the programs.

3.1. Uses of Taylor-Series Approximations

To motivate the following computations, we next indicate what we can do with
these Taylor-series approximations. First, the focus of this paper, we can use them
to serve as global (or, more precisely, nonlocal) approximations. This may seem
inappropriate because the Taylor-series construction is only local.7 However, the
global accuracy experiments conducted so far [e.g., see Judd and Guu (1993, forth-
coming)] indicate that these local methods do well in nontrivial neighborhoods of
the steady state in dynamic economic problems as long as the utility and production
functions are analytic in a neighborhood of the deterministic steady state. Second,
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we can produce linear theories of any interesting economic phenomenon.8 Linear
approximations of policy functions will produce linear theories about equilib-
rium choices, such as consumption, investment, and output. However, if we want
to produce a linear theory for other aspects of equilibrium, we often will need
higher-order terms. A linear theory for the movement of the equity risk premium
over the business cycle, or a similar linear theory of the term structure of interest
rates, requires higher-order Taylor expansions of the equilibrium decision rules.

Third, these approximations are the first step in potential empirical procedures
because a linear theory of an economic quantity can be used to compare theory
and data. For example, Magill (1977) showed how to use linear approximations
of a stochastic growth model to compute the implied spectrum for consumption,
and suggested that comparing such theoretical spectra with empirical spectra can
be a useful empirical approach to business-cycle investigations. Later work by
Kydland and Prescott (1982) used Magill’s approach to compare data and a par-
ticular stochastic growth model. The Taylor series we compute below can be simi-
larly used to compare theory and data because these expansions also can be used to
compute locally valid approximations of likelihood functions and their derivatives.
Fourth, these perturbation methods have been used in policy evaluation exercises.
See Judd (1996) for a more extensive discussion of these topics.

3.2. General Dynamic Optimization Problem

For the purposes of this discussion, it is advantageous to discuss the continuous-
time dynamic programming case.9 We could use the equivalence between com-
petitive equilibrium and Pareto efficiency to derive approximations to competitive
equilibrium decision rules. These methods can handle distortions, but with some
added complexity that the authors leave for future work. In general, if we have
many agents, many goods, and many capital stocks, including “stocks” in the utility
functions, the dynamic optimization problem is

V(x0) ≡ max
u(t)

∫ ∞

0
e−ρtπ(x, u) dt,

ẋ = f (x, u), (3)

x(0) = x0,

wherex ∈ Rn is the state vector,u ∈ Rm is the vector of controls,f (x, u) is the
law of motion, andπ(x, u) is a concave social welfare function. This problem
has the HamiltonianH(x, λ, u) = π(x, u) + λ f (x, u), implying the differential–
algebraic system

ẋ = f (x, u) = Hλ,

λ̇ = ρλ − (λ fx(x, u) + πx) = ρλ − Hx, (4)

0 = πu(x, u) + λ fu(x, u) = Hu,
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When we substitute the control lawU(x, λ), implicitly defined by 0 =
πu(x,U(x, λ)) + λ fu(x,U(x, λ)), into (4), we arrive at the dynamic system

ẋ = f (x,U(x, λ)),
(5)

λ̇ = ρλ − (λ fx(x,U(x, λ)) + πx(x,U(x, λ))).

Furthermore, we are interested only in asymptotically bounded solutions to this
equation with the initial conditionx(0) = x0. This is the typical kind of determin-
istic dynamic system with which we begin in our linearization exercises.

3.3. Local Dynamics

To linearize systems such as (5), one invokes basic ordinary differential equation
theory. Let

Z =
(

x

λ

)
.

Suppose (5) is a dynamic system of the form

Ż = g(Z) (6)

with a stationary point atZ∗; that is,g(Z∗) = 0. Then, the local behavior of (6)
for Z nearZ∗ is linearly approximated by the linear system

ż = Az, (7)

whereA = gZ(Z∗) andz ≡ Z − Z∗. The solution to (7) isz(t) = eAtz0.
In the terminology of linear rational-expectations models, as in Blanchard and

Kahn (1980), the vectorx contains the predetermined variables andλ contains the
variables with free values att = 0. Suppose that there is a stationary point at

Z∗ =
(

x∗

λ∗

)
.

Then the local behavior of the system is linearly approximated by (7) and the
solution to the linear approximation is

z(t) = eAt

(
x(0) − x∗

λ(0) − λ∗

)
,

wherex(0) = x0 is a given initial condition andλ(0) is chosen to keepz(t) bounded
asymptotically. Let3(x0) be the set of all possible values for the free variables
in λ which together with the predetermined variables being equal tox0 will imply
a bounded path forz(t); 3(x0) may be a single value or a set of values. We
assume that it is single-valued, the case of determinacy. We show later where that
is necessary in our calculations.
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To compute3(x0), we just apply standard linear algebra. We form the Jordan
decomposition ofA = N−1DN, where

D =
(

D1 0

0 D2

)
with D1 having all the stable eigenvalues ofA (i.e., the eigenvalues with negative
real parts) andD2 having the unstable eigenvalues, and

N =
(

N11 N12

N21 N22

)
breaksN into equal-size blocks. If the number of stable eigenvalues equals the
length ofx0, stability of the solution to (7) implies

3(x0) − λ∗ = −N−1
22 N21(x0 − x∗). (8)

We can apply this same approach to discrete-time systems. Suppose that we
have a system,Zt+1 = g(Zt ), with a steady state defined byZ∗ = g(Z∗). Define
A= gZ(Z∗) and z≡ Z − Z∗. Then, the equation forz becomeszt+1 = Azt , the
solution of which iszt = At z0, which in turn can be analyzed in the same Jordan
decomposition fashion with the distinction that now the stable eigenvalues are
those with modulus less than one. Unfortunately, the general discrete-time case is
more complex, and we leave that to future work.

3.4. Higher-Order Approximations

We next discuss the computational demands of computing higher-order terms
to the multivariate Taylor-series approximation based at the deterministic steady
state. This may seem formidable. To solve the first-order terms we had to solve
an eigenvalue-eigenvector problem. In fact, if one were to look at the details, one
would find that the problem is very similar to a Riccati equation, that is, a quadratic
matrix equation. When discussing this problem with macroeconomists, we often
have heard the conjecture that computing higher-order terms would require solving
higher-order matrix polynomial problems. The basic fact shown below is that all
higher-order terms of the Taylor-series expansion, even in the stochastic multidi-
mensional case, are solutions to linear problems once one computes the first-order
terms. This implies that the higher-order terms areeasyto compute. Initial experi-
ments indicate that they are also good approximations well beyond the steady-state
values. These procedures have not been exploited, but obviously can be applied to
problems in the real business cycle, finance, public finance, and dynamic general
equilibrium literatures.

3.4.1. Tensor notation. To deal with the notational problems that arise with
multidimensional expressions, we extend the Einstein tensor notation, adapting it
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for our control theoretic problems. In general, a tensor is any indexed collection of
numbers. The second property is that we use the position and repetition of indices
to indicate summation. Suppose thatai is a collection of numbers indexed by
i = 1, . . . , n, and thatxi is also a singly indexed collection of real numbers. Then,

ai x
i ≡

∑
i

ai x
i .

In this way we eliminate the
∑

symbol in expressing vector products. Similarly,
suppose thatai j is a collection of numbers indexed byi, j = 1, n, and thatxi and
y j are singly indexed collections of real numbers. Then,

ai j x
i y j ≡

∑
i

∑
j

ai j x
i y j .

In this way we again eliminate the
∑

symbols. The general rule is that we elim-
inate

∑
symbols by understanding that, in a product, if an index appears as both

a subscript and a superscript, then we sum over it. If we think ofai
j as a matrix,

xi as a row vector, andy j as a column vector, then the productxi yi represents
the inner product of the vectorsx andy, andai

j xi y j is the quadratic form of the
matrix a with the vectorsx andy. We also can form new indexed collections of
numbers from products. For example, the productai

j xi can be thought of as a singly
indexed collection of numbers,zj . Using our vector analogy above,zj also can
be thought of as a row vector. Although the analogies with matrices and vectors
are useful, one should not focus on them because we will be constructing more
complex collections of real numbers that are neither vectors nor matrices.

As long as indices are not the same, arbitrary products are allowed. For example,
xi yj is the doubly indexed set of numbers,bi j , where the(i, j ) term equals the
product ofxi and yj ; bi j is theouter productof xi and yj . Also, the “sum over
repeated indices” rule even applies within a single term. For example,ai

i ≡ ∑
i ai

i ;
if we think of a as a matrix, thenai

i is the trace ofa. Similarly,aii is also the trace
of the tensorai j .

We also vary the notation to distinguish between an argument of a vector and
a derivative, and between states and controls in an efficient fashion. In the nota-
tion below, superscripts refer to different components of a vector-valued function,
whereas subscripts refer to derivatives of those component functions. Furthermore,
to distinguish between states and controls, we let Roman letters,i, j, k, `, . . . , in-
dex states, and Greek letters,α, β, γ, . . . , index controls. Therefore, iff (x, u) is
a vector-valued function of the state variablesx and the controlsu, then f is the
column vector

f =


f 1(x, u)

f 2(x, u)

...

f n(x, u)


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whosei th component function is denotedf i . Its derivatives with respect to the
state variables are represented by the tensor

f j
i (x, u) ≡ ∂ f j

∂xi
(x, u),

and its derivatives with respect to the control variables are represented by the tensor

f j
α (x, u) ≡ ∂ f j

∂uα

(x, u).

We frequently drop the argument(x, u) as long as it can be understood from
context.

So far, all of this looks familiar because it is just a way of rewriting standard
matrix and vector operations. However, triply indexed collections of numbers, such
asai j `, are also tensors, and arise naturally in multivariate calculus. For example,
Taylor’s theorem forg: Rn → R at z = 0 is normally written as

f (z) ∼ f (0) +
n∑

i =1

∂ f

∂zi
(0) zi + 1

2

n∑
i =1

n∑
j =1

∂2 f

∂zi ∂zj
(0) zi zj

+ 1

6

n∑
i =1

n∑
j =1

n∑
`=1

∂3 f

∂zi ∂zj ∂z`

(0) zi zj z` + · · · ,

whereas by using tensor notation it can be written as

f (z) ∼ f (0) + fi (0)zi + 1
2 fi j (0)zi zj + 1

6 fi j `(0)zi zj z` + · · · .
If we drop the arguments off, and understand thatf and its derivatives are
evaluated atx = 0, the Taylor expansion can be written as

f (z) ∼ f + fi z
i + 1

2 fi j z
i zj + 1

6 fi j `z
i zj z` + · · · .

This more compact expression is a considerable improvement over the conven-
tional notation with the extraneous summation symbols and the clumsy partial
derivative notation. With this notation, we are able to see more clearly the struc-
ture of our problem.

3.4.2. Computing Taylor-series expansions for optimal control problems.The
general deterministic problem (3) includes an arbitrary complete market dynamic
equilibrium with multiple consumption goods (represented by components ofu),
multiple capital stocks (represented by components ofx), and multiple agents
whose aggregate utility function is represented byπ(x, u). We now proceed with
a dynamic programming approach to this analysis. The Bellman equation for the
value function,V(x), is

0 = max
u

π(x, u) + Vi (x) f i (x, u) − ρV(x), (9)
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where, recall,π is the payoff flow andf is the law of motion for the statex. The
first-order condition with respect touα, α = 1, . . . , m, is

0 = πα(x, u) + Vi (x) f i
α(x, u). (10)

Equations (10) implicitly define the optimal control,u =U (x), and imply the
system

0 = πα(x,U (x)) + Vi (x) f i
α(x,U (x)). (11)

In combination, we have the system

0 = π(x,U (x)) + Vi (x) f i (x,U (x)) − ρV(x), (12)

0 = πα(x,U (x)) + Vi (x) f i
α(x,U (x)), (13)

which defines the value function,V(x), and the policy function,U (x).
Our objective here is to solve for both the value function and the policy function.

In fact, we are going to compute Taylor-series expansions

V(x) = V(x0) + Vi (x − x0)i + 1
2Vi j (x − x0)i (x − x0) j

+ 1
3! Vi j `(x − x0)i (x − x0) j (x − x0)` + · · · ,

(14)
Uα(x) = Uα(x0) + Uα

i (x − x0)i + 1
2Uα

i j (x − x0)i (x − x0) j

+ 1
3!U

α
i j `(x − x0)i (x − x0) j (x − x0)` + · · · .

These polynomials are asymptotically valid approximations if the error converges
to zero at a higher degree than the order of the polynomial. For example, the
linear approximationV(x0) + Vi (x − x0)i has an error that is quadratic in the
components of(x − x0), which means that, asx converges tox0, the error goes to
zero quadratically.

To compute theseUα
i , Uα

i j , Uα
i j `, Vi , Vi j , andVi j ` coefficients, we just differ-

entiate the underlying system (12, 13), with respect to thexi , and solve for the
undetermined coefficients. If we differentiate (12) with respect toxj and use the
envelope theorem, we find

ρVj = π j + Vi j f i + Vi f i
j . (15)

To keep down the clutter, we often drop the arguments ofπ , V , andU , and their
derivatives when they are the same as in the basic system (12, 13) and are clear
from context.

The steady-state values forx, u, andVi are determined by the conditions

0 = f i (u, x),

0 = πα(u, x) + Vi (x) f i
α(u, x), (16)

ρVj (x) = π j (u, x) + Vi j (x) f i (u, x) + Vi (x) f i
j (u, x),
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which yield the steady-state quantitiesuss, xss, Vj (xss). Note that theVj (xss)

values are the linear coefficients in the expansion ofV in (14), and knowing the
steady state will also yieldV(xss) andU (xss), two more terms in (14).

We next compute theVi j andUβ
j terms, and then compute many high-order

derivatives. We assume that these derivatives exist, which leads us to assume that
all production and utility functions areC∞. Weassumethe differentiability of the
value and policy functions in the neighborhood of the deterministic steady state.
For deterministic problems, this is usually proven by applying theorems about the
smooth dependence of differential equation solutions on parameters, and Fleming
(1971) deals with the stochastic problem. We proceed under the assumption that
the indicated derivatives exist.

If we differentiate (13) with respect to thexj , we find

0 = πα j + παγ U γ
j + Vi j f i

α + Vi
(

f i
α j + f i

αγ U γ
j

)
. (17)

Note that (17) is a system of conditions, one for eachα j pair. In this case, we can
expressU γ

j in terms of the derivatives ofV :

U γ
j = −(

παγ + Vi f i
αγ

)−1 (
πα j + Vi j f i

α + Vi f i
α j

)
, (18)

where(παγ + Vi f i
αγ )−1 denotes the inverse tensor (matrix). Differentiating (15)

with respect tox` implies

ρVj ` = π j ` + π j γ U γ
` +Vi j ` f i + Vi j

(
f i
` + f i

γ U γ
`

) + Vi ` f i
j + Vi

(
f i

j ` + f i
j γ U γ

`

)
.

(19)

Substituting (18) into (19) yields

ρVj ` = π j ` + Vi j ` f i + Vi j f i
` + Vi ` f i

j + Vi f i
j `

− (
π j γ + Vi j f i

γ + Vi f i
j γ

)(
παγ + Vi f i

αγ

)−1(
πα` + Vi ` f i

α + Vi f i
α`

)
. (20)

The system of equations in (20) hold at each statex. If we evaluate (20) at the
steady state, thenf i = 0 and (20) becomes the Riccati-like equation

ρVj ` = π j ` + Vi j f i
` + Vi ` f i

j + Vi f i
j `

− (
π j γ + Vi j f i

γ + Vi f i
j γ

)(
παγ + Vi f i

αγ

)−1(
πα` + Vi ` f i

α + Vi f i
α`

)
. (21)

Solving the Riccati equation at the steady state yields the steady-state values of
Vj ` and, through (18), the steady-state values ofU γ

` . However, we already have the
solutions for the steady-state values ofU γ

` because theU γ
` tensor can be derived

from the definition ofU(x, λ) and the linear approximation computed in (8). This
approximation was computed directly from eigenvalue decomposition methods.
Therefore, we use the earlier approach to compute the elements of the tensor
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(matrix)U γ
` . Although we have not accomplished anything new at this point, this

lays the foundation for the higher-order terms.
We now find out how easy it is to compute the higher-order terms. Differentiating

(19) with respect toxm and imposing the steady-state conditionf i = 0 implies the
following equation for the steady-state values ofVi `m andUβ

`m:

ρVj `m = π j `m + π j `γ U γ
m + π j γ mU γ

` + π j γ δU
δ
mU γ

` + π j γ U γ
`m

+ Vi j `
(

f i
m + f i

γ U γ
m

) + Vi jm
(

f i
` + f i

γ U γ
`

)
+ Vi j

(
f i
`m + f i

`γ U γ
m + f i

γ mU γ
` + f i

γ δU
γ
` U δ

m + f i
γ U γ

`m

)
+ Vi `m f i

j + Vi `
(

f i
j γ U γ

m + f i
jm

) + Vim
(

f i
j ` + f i

j γ U γ
`

)
+ Vi

(
f i

j `m + f i
j `γ U γ

m + f i
j γ mU γ

` + f i
j γ δU

γ
` U δ

m + f i
j γ U γ

`m

)
. (22)

When we rewrite (17) as

0 = (
παβ + Vi f i

αβ

)
Uβ

` + (
πα` + Vi ` f i

α + Vi f i
α`

)
and differentiate this expression with respect toxm, and impose the steady-state
condition, we find

0 = (
παβ + Vi f i

αβ

)
Uβ

`m

+ (
παβγ U γ

m + παβm + Vim f i
αβ + Vi f i

αβm + Vi f i
αβγ U γ

m

)
Uβ

`

+ πα`m + πα`γ U γ
m + Vi `m f i

α + Vi `
(

f i
αm + f i

αγ U γ
m

)
+ Vim f i

α` + Vi
(

f i
α`m + f i

α`γ U γ
m

)
. (23)

We have now reached an important point in the analysis. At this point, we know
the steady-state values of theUβ

` andVim tensors as well as the steady-state values
of the derivatives ofπ and f that appear. We see that the steady-state values of
Vi `m andUβ

`m appearlinearly in (22), (23) and that they are the only unknowns.
The system is not cubic or quadratic, but linear in these unknowns.

The second important point is that solving this linear system is easier than it
initially appears. An efficient way to compute the steady-state values of theVi `m

andUβ
`m in (22), (23) is immediately apparent. The key observation is that we

can solve the system for each fixed`m pair, allowing us to break down the large
system into a collection of smaller ones. Consider (23) for a fixed`m pair. The
παβ + Vi f i

αβ tensor appears repeatedly for each`m pair. Hence, we can use the
(παβ + Vi f i

αβ)−1 tensor (an inversion that is done just once and used for each
`m pair) to expressUβ

`m linearly in terms of the known steady-state values of
various steady-state derivatives andVj `m. After we gather terms, it takes just two
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matrix multiplications for each̀m pair to determine the coefficients of the affine
representation

Uβ
`m = −(

παβ + Vi f i
αβ

)−1

× [(
παβγ U γ

m + παβm + Vim f i
αβ + Vi f i

αβm + Vi f i
αβγ U γ

m

)
Uβ

`

+ πα`m + πα`γ U γ
m + Vi `

(
f i
αm + f i

αγ U γ
m

) + Vim f i
α` + Vi

(
f i
α`m + f i

α`γ U γ
m

)]
− (

παβ + Vi f i
αβ

)−1
f i
αVi `m. (24)

For a fixed`m pair, these representations of theUβ
`m then can be substituted into

the steady-state value of (22) to produce a system of equations linear in theVj `m.
Hence, we see that the second-order terms can be computed in a sequentiallylinear
fashion once the first-order terms have been computed. If there aren states and
m controls, the total computational burden is the 2n × 2n eigenvalue–eigenvector
decomposition, onem × m inversion,m(m − 1)/2 evaluations of the expression
in (24), and solving a linear system of sizen(n − 1)(n − 2)/6.

The final important fact is that we can repeat this to compute the third- and
higher-order terms ofU in a similar sequentially linear fashion. We suspect that
the reader will believe us on this point without seeing the algebraic details. We
may ask how big can we go in this fashion. Clearly, the greater the dimension, the
fewer higher-order terms we can add to the expansion. We investigate feasibility
issues below.

This may appear confusing and surprising because standard intuition says that
higher-order terms are more difficult to compute. The basic explanation is that the
initial linearization step must deal with the multiplicity that arises due to the steady
state lying on both the stable and the unstable manifolds, a multiplicity manifested
by the multiple solutions to the Riccati-like equation that arises. This multiplicity
arises because our methods use only the first-order conditions, conditions that
describe the unstable and the stable manifolds as well as many other manifolds.
Once the linear expansion term makes a choice of which manifold to follow, a
task accomplished in (8), we have fixed our attention on the stable manifold, and
higher-order terms involve only easy linear problems.

3.4.3. Multisector, stochastic growth.We next examine the stochastic gener-
alization of (3), which is

max
u

E

{ ∫ ∞

0
e−ρtπ(x, u) dt

}
,

(25)
dxi = f i (x, u) dt +

√
2ε I dz,

wheredz is a vector of i.i.d. white noises of unit variance,I is the variance–
covariance matrix, assumed here to be the identity matrix to reduce the notational
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burden, andε is a parameter expressing the absolute magnitude of the variances.
Again, any dynamic, complete market general equilibrium can be represented by
the solution to such a problem. The solutions to this problem can be used to rep-
resent consumption allocation processes, investment and consumption processes,
as well as asset price processes.

The Bellman equation to (25) is

0 = max
u

π(x, u) + Vi f i + εVii − ρV, (26)

and the first-order condition is again

0 = πα + Vi f i
α. (27)

Again, we are trying to compute Taylor-series approximations toV andU , but
here we take into account not only deviations ofx from the deterministic steady
statex0 − x, but also deviations from the deterministic case, as measured byε.
Here the expansions are

V(x, ε) = V(xss, 0) + Vi (x
ss, 0)(x − x0)i + Vε(x

ss, 0)ε

+ Vi ε(x
ss, 0)(x − x0)i ε + 1

2Vi j (x
ss, 0)(x − x0)i (x − x0) j

+ 1
2Vεε(x

ss, 0)ε2 + · · · , (28)

Uα(x, ε) = Uα(xss, 0) + Uα
i (xss, 0)(x − x0)i + Uα

ε (xss, 0)ε

+Uα
i ε(x

ss, 0)(x − x0)i ε + 1
2Uα

i j (x
ss, 0)(x − x0)i (x − x0) j

+ 1
2Uα

εε(x
ss, 0)ε2 + · · · , (29)

where all of the functions on the RHS are evaluated at(xss, 0). The analysis of
the deterministic problem produced all of theUα

i , Uα
i j , Uα

i j `, Vi , Vi j , andVi j ` etc.
coefficients. We now want to derive theUα

i ε , Uα
i j ε , Vi ε , Vi j ε , Uα

i εε , Uα
i j εε , etc. coef-

ficients.
Note additional terms due to the stochastic parameterε. The usual approaches

[such as in Kydland and Prescott (1982) and Christiano (1990)] take a linear ap-
proximation to the deterministic,ε = 0, model, which here isUα(x, ε)=Uα(xss, 0)

+Uα
i (xss, 0)(xi − xi 0), and then use that linear rule as an approximate solution

to a stochastic version of the model. This ignores the additionalUα
ε (xss, 0)ε term

that is suggested by this Taylor-series approach. Because the objective of all of
these methods is to approximate the value ofu at statex 6= xss in a model in which
ε 6= 0 and base it on thex = xss andε = 0 situation, that is, the steady state, the
true linear approximation of this value includes theUα

ε (xss, 0)ε term. If the model
has the certainty-equivalence property, then this term is zero; otherwise, this term
is part of the linear approximation ofUα(x, ε) based atx = xss andε = 0.

Differentiating (26) with respect toε yields

0 = Vi ε f i + Vii + εVii ε − ρVε . (30)
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At the steady state of the deterministic case studied in Section 3.4.2, (30) reduces
to

0 = Vii − ρVε, (31)

which gives us our first correction,Vε , term for variance.
We now move on to the other certainty nonequivalence correction terms. Dif-

ferentiation of (30) with respect toxj implies

0 = Vi j ε f i + Vi ε f i
j + Vi ε f i

α Uα
j + Vii j + εVii j ε − ρVj ε, (32)

which at the steady state becomes

0 = Vi ε f i
j + Vi ε f i

α Uα
j + Vii j − ρVj ε, (33)

which is ann × n linear system in theVi ε unknowns. Differentiating (27) with
respect toε implies

0 = παβUβ
ε + Vi ε f i

α + Vi f i
αβUβ

ε , (34)

which, at the deterministic steady state, reduces to another linear system. Continued
differentiation shows that computing higher-order terms also reduces to linear
systems. Again, it is easy to compute the higher-order expansion terms of the
Taylor-series.

We have left out several details; in particular, we need to verify that these linear
systems are nonsingular. Also, one needs proofs that the value functions are locally
differentiable to the extent used in these formulas. These questions must be ad-
dressed on a problem-specific basis. If this approach leads to a singular system, then
it breaks down, but that breakdown is checkable. Application of implicit-function
theorems should be able to prove if the value function is locally differentiable.
What we have shown is that the standard linearization method frequently used in
rational-expectations analysis can be extended to include higher-order terms and
can be extended to model deviations from certainty equivalence, and that doing so
often will be simple numerically.

3.5. Computational Costs of Linearization and Higher-Order Terms

The computations above have succeeded in showing us the qualitative nature of
the problems that need to be solved. We next ask how large can we go with this
approach. To see how large we can go, we need to know the timing demands of the
basic operations in the procedure. These exercises were conducted using Matlab on
a 90-MHz Pentium. The analysis of ann-state,m-control optimal control problem
can be broken down into the following steps:

1. Compute steady state: time∼ O[(2n + m)3].
2. Compute Jacobian,A, of dynamic system at steady state: time∼ O[(2n)2].
3. Compute Jordan canonical form ofA = N−1DN: time∼ O[(2n)3].
4. Construct and solve the linear systems for higher-order and stochastic terms.
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We now examine the computational cost of these steps. The computation of the
steady state of ann-state,m-control problem is a nonlinear equation in 2n + m
variables, which is not bad even forn = m = 100, and feasible for much larger
problems. In fact, the steady-state problem is often similar to CGE problems; hence
we can use the special methods available for CGE models. Presumably, this is not
a difficult problem; if computing the steady state of the deterministic version is
difficult, then it is unlikely that any method can produce a global solution to the
stochastic version. Similarly, computing the Jacobian of the dynamic system is also
presumably feasible. In general, the time demands of these steps vary greatly across
problems, making it difficult for us to say anything generally. Hence, we do not con-
sider these steps further, and instead focus on the generic features of this approach.

The critical limitations begin with the eigenvalue–eigenvector extraction prob-
lem. This is a necessary step for any asymptotically valid linearization method.
The limiting factor in computing the higher-order and stochastic terms is the cost
of constructing and solving the linear systems that arise. The cost of constructing
the linear systems depends on the specific problem and depends on the number
of nonzero derivatives that arise in the systems (22), (23), and other equations,
and the manner in which one computes those derivatives. We make no attempt to
estimate the cost of constructing these systems. We can give a reliable estimate
of the cost of solving the resulting linear algebra problems. Table 1 contains the
results of some experiments we ran to determine the cost of these steps. We took
several randomn × n matrices and computed eigenvalues and eigenvectors, for
n = 100, 200, 300, 400. We next explored the timing for solving large linear sys-
tems of equations, the second operation. Table 1 also indicates the results forn×n
matrices,n = 100, 200, 500,1,000. The third pair of columns in Table 1 display the
mean time for several random matrix inversions; we do not report the variation in
any column because there was little variation. The entries roughly reflect the order
n3 operation count associated with solving linear systems and inverting matrices.

To determine the cost of computing various order terms in the Taylor-series
expansion, we need to know the number of unknown coefficients of various orders.
Table 2 indicates the size of the problem associated with various orders of the
Taylor expansion for various dimensions; more precisely, it indicates the number
of coefficients in thenth-order terms of the Taylor expansion of a dimensiond

TABLE 1. Linear algebra times

Eigenvectors Linear systems Matrix inversion
n seconds n seconds n seconds

10 0.1 10 0.0025 10 0.05
100 2.6 100 0.17 100 0.27
200 25.5 200 0.77 200 2.4
300 104 500 18.3 300 9.0
400 230 1,000 150 400 24.4
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TABLE 2. Taylor series

Dimension Order No. of coefficients

5 1 5
2 15
3 35
4 70
5 126

10 1 10
2 55
3 220
4 715

20 1 20
2 210
3 1,540
4 8,855

50 1 50
2 1,275

100 1 100
2 5,050
3 171,700

d n
(n + d)!

n!d!
− (n + d − 1)!

(n − 1)!d!

function. Note that the bottom right entry gives the general formula for thenth-
order coefficients in ad dimensional function.

These results give us good indications as to what is generally feasible. Be-
cause the linearization step involves computing a steady state, a Jacobian, and
an eigenvalue–eigenvector decomposition, we see that moderately large systems
can be linearized. The eigenvalue problem generally would be the most difficult,
and we see here that a 10-state model would lead to a 20-dimensional eigenvector
problem, one that takes under a second on a Pentium.10 The computation of the
quadratic terms is also possible. First, we compute theVi j terms using (19), a
linear problem with, according to Table 2, 55 variables, and which can be solved
in under 0.1 seconds.11 We then construct a linear problem involving theVi jm , a
problem with 220 variables, which takes roughly a second to solve. These values
give us the information necessary to compute theUα

jm, requiring 55 multiplications
of 10×10 matrices. The third-order terms ofU need the 715 fourth-order terms of
V from its defining linear system, a problem taking about 40 seconds, and then
do 715 matrix multiplications, a problem taking less than 3 seconds according to
Table 1. These results also show that quadratic approximations of control laws
of 100-dimensional models is also feasible. Even cubic approximations could be
had with patience and enough space. Furthermore, it is clear that the certainty
non-equivalence terms that we derived above also could be computed in the same
time. Supercomputers could handle higher orders and/or larger models.
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3.6. Global Accuracy

Perturbation methods produce the best possible asymptotically valid local ap-
proximations to a problem. However, we often want to use them for nonlocal
approximations. We will not go into an extensive exploration of the global qual-
ity of the resulting approximations, a topic that must be investigated for specific
problems and specific choices of tastes and technology. However, we should note
that the existing literature is quite positive on the global quality of the resulting
approximations. Judd and Guu (1993, forthcoming) have investigated this issue
in simple growth models. Typically, that is, for empirically reasonable choices of
tastes and technology, they find that the linear approximations do well for small
but nontrivial neighborhoods of the deterministic steady state and that the quality
of the approximations improves substantially as the higher-order terms are added.
They also find that the certainty non-equivalence terms are important to achieve
high-quality approximations for stochastic approximations. More precisely, they
substitute the computed Taylor series into the defining equations and evaluate the
resulting error. The resulting error for capital stocks near the steady state is often
the order of machine zero, an accomplishment that few other methods can claim.
Although their investigations have been limited to relatively small models, there is
no reason to suspect that the performance of this approach will decay drastically
as we move to larger models. In any case, any user of these methods should use
some diagnostics to estimate the region where the constructed series is a good
approximation.

3.7. Summary of Perturbation Methods

The exercises above show that computing Taylor-series expansions of dynamic
optimization problems is feasible even for large problems, that is, problems with
several states and controls. This includes problems with several agents, several sec-
tors, several goods, and several factors. Minor modifications allow these methods
to be applied to models with distortions; see Judd (forthcoming) for discussions
of how to do this. The method described above is a substantial improvement and
generalization of the conventional linearization method used commonly in public
finance and macroeconomics, allowing for certainty non-equivalence. In general,
it can be used to create a linear theory for any observable quantity including
those, such as risk premia, that depend on nonquadratic properties of tastes and
technology.

The main disadvantage of this method is its local nature. We next examine meth-
ods that are more global in their approach.

4. PROJECTION METHODS

Projection methods take a global approach to problems, making them applicable
for a broader range of problems. However, they are much slower. Before discussing

https://doi.org/10.1017/S1365100597002022 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002022


             

RATIONAL-EXPECTATIONS MODELS 65

the large models that we solve below, we review the basics of projection methods
as applied to (1). That problem reduces to solving the functional equation

0 = u′(C(k, θ)) − βE{u′(C(F(k, θ) − C(k, θ), θ̃ ))F1(F(k, θ) − C(k, θ), θ̃ ) | θ}
≡ R(k, θ; C), (35)

whereR(k, θ; C) is the Euler residual of the policy functionC(k, θ).
The projection approach to solving (35) can be broken down into four compo-

nents. First, as noted above, we parameterize the unknown policy function and
restrict it to lie in some finite-dimensional space, as in

Ĉ(k, θ; a) =
n∑

i =0

ai φi (k, θ),

where theφi comprise a basis for all candidate functions. Second, we define a
numerical approximation of the residual function applied toĈ, R(k, θ; Ĉ); we
let R̂ denote the numerical approximation ofR. This primarily involves choos-
ing a scheme for approximating the integral implicit in the conditional expecta-
tions. Third, we construct a collection of projection conditions; each is defined by
some test functionψ`(k, θ) relative to a weighting functionw(k, θ), and ideally
equals ∫

R(k, θ; Ĉ(·; a))ψ`(k, θ)w(k, θ) dk dθ

but is implemented by choosing a finite sample(kj , θ j ), j = 1, . . . , m, and defining

P̀ (a) =
m∑

j =1

R̂(kj , θ j ; Ĉ(·; a))α j ψ`(kj , θ j ), ` = 1, . . . , n. (36)

Fourth, we choose some method to compute the coefficient vectora that solves
the systemP̀ (a) = 0.

The various approaches to solving rational-expectations models differ in their
choices over these components. Table 3 displays the various choices. The critical
fact is that this menu is “a la carte”: You make one choice from column A, then
a choice from column B, etc., and almost any combination is possible. Table 3
outlines the basic components of projection methods, and points out the specific
choices that have been and could be used.

The existing literature on computational rational-expectations methods have
pursued a small fraction of the possible combinations. Table 4 displays the various
combinations that have been used. We left out the projection-condition column
because almost all essentially use collocation and Galerkin-style methods.

We do not consider the integration problem here, using product Gaussian quadra-
ture in our examples; substantial improvement is possible by developing truly mul-
tidimensional quadrature and approximation methods, but we leave that for future
research. In our examples, we focus on some of the approximation choices and
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TABLE 3. Projection method components

Projection Solution
Approximation Integration conditions method

Piecewise linear Newton–Cotes Galerkin Newton
Ordinary polynomial Gaussian quadrature Collocation Time iteration
Orthogonal polynomial Monte Carlo Sum of squares Fixed-point iteration
Splines quasi-Monte Carlo Subdomain Least squares
Neural networks Rn rules Method of moments Global minimum
Finite element Derivative rules Homotopy
Customized bases Asymptotics

TABLE 4. Choices made in literature

Authors Approximation Integration Solution method

Gustafson (1958) Piecewise linear Newton–Cotes Time iteration
Wright and Polynomial Newton–Cotes Time iteration

Williams (1982,1984) (of conditional
expectation)

Miranda and Polynomials Newton–Cotes Fixed-point
Helmberger (1988) iteration

Bizer and Piecewise linear Newton–Cotes Time iteration
Judd (1989)

Coleman (1990) Finite element Gaussian Time iteration
den Haan and Polynomial Monte Carlo Fixed-point

Marcet (1990) (of conditional simulation iteration
expectation)

Judd (1992) Orthogonal Gaussian Newton
polynomial

solution-method choices. Judd (1992) contains the results for various methods for
the representative-agent model. We now look at extensions of this model.

5. HETEROGENEOUS TASTES

We next examine how to introduce several agents into the analysis. We examine the
same model as in (1) except that we assume that there aren different types of agents,
typei having utility function,ui (c), i = 1, 2, . . . , n, but a common discount factor
β. In this case, the equilibrium decisions depend on the distribution of wealth.
Let Ci (k) be the consumption of typei agents when the wealth distribution is
k = (k1, k2, . . . , kn). We assume that equity is the only asset that can be held. We
do this to focus on the issues of size of models, whereas introducing a larger set
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of securities introduces other difficulties. The equilibrium of the resulting model
is defined by the collection of Euler equations

Ri (k, θ, C) = u′
i (C

i (k, θ)) − βE{u′
i (C

i (Y(k, θ) − C(k, θ), θ̃ ))

× F1((Y(k, θ) − C(k, θ))., θ̃ ) | θ}, i = 1, 2, . . . , n,

whereY(k, θ) ∈ Rn is the distribution of income in a period with initial capital
stock distributionk and productivityθ , that is,Yi (k, θ) = ki F1(k., θ) + W(k, θ)

andW(k, θ) = F(k., θ)−k.F1(k., θ), where we use the tensor notationk. ≡ ∑
i ki .

We focus on the residual functions

Ri (k, θ, Ĉ(·; a)) = Ĉi (k, θ; a) − (u′
i )

−1(βE{u′
i (Ĉ

i (Y(k, θ) − Ĉ(k, θ; a), θ̃; a))

× F1((Y(k, θ) − Ĉ(k, θ; a))., θ̃ ) | θ}), i = 1, 2, . . . , n,

where we approximate each consumption function in terms of some unknown
coefficientsa, as inĈi (k, θ; a). Because of the presence of the expectation operator,
we need to form the approximate residual function for agenti ,

R̂i (k, θ, Ĉ(·; a))=Ĉi (k, θ; a)−(u′
i )

−1(β Ê{u′
i (Ĉ

i (Y(k, θ; a)−Ĉ(k, θ; a), θ̃; a))

× F1((Y(k, θ) − Ĉ(k, θ; a))., θ̃ ) | θ}), i = 1, 2, . . . , n,

where Ê represents some numerical approximation of the enclosed integral. In
this paper we use only product Gaussian quadrature formulas for integration. The
identifying projections are

Pi j (a) ≡
∫ θM

θm

∫ kM

km

· · ·
∫ kM

km

R̂i (k, θ, Ĉ(·; a))ψ j (k, θ)w(k, θ) dk1 · · · dkn dθ,

wherei = 1, . . . , n, and j = 1, . . . , m. The computation ofP(a) also involves nu-
merical integration; we let̂P(a) denote a numerical integration approximation
of P(a). We use product Gaussian quadrature here also; we leave the integra-
tion issues for future research. The solution choosesa so thatP̂(a) = 0. We next
discuss the leading possibilities for the approximation scheme and the solution
method.

5.1. Representation: Tensor vs. Complete Polynomials

The tensor method approximates each consumption function as

Ĉi (k, θ; a) =
nk∑

j1=0

· · ·
nk∑

jn=0

nθ∑
`=0

ai
j1··· jn`ϕi1(k1) · · ·ϕin(kn)ψ`(θ), i = 1, . . . , n,

whereϕi (kj )(ψ`(θ)) is a degreei − 1 (` − 1) polynomial inkj (θ) from some
orthogonal family. We then solve for the unknown coefficientsai

j1... jn`. This is
a method that can quickly become infeasible because the number of unknown
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coefficients equals(nθ + 1)(nk + 1)n for each of then policy functions. The
complete polynomial method uses the form

Ci (k, θ; a) =
∑

0≤ j1+···+ jn+`≤d
0≤ ji ,`≤d

ai
j1... jn` ϕ j1(k1) · · ·ϕ jn(kn) ψ`(θ).

In this case, the total number of unknown coefficients is a far smaller number; in
fact, the number of unknown coefficients here is the same as in the Taylor-series
expansion method, those numbers displayed in Table 3. In Table 3, we displayed
the general formula for the number of coefficients. Note that it grows polynomially,
not exponentially.

These general methods are two that are likely to be of general value. Other
methods are not likely to be competitive for smooth models. For example, one
would need far more unknown coefficients to use splines.12

5.2. Solution: Fixed-Point Iteration vs. Newton’s
Method vs. Time Iteration

The next critical choice is the method we use to solve the projection equations for
the coefficientsa. Newton’s method13 treats the conditionsP(a) = 0 as a system
of nonlinear equations and solves fora by repeated quadratic approximations.
Newton’s method is locally quadratically convergent, but each step usesO(n3)

time because it computes a Jacobian. Some refinements economize on this by
approximating the Jacobian, but the computational cost per step is still a problem.

Fixed-point iteration proceeds more directly, uses fewer computations per step,
but has only linear convergence if it converges at all. Specifically, fixed-point
iteration takes the policy functions computed in iterationj, Ĉi, j and applies the
computation

Ĉi, j +1(k, θ) = (u′
i )

−1(β Ê{u′
i (Ĉ

i, j (Y(k, θ) − Ĉ., j (k, θ), θ̃ ))

×F1(Y(k, θ) − Ĉ., j (k, θ))., θ̃ ) | θ}) (37)

at a finite number of points(k, θ) to produceĈi, j +1(k, θ) data sufficient to fix
the unknown coefficients of̂Ci, j +1. BecauseĈi, j +1(k, θ) is expressed directly in
terms of the right-hand side of (37), the computation cost is small. Fixed-point
iteration can be motivated by learning arguments in Marcet and Sargent (1989),
but was actually used in the rational-expectations literature earlier by Miranda and
Helmberger (1988) who observed that it was an efficient method for computation.

Time iteration also uses the Euler equation to compute a new value forĈi, j +1

(k, θ), but instead, the equation

Ĉi, j +1(k, θ) = (u′
i )

−1(β Ê{u′
i (Ĉ

i, j (Y(k, θ) − Ĉ., j +1(k, θ), θ̃ ))

×Fk((Y(k, θ) − Ĉ., j (k, θ))., θ̃ ) | θ}) (38)
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is used to generate the necessary data. This is a much more complex way to fix
Ĉi, j +1(k, θ) values because, for a fixed(k, θ) vector, (38) is a nonlinear equation
in Ĉi, j +1(k, θ), hence involving more effort. Both fixed-point iteration and time
iteration are only linearly convergent. However, the computational demands of
each iteration are onlyO(n2). Time iteration is more reliable but generally slower
than fixed-point iteration when the latter converges. Time iteration was used by
Gustafson (1958), and by Wright and Williams (1982, 1984). In this paper, we
do not discuss time iteration because experience14 and theory indicate that it will
be much slower than Newton’s method for small problems and slower than the
fixed-point iteration results below.

5.3. Accuracy

We need ways to ascertain if our solutions are “good.” To measure the accuracy
of our approximations, we evaluate

E(a) ≡ ‖Ri (., ., Ĉ(·; a))/Ĉi (·; a)‖

at the solution fora for various norms, and useE as a unit-free measure of the
“irrationality” in the approximate solution. For example, if theL∞ norm is 10−2,
then the Euler equation is accurate to within a penny per dollar of expenditure.
Another way of expressing this is to say that the approximate policy functions
Ĉi (k, θ; a) comprise anε-equilibrium forε = E. This criterion is a strong one,
much stronger than the one used in the Taylor–Uhlig (1990) symposium, which
essentially examinedE{Ri (., ., Ĉ)} where the expectation is taken over simulated
paths fork andθ generated byĈ. The norm we compute is nonzero as long as
the Euler equation error is nonzero anywhere, and theL∞ norm is essentially
the maximum Euler equation error over the region explored. We parameterize the
production function so that the symmetric deterministic steady-state capital stock
is 1 for each agent, and then letk ∈ [0.5, 1.5]n, a large range.

5.4. Results

We now give results for these alternative approaches. In Table 5 we examine 2-, 3-,
4-, and 5-agent models using both tensor product and complete polynomial bases,
and using both Newton’s method and fixed-point iteration. In all cases, we use
product Gaussian quadrature to compute all integrals and we use a simple linear
initial guess that goes through the deterministic steady state and zero. The column
underγ lists the different values of relative risk aversion for the different agents;
these values cover the range generally considered reasonable. We converged when
coefficients were deemed within 10−5 of the solution. The accuracy is the base
10 logarithm of theL2 definition of E above applied to the worst-agents Euler
equation; in fact, the Euler equation errors were all very close for all agents. The
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TABLE 5. Time and accuracy comparisons

No. of Tastes No. of Newton’s method Fixed-point iteration

agents (γ ) Degree Basis coefficients Timea Accuracy Timea Accuracy

1 −2 1 t 4 00:00:05 −2.7 00:00:22 −2.7
c 3 00:00:06 −2.6 00:00:39 −2.6

2 t 9 00:00:22 −3.4 00:00:55 −3.4
c 6 00:00:17 −3.3 00:00:93 −3.3

3 t 16 00:00:71 −4.1 00:01:15 −4.1
c 10 00:00:49 −4.0 00:01:92 −4.0

4 t 25 00:00:70 −4.8 00:02:15 −4.9
c 30 00:00:99 −4.7 00:03:29 −4.6

2 −1.1 1 t 16 00:00:66 −3.1 00:01:49 −3.1
−2 c 6 00:00:38 −2.7 00:01:42 −2.7

2 t 54 00:07:30 −4.1 00:08:02 −4.1
c 20 00:02:50 −3.4 00:06:43 −3.4

3 t 128 00:01:22 −5.0 00:32:90 −4.5
c 40 00:11:40 −4.1 00:20:80 −4.1

4 t 250 00:12:34 −5.9 00:01:48 −4.5
c 70 00:45:20 −4.8 00:55:50 −4.7

3 −1.1 1 t 48 00:06:93 −3.4 00:07:50 −3.4
−2 c 15 00:01:48 −2.8 00:04:60 −2.8
−3 2 t 243 00:07:07 −4.6 00:02:11 −4.5

c 63 00:20:80 −3.6 00:36.40 −3.6
3 t 768 inf inf 00:19:57 −4.6

c 105 00:04:05 −4.3 00:03:09 −4.3
4 t 1875 inf inf 01:56:00 −4.6

c 210 00:46:58 −4.9 00:12:45 −4.8
4 −.5 1 t 128 00:01:09 −3.5 00:33:10 −3.5

−1.1 c 24 00:05:10 −2.9 00:13:30 −2.9
−2 2 t 972 inf inf 00:24:57 −4.6
−3 c 84 00:02:47 −3.7 00:03:04 −3.7

3 t 4096 inf inf 07:13:00 −4.6
c 224 00:52:11 −4.4 00:26:01 −4.4

5 −.5 1 t 320 00:08:52 −3.6 00:02:48 −3.6
−1.1 c 35 00:17:90 −3.0 00:00:38 −3.0
−2 2 t 3645 inf inf 05:16:00 −4.6
−3 c 140 00:12:18 −3.8 00:10:18 −3.8
−4 3 t 20,480 inf inf inf inf

c 420 12:50:00 −4.5 03:27:00 −4.5

a00:00:00= hours: minutes: seconds; inf= infeasible,t = tensorc= complete.
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magnitude of the accuracy measure is therefore (roughly speaking) the decimal
digit accuracy. These examples were computed on a 50 MHz 486 computer.

The results are as expected. First, the total amount of time for Newton’s method
is roughly cubic in the number of unknown coefficients. Newton’s method is
generally more accurate than fixed-point iteration, but for large problems takes
much more time. The other problem is that storing the Jacobian can demand more
space than available in RAM; this happens for the larger models. Note that the
complete polynomial method is generally efficient, but tensor product methods are
not.

The fixed-point iteration method turns out to dominate Newton’s method for
large models. In fact, for the higher-order approximations of the five-agent model,
only fixed-point iteration with complete polynomials is feasible, given space re-
quirements. The fixed-point iteration method turns out to be stable (given the initial
condition), a fortunate property of these models. Judd (forthcoming) shows that
fixed-point iteration applied to the single-agent, deterministic model can be unsta-
ble when the elasticity of substitution is large, but is stable near the deterministic
steady state for most reasonable choices ofγ . This stability property apparently
is robust to multiple-agent models.

6. HETEROGENEOUS WEALTH, COMMON TASTES

A simpler case is where all agents have the same intertemporal tastes, but may have
different wealth. Here, we can exploit obvious symmetry properties to drastically
reduce the computational burden. We now assume that then different agents have
the same utility function,u(c), and a common discount factorβ. Outside of some
special cases, we cannot aggregate preferences to reduce the model to a repre-
sentative agent. LetCi (k) be the consumption of typei agents when the wealth
distribution isk = (k1, k2, . . . , kn), whereki is the capital owned by a type-i agent.
The equilibrium is again defined by the collection of Euler equations

u′
i (C

i (k, θ)) = βE{u′
i (C

i (Y(k, θ) − C(k, θ), θ̃ )) F1((Y(k, θ) − C(k, θ))., θ̃ ) | θ}
(39)

for i = 1, 2, . . . , n, whereY(k, θ) ∈ Rn is the distribution of income in a period
with initial capital stockk and productivityθ , that is,Yi (k, θ) = ki F1(k., θ) +
w(k, θ). The tensor method approximates each consumption function as

C`(k, θ; a) =
nk∑

i1=0

· · ·
nk∑

in=0

nθ∑
j =0

a`
i1···in j ϕi1(k1) · · ·ϕin(kn)ψ j (θ),

whereϕi (km) (ψ j (θ)) is a degreei − 1(` − 1) polynomial inkm (θ) from some
orthogonal family. We then solve for the unknown coefficientsa`

i1···in j . However, we
can impose certain symmetry conditions. First, an agent’s behavior depends only on
his wealth and the distribution of wealth, and all agents have the same consumption
function. Therefore, ifi` = i`′ , then the coefficientsa`

i1···i`···in j = a`′
i1···i`′ ···in j for all
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TABLE 6. Symmetric polynomials

Degree Polynomials

1 x + y + · · · + z
2 x2 + y2 + · · · + z2, (x + y + · · · + z)2

3 x3 + y3 + · · · + z3, x2y + x2z + · · · + y2z + · · · , (x + y + · · · + z)3

` and`′. Furthermore,a1
i1···i`···in j = a1

i1π(i2)···π(i`)···π(in) j for all permutationsπ on
{i2, i3, . . . , i n}. Together, these conditions imply that the policy function for type
1 agents is of the form

C1(k, θ; a) =
∑
i, j,`

ai j `ϕi (k1)9 j (k2, k3, . . . , kn)ψ`(θ),

where9 j (k2, k3, . . . , kn) is a symmetric polynomial in then − 1 variablesk2,
k3, . . ., kn. The degree 1, 2, and 3 symmetric polynomials are listed in Table 6.

The complete polynomial method uses, for a type-1 agent, the form

C1(k, θ; a) =
∑

0≤deg(φi )+deg(9 j )+deg(ψ`)≤n

ai j `ϕi (k1)9 j (k2, k3, . . . , kn) ψ`(θ),

where the consumption functions of the other types are constructed by symme-
try considerations. To identify the unknown coefficients, we use the identifying
projections

0 =
∫

· · ·
∫

u′(C1(k, θ)) − βE {u′(C1(Y(k, θ) − C(k, θ), θ̃ ))

× F1((Y(k, θ) − C(k, θ))., θ̃ ) | θ} ϕi (k1)9 j (k2, k3, . . . , kn)ψ`(θ) dk dθ

for i, j, and` such that 0≤ deg(φi ) + deg(9 j ) + deg(ψ`) ≤ n. In this case, the
total number of unknown coefficients is a far smaller number than the unrestricted
case, and there is only one Euler equation that needs to be fitted. The result is
a far smaller system than we would have if we had followed the general multi-
agent approach of the preceding section. To save on space, we do not discuss
computational results because they are exactly what one would expect: imposing
the symmetry conditions results in far faster computations without any loss of
accuracy.

7. CONCLUSION

This paper has shown that it is feasible to compute rational-expectations mod-
els substantially more complex than the usual representative-agent, single-good
model. Using only 486- and Pentium-class personal computers, we have shown
how to use perturbation methods to solve dynamic models with up to 50 state
variables (that is, 50 agents or 50 capital stocks, or some combination) in only
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TABLE 7. Final comparisons

Method Basis Solution method Advantages Disadvantages

Taylor series Complete Eigenvalues, Very fast Local validity
linear equations

Projection Tensor or Newton Quadratic Infeasible for
methods complete convergence large problems

Tensor or Successive Easy iterations Possible
complete approximation nonconvergence

minutes. We also have demonstrated that more globally oriented methods can
produce accurate approximations of multiple-agent models.

We also have seen that the methods of choice depend on the size of the prob-
lem. Table 7 summarizes our findings. Our experiments indicate that the dominant
approach to large models with Euler equation formulations will be fixed-point iter-
ation solution methods combined with complete polynomial bases, outperforming
Newton-based methods and monotone- and contraction-operator methods. The
apparent dominance of fixed-point iteration indicates that we need to better un-
derstand the stability problems of fixed-point iteration and develop approaches to
detect and deal with them.

This work clearly indicates that rational expectations models of moderate size
can be reliably and quickly solved numerically. This paper focused on the approx-
imation and solution methods that have been used, and used only the simplest
integration methods. Exploitation of more advanced approximation, solution, and
integration techniques surely will lead to drastic improvements. We also suspect
that these methods are capable of making efficient use of supercomputing envi-
ronments, making even larger models feasible. Overall, given the limited use of
available hardware and software in this paper, we believe that numerical solution
of large stochastic, dynamic models is an attainable goal.

NOTES

1. The term projection method is a catchall term in the mathematical literature that includes method
of weighted residuals, finite element, boundary element, Galerkin, least squares, Rayleigh–Ritz, and
other similar methods.

2. Wright and Williams (1984) and some later writers parameterize a conditional-expectation func-
tion, such as the one on the right-hand side of (2), that characterizes the solution. If one is to use
polynomial approximation methods, then one should approximate some continuous function that char-
acterizes equilibrium. Wright and Williams show that when price and policy functions have kinks, it
is better to approximate the conditional-expectations function. Our comments apply equally to this
case because, as is clear from Judd (1992), the key fact is that one is solving for an unknown smooth
function.

3. For example, the procedure we outline isnot the procedure discussed by McGrattan (1990); in
general, our Taylor-series expansion method produces different results.
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4. By “correct,” we refer to the concepts, definitions, methods, and solutions derived in the mathe-
matical literature on the stable manifold theorem and asymptotics. The interested reader should consult
Coddington and Levinson (1965), Fleming (1971), Fleming and Souganides (1986), and Bensoussan
(1988). Judd (forthcoming) gives an example of where one proposed method goes wrong, and a more
extensive discussion of these points.

5. Marcet (1994) did not indicate what he meant by perturbation methods. It is true that some of
the linear approximation methods discussed in the macroeconomic literature are not extended easily
to compute higher-order terms. However, it has always been known in the mathematical literature
that higher-order terms can be computed easily if one used what the mathematical literature calls
perturbation methods; see Bensoussan (1988) and the extensive citations there, for example.

6. This is also the method used in dynamic analyses of the 1970’s and early 1980’s, such as Hall
(1971), Fischer (1979), Judd (1982), Laitner (1984), and many others. Many later writers reject the
standard approach in favor of ad hoc procedures, but never explain why. For example, Cooley and
Hansen’s (1989) analysis of monetary equilibria near the deterministic steady state ignores the simpler
procedure outlined by Fischer (1979).

7. Taylor-series expansions are valid over nontrivial intervals for analytic functions, but we make
no claim that our problems have analytic solutions.

8. By a “linear theory ofu,” we mean an approximation ofu that is linear in the state variablesx,
and that is asymptotically valid asx converges to the steady-state value ofx.

9. The discrete-time approach can be analyzed similarly, but at a greater notational cost.
10. This estimate is based on log interpolation of then = 10 andn = 100 cases in the Eigenvector

results in Table 1.
11. Again, this is based on log interpolating in the Linear system column in Table 1 between the

n = 10 andn = 100 cases.
12. One possible alternative is to create a problem-specific basis, an approach defined and discussed

by Judd (1996) and papers cited therein.
13. We actually use an implementation of Powell’s hybrid method. Our experience is that Powell’s

method is far faster than the pure Newton method. We have tried a few other methods on various
projection problems but only with disappointing results.

14. For example, compare the execution times in Coleman’s (1990) implementation of time iteration
and the Newton method results reported by Judd (1992). The experience with time iteration in Bizer
and Judd (1989) also was disappointing.
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