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Abstract

We show that the additive higher Chow groups of regular schemes over a field induce
a Zariski sheaf of pro-differential graded algebras, the Milnor range of which is isomor-
phic to the Zariski sheaf of big de Rham–Witt complexes. This provides an explicit
cycle-theoretic description of the big de Rham–Witt sheaves. Several applications are
derived.
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1. Introduction

1.1 Motivation
For a presheaf F on the category of smooth schemes essentially of finite type over a field with
values in abelian groups, it is often desirable to describe the values of F in terms of algebraic
cycles because the cycles are usually relatively explicit by nature.

For instance, by the results of Bloch [Blo86], Bloch and Lichtenbaum [BL95], Friedlander
and Suslin [FS02] and Levine [Lev08], one knows that the higher algebraic K-groups of smooth
schemes over a field can be described in terms of the higher Chow groups of Bloch through a
spectral sequence. A property of K-theory of smooth schemes that helps achieve this is its A1-
invariance. However, there are several presheaves on smooth schemes which do not satisfy the
A1-invariance property and for which one often has to seek a description in terms of algebraic
cycles.

Examples of non-A1-invariant presheaves we have in mind are the differential forms and
the K-theory of non-reduced infinitesimal extensions of smooth schemes. These are some of the
most useful presheaves on the category of smooth schemes over a field, as they carry significant
information about the underlying schemes. Perhaps in order to study this question for these two
presheaves, Bloch and Esnault [BE03a, BE03b] invented the additive higher Chow groups of
fields. This is related to earlier works of Bloch (e.g. [Blo73]) on the study of the tangent space to
the space of cycles and K-theory. The additive higher Chow groups were subsequently defined
and studied for more general schemes in the works of Krishna and Levine [KL08], Park [Par09]
and Rülling [Rül07a].
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The results of [BE03a] and [BE03b] suggest that additive higher Chow groups could be useful
in describing the above two non-A1-invariant presheaves in terms of algebraic cycles. Soon after,
Rülling [Rül07a] proved a more general result that when the underlying scheme is the spectrum
of a field, the big de Rham–Witt complex of Hesselholt and Madsen [HM01] is isomorphic to a
complex consisting of additive higher Chow groups of the field.

1.2 The main result
The purpose of this paper is to show that the sheaf of big de Rham–Witt complexes on the big
Zariski site of all regular schemes essentially of finite type over any field coincides with the sheaf
of complexes of the (Milnor range of) additive higher Chow groups. Among several consequences,
this provides a new description of the crystalline cohomology of smooth quasi-projective schemes
over a perfect field purely in terms of algebraic cycles. This is the cycle-theoretic avatar of Bloch’s
description of the crystalline cohomology via algebraic K-theory [Blo77]. The main result from
which we derive the above is as follows.

Theorem 1.1. Let k be an arbitrary field and let R be a regular semi-local k-algebra essentially
of finite type. Then, for all m,n ≥ 1, there are isomorphisms between the big de Rham–Witt
forms and the additive higher Chow groups

τR
n,m : WmΩn−1

R
�→ TCHn(R,n;m), (1.1)

which are natural in R. In particular, the additive higher Chow groups of Spec(R) in the Milnor
range form the universal restricted Witt complex over R.

Theorem 1.1 is a direct extension of Rülling’s theorem [Rül07a] proven originally for fields
to the case of regular semi-local algebras over fields. This can also be considered as a non-A1-
invariant analogue of the results of Elbaz-Vincent and Müller-Stach [EM02] and Kerz [Ker09,
Ker10], which together imply that the Milnor K-theory of such rings are isomorphic to their
higher Chow groups. The corresponding result for fields was shown by Totaro [Tot92].

1.3 Applications
The first interesting consequence of Theorem 1.1 is that it provides new geometric perspectives
to the Witt vectors and the de Rham–Witt forms. Take n = 1, for instance. Then the map τR

1,m

is a ring isomorphism. The underlying abelian group of the ring Wm(R) is not so difficult to
understand. However, its product structure is notoriously complicated. The ring isomorphism
τR
1,m then shows that the addition of Wm(R) corresponds simply to the summation of alge-

braic cycles in TCH1(R, 1;m), while the complicated multiplication of Wm(R) corresponds to a
simple Pontryagin-intersection product of algebraic cycles, thus giving a conceptual and simple
description of the ring structure of Witt vectors.

For general n ≥ 1, the differential operator, the wedge product, and Frobenius and Ver-
schiebung operators on WmΩ•

R are nontrivial objects to describe. However, their counterparts
for additive higher Chow groups are simply the Pontryagin intersection, flat pull-back and finite
push-forward of algebraic cycles.

Apart from the above, we derive several further applications of Theorem 1.1. We show that
the additive higher Chow groups have p-typical decomposition in characteristic p > 0. Using this
and Theorem 1.1, we show that the crystalline cohomology of smooth quasi-projective schemes
over a perfect field is motivic in a broad sense. We also show using Theorem 1.1 and the results of
[Hes05] that the algebraic K-theory of the truncated polynomial algebras over regular semi-local
rings over a field admit descriptions through cycles.
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We show that in characteristic p > 0, the mod-p motivic cohomology and mod-p Milnor as
well as Quillen K-theory Zariski sheaves on regular schemes over a field coincide with the sheaf of
p-typical additive higher Chow groups. We also deduce a Gersten resolution for additive higher
Chow groups in the sense that the Cousin complex of the Zariski sheaf of additive higher Chow
groups on a regular scheme essentially of finite type over a field is exact. These results show that
the p-typical additive higher Chow groups provide cycle-theoretic descriptions of existing mod-p
cohomology theories of regular schemes.

In another application, we use Theorem 1.1 and the existence of push-forward maps for addi-
tive higher Chow groups to give new and direct construction of the theory of trace maps on big
de Rham–Witt complexes of regular algebras essentially of finite type over a field. Such a theory
is abstractly known to exist (in the p-typical case) by the duality theory for de Rham–Witt com-
plex by Ekedahl [Eke84]. However, Ekedahl’s theory of trace is obtained using the complicated
machinery of Grothendieck duality in the derived category of quasi-coherent sheaves over the
sheaves of p-typical Witt vectors. This makes it very hard to work with his trace. The construc-
tion of trace was also previously known for the de Rham–Witt complex of fields (see [Rül07a]).
It follows a posteriori that Ekedahl’s trace and the push-forward of cycles are compatible, and
the traces now have more explicit descriptions. See Theorems 7.8 and 7.9.

In our final application, we use the Galois descent property of the de Rham–Witt complex to
prove a similar descent for the additive higher chow groups of regular semi-local algebras over a
field. The precise versions of these applications are given in § 7. In addition to these, Theorem 1.1
also plays a crucial role in the proofs of the main results of [GK19] and [GK20].

1.4 Outline of proofs
The proof of Theorem 1.1 relies on several results of previous papers of the authors. Among
these, the works of Krishna and Park [KP15, KP16, KP20] play major roles. The first step
in the proof of Theorem 1.1 is to construct the ‘de Rham–Witt–Chow homomorphism’ τR

n,m

from the big de Rham–Witt complex WmΩn−1
R of a regular semi-local ring R to its additive

higher Chow groups TCHn(R,n;m). This itself is non-trivial and requires us to show that
the additive higher Chow groups of R form a restricted Witt-complex over R in the sense of
[Rül07a, Definition 1.14]. Modulo a new limit argument in the case of imperfect base fields dis-
cussed in the present article, the proof of this step was the main purpose of the papers [KP15]
and [KP16].

The next step is to show that de Rham–Witt–Chow homomorphism τR
n,m is injective. This

is not hard. We use a reduction step and a Gersten-type result for the de Rham–Witt complex
to reduce to the case where R is a field. The latter case is due to Rülling [Rül07a] (and see the
appendix for the characteristic 2 case).

The surjectivity of τR
n,m is a difficult part of the proof of Theorem 1.1. In order to achieve

this, we follow several reduction steps. We first prove this in the case when k is infinite and
perfect. To deal with this case, we rely on the ‘sfs-moving lemma’ of [KP20] (see Theorem 3.6).
When the base field is finite, we use a pro-� extension trick to reduce it to the case of infinite
perfect base fields. The remaining case when k is imperfect is reduced to when k is perfect using
a limit argument.

For the infinite perfect base field case, using the sfs-moving lemma, we prove that for a
given cycle α ∈ TCHn(R,n;m), we can find a finite extension of regular semi-local k-algebras
f : R→ R′, and a cycle α′ ∈ TCHn(R′, n;m) such that: (1) f∗(α′) = α and (2) α′ is ‘symbolic’,
i.e. lies in the image of τR′

n,m. The problem we face now is that we do not know how to conclude
from this that α is symbolic using the existing theory of trace maps for de Rham–Witt forms due
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to Ekedahl [Eke84] (see § 7.6). To circumvent this problem, we devise a technique of traceability
of de Rham–Witt forms via cycles.

The traceability of a form ω′ ∈WmΩn−1
R′ yields a trace element of ω′ in WmΩn−1

R up to
images in the additive higher Chow groups. This luckily suffices for our purpose. We show,
by factoring the extension R→ R′ into a composition of simple extensions, that every form
in WmΩn−1

R′ is traceable to R (i.e. has a trace element in WmΩn−1
R ), see Proposition 5.9. The

proof of this requires us to work with WmΩn−1
R for all m ≥ 1 and n ≥ 1 simultaneously rather

than working with these groups individually. This uses the full strength of the Witt complex
structures on de Rham–Witt forms and additive higher Chow groups, and also the fact that τR

n,m

is a morphism of Witt complexes. The traceability allows us to find a pre-image of α in WmΩn−1
R .

We recall the definitions of Milnor K-theory and de Rham–Witt complex, and then prove
some of their properties in § 2. We recall the definitions of additive higher Chow groups and
some basic results on them in § 3. The main result of § 4 is to prove the restricted Witt-complex
structure on the additive higher Chow groups of regular semi-local algebras over arbitrary fields.
The de Rham–Witt–Chow homomorphism τR

n,m is constructed in § 5. We prove the key result
on traceability in this section. We finish the proof of Theorem 1.1 in § 6 and its applications are
derived in § 7.

The last section is an appendix by Kay Rülling, which proves the characteristic 2 case of his
result from [Rül07a] for fields. We thank him for this contribution.

2. Milnor K-theory and de Rham–Witt complex

We fix an arbitrary field k. We let p ≥ 1 denote the exponential characteristic of k. Any further
restriction on the nature of k will be stated explicitly. In this section, we fix our conventions on
notation. We then recall the definitions of Milnor K-groups, rings of big Witt vectors, and the
big de Rham–Witt complexes of Hesselholt and Madsen [HM01]. We discuss some properties of
these objects that are used throughout this paper.

2.1 Conventions
In this paper, a k-scheme is a separated scheme of finite type over k, unless we say otherwise.
A k-variety is a reduced k-scheme. The product X × Y means usually X ×k Y , unless we specify
otherwise. We let Schk be the category of k-schemes, Smk of smooth k-schemes, and SmAffk

of smooth affine k-schemes. By a scheme essentially of finite type over k, we mean a Noetherian
k-scheme which is the projective limit of a cofiltered collection of open subschemes of a finite
type k-scheme. We let Schess

k be the category of such schemes. An affine scheme is an object of
Schess

k if and only if it is the spectrum of a ring obtained by localizing a finite-type k-algebra
at a multiplicatively closed subset. By a semi-local scheme, we shall mean an affine k-scheme
essentially of finite type with only finitely many closed points.

A ring R in this paper will always mean a commutative Noetherian k-algebra. We say that
R is regular if all its local rings are regular local rings. Equivalently, Rm is a regular local ring
for every maximal ideal m ⊂ R. We let N denote the set of all positive integers.

2.2 Milnor K-groups
Recall that the Milnor K-ring KM∗ (R) of R is the quotient T ∗

Z
(R×)/I of the tensor algebra of

R× by the two-sided ideal I generated by {a⊗ (1− a) | a ∈ R×, 1− a ∈ R×}. Its degree-n part
is KM

n (R) and {a1, . . . , an} is the image of a1 ⊗ · · · ⊗ an in KM
n (R), where ai ∈ R×.

When k is finite, it is known that the Milnor K-groups KM∗ (A) are not most ideally defined.
For instance, the Gersten conjecture fails even if R is a regular semi-local ring. To remedy this,
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Gabber (unpublished) and Kerz [Ker10] defined an ‘improved Milnor K-theory’ K̂M∗ (R). These
groups are equipped with a natural map of graded rings ψR : KM∗ (R)→ K̂M∗ (R) satisfying the
following properties:

(i) ψR is an isomorphism if either k is infinite or R is a (finite or infinite) field;
(ii) ψR is surjective if R is local;
(iii) the Gersten conjecture holds for K̂M∗ (R) if R is regular semi-local essentially of finite type

over k.

In this paper, the Milnor K-theory KM∗ (R) will always mean the improved Milnor K-theory
of Gabber and Kerz.

2.3 The ring of Witt vectors
Let R be a ring. We recall the definition of the ring of big Witt vectors of R, e.g. from [Rül07a,
Appendix A]. A truncation set S ⊂ N is a nonempty subset such that if s ∈ S and t|s, then
t ∈ S. As a set, let WS(R) := RS and define the map w : WS(R)→ RS , a = (as)s∈S �→ w(a) =
(w(a)s)s∈S , where w(a)s :=

∑
t|s ta

s/t
t (called the ‘ghost map’). When RS on the target of w

is given the component-wise ring structure, it is known that there is a unique functorial ring
structure on WS(R) such that w is a ring homomorphism. See [Hes15, Proposition 1.2]. The
ghost map is an isomorphism if R contains Q.

For two truncation sets S ⊂ S′, there is a restriction R : WS′(R)→WS(R). When S =
{1, . . . ,m}, we write Wm(R) := WS(R). We let W(R) := WN(R), which is lim←−m

Wm(R). For
a fixed prime p and Si = {1, p, . . . , pi−1}, we write Wi(R) = WSi(R) and W (R) := W1,p,p2,...(R),
which is lim←−i

Wi(R). They are the p-typical rings of Witt vectors.
There is another description of the rings WS(R). There is a natural bijection W(R) 	 (1 +

TR[[T ]])×, where T is an indeterminate and the addition of the ring W(R) corresponds to
the multiplication of the formal power series. For a truncation set S, we have WS(R) ∼= (1 +
TR[[T ]])×/IS for a suitable subgroup IS . See [Rül07a, A.7] for details. In case S = {1, . . . ,m},
we have an isomorphism

γ : Wm(R) 	 (1 + TR[[T ]])×/(1 + Tm+1R[[T ]])×; (ai)1≤i≤m �→
m∏

i=1

(1− aiT
i). (2.1)

The Teichmüller lift [−]S : R→WS(R) is given by a �→ 1− aT , which is a multiplicative
map. If S = {1, . . . ,m}, we write [−]m for [−]S . When the truncation set is understood, we
shall write [−]S also as [−]. For each i ≥ 1, we have the ith Verschiebung map Vi given by
Vi([a]�m/i�) = (1− aT i) under the identification (2.1), where for a non-negative real number c,
we denote by �c� the greatest integer not bigger than c. By [Rül07a, Properties A.4(i)], for
x = (xi) ∈Wm(R), we have

x =
m∑

i=1

Vi([xi]�m/i�). (2.2)

2.4 The de Rham–Witt complex
Let R be a k algebra. Recall from [HM01, Definition 1.1.1] that a restricted Witt complex over
R is a pro-system of differential graded Z-algebras ((E•

m)m∈N,R : E•
m+1 → E•

m) together with
families of homomorphisms of graded rings (Fr : E•

rm+r−1 → E•
m)m,r∈N called Frobenius maps,

and homomorphisms of graded groups (Vr : E•
m → E•

rm+r−1)m,r∈N called Verschiebung maps,
satisfying the following relations for all n, r, s ∈ N:

(i) RFr = FrR
r, RrVr = VrR, F1 = V1 = Id, FrFs = Frs, VrVs = Vrs;
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(ii) FrVr = r; when (r, s) = 1, then FrVs = VsFr on E•
rm+r−1;

(iii) Vr(Fr(x)y) = xVr(y) for all x ∈ E•
rm+r−1 and y ∈ E•

m (projection formula);
(iv) FrdVr = d (where d is the differential operator of the differential graded algebras (DGAs)).

Furthermore, there is a homomorphism of pro-rings (λ : Wm(R)→ E0
m)m∈N compatible with Fr

and Vr, such that

(v) Frdλ([a]) = λ([a]r−1)dλ([a]) for all a ∈ R and r ∈ N,

where [a] ∈Wm(R) is the Teichmüller lift of a ∈ R.
By [Hes15], the category of restricted Witt-complexes over R has an initial object, called

the de Rham–Witt complex (WmΩ•
R)m∈N of R. For fixed m ∈ N, the complex WmΩ•

R has an
explicit description as a quotient of the DGA Ω•

Wm(R)/Z
(the absolute de Rham complex of

Wm(R)) by a differential graded ideal N•
m(R), which is defined by an explicit set of generators

(see [Hes15, § 4] or [Rül07a, Proposition 1.2]). One property of WmΩ•
R is that the canonical maps

λ : Wm(R)→WmΩ0
R (for all m) and W1Ω•

R → Ω•
R (as a map of DGAs) are isomorphisms.

More generally, for any finite truncation set S ⊂ N, we have the de Rham–Witt complex
WSΩ•

R := Ω•
WS(R)/Z

/N•
S , where N•

S is a differential graded ideal given by some generators. When
a prime p is fixed, taking S = Si = {1, p, . . . , pi−1}, we get WSiΩ

•
R, which we shall denote by

WiΩ•
R. This is the classical p-typical de Rham–Witt complex of R defined by Bloch, Deligne and

Illusie (see [Blo77] and [Ill79]).

Remark 2.1. We remark that our definition of a Witt complex over R from [HM01] is a bit
different from the version in [Hes15, Definition 4.1], but when 2 is invertible or zero in R, both
of them coincide. We only consider the case when R contains a field so that 2 is always either
invertible or zero in R. We stick to the definition from [HM01], as it is simpler.

In general, for rings that do not necessarily contain a field, [Hes15] makes substantial usages
of an element d log[−1] = [−1]d[−1] for the Teichmüller lift [−1] ∈WS(R) to make corrections
for 2-torsions. We will not need these so that we will not recall them, but one aspect of them
motivates Lemma 2.7 even when R contains a field. We use it later in Proposition 5.9.

2.5 The p-typicalization of de Rham–Witt complex
Let R be a k-algebra as above. Then one knows that the ring of Witt vectors Wm(R) has
a finite set of idempotents which decompose it as a finite product of p-typical rings of Witt
vectors. Furthermore, this decomposition is functorial in R and compatible with respect to the
restriction maps R : Wm(R)→Wm−1(R) for all m ∈ N. As with any Wm(R) module, we get a
functorial decomposition (see [Rül07a, Theorem 1.11])

θR : WmΩ•
R

�−→
∏
n∈Ip

WP∩(m/n)Ω
•
R, (2.3)

where m = {1, . . . ,m}, P = {1, p, p2, . . .}, the set Ip consists of all natural numbers prime to p,
and (m/n) = {a ∈ N|an ∈ m}.

2.6 Néron–Popescu approximation
To prove the main result of this paper over an imperfect base field, we need an approxima-
tion method based on the Néron–Popescu desingularization [Pop86] of regular rings, which
we recall in the following. Details of the proof of this result can also be found in [Swa98,
Theorem 1.1].
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Theorem 2.2. Let R be a regular semi-local k-algebra. Let k′ ⊂ k be the prime field. Then R
can be written as a filtering inductive limit lim−→λ∈I

Rλ such that each Rλ is a semi-local ring

which is essentially of finite type and smooth over k′.

When R is essentially of finite type in addition, we can say a bit more (see e.g. [Qui73, Proof
of Theorem 5.11]).

Lemma 2.3. Suppose that p > 1 and R is a regular semi-local k-algebra essentially of finite type.
Then we can find a direct system of smooth and essentially of finite-type semi-local Fp-algebras
{Ri}i∈I such that the transition maps λij : Ri → Rj for i ≤ j are injective and faithfully flat.
Moreover, R = lim−→i

Ri and each inclusion Ri ↪→ R is faithfully flat.

Proof. As R is regular, it is a finite direct product of regular semi-local k-algebras essentially
of finite type, each of which is an integral domain. We can therefore assume without loss of
generality that R is an integral domain.

As R is essentially of finite type over k and semi-local, we can find an integral domain R̄,
which is a k-algebra of finite type, and a finite set Σ of primes in R̄ such that R = R̄Σ, the
localization at Σ. As R is regular and the regular locus of Spec(R̄) is open, we can assume that
R̄ is regular.

We can now find a subfield k′ ⊂ k which is finitely generated over Fp, a k′-algebra Ā of finite
type such that R̄ = Ā⊗k′ k. As the prime ideals lying in the finite set Σ are finitely generated,
we can assume (after replacing k′ by a bigger finitely generated subfield of k) that there is a
finite set Σ′ of primes in Ā such that Σ = {pR̄ | p ∈ Σ′}. By replacing the elements of Σ′ by the
contractions of the elements in Σ, we can also assume that Σ′ = {p ∩ Ā|p ∈ Σ}.

As R̄ is a regular Fp-algebra and Fp is perfect, we see that R is geometrically regular over
Fp. As the inclusion Ā ↪→ R̄ of Noetherian Fp-algebras is faithfully flat, the ring Ā is also
geometrically regular over Fp (see e.g. [Stacks, Lemma 07NH]). In particular, it is regular.

Setting R′ = ĀΣ′ and R′
k = R′ ⊗k′ k, we have the canonical injection R′

k ↪→ R̄Σ = R which
is a localization map. Writing k as a direct limit of its finitely generated subfields, we can
find a direct system of finitely generated subfields {ki}i∈I such that k′ ⊂ ki ⊂ kj ⊂ k for i ≤ j,
and k =

⋃
i∈Iki. In particular, R′

k = lim−→i
R′

i, where R′
i := R′ ⊗k′ ki. As R′

j = R′ ⊗k′ kj = (R′ ⊗k′

ki)⊗ki kj = R′
i ⊗ki kj for i ≤ j, it follows that each transition map λij : R′

i → R′
j is an injective

faithfully flat map of Noetherian Fp-algebras such that R′
k = lim−→i

R′
i. Furthermore, R′

k = R′
i ⊗ki k

and, hence, the inclusion R′
i ↪→ R′

k is also faithfully flat. In particular, each R′
i is a regular integral

domain.
As R′ is essentially of finite type over k′ and k′ is finitely generated over Fp, it follows that

R′ is an Fp-algebra essentially of finite type. As each ki is finitely generated over Fp, the same
argument implies that each R′

i is an regular Fp-algebra essentially of finite type. As Fp is perfect,
it follows that each R′

i is smooth over Fp. We let Σi = {p ∩R′
i|p ∈ Σ} under the inclusion R′

i ↪→ R.
It is clear that for each pair of elements i ≤ j in I, the transition map λij : R′

i ↪→ R′
j induces an

inclusion λij : (R′
i)Σi ↪→ (R′

j)Σj such that Σi = {p ∩ (R′
i)Σi |p ∈ Σj}. We let Ri = (R′

i)Σi for i ∈ I.
As each λij is flat and every closed point of Spec(Ri) is in the image of the map

λ∗ij : Spec(R′
j)→ Spec(Ri), it follows that λij is faithfully flat (see e.g. [Stacks, Lemma 00HQ]

or [Mat86, Theorem 7.2, p. 47]). The same reasoning implies that each inclusion Ri ↪→ R is
faithfully flat.

Finally, we note that every element of R′
k which becomes invertible in R lies in the image of

R′
i ↪→ R for some i ∈ I. Such an element must become invertible in Ri. It follows that R = lim−→i

Ri.
This finishes the proof. �
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Remark 2.4. If R is a regular k-algebra essentially of finite type, that is not necessarily semi-local,
the proof of Lemma 2.3 shows that a weaker version is still valid. Namely, we can find a direct
system of smooth Fp-algebras {Ri}i∈I essentially of finite type, such that the transition maps
λij : Ri → Rj for i ≤ j are injective and flat. Moreover, R = lim−→i

Ri and each inclusion Ri ↪→ R
is flat. However, we may not be able to ensure that either Ri → Rj or Ri → R is faithfully flat.

Lemma 2.5. Suppose that p > 1 and f : R→ S is a morphism between two regular semi-local
k-algebras essentially of finite type. Then we can find direct systems {Ri}i∈I and {Si}i∈I as in
Lemma 2.3 together with maps of Fp-algebras fi : Ri → Si, compatible with the transition maps
of the direct systems such that R = lim−→i

Ri, S = lim−→i
Si, and f = lim−→i

fi.

Proof. Let R̄ be the regular finite type k-algebra and Σ a finite subset of Spec(R̄) as in the proof
of Lemma 2.3 such that R = R̄Σ. We can similarly find a regular finite type k-algebra S̄ and a
finite subset Φ ⊂ Spec(S) such that S = S̄Φ. As R̄ is a finite type k-algebra, we can extend the
map f : R→ S to a k-algebra morphism f : R̄→ S̄ (after possibly replacing S̄ by a localization
which is still finite type over k).

Next, we saw in the proof of Lemma 2.3 that we can find a subfield k′ ⊂ k which is finitely
generated over Fp, a finite-type k′-algebra Ā (respectively, B̄), and a finite subset Σ′ ⊂ Spec(Ā)
(respectively, Φ′ ⊂ Spec(B̄)) such that R̄ = Ā⊗k′ k (respectively, S̄ = B̄ ⊗k′ k) and Σ (respec-
tively, Φ) is the extension of Σ′ (respectively, Φ′). Furthermore, R = R′ ⊗k′ k, where R′ = ĀΣ′ .
Similarly, S = S′ ⊗k′ k, where S′ = B̄Φ′ .

As Ā is a finite-type k′-algebra, we can find a field k′′ such that it is finitely generated
over Fp with k′ ⊂ k′′ ⊂ k and a k′′-algebra morphism f : Ā⊗k′ k′′ → B̄ ⊗k′ k′′ which extends
f : R̄ = Ā⊗k′ k → B̄ ⊗k′ k = S̄. In other words, we can choose our finitely generated subfield
k′ ⊂ k over Fp such that f : R̄→ S̄ is induced by a morphism of finite type k′-algebras f : Ā→ B̄.

As, after base change to k, the map f : Ā→ B̄ induces the map R′
k = ĀΣ′ ⊗k′ k → B̄Φ′ ⊗k′

k = S′
k, it follows that f must induce a map of localizations f : R′ = ĀΣ′ → B̄Φ′ = S′. We have

therefore shown that there is a finitely generated subfield k′ ⊂ k over Fp, a morphism between
essentially of finite-type regular semi-local k′-algebras f : R′ → S′ which induces our original
map f : R = (R′

k)Σ → (S′
k)Φ = S.

We now choose a direct system of finitely generated subfields {ki}i∈I such that k′ ⊂ ki ⊂
kj ⊂ k for every i ≤ j, and k =

⋃
i∈I ki. We let

R′
i = R⊗k′ ki, S′

i = S′ ⊗k′ ki, Σi = Σ ∩R′
i, Φi = Φ ∩ S′

i, Ri = (R′
i)Σi , and Si = (S′

i)Φi .

The rings R and S are semi-local with the sets of maximal ideals Σ and Φ, respectively. It is
easy to check using this that the map fi : R′

i → S′
i induced by f : R′ → S′ descends to a map

between the localizations fi : (R′
i)Σi → (S′

i)Φi . Equivalently, a map fi : Ri → Si. The rest of the
proof now is a repetition of the proof of Lemma 2.3. �

2.7 Some properties of de Rham–Witt complexes
We collect some results about de Rham–Witt complexes needed in this paper.

Lemma 2.6. Let {Rλ}λ∈I be a filtering system of k-algebras with R = lim−→λ∈I
Rλ. Let

(E•
m(λ))m∈N,λ∈I be a filtering system of differential graded Z-algebras such that (E•

m(λ))m∈N

is a restricted Witt complex over Rλ for each λ ∈ I. We let E•
m = lim−→λ∈I

E•
m(λ) for m ∈ N. Then

(E•
m)m∈N is a restricted Witt complex over R.

Proof. It follows, e.g., from [Rül07a, Proposition 1.16 and Lemma 1.17]. �
Lemma 2.7. Let R be a k-algebra. Then d[a] ∧ d[a] = 0 in WmΩ2

R for any m ∈ N and a ∈ R.

2097

https://doi.org/10.1112/S0010437X21007478 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007478


A. Krishna and J. Park

Proof. By [Hes15, Definitions 3.1, 3.6 and p. 186], we have d[a] ∧ d[a] = d log[−1] ∧ F2(d[a]) for
each a ∈ R. If char(k) = 2, then −1 = 1 in k so that d log[−1] = d log[1] = 0. Hence, d[a] ∧ d[a] =
d log[−1] ∧ F2(d[a]) = 0. If char(k) �= 2, then, by the anti-commutativity, we have d[a] ∧ d[a]
= −d[a] ∧ d[a] so that 2d[a] ∧ d[a] = 0. As 2 ∈ k× so that 2 ∈Wm(k)×, we deduce
d[a] ∧ d[a] = 0. �
Proposition 2.8. Let R be a regular semi-local k-algebra and let K be the total ring of
quotients for R. Then, for all m ≥ 1 and n ≥ 0, the natural map WmΩn

R →WmΩn
K is injective.

Proof. Let K denote the total ring of quotients of R. This is a product of fields because R
is regular and, hence, reduced. Using Néron–Popescu (Theorem 2.2 in § 2.6), we can write R =
lim−→λ∈I

Rλ such that each Rλ is a semi-local ring which is essentially of finite type and smooth over
the prime field of R. As taking the total rings of quotients commutes with a filtering inductive
limit of rings, it follows that K = lim−→λ∈I

Kλ, where Kλ is the total ring of quotients of Rλ.
We now have a commutative diagram of canonical maps

lim−→λ∈I
WmΩn

Rλ
��

��

WmΩn
R

��

lim−→λ∈I
WmΩn

Kλ
�� WmΩn

K

(2.4)

in which the horizontal arrows are isomorphisms by [Rül07a, Proposition 1.16]. It suffices there-
fore to prove the proposition when k is perfect and R is a semi-local ring which is essentially of
finite type and smooth over k. In this case, R is a finite product of integral domains. We can
therefore assume further that R is an integral domain.

We prove this case in two steps.

Step 1. Let m = 1. We show that Ωn
R/Z
→ Ωn

K/Z
is injective.

Claim. We claim that Ωi
R/Z

is a free R-module, possibly of infinite rank.

This is obvious for i = 0. Suppose i ≥ 1. Consider the Jacobi–Zariski exact sequence of the
maps Z→ k → R from [Lod98, 3.5.5.1] (which generalizes [Har77, Proposition 8.3A]):

· · · → D1(R|k)→ Ω1
k/Z
⊗k R→ Ω1

R/Z
→ Ω1

R/k → 0,

where D1(R|k) is the first André–Quillen homology of André [And74] and Quillen [Qui70] (see
[Lod98, 3.5.4]). As R is smooth over k, we have D1(R|k) = 0 by [Lod98, Theorem 3.5.6]. On the
other hand, because R is a smooth semi-local k-algebra, Ω1

R/k is a free R-module. Thus, we have
an isomorphism Ω1

R/Z
	 Ω1

R/k ⊕ (Ω1
k/Z
⊗k R). As Ω1

k/Z
is a free k-module (a k-vector space), the

space Ω1
k/Z
⊗k R is a free R-module. Hence, Ω1

R/Z
is a free R-module. Taking wedge products,

we deduce that Ωi
R/Z

is a free R-module for all i ≥ 1, proving the claim.
Going back to the proof of step 1, we apply the functor −⊗R Ωi

R/Z
to the inclusion R ↪→ K.

By claim, the module Ωi
R/Z

is free so that we obtain an injection Ωi
R/Z

↪→ K ⊗R Ωi
R/Z

, where
the latter group is isomorphic to Ωi

K/Z
by [Har77, Proposition 8.2A]. Hence, step 1 is done.

Step 2. Now suppose m ≥ 1. When char(k) = 0, by [Rül07a, Remark 1.12], WmΩn
R →WmΩn

K

decompose into a direct product of maps Ωn
R/Z
→ Ωn

K/Z
, each of which is injective by step 1.

Hence, the direct product is also injective.
When char(k) = p > 0, the map WmΩn

R →WmΩn
K decomposes into a direct product of some

copies of maps of p-typical de Rham–Witt forms WsΩn
R →WsΩn

K (for various finite values
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of s) by (2.3). Hence, it suffices to prove the injectivity for the p-typical de Rham–Witt complex.
However, it was proven, for instance by Gros [Gro85, Proposition 5.1.2, p. 57], that for any
smooth k-scheme X, the Cousin complex of WsΩn

X is a resolution of WsΩn
X . In particular, each

WsΩn
R →WsΩn

K is injective. This completes the proof of the proposition. �

3. The additive higher Chow groups

In this section, we recall the definitions of higher Chow groups and additive higher Chow groups.
We prove some basic properties of additive Chow groups which are used in the main proofs. We
fix an arbitrary base field k.

3.1 Higher Chow groups
We recall (see [Blo86, Tot92]) the definition of higher Chow groups. LetX ∈ Schess

k be equidimen-
sional. Let P1

k = Proj k[Y0, Y1] and �n = (P1
k \ {1})n. Let (y1, . . . , yn) ∈ �n be the coordinates.

A face of �n is a closed subscheme defined by a set of equations of the form yi1 = ε1, . . . , yis = εs,
where εj ∈ {0,∞}. For 1 ≤ i ≤ n and ε = 0,∞, we let ιεi : �n−1 ↪→ �n be the closed immersion
given by (y1, . . . , yn−1) �→ (y1, . . . , yi−1, ε, yi, . . . , yn−1). Its image gives a codimension 1 face.

Let q, n ≥ 0. Note that when X is obtained by localizing at a non-closed point, the notion
of dimensions for closed subschemes of X ×�n could be ambiguous but the codimensions are
well-defined. We keep this in mind and in what follows, we use codimensions only unless some
ambiguity appears.

Let zq(X,n) be the free abelian group on the set of integral closed subschemes of X ×�n

of codimension q, that intersect properly with X × F for each face F of �n. We define the
boundary map ∂ε

i (Z) := [(IdX × ιεi)∗(Z)]. This collection of data gives a cubical abelian group
(n �→ zq(X,n)) in the sense of [KL08, § 1.1], and the groups zq(X,n) := zq(X,n)/zq(X,n)degn

(in the notation of [KL08, § 1.1]) give a complex of abelian groups, whose boundary map at level
n is given by ∂ :=

∑n
i=1(−1)i(∂∞i − ∂0

i ). The homology CHq(X,n) := Hn(zq(X, •), ∂) is called
the higher Chow group of X.

3.2 Additive higher Chow groups
We recall the definition of additive higher Chow groups from [KP15, § 2]. Let X ∈ Schess

k

be equidimensional. Let A1 = Speck[t], Gm = Speck[t, t−1], and � = P1
k. For n ≥ 1, let

Bn = A1 ×�n−1, B̄n = A1 ×�n−1 and B̂n = P1 ×�n−1 ⊃ B̄n, where � = � \ {1}. Let
(t, y1, . . . , yn−1) ∈ B̄n be the coordinates.

On B̄n, define the Cartier divisors F 1
n,i := {yi = 1} for 1 ≤ i ≤ n− 1, Fn,0 := {t = 0}, and let

F 1
n :=

∑n−1
i=1 F

1
n,i. A face of Bn is a closed subscheme defined by a set of equations of the form

yi1 = ε1, . . . , yis = εs where εj ∈ {0,∞}. For 1 ≤ i ≤ n− 1 and ε = 0,∞, let ιεn,i : Bn−1 ↪→ Bn

be the inclusion (t, y1, . . . , yn−2) �→ (t, y1, . . . , yi−1, ε, yi, . . . , yn−2). Its image is a codimension 1
face.

The additive higher Chow complex is defined similarly using the schemes Bn instead of �n,
but together with proper intersections with all faces, we impose additional conditions called the
modulus conditions, that control how the cycles should behave at ‘infinity’.

Let X ∈ Schess
k , and let V be an integral closed subscheme of X ×Bn. Let V̄ denote the

Zariski closure of V in X × B̄n and let ν : V̄ N → V̄ ⊂ X × B̄n be the normalization of V̄ . Let
m ≥ 0 and n ≥ 1 be integers. As in [KP15, Definition 2.1], we say that V satisfies the modulus
m condition on X ×Bn, if we have (m+ 1)[ν∗(Fn,0)] ≤ [ν∗(F 1

n)] in the free abelian group of
Weil divisors on V̄ N . (Note that when n = 1, we have F 1

1 = ∅, so it means ν∗(F1,0) = 0, or
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{t = 0} ∩ V̄ = ∅.) If V is a cycle on X ×Bn, we say that V satisfies the modulus m condition
if each of its irreducible components satisfies the modulus m condition. When m is understood,
often we just say that V satisfies the modulus condition. As Fn,0 = {t = 0} ⊂ B̄n, replacing B̄n

by B̂n in the definition does not change the nature of the modulus condition on V .
Recall from [KP15, Definitions 2.5 and 2.6] the following. LetX ∈ Schess

k be equidimensional.
Let m ≥ 0 and n, q ≥ 1 be integers. We let Tzq(X, 1;m) be the free abelian group on integral
closed subschemes Z of X × A1 of codimension q, satisfying the modulus condition.

For n > 1, let Tzq(X,n;m) be the free abelian group on integral closed subschemes Z of
X ×Bn of codimension q such that (1) each face F of Bn, Z intersects X × F properly on
X ×Bn and (2) Z satisfies the modulus m condition on X ×Bn.

For each 1 ≤ i ≤ n− 1 and ε = 0,∞, let ∂ε
i (Z) := [(IdX × ιεn,i)

∗(Z)]. The proper intersection
with faces ensures that ∂ε

i (Z) are well-defined.
The cycles in Tzq(X,n;m) are called the admissible cycles (or, often the additive higher

Chow cycles, or additive cycles). This gives the cubical abelian group (n �→ Tzq(X,n+ 1;m))
in the sense of [KL08, § 1.1]. Using the containment lemma [KP12a, Proposition 2.4], that each
face ∂ε

i (Z) lies in Tzq(X,n− 1;m) is implied from (1) and (2).
The additive higher Chow complex, or just the additive cycle complex, Tzq(X, •;m) of

X in codimension q with modulus m is the non-degenerate complex associated to the cubi-
cal abelian group (n �→ Tzq(X,n+ 1;m)), i.e. Tzq(X,n;m) is the quotient Tzq(X,n;m)/
Tzq(X,n;m)degn.

The boundary map of this complex at level n is given by ∂ :=
∑n−1

i=1 (−1)i(∂∞i − ∂0
i ), and

it satisfies ∂2 = 0. The homology TCHq(X,n;m) := Hn(Tzq(X, •;m)) for n ≥ 1 is the addi-
tive higher Chow group of X with modulus m. When X = Spec(A) is affine, we usually write
TCHq(X,n;m) as TCHq(A,n;m). In this paper, we study only the Milnor range additive chow
groups {TCHn(X,n;m)}m≥0,n≥1.

3.3 Some properties
Like Bloch’s higher Chow groups, the additive higher Chow groups are also equipped with pull-
back map associated to flat morphisms and push-forward map associated to proper morphisms
between schemes. Another less-obvious property we need in this paper is the following.

Proposition 3.1. Let R be a smooth k-algebra essentially of finite type. Then there is a natural
cap product map

∩R : TCHq(R,n;m)⊗Z CHp(R,n′)→ TCHp+q(R,n+ n′;m).

This commutes with the pull-back and push-forward whenever they exist. This is given by
a ∩R b = Δ∗

R(a× b), where Δ∗
R is the pull-back via the diagonal map ΔR : Spec(R)→ Spec(R)×

Spec(R).

Proof. This is an immediate consequence of [KP17a, Theorem 3.12]. �

3.4 Subcomplexes associated to some algebraic subsets
Let X ∈ Schess

k be equidimensional. Here are some subgroups of Tzq(X,n;m) with a finer
intersection property with a given finite set W of locally closed algebraic subsets of X.

Definition 3.2 (Cf. [KP12a, Definition 4.2]). Define Tzq
W(X,n;m) to be the subgroup of

Tzq(X,n;m) generated by integral closed subschemes Z ⊂ X ×Bn that additionally satisfy

codimW×F (Z ∩ (W × F )) ≥ q for all W ∈ W and all faces F ⊂ Bn. (3.1)
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The groups Tzq
W(X,n+ 1;m) for n ≥ 0 form a cubical subgroup of (n �→ Tzq(X,n+ 1;m)) and

they give the subcomplex Tzq
W(X, •;m) ⊂ Tzq(X, •;m) by modding out by the degenerate cycles.

The homology groups are denoted by TCHq
W(X,n;m).

3.5 Atlas for semi-local k-schemes
Recall that a semi-local k-algebra R essentially of finite type is of the form R = OX,Σ, where X
is a quasi-projective k-scheme and Σ ⊂ X is a finite set of points (not necessarily closed). The
pair (X,Σ) will be called an atlas for V = Spec(R). An affine open subatlas (Y,Σ) of (X,Σ)
for V is an atlas for V such that Y ⊂ X is an affine open subset. A smooth atlas (X,Σ) is an
atlas given by a smooth X. Note that because Σ is finite and X is quasi-projective, we can
always choose an affine atlas for V . If R is smooth over k, then we can find a smooth affine
atlas.

3.6 The fs- and sfs-cycles
We recall the following notions of fs morphisms, fs-cycles and sfs-cycles from [KP20, § 2]. We
also recall some properties of these cycles.

Definition 3.3 ([KP20, Definition 2.6]). Let X,Y ∈ Schess
k . When Y is irreducible, we say that

a morphism Y → X of k-schemes is fs over X (or simply fs when X is clear), if it is finite and
the map Y → Xi is surjective, where Xi ⊂ X is an irreducible component in which the image of
the entire Y lies.

When Y is not necessarily irreducible, we say Y → X is fs over X if for each irreducible
component Yj ⊂ Y , the induced map Yj → X is fs over X.

We generalize it a bit further: let f : Y → X be a morphism in Schess
k and let U → X be a

flat morphism. We say that Y → X is fs over U , if the fiber product f ′ : Y ×X U → U is fs.
These notions behave well under base change and finite push-forwards. See [KP20,

Lemmas 2.7 and 2.8].

Let X ∈ Schess
k be equidimensional. Let m ≥ 0 and n ≥ 1 be integers. For 1 ≤ j ≤ n, let

πj : Bn → Bj be the projection given by (t, y1, . . . , yn−1) �→ (t, y1, . . . , yj−1). For an irreducible
closed subscheme Z ⊂ X ×Bn, let Z(j) = (IdX × πj)(Z). This Z(j) is, in general, not a closed
subscheme of X ×Bj . However, if Z is finite over X, then the morphisms in the sequence
Z = Z(n) → Z(n−1) → · · · → Z(1) → X are all finite, so each Z(j) is closed in X ×Bj . If Z is a
cycle on X ×Bn, we extend it Z-linearly. Recall now the following from [KP20, Definitions 2.11
and 2.14].

Definition 3.4. Let X = Spec(A) be an essentially of finite type smooth affine k-scheme and
let Σ ⊂ X be a finite set of points. Let V = Spec(OX,Σ).

(i) A cycle α ∈ Tzn
Σ(V, n;m) is said to be an fs-cycle if each irreducible component of α is fs

over V . The subgroup of fs-cycles is denoted by Tzn
fs(V, n;m).

(ii) A cycle α ∈ Tzn
Σ(V, n;m) is said to be an sfs-cycle if it is an fs-cycle, and each irreducible

component of α(j) is smooth over k for all 1 ≤ j ≤ n. The subgroup of sfs-cycles is denoted
by Tzn

sfs(V, n;m).

We have the following characterization of sfs-cycles over the semi-local schemes.

Proposition 3.5. Let V = Spec(R) be a semi-local scheme which is essentially of finite type and
smooth over k. Let Σ be the set of closed points of V . Then an irreducible cycle Z ∈ Tzn

Σ(V, n;m)
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is an sfs-cycle if and only if there is a smooth affine atlas (X = Spec(A),Σ) for V and an
irreducible cycle Z̄ ∈ Tzn

Σ(X,n;m) for which the following hold:

(i) Z = Z̄V = Z̄ ×X V ;
(ii) Z̄ is closed in X × B̂n, contained in X × A1 × (A1)n−1, and does not intersect any proper

face F ⊂ �n−1; in particular, Z̄ is fs over X;
(iii) for each 1 ≤ j ≤ n, each Z̄(j) = (IdX × πj)(Z̄) ⊂ X ×Bj is an irreducible closed subscheme,

where πj is given by (t, y1, . . . , yn−1) �→ (t, y1, . . . , yj−1); for the coordinate rings k[Z̄(j)] =
A[t, y1, . . . , yj−1]/I(Z̄(j)), for a = t̄, bj = ȳj for 1 ≤ j ≤ n− 1, we have a sequence of finite
extensions of integral domains, A ⊂ A[a] ⊂ A[a, b1] ⊂ · · · ⊂ A[a, b1, . . . , bn−1], such that each
ring in the sequence is smooth over k;

(iv) there are irreducible monic polynomials P (t) ∈ A[t] and Qj(yj) ∈ A[a, b1, . . . , bj−1][yj ] in yj

for 1 ≤ j ≤ n− 1 such that

A[a] = A[t]/(P (t)) and A[a, b1, . . . , bj ] = A[a, b1, . . . , bj−1][yj ]/(Qj(yj)).

Proof. For the (⇐) direction, one sees that the existence of a smooth atlas (X,Σ) for V and a
cycle Z̄ ∈ Tzn

Σ(X,n;m) satisfying properties (i)–(iv) imply that Z ∈ Tzn
Σ(V, n;m) is an sfs-cycle

over V . Thus, we need to prove the converse (⇒).
Suppose that Z ∈ Tzn

Σ(V, n;m) is an irreducible sfs-cycle. As it is an fs-cycle by definition,
applying [KP20, Lemma 2.9, Proposition 2.13, Lemma 2.21], we see that there is a smooth affine
atlas (X,Σ) for V such that the closure Z̄ of Z in X ×Bn is an irreducible admissible cycle in
Tzn

Σ(X,n;m) which satisfies properties (i) and (ii).
As Z̄ → X is fs over X, there is a sequence of finite maps Z̄ = Z̄(n) → · · · → Z̄(1) → X =

Spec(A) such that each Z̄(j) is fs over X. Furthermore, each Z̄(j)
V is smooth over k because Z is

an sfs-cycle.
We now want to show that there is a smooth affine open subatlas (U,Σ) of (X,Σ) for V

such that the restrictions Z̄(j)
U to U 1 ≤ j ≤ n− 1 are all smooth over k. To prove it, set Aj =

k[Z̄(j)]. As each Z̄(j)
V is smooth over k and finite over V , we see that Ω1

Aj/k
is a finite A-module

such that Ω1
S−1

Σ Aj/k
is a free R-module, where R = S−1

Σ A for the multiplicative subset SΣ ⊂ A
corresponding to the finite set of closed points Σ. Hence, there is an affine open neighborhood
U of Σ in X such that each Ω1

Aj/k
|U is a free k[U ]-module. Replacing the given atlas (X,Σ) by

the new (U,Σ), we may thus assume that each Z̄(j) is smooth over k. Hence, we have proven
property (iii).

To prove property (iv), we observe that if we replace A by its semi-local ring R via localiza-
tion, then we obtain a sequence of finite extensions of smooth semi-local rings. Note that such
rings are unique factorization domains (UFDs) by Auslander–Buchsbaum and R[a] = R[t]/I1
for the prime ideal I1 = I(Z(1)). As dim(R) = dim(R[a]) = dim(R[t])− 1, we have ht(I1) = 1.
However, R[t] is a UFD so that I1 must be principal by [Mat86, Theorem 20.1, p. 161]. Thus, if
P (t) ∈ R[t] is a monic irreducible polynomial of a, then we have I1 = (P (t)). Similarly, we have
R[a, b1] = R[a][y1]/I2 for the prime ideal I2 = I(Z(2)), and because R[a] is a UFD, so is R[a][y1].
Hence, we obtain I2 = (Q1(y1)) in the same way.

Continuing as above, we get the irreducible monic polynomials P (t) ∈ R[t] and Qj(yj) ∈
R[a, b1, . . . , bj−1][yj ] for which property (iv) holds over R. Choose lifts of these polynomials over
A, and then there is a localization A′ = A[f−1] for some f ∈ A with the inclusions A ↪→ A′ ↪→ R
such that the property (iv) holds over A′. Replacing (X,Σ) by (Spec(A′),Σ), we obtain a new
atlas for V for which all of properties (i)–(iv) hold. �

2102

https://doi.org/10.1112/S0010437X21007478 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007478


De Rham–Witt sheaves via algebraic cycles

3.7 Additive higher Chow groups of fs- and sfs-cycles
Let m ≥ 0 and n ≥ 1 be two integers. Recall from [KP20, § 2.6] that for a smooth and essentially
of finite type semi-local k-scheme V with the set of closed points Σ, the additive higher Chow
groups of fs- and sfs-cycles are defined as follows. We let

TCHn
fs(V, n;m) =

ker(∂ : Tzn
fs(V, n;m)→ Tzn(V, n− 1;m))

im(∂ : Tzn(V, n+ 1;m)→ Tzn(V, n;m)) ∩ Tzn
fs(V, n;m)

,

TCHn
sfs(V, n;m) =

ker(∂ : Tzn
sfs(V, n;m)→ Tzn(V, n− 1;m))

im(∂ : Tzn(V, n+ 1;m)→ Tzn(V, n;m)) ∩ Tzn
sfs(V, n;m)

.

We have a sequence of homomorphisms

TCHn
sfs(V, n;m)→ TCHn

fs(V, n;m)→ TCHn
Σ(V, n;m)→ TCHn(V, n;m). (3.2)

The last arrow in (3.2) is an isomorphism by [KP16, Theorem 4.10]. The main result of
[KP20] is the following. This will be another key ingredient in the proof of our main theorem.

Theorem 3.6 [KP20, Theorem 1.1]. Let k be an infinite perfect field. Let V = Spec(R) be a
smooth semi-local k-scheme essentially of finite type with the set of closed points Σ. Let m ≥ 0
and n ≥ 1 be any two integers. Then all maps in (3.2) are isomorphisms.

4. Witt-complex structure on additive higher Chow groups

Let k be an arbitrary field. Let R be a regular (not necessarily semi-local) k-algebra essentially of
finite type. Our goal here is to define the structure of a restricted Witt complex on the additive
higher Chow groups of Spec(R) over R. We need the results of [KP15] and [KP16]. We write
V = Spec(R) and TCH•(R;m) =

⊕
n≥1

TCHn(R,n;m) for any m ≥ 0. Then (TCH•(R;m))m∈N is

a projective system of graded abelian groups.
Before we describe the restricted Witt-complex structure on the additive higher Chow

groups, we recall the following baby case from [KP16, Proposition 7.6]. For any polynomial
f(t) ∈ R[t] with f(0) ∈ R×, the closed subscheme V (f(t)) ⊂ V × A1 defines an additive cycle
in TCH1(R, 1;m) for any m ≥ 0. We denote this cycle by Γ(f(t)). As part of the restricted
Witt-complex structure over R on the additive higher Chow groups, the map

λR : Wm(R)→ TCH1(R, 1;m) (4.1)

is determined by λR([a]) = Γ(1−at) for a ∈ R. This uniquely defines λR because every element in
Wm(R) has a unique expression w = (ai) =

∑m
i=1 Vi([a]�m/i�) (see (2.1)). In particular, λR(w) =∑m

i=1 Γ(1−aiti). This map is an isomorphism by [KP16, Theorem 7.12] if R is a UFD (e.g. R is
regular semi-local).

4.1 Witt-complex structure for smooth algebras
We now describe the remaining part of the Witt-complex structure on the additive higher Chow
groups.

Lemma 4.1. Assume that R is a smooth k-algebra. Then (TCH•(R;m))m∈N is a restricted Witt
complex over R.

Proof. We assume first that k is perfect. Let V = Spec(R). If p �= 2, then the lemma is [KP16,
Theorem 1.2]. Thus, we assume that p = 2. In this case, if one closely follows the arguments
of [KP15] and [KP16], then one will notice that there is exactly one place where we used the
assumption p �= 2, namely, to show that δ2 = 0 for the cycle-theoretic differential operator δ
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on TCH•(R;m) = TCH•(V ;m) (see [KP16, Definition 6.2]). However, it turns out that this
vanishing actually follows from the other properties of TCH•(V ;m) proven in [KP15] and [KP16]
without using any assumption on p. We explain this in the following.

Let R : TCH•(V ;m+ 1)→ TCH•(V ;m) denote the obvious restriction map. Let
Fr : TCH•(V ; rm+ r − 1)→ TCH•(V ;m) denote the Frobenius map given by the push-forward
via the map φr : A1 → A1, where φr(t) = tr (see [KP16, § 7.1]). Let Vr : TCH•(V ;m)→
TCH•(V ; rm+ r − 1) be the Verschiebung map given by the flat pull-back via φr. It was shown
in the proofs of [KP15, Theorem 5.13] and [KP16, Theorem 7.1] that Fr, Vr and δ satisfy the
identity

FrδVr = δ ∀ r ≥ 1 (4.2)

on the additive higher Chow groups of V .
As part of the proof of this identity, it was also shown (as the first claim) in the proof of

[KP15, Theorem 5.13, Part 2, p. 45] that Fr and δ satisfy the identity

rFrδ = δFr ∀ r ≥ 1 (4.3)

on the additive higher Chow groups of V . Furthermore, the proofs of the above two identities do
not use any condition on k. (Recall from [Hes15, Lemma 4.3] that (4.3) is one of the properties
of a restricted Witt complex.) We now show that these two identities are enough to conclude
that δ2 = 0.

Suppose, in general, that m ≥ 0 is an integer and let α ∈ TCHq(V, n;m) be a cycle class.
Then the normalization theorem [KP16, Theorem 3.2] says that α is represented by a cycle (also
denoted by α) such that ∂ε

i (α) = 0 for all 1 ≤ i ≤ n− 1 and ε ∈ {0,∞}. It follows therefore from
[KP16, Lemma 6.5] that 2δ2(α) = 0. Combining this with (4.3), we get δF2δ(α) = 2F2δ

2(α) =
F2(2δ2(α)) = 0. As α and m ≥ 0 were arbitrary, we conclude that δF2δ = 0 on TCH•(V ;m) for
all m ≥ 0. In particular, δF2δV2 = 0 on TCH•(V ;m) for all m ≥ 0.

We now use (4.2) to conclude δ2 = δ(F2δV2) = δF2δV2 = 0. This finishes the proof of the
lemma when k is perfect.

To prove the lemma when k is imperfect, the only thing we need to recall for the reader is that
in the construction of the Witt-complex structure on additive higher Chow groups in [KP15] and
[KP16], the perfectness of the ground field was required exactly at one place, namely, to construct
the product structure on the additive Chow groups of smooth schemes. More specifically, this
was needed only in the proof of [KP15, Lemma 2.11]. However, as pointed out by the referee,
the proof of the latter result actually goes through without the perfectness assumption. The
improved version is Lemma 4.2 below. The rest of the proof of the Witt-complex structure is
identical to the perfect base field case. �

We let B2,n = A2 ×�n−2 and B̄2,n = A2 × (P1)n−2 for n ≥ 2. Recall the notion on modulus
(m1,m2) condition from [KP15, Definition 2.9].

Lemma 4.2. LetX and Y be smooth k-schemes, and let V1 and V2 be irreducible cycles satisfying
the modulusm1 andm2 conditions onX ×Bn1 and Y ×Bn2 , respectively. Then, V1 × V2 satisfies
the modulus (m1,m2) condition on X × Y ×B2,n1+n2 .

Proof. Let W ⊂ V1 × V2 be an irreducible component. It is enough to show that W satisfies the
modulus (m1,m2) condition. Let V̄1 ⊂ X × B̄n1 and V̄2 ⊂ Y × B̄n2 be the Zariski closures of V1

and V2, respectively. Then W̄ ⊂ X × Y × B̄2,n1+n2 is an irreducible component of V̄1 × V̄2. Let
V̄ = (V̄ N

1 × V̄ N
2 )red.
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We now note that V̄1 × V̄2 may be neither reduced nor irreducible. Nonetheless, it is
equidimensional and the projection W̄ → V̄i is dominant for each i. It follows that V̄ N is equidi-
mensional with W̄N one of its irreducible components and the projection W̄N → V̄ N

i is dominant
for each i. This gives rise to a commutative diagram

W̄N
v1

��

v2

��

νW̄

���������������� V̄ N
1 × Y × B̄n2

ι1
��

X × B̄n1 × V̄ N
2

ι2
�� X × Y × B̄2,n1+n2

(4.4)

where ι1 = (νV̄1
× Id) and ι2 = (Id× νV̄2

). Let (t1, t2, y1, . . . , yn−1) ∈ A2 × (P1)n−1 be the coor-
dinates. Then, for D1 :=

∑n1−1
i=1 {yi = 1} − (m1 + 1){t1 = 0}, D2 :=

∑n−1
i=n1
{yi = 1} − (m2 + 1)

{t2 = 0}, and n− 1 = (n1 − 1) + (n2 − 1), we have

ι∗1(D
1) ≥ 0 and ι∗2(D

2) ≥ 0. (4.5)

We should note here that V̄ N
1 × Y × B̄n2 and X × B̄n1 × V̄ N

2 are normal (this is ensured by the
smoothness of X and Y ).

As W̄N → V̄ N
i is dominant, we see that v∗1 ◦ ι∗1(

∑n1−1
i=1 {yi = 1}) and v∗1 ◦ ι∗1((m1 + 1){t1 = 0})

are effective Cartier divisors on W̄N . It follows from (4.5) that v∗1 ◦ ι∗1(D1) ≥ 0. Similarly, we have
v∗2 ◦ ι∗2(D2) ≥ 0. Combining the two, we get ν ∗̄

W
(D1 +D2) ≥ 0, which is the modulus (m1,m2)

condition for W . �
Recall from [KP16, Theorem 4.5] that for any map f : X ′ → X of k-schemes, where X

is smooth and affine (or projective) over k, there is a pull-back map f∗ : TCHp(X, q;m)→
TCHp(X ′, q;m). This is compatible with respect to composition of two morphisms. Moreover,
the existence of f∗ assumes no condition on k. This respects the Witt structures too.

Lemma 4.3. Let k be a field and let f : Spec(R′)→ Spec(R) be a morphism between smooth
affine k-schemes essentially of finite type. Then f∗ : (TCH(R;m))m∈N → (TCH(R′;m))m∈N is a
morphism of restricted Witt complexes over R.

Proof. The lemma is equivalent to proving the following:

(1) f∗ commutes with products;
(2) f∗ commutes with differentials;
(3) f∗ commutes with R, Fr, and Vr; and
(4) f∗ commutes with λR.

Part (3) is shown in [KP16, Theorem 7.1] while part (4) is evident from (4.1). We prove parts
(1) and (2).

Let V = Spec(R) and V ′ = Spec(R′). To prove part (1), it suffices to prove it for irreducible
cycles. By [KP12a, Proof of Theorem 7.1], there exists a finite set W of locally closed subsets
of V such that the map f∗ : Tzq

W(V, •;m)→ Tzq(V ′, •;m) given by f∗(Z) = [f−1(Z)], is well-
defined. Here, the group on the left is defined as in Definition 3.2. Choose an irreducible cycle
Z ∈ Tzq

W(V, •;m). We claim that there is a finite set C of locally closed subsets of V such that
the following hold.

(i) f∗ : Tzq
C(V, •;m)→ Tzq(V ′, •;m) is defined;

(ii) Z � Z ′ ∈ Tzq
{ΔV }(V × V, •;m) for all Z ′ ∈ Tzq

C(V, •;m);
(iii) f∗(Z) � f∗(Z ′) ∈ Tzq

{ΔX′}(V
′ × V ′, •;m) for all Z ′ ∈ Tzq

C(V, •;m).

2105

https://doi.org/10.1112/S0010437X21007478 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007478


A. Krishna and J. Park

Let Zf be the (finite) collection {Zi ∩ (V ′ × A1 × F )}, where Zi is an irreducible component
of f∗(Z) and F ⊂ �n−1 is a face. Under the moving lemma [KP16, Theorem 4.10], by the
argument of [KP17a, Lemmas 3.5 and 3.10], there exists a finite collection W ′ of locally closed
subsets of {V × A1 ×�ni} such that for Tzq

W ′(V, •;m) in the sense of [KP12b, Definition 5.3],
we have:

(i) f∗ : Tzq
W ′(V, •;m)→ Tzq

Zf
(V ′, •;m) is well-defined;

(ii) Z � Z ′ ∈ Tzq
{ΔX}(V × V, •;m) for all Z ′ ∈ Tzq

W ′(V, •;m);
(iii) Zi � f∗(Z ′) ∈ Tzq

{ΔV ′}(V
′ × V ′, •;m) for all Z ′ ∈ Tzq

W ′(V, •;m) and all irreducible compo-
nents Zi of f∗(Z).

Furthermore, it follows also by the moving lemma [KP16, Theorem 4.10] and the argument
of [KP17a, Lemma 3.4] that there exists a finite collection C′ of locally closed subsets of V such
that Tzq

W ′(V, •;m) = Tzq
C′(V, •;m). Setting C =W ∪ C′, we get the proof of the claim.

We now consider the commutative diagram

V ′ × A1

f

��

V ′ × A1 × A1
ΔV ′

��

f

��

μ
�� V ′ × V ′ × A1 × A1

f×f

��

V × A1 V × A1 × A1
ΔV

��
μ

�� V × V × A1 × A1

(4.6)

where μ : A1 × A1 → A1 is (t1, t2) �→ t1t2.
If we choose any irreducible cycle Z ′ ∈ Tzq

C(V, •;m), then it follows from the above claim that
Δ∗

V (Z � Z ′) and Δ∗
V ′ ◦ (f × f)∗(Z � Z ′) are admissible cycles. Moreover, by the commutativity

of the right square in (4.6), we have Δ∗
V ′ ◦ (f × f)∗(Z � Z ′) = f∗(Δ∗

V (Z � Z ′)). In particular,
f∗ ◦Δ∗

V (Z � Z ′) is an admissible cycle.
Now by [KP16, Corollary 5.11], the cycles μ∗ ◦Δ∗

V ′ ◦ (f × f)∗(Z � Z ′) and
μ∗ ◦Δ∗

V ◦ (f × f)∗(Z � Z ′) are admissible. As the left square in (4.6) is transverse, we obtain
f∗(Z · Z ′) = f∗ ◦ μ∗ ◦Δ∗

V (Z � Z ′) = μ∗ ◦Δ∗
V ◦ (f × f)∗(Z � Z ′) = f∗(Z) · f∗(Z ′).

Finally, the inclusions Tzq
C(V, •;m) ↪→ Tzq(V, •;m) and Tzq

W(V, •;m) ↪→ Tzq(V, •;m) are
quasi-isomorphisms by [KP16, Theorem 4.10], and this shows part (1).

To prove part (2), recall from [KP16, Definition 6.2] that the differential
δ = δV : Tzq(V, n;m)→ Tzq+1(V, n+ 1;m) is defined as the push-forward with respect
to the map

δV : V ×Gm ×�n−1 → V × A1 ×�n;
δ(x, t, y1, . . . , yn−1) = (x, t, t−1, y1, . . . , yn−1) for t �= 0, 1.

(4.7)

Here, δV ∗(Z) is an irreducible admissible cycle if Z is so, by [KP16, Lemma 6.3, Proposition 6.4].
As the square

V ′ ×Gm ×�n−1

f

��

δV ′
�� V ′ × A1 ×�n

f

��

V ×Gm ×�n−1
δV

�� V × A1 ×�n

is transverse, it follows that δV ′∗ ◦ f∗(Z) = f∗ ◦ δV ∗(Z) for every irreducible cycle Z ∈
Tzq

C(V, •;m). We conclude again that f∗ ◦ δ = δ ◦ f∗ from the quasi-isomorphism Tzq
C(V, •;m) ↪→

Tzq(V, •;m). The proof of the lemma is now complete. �
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4.2 Witt-complex structure for regular algebras
Our next goal is to generalize Lemmas 4.1 and 4.3 to regular semi-local (not necessarily smooth)
schemes over a field. We shall do this using the continuity property of the additive higher Chow
groups. We need some intermediate results.

The following lemma is [KP12a, Lemma 2.2].

Lemma 4.4. Let f : Y → X be a surjective map of normal integral Noetherian schemes. Let D
be a Cartier divisor on X such that f∗(D) ≥ 0 on Y . Then D ≥ 0 on X.

Lemma 4.5. Let k ↪→ K be an extension of fields. Let λ : R→ R′ be a faithfully flat morphism
of Noetherian k-algebras such that K ↪→ R′. Let X = Spec(R) and X ′ = Spec(R′). Then the

induced map of schemes X ′ ×K A1
K ×K �n−1

K → X ×k A1
k ×k �n−1

k is also faithfully flat.

Proof. As the statement of the lemma is local on X ×k A1
k ×k �n−1

k , we can replace �n−1
k 	

Pn−1
k by An−1

k . The problem then reduces to showing that the map R[t, y1, . . . , yn−1]→
R′[t, y1, . . . , yn−1] is faithfully flat. This is obvious because R→ R′ is faithfully flat. �

The next result says that the additive higher Chow functor on the category of affine k-schemes
with flat morphisms is a continuous contravariant functor.

Lemma 4.6. Let k ↪→ K be a field extension, not necessarily finitely generated. Let R be a
K-algebra essentially of finite type. Let {Ri}i∈I be a direct system of k-algebras essentially
of finite type, such that the transition map λij : Ri → Rj is faithfully flat, and lim−→i

Ri = R.
Then the flat pull-backs of (additive) higher Chow groups induce isomorphisms

lim−→i
CHq(Ri, n) �−→ CHq(R,n) and lim−→i

TCHq(Ri, n;m) �−→ TCHq(R,n;m) for all m ≥ 0, n,
q ≥ 1.

Proof. The proofs for the higher Chow groups and additive higher Chow groups are identical.
Thus, we prove the latter case only. As the homology functor commutes with the direct limit, it
suffices to show that the lemma holds on the level of cycle complexes. We set Vi = Spec(Ri) and
V = Spec(R). Let λ′i : Ri → R be the natural map. This is also faithfully flat; this follows from
the fact that a direct limit of flat modules is flat, and an Ri-module M is faithfully flat if and
only if it is flat and mM �= 0 for every nonzero maximal ideal m ⊂ Ri (see [Mat86, Theorem 7.2,
p. 47]).

The projections Spec(K)→ Spec(k) and V → Vj → Vi between k-schemes induce the pro-
jection maps V ×K A1

K ×K �n−1
K → Vi ×k A1

k ×k �n−1
k . This morphism is faithfully flat. It

induces the pull-back maps between the cycle groups Tzq(Vi, n;m)
λ∗

ij−−→ Tzq(Vj , n;m)
λ′∗

j−−→ Tzq

(V, n;m).
The injectivity of the map lim−→i

Tzq(Vi, •;m)→ Tzq(V, •;m) is obvious. To show its surjec-

tivity, let Z ∈ Tzq(V, n;m) be an irreducible admissible cycle and let Z̄ ⊂ V ×K A1
K ×K �n−1

K

be its Zariski closure and νZ : Z̄N → V ×K A1
K ×�n−1

K the normalization map. As each of fi :=
Spec(λi) : Vi+1 → Vi and f ′i := Spec(λ′i) : V → Vi is faithfully flat, by Lemma 4.5, the product
maps f̃i : Vi+1 ×k A1

k ×k �n−1
k → Vi ×k A1

k ×k �n−1
k and f̃ ′i : V ×K A1

K ×K �n−1
K → Vi ×k A1

k ×k

�n−1
k are faithfully flat maps of Noetherian k-schemes.

As V = lim←−i
Vi, it follows from the above faithfully flatness that there exists i� 0 and an

irreducible cycle Z̄i ↪→ Vi ×k A1
k ×k �n−1

k such that (f̃ ′i)
∗(Z̄i) = Z̄ and Zi := Z̄i ∩ (Vi ×k A1

k ×k

�n−1
k ) ∈ zq(Vi ×k A1

k, n− 1).

2107

https://doi.org/10.1112/S0010437X21007478 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007478


A. Krishna and J. Park

As the right square in the following commutative diagram

Z̄N ��

��

νZ
��

Z̄ ��

��

V ×K A1
K ×K �n−1

K

f̃ ′
i

��

V ×K A1
K ×K �n−1

K
� ���

��

Z̄N
i

��

νZi ��

Z̄i
�� Vi ×k A1

k ×k �n−1
k Vi ×k A1

k ×k �n−1
k

� ���

(4.8)

is Cartesian, we must have Z = (f̃ ′i)
∗(Zi).

As f̃ ′i is faithfully flat, it follows that Z̄ = (f̃ ′i)
∗(Z̄i)→ Z̄i is also faithfully flat. In particular,

it is surjective. We conclude that the induced map Z̄N → Z̄N
i on the normalizations is also

surjective. As Z̄ satisfies the modulus condition, we can now apply Lemma 4.4 to conclude
that Zi also satisfies the modulus condition and, hence, it is in Tzq(Vi, n;m). This finishes the
proof. �

We can now prove the following improvement of Lemma 4.1:

Theorem 4.7. Let k be any field and let R be a regular semi-local k-algebra essentially of finite
type. Then (TCH•(R;m))m∈N is a restricted Witt complex over R.

If f : R→ R′ is a morphism of regular semi-local k-algebras essentially of finite type, then
there exists a pull-back map f∗ : (TCH•(R;m))m∈N → (TCH•(R′;m))m∈N, which is a morphism
of restricted Witt complexes over R.

Proof. If k is finite, the theorem follows from Lemmas 4.1 and 4.3. Thus, we may now assume
that k is infinite and p > 1.

Let {Ri}i∈I be the direct system of subrings in R as in Lemma 2.3. As each transition map
λij : Ri → Rj is flat, we have the pull-back maps of projective systems λ∗ij : (TCH•(Ri;m))m∈N →
(TCH•(Rj ;m))m∈N.

As each Ri is a smooth Fp-algebra essentially of finite type, it follows from Lemma 4.1 that
(TCH•(Ri;m))m∈N is a restricted Witt complex over Ri. Furthermore, it follows from Lemma 4.3
that each λ∗ij is a morphism of restricted Witt complexes over Ri. Thus, we conclude from
Lemma 2.6 that (lim−→i

TCH•(Ri;m))m∈N forms a restricted Witt complex over R. The first part of
the theorem now follows Lemma 4.6. The second part follows directly by combining Lemmas 2.5,
4.3, and 4.6. �

As the higher Chow groups of smooth schemes over a field have a ring structure, an identical
proof also shows the following result.

Theorem 4.8. Let k be any field and let R be a regular semi-local k-algebra essentially of finite
type. Then (CH•(R,n))n≥0 is a graded commutative ring.

If f : R→ R′ is a morphism of essentially of finite type regular semi-local k-algebras, then
there exists a pull-back ring homomorphism f∗ : (CH•(R,n))n≥0 → (CH•(R′, n))n≥0.

Using Theorems 4.7 and 4.8, we get a direct extension of Proposition 3.1 to regular algebras
over arbitrary fields.

Corollary 4.9. Let k be any field and let R be a regular k-algebra essentially of finite type.
Then there is a natural cap product map

∩R : TCHq(R,n;m)⊗Z CHp(R,n′)→ TCHp+q(R,n+ n′;m).
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This commutes with the pull-back and push-forward whenever they exist. This is given by
a ∩R b = Δ∗

R(a× b), where Δ∗
R is the pull-back via the diagonal map ΔR : Spec(R)→ Spec(R)×

Spec(R).

Proposition 4.10. Let f : R→ R′ be a finite and injective morphism of regular semi-local
k-algebras essentially of finite type. Let m ≥ 0 and n, r ≥ 1 be integers. Then the push-forward
maps f∗ : TCHn(R′, n;m)→ TCHn(R,n;m) satisfy

Rf∗ = f∗R; δf∗ = f∗δ; Frf∗ = f∗Fr; Vrf∗ = f∗Vr.

Furthermore, one has f∗(yf∗(x)) = f∗(y)x for x ∈ TCHn(R,n;m) and y ∈ TCHn(R′, n;m).

Proof. Note that f must be flat in our case (see [Har77, Exercise III-10.9, p. 276] or [EGAIV,
Proposition (6.1.5), p. 136]). The first part is [KP16, Proposition 7.3] and the second part is
[KP15, Theorem 3.10] (whose proof does not require projectivity of the underlying schemes if
the morphisms between them is finite and flat). �

5. The de Rham–Witt–Chow homomorphism

In this section, we construct one of the main objects of our study: the de Rham–Witt–Chow
homomorphism. This is a map from the de Rham–Witt forms of a regular semi-local k-algebra
(essentially) of finite type to its additive higher Chow groups. The main goal of this paper is to
show that this map is an isomorphism. This section also includes the key lemma to prove the
surjectivity of this map. We fix an arbitrary field k.

5.1 The homomorphism τR
n,m

Let R be a regular semi-local k-algebra essentially of finite type. As {WmΩ•
R}m∈N is the initial

object in the category of restricted Witt complexes over R, it follows from Theorem 4.7 that
there is a unique homomorphism of groups

τR
n,m : WmΩn−1

R → TCHn(R,n;m). (5.1)

The homomorphisms {τR
n,m}m,n≥1 form a morphism of restricted Witt complexes over R such

that τR
1,m is given by (4.1). We shall often denote the collection {τR

n,m}m,n≥1 by τR• .
An easy consequence of Theorem 4.7 is the following functoriality of τR

n,m.

Proposition 5.1. Let f : R→ R′ be a morphism between regular semi-local k-algebras essen-
tially of finite type. Then the diagram

WmΩn−1
R

τR
n,m

��

f∗
��

TCHn(R,n;m)

f∗

��

WmΩn−1
R′

τR′
n,m

�� TCHn(R′, n;m)

(5.2)

commutes for all integers m,n ≥ 1.

Proof. The left vertical arrow is a morphism of restricted Witt complexes over R by Theorem 4.7.
The maps τR• and τR′

• are morphisms of restricted Witt complexes over R. It follows that f∗ ◦ τR•
and τR′

• ◦ f∗ are both morphisms of restricted Witt complexes over R. Using (4.1), the diagram
(5.2) is easily seen to commute when n = 1. As WmΩ•

R is the universal restricted Witt complex
over R, we must have f∗ ◦ τR• = τR′

• ◦ f∗ on WmΩ•
R. �
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When R is a smooth k-algebra, then Lemma 4.1 says that (TCH•(R;m))m∈N is a restricted
Witt complex over R even if it not necessarily semi-local. We thus obtain the following result.

Theorem 5.2. Let k be any field and let R be a smooth k-algebra essentially of finite type.
Then there is a unique homomorphism of groups

τR
n,m : WmΩn−1

R → TCHn(R,n;m) (5.3)

such that τR
n,m is functorial in R. The homomorphisms {τR

n,m}m,n≥1 form a morphism of restricted

Witt complexes over R such that τR
1,m is given by (4.1).

The following is also a direct consequence of the Witt-complex structure on the additive
higher Chow groups of R.

Corollary 5.3. As the maps in (5.1) give a morphism of restricted Witt complexes over R,
we deduce the following identities:

τR
n,md = δτR

n−1,m; τR
n,rm+r−1Vr = Vrτ

R
n,m; τR

n,mFr = Frτ
R
n,rm+r−1. (5.4)

The second identity of (5.4) implies the following variation, up to applying R:

τR
n,mVr = Vrτ

R
n,�m/r�. (5.5)

As an easy consequence of Proposition 2.8, we now have the following easier part of
Theorem 1.1:

Lemma 5.4. Let R be a regular semi-local k-algebra essentially of finite type. Then τR
n,m is a

monomorphism for all m,n ≥ 1.

Proof. We take R′ to be the total ring of quotients of R and apply Propositions 2.8 and 5.1.
As R′ is a product of fields, by the commutative diagram (5.2) we are reduced to proving the
lemma when R is a field. However, this case follows from [Rül07a, Theorem 1] (when p �= 2) and
Theorem A.1 of the appendix (when p = 2). �

5.2 Traceability
To prove that the de Rham–Witt–Chow homomorphism is surjective, we want to have the
push-forward map on the additive higher Chow groups and the compatible trace map on the
de Rham–Witt complexes, associated to a finite and dominant morphism of regular semi-local
k-schemes essentially of finite type. The existence of the push-forward map on the additive higher
Chow groups is known. Using his duality theory, Ekedahl [Eke84] showed the existence of a theory
of trace for the p-typical de Rham–Witt complex WmΩ∗

R. Using the p-typical decomposition, one
can then construct a theory of trace maps for the big de Rham–Witt complex.

Using the sfs-moving lemma (see Theorem 3.6) and Ekedahl’s trace, one may construct a map
κR

n,m : TCHn(R,n;m)→WmΩn−1
R . In order to either show directly that an sfs-cycle lies in the

image of τR
n,m or to show that τR

n,m ◦ κR
n,m is identity, we need to verify that τR

n,m commutes with
Ekedahl’s trace on WmΩn−1

R and the push-forward map on TCHn(R,n;m). As this is difficult
to check, we use an indirect device to complete our program.

We define the notion of ‘traceability’ of de Rham–Witt forms using the de Rham–Witt–Chow
maps and the push-forwards on the cycle groups. Towards the surjectivity of the
de Rham–Witt–Chow homomorphism, we show that all de Rham–Witt forms of a regular
semi-local k-algebra essentially of finite type are traceable.

We start with the known trace map when n = 1. We then use a double induction on m,n ≥ 1
and various properties of Witt complexes to show the traceability for all m,n ≥ 1. This is the
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main goal of § 5.2. Thanks to the sfs-moving lemma (Theorem 3.6), we only need to do this for
simple finite extensions of rings.

We now define traceability.

Definition 5.5. Let f : R→ S be a finite and injective morphism between regular semi-local
k-algebras essentially of finite type. Let m,n ≥ 1 be two integers. Given this, we obtain the
following diagram.

WmΩn−1
S

τS
n,m

�� TCHn(S, n;m)

f∗
��

WmΩn−1
R

τR
n,m

�� TCHn(R,n;m)

(5.6)

We say that a de Rham–Witt form ω ∈WmΩn−1
S is traceable to R (via cycles) if f∗ ◦ τS

n,m(ω) ∈
Im(τR

n,m).

Definition 5.6. A ring extension R ↪→ S is said to be a simple extension if it is flat and there
exists a monic polynomial p(t) ∈ R[t] such that S 	 R[t]/(p(t)).

Suppose that R is semi-local and let e = deg(p(t)). Let a := t mod (p(t)) in S. Then S is a
finite free R-module with an R-basis {1, a, a2, . . . , ae−1}. We need the following basic fact about
the ring of Witt vectors.

Lemma 5.7. Let S be an R-algebra which is free as an R-module with basis {x1, . . . , xe}. Let
T be a finite truncation set. Then every ω ∈WT (S) is uniquely written as

ω =
∑
n∈T

e∑
i=1

Vn([cn,i]T/n · [xi]T/n),

for some cn,i ∈ R, where T/n is the truncation set {a ∈ N | an ∈ T}, [−]T/n denotes the
Teichmüller lift in WT/n(R), and Vn is the nth Verschiebung operator.

Proof. Its proof is similar to that of [Rül07a, Lemma 2.20], for instance. Let ω = (ωn)n∈T ∈
WT (S). Suppose ω �= 0, as otherwise there is nothing to prove. Define an operator ϕ as
follows: first choose s0 = min{s ∈ T | ωs �= 0}. This minimum exists because ω �= 0. Here, ωs0 ∈ S
so that there exists a unique expression ωs0 =

∑e
i=1 cs0,i · xi in S for some cs0,i ∈ R. Define

ϕ(ω) := ω − Vs0(
∑e

i=1[cs0,i]T/s0
· [xi]T/s0

). We have either ϕ(ω) = 0 or ϕ(ω) �= 0. In the former
case, the argument stops, whereas in the latter case, there exists s1 := min{s ∈ T | ϕ(ω)s �= 0}.
By construction, we have s1 > s0. We repeat this procedure. As |T | <∞, there exists N ≥ 1
such that eventually ϕN (ω) = 0. �

When S is a simple extension of R, and T = {1, . . . ,m}, we immediately deduce that
ω =

∑m
i=1

∑e−1
j=0 Vi([ci,j ]�m/i� · [a]j�m/i�).

Recall from [Rül07a, Proposition A.9] that for a finite free extension of rings R ↪→ S, and
m ≥ 1, there is a trace map TrS/R : Wm(S)→Wm(R) which commutes with the Frobenius
and the Verschiebung operators, and satisfies other usual properties of the trace maps. This
TrS/R is given as follows: for the finite free extension R[[t]]→ S[[t]], we have the norm map
NS/R : (S[[t]])× → (R[[t]])× given by the determinant of the left multiplication maps. This induces
a map NS/R : (1 + tS[[t]])×/(1 + tm+1S[[t]])× → (1 + tR[[t]])×/(1 + tm+1R[[t]])×. This NS/R is
the definition of TrS/R via the identification (2.1).
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Lemma 5.8. Let R ↪→ S be a simple extension of regular semi-local k-algebras essentially of
finite type and let m ≥ 1 be an integer. Then the diagram

Wm(S)
τS
1,m

��

TrS/R

��

TCH1(S, 1;m)

f∗
��

Wm(R)
τR
1,m

�� TCH1(R, 1;m)

(5.7)

commutes, where f : Spec(S)→ Spec(R) is the induced map.

Proof. Using Proposition 4.10 and Lemma 5.7, it remains to check that τR
1,m(TrS/R([x])) =

f∗([Γ(1−xt)]) for all x ∈ S, where Γ(1−xt) is the cycle in TCH1(S, 1;m) corresponding to the
ideal (1− xt) ⊂ S[t]. As [x] ∈Wm(S) corresponds to 1− xt ∈ (1 + tS[[t]])×/(1 + tm+1S[[t]])×,
by the definition of TrS/R, we have TrS/R([x]) = NS/R(1− xt). On the other hand, for a poly-
nomial representative g(t) ∈ (1 + tR[[t]])×/(1 + tm+1R[[t]])×, we have τR

1,m(g(t)) = [Γ(g(t))], by
definition. Hence, τR

1,m(TrS/R([x])) = τR
1,m(NR/S(1− xt)) = [Γ(NS/R(1−xt))].

By [Ful98, Proposition 1.4(2)], we have f∗(div(1− xt)) = [div(NS/R(1− xt))]. As 1− xt
and NS/R(1− xt) are regular functions, we have div(1− xt) = Γ(1−xt) and div(NS/R(1− xt)) =
Γ(NS/R(1−xt)). This yields the equality of cycles [Γ(NS/R(1−xt))] = f∗([Γ(1−xt)]). Hence, we have
τR
1,m(TrS/R([x])) = [Γ(NS/R(1−xt))] = f∗([Γ(1−xt)]), as desired. �

The main result of this section is the following.

Proposition 5.9. Assume that k is a perfect field. Let R ↪→ S be a simple extension of regular
semi-local k-algebras essentially of finite type and let m,n ≥ 1 be integers. Then every ω ∈
WmΩn−1

S is traceable to R.

Proof. Let p(t) ∈ R[t] be a monic polynomial of degree e such that S 	 R[t]/(p(t)). Let a = t
mod p(t) so that {1, a, . . . , ae−1} is an R-basis of S. For m,n ≥ 1, let Pn,m be the statement:
every member of WmΩn−1

S is traceable to R.
We prove the proposition by a double induction argument on the variables (n,m) ∈ N× N.

Note that the statement P1,m holds for all m ≥ 1 by Lemma 5.8. In particular, P1,1 is also true.

Case 1. We show first that Pn,1 holds for all n ≥ 1.
Subcase 1-1. To show P2,1, note that every element of W1Ω1

S 	 Ω1
S/Z

is a finite sum of 1-
forms of the type caid(c′aj) = cai+jdc′ + jcc′ai+j−1da for some c, c′ ∈ R. Thus, we are reduced
to showing that 1-forms of the types caidc′ and caida are traceable for all c, c′ ∈ R and i ≥ 0.

For caidc′, we have

f∗ ◦ τS
2,1(ca

idc′) =† f∗(τS
1,1(a

i) · τS
2,1(cdc

′)) = f∗(τS
1,1(a

i) · τS
2,1(f

∗(cdc′)))

=‡ f∗(τS
1,1(a

i) · f∗(τR
2,1(cdc

′))) =1 f∗(τS
1,1(a

i)) · τR
2,1(cdc

′)

=2 τR
1,1(TrS/R(ai)) · τR

2,1(cdc
′) =† τR

2,1(TrS/R(ai) · (cdc′)). (5.8)

Here, the equalities =† hold because τR
m,n and τS

m,n are morphisms of DGAs. The equality =‡

holds by Proposition 5.1, =1 by the projection formula for the additive higher Chow groups (see
e.g. [KP15, Theorem 3.19], the proof of which does not require the projectivity of the underlying
schemes), and =2 holds by Lemma 5.8. We conclude that 1-forms of the type caidc′ are traceable
to R.
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Next, for caida, note that by the part of the definition of a restricted Witt complex in § 2.4(v),
we can write caida = cFi+1d[a], using the Frobenius operator. Hence,

f∗ ◦ τS
2,1(ca

ida) = f∗ ◦ τS
2,1(cFi+1d[a]) = f∗ ◦ τS

2,1(f
∗(c)Fi+1d[a])

=0 f∗(τS
1,1(f

∗(c)) · τS
2,1(Fi+1d[a])) =† f∗(τS

1,1(f
∗(c)) · Fi+1δτ

S
1,2i+1([a]))

=‡ f∗(f∗(τR
1,1(c)) · Fi+1δτ

S
1,2i+1([a])) =1 τR

1,1(c) · f∗Fi+1δτ
S
1,2i+1([a])

=2 τR
1,1(c) · Fi+1δf∗τS

1,2i+1([a]) =3 τR
1,1(c) · Fi+1δτ

R
1,2i+1(TrS/R([a]))

=† τR
1,1(c) · Fi+1τ

R
2,2i+1(d(TrS/R([a]))) =† τR

1,1(c) · τR
2,1Fi+1d(TrS/R([a]))

=0 τR
2,1(c · Fi+1d(TrS/R(a))), (5.9)

where the equalities =0 hold because τR
n,m and τS

n,m are morphisms of DGAs, the equalities =†

hold by (5.4), the equality =‡ holds by Proposition 5.1, =1 holds by the projection formula for
f∗ and f∗, =2 holds by Proposition 4.10, and =3 holds by Lemma 5.8. We conclude that 1-forms
of the type caida are traceable to R. Hence, P2,1 is true.

Subcase 1-2. Suppose now that n > 2 and that the statements Pi,1 are true for all 1 ≤
i < n. It suffices to show that the forms of the type ω = c0a

i0d(c1ai1) ∧ · · · ∧ d(cn−1a
in−1) are

traceable to R, where c0, . . . , cn−1 ∈ R and i0, . . . , in−1 ≥ 0 are integers. Each d(cjaij ) is equal
to aijdcj + ijcja

ij−1da by the Leibniz rule, so that expanding the terms of ω, we reduce to show
that every element of the form

ω0 := c0a
idc1 ∧ · · · ∧ dcs ∧ da ∧ · · · ∧ da︸ ︷︷ ︸

n−s−1

is traceable to R, where 0 ≤ s ≤ n− 1 and c0, . . . , cs ∈ R.
• If n− s− 1 = 0, then the traceability of ω follows by repeating the steps in (5.8) verbatim.
• If n− s− 1 = 1, let ω′

0 := aida so that ω0 = c0dc1 ∧ · · · ∧ dcs ∧ ω′
0. As P2,1 is true, we can

write f∗τS
2,1(ω

′
0) =♠ τR

2,1(ω
′′
0) for some ω′′

0 ∈ Ω1
R/Z

. Set η := c0dc1 ∧ · · · ∧ dcs ∈ Ωs
R/Z

. Then, we
have

f∗ ◦ τS
n,1(ω0) = f∗ ◦ τS

n,1(η ∧ ω′
0) = f∗ ◦ τS

n,1(f
∗(η) ∧ ω′

0)

=† f∗(τS
n−1,1f

∗(η) ∧ τS
2,1(ω

′
0)) =‡ f∗(f∗τR

n−1,1(η) ∧ τS
2,1(ω

′
0))

=1 τR
n−1,1(η) ∧ f∗τS

2,1(ω
′
0) =♠ τR

n−1,1(η) ∧ τR
2,1(ω

′′
0) =† τR

n,1(η ∧ ω′′
0), (5.10)

where the equalities =† hold because τR
n,m and τS

n,m are morphisms of DGAs, =‡ holds by
Proposition 5.1, and =1 holds by the projection formula for f∗ and f∗. We conclude that ω0

is traceable to R.
• If n− 1− s > 1, then ω0 = 0 because da ∧ da = 0 by Lemma 2.7. Thus, ω0 is traceable

to R.
We have thus shown so far that Pn,1 and P1,m are true for all n,m ≥ 1.

Case 2. We now show that Pn,m is true in general by using double induction on (n,m). Fix
m,n ≥ 2 and suppose that we know Pi,j holds for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, except (i, j) = (n,m).

Through the surjection Ωn−1
Wm(S) � WmΩn−1

S and Lemma 5.7, we know that every element in

WmΩn−1
S is a sum of de Rham–Witt forms of the type ω = Vr0([c0][a]

i0) · dVr1([c1][a]
i1) ∧ · · · ∧

dVrn−1([cn−1][a]in−1), where c0, . . . , cn−1 ∈ R, r0, . . . , rn−1 ∈ {1, . . . ,m}, and 0 ≤ i0, . . . , in−1 ≤
e− 1.
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Subcase 2-1. First, consider the case r0 > 1. Let ω0 := dVr1([c1][a]
i1) ∧ · · · ∧ dVrn−1([cn−1]

[a]in−1). In this case, we can write

ω = Vr0([c0][a]
i0) · ω0 = Vr0([c0][a]

i0 · Fr0(ω0))

by the projection formula for Vr and Fr (see § 2.4(iii)). As ω′
0 := [c0][a]i0 · Fr0(ω0) ∈W�m/r0�Ω

n−1
S ,

it is traceable to R by the induction hypothesis Pn,�m/r0�. In particular, there exists η ∈
W�m/r0�Ω

n−1
R such that f∗τS

n,�m/r0�(ω
′
0) =♣ τR

n,�m/r0�(η). This, in turn, yields

f∗τS
n,m(ω) = f∗τS

n,mVr0(ω
′
0) =† f∗Vr0τ

S
n,�m/r0�(ω

′
0)

=‡ Vr0f∗τ
S
n,�m/r0�(ω

′
0) =♣ Vr0τ

R
n,�m/r0�(η) =† τR

n,m(Vr0η),

where the equalities † hold by (5.5), and ‡ holds by Proposition 4.10. This shows that ω is
traceable to R.

Subcase 2-2. Suppose now that r0 = 1, but for some j > 0, we have rj > 1. We may assume
that r1 > 1 without loss of generality. We let ω0 := dVr2([c2][a]

i2) ∧ · · · ∧ dVrn−1([cn−1][a]in−1).
By the Leibniz rule, we have

Vr0([c0][a]
i0) · dVr1([c1][a]

i1) = [c0][a]i0 · dVr1([c1][a]
i1)

= d([c0][a]i0 · Vr1([c1][a]
i1))− Vr1([c1][a]

i1) · d([c0][a]i0).

Hence, ω = ω1 − ω2, where ω1 := d([c0][a]i0 · Vr1([c1][a]
i1)) ∧ ω0 and ω2 = Vr1([c1][a]

i1) · d([c0][a]i0)
∧ ω0. Let ω′

1 := [c0][a]i0 · Vr1([c1][a]
i1) so that ω1 = dω′

1 ∧ ω0 = d(ω′
1 · ω0).

As ω′
1 · ω0 ∈WmΩn−2

S , it follows by the induction hypothesis Pn−1,m that there is an element
η ∈WmΩn−2

R such that f∗τS
n−1,m(ω′

1 · ω0) =♥ τR
n−1,m(η). Thus,

f∗τS
n,m(ω1) = f∗τS

n,m(d(ω′
1 · ω0)) =† f∗δ(τS

n−1,m(ω′
1 · ω0))

=‡ δf∗τS
n−1,m(ω′

1 · ω0) =♥ δτR
n−1,m(η) =† τR

n,m(dη),

where the equalities =† hold by (5.4) because τR
n,m and τS

n,m are morphism of DGAs, and =‡

holds by Proposition 4.10. Hence, ω1 is traceable to R. As ω2 is of the form considered in subcase
2-1, it is also traceable to R. Thus, ω = ω1 − ω2 is traceable to R.

Subcase 2-3. Now, the remaining case is when all r0 = r1 = · · · = rn−1 = 1, i.e. ω =
[c0][a]i0d([c1][a]i1) ∧ · · · ∧ d([cn−1][a]in−1). Its proof is almost identical to that of subcase 1-2,
which we argue now. Each d([cj ][a]ij ) is equal to [a]ijd[cj ] + ij [cj ][a]ij−1d[a] by the Leibniz rule,
so that expanding the terms of ω, we are reduced to showing that elements of the form

ω0 := [c0][a]id[c1] ∧ · · · ∧ d[cs] ∧ d[a] ∧ · · · ∧ d[a]︸ ︷︷ ︸
n−s−1

(5.11)

are traceable, where 0 ≤ s ≤ n− 1 and c0, . . . , cs ∈ R.
• If n− s− 1 = 0, then we can use Proposition 5.1, Lemma 5.8, and repeat the steps of (5.8)

verbatim to conclude that ω0 is traceable to R.
• If n− s− 1 = 1, let ω′

0 := [a]id[a] so that ω0 = [c0]d[c1] ∧ · · · ∧ d[cn−2] ∧ ω′
0. By the part

of definition of a restricted Witt complex in § 2.4(v), we can write ω′
0 = [a]id[a] = Fi+1d[a]. Set

η = [c0]d[c1] ∧ · · · ∧ d[cn−2] ∈WmΩn−2
R , so that ω0 = η ∧ Fi+1d[a]. (Remember, here n ≥ 2.) This
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yields

f∗τS
n,m(ω0) = f∗τS

n,m(η ∧ Fi+1d[a]) = f∗τS
n,m(f∗(η) ∧ Fi+1d[a])

=† f∗(τS
n−2,m(f∗(η)) ∧ τS

2,mFi+1d[a]) =‡ f∗(f∗τR
n−2,m(η) ∧ τS

2,mFi+1d[a])

=0 τR
n−2,m(η) ∧ f∗(τS

2,mFi+1d[a]) =1 τR
n−2,m ∧ f∗(Fi+1τ

S
2,(i+1)m+id[a])

=1 τR
n−2,m(η) ∧ f∗(Fi+1δτ

S
1,(i+1)m+i([a])) =2 τR

n−2,m(η) ∧ Fi+1δf∗τS
1,(i+1)m+i([a])

=3 τR
n−2,m(η) ∧ Fi+1δτ

R
1,(i+1)m+i(TrS/R([a]))

=1 τR
n−2,m(η) ∧ Fi+1τ

R
2,(i+1)m+id(TrS/R([a])) =1 τR

n−2,m(η) ∧ τR
2,mFi+1d(TrS/R([a]))

=† τR
n,m(η ∧ Fi+1d(TrS/R([a])),

where the equalities =† hold because τR
n,m and τS

n,m are morphisms of DGAs, the equality =‡

holds by Proposition 5.1, the equality =0 is the projection formula for f∗ and f∗, the equalities
=1 hold by (5.4), the equality =2 holds by Proposition 4.10, and =3 follows from Lemma 5.8.
This shows that ω0 is traceable to R.
• If n− s− 1 > 1, we set ω′

0 = d[a] ∧ · · · ∧ d[a]︸ ︷︷ ︸
n−s−1

. By Lemma 2.7, we have d[a] ∧ d[a] = 0 in

WmΩ2
S . In particular, ω′

0 = 0 in WmΩn−s−1
S so that ω0 = 0, which is traceable to R. We have

thus shown that Pn,m holds. The proof of the proposition is now complete. �

6. The proof of the main result

In this section, we complete the proof of our main result, Theorem 1.1. We do this first under
the assumption that the base field is infinite and perfect, where we apply the sfs-moving lemma
(Theorem 3.6). We then use a pro-� extension argument to prove the result over any perfect
field. Finally, the case of imperfect base field is done using the limit arguments of § 4.

6.1 Symbolicity of sfs-cycles
For a while in § 6.1, we suppose that k is an infinite perfect field. We begin with the following
description of the de Rham–Witt–Chow homomorphism τR

n,m on special kinds of de Rham–Witt
forms.

Lemma 6.1. Let k be an infinite perfect field. Let R be a regular semi-local k-algebra essentially
of finite type. Let m,n ≥ 1 be two integers. Let a ∈ R and bi ∈ R× for 1 ≤ i ≤ n− 1. Then

τR
n,m([a]d log[b1] ∧ · · · ∧ d log[bn−1]) = Za,b,

where

Za,b = Spec
(

R[t, y1, . . . , yn−1]
(1− at, y1 − b1, . . . , yn−1 − bn−1)

)
.

Proof. This is an easy consequence of the fact that τR• is a morphism of restricted Witt complexes
over R (see (5.1)) and it follows exactly by the method used in the computations in [KP16, (7.5)].
Indeed, by recursively applying the fact that τR• is a morphism of DGAs, it suffices to show the
lemma when n = 2.

In this case, we have τR
2,m([a]d log[b]) =† τR

2,m([ab−1]d[b]) = τR
1,m([ab−1]) ∧ (δ ◦ τR

1,m([b])), where
=† holds because the Teichmüller lift map is multiplicative. Using the definition of the differential
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δ on additive higher Chow groups (see (4.7)), we have

τR
1,m([ab−1]) ∧ (δ ◦ τR

1,m([b])) =
[
Spec

(
R[t]

(1− ab−1t)

)]
∧

[
δ

(
Spec

(
R[t]

(1− bt)

))]

=
[
Spec

(
R[t]

(1− ab−1t)

)]
∧

[
Spec

(
R[t, y]

(1− bt, y − b)

)]

= Δ∗
R

(
(R⊗k R)[t, y]

(1− (ab−1 ⊗ b)t, y − (1⊗ b))

)
and the last term is equal to Za,b because ΔR : Spec(R)→ Spec(R)× Spec(R) 	 Spec(R⊗k R)
is induced by the product map R⊗k R→ R. �
Proposition 6.2. Let k be an infinite perfect field. Let R be a regular semi-local k-algebra
essentially of finite type. Let m,n ≥ 1 be two integers. Then every cycle class in TCHn

sfs(R,n;m)
is in the image of τR

n,m.

Proof. Let Z ∈ Tzn
sfs(R,n;m) be an irreducible sfs-cycle. By Proposition 3.5, we know that Z is a

closed subscheme of Spec(R)× A1
k ×�n−1

k , which is, in fact, contained in Spec(R)× A1
k × An−1

k .
Moreover, ∂Z = 0 and the ideal I(Z) of Z inside R[t, y1, . . . , yn−1] is given by the equations of
the form:

P (t) = 0, Q1(t, y1) = 0, . . . , Qn−1(t, y1, . . . , yn−1) = 0, (6.1)

such that if we let R0 = R,R1 = R[t]/(P (t)) and Ri = Ri−1[ti]/(Qi−1) for 2 ≤ i ≤ n, then the
rings {Ri}1≤i≤n are all smooth semi-local k-algebras such that each extension Ri−1 ⊂ Ri is
simple.

Let fi : Spec(Ri)→ Spec(Ri−1) be the induced finite surjective map of smooth semi-local
schemes for 1 ≤ i ≤ n. They are all flat by [Har77, Exercise III-10.9, p. 276] (or [EGAIV,
Proposition (6.1.5), p. 136]). Let f = f1 ◦ · · · ◦ fn.

Let c−1 := t mod I(Z) and bi := yi mod I(Z) for 1 ≤ i ≤ n− 1. Note that a consequence of
the sfs-property of Z is that c−1, bi ∈ R×

n for all 1 ≤ i ≤ n− 1. Let

Zn = Spec
(

Rn[t, y1, . . . , yn−1]
(1− ct, y1 − b1, . . . , yn−1 − bn−1)

)
and let ηn := [c]d log[b1] ∧ · · · ∧ d log[bn−1]. It follows that Zn ∈ Tzn(Rn, n;m) such that
Z = f∗(Zn).

By Lemma 6.1, we have Zn = τRn
n,m(ηn). As fn is a simple extension, Proposition 5.9 implies

that we have fn∗τRn
n,m(ηn) = τ

Rn−1
n,m (ηn−1) for some ηn−1 ∈WmΩn−1

Rn−1
. As f = f1 ◦ · · · ◦ fn and

each fi is a simple extension, by successive applications of fi∗ and Proposition 5.9, we obtain
Z = f∗(Zn) = τR

n,m(η0) for some η0 ∈WmΩn−1
R . �

Corollary 6.3. Theorem 1.1 holds over all infinite perfect base fields.

Proof. A combination of Theorem 3.6 and Proposition 6.2 implies that τR
n,m is surjective, while

Lemma 5.4 implies that τR
n,m is injective. �

6.2 The finite field case
In § 6.2, we prove Theorem 1.1 when the base field is finite. In particular, together with
Corollary 6.3, this shows that Theorem 1.1 holds for all perfect fields. We achieve this using
a pro-� extension argument.
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For a moment, we let k be any field with the exponential characteristic p ≥ 1, and let R be
a regular semi-local k-algebra essentially of finite type. Let m,n ≥ 1 be two integers. We use the
following general result.

Lemma 6.4. Let k ↪→ k′ be a finite separable extension of fields with d := [k′ : k] such that
(p, d) = 1. Let f : R→ Rk′ be the base change homomorphism. Then f∗ : TCHn(R,n;m)→
TCHn(Rk′ , n;m) is injective.

Proof. We write R′ = Rk′ . As f is a finite étale morphism of degree d, we have f∗f∗ = d · (Id)
on TCHn(R,n;m). On the other hand, TCHn(R,n;m) is an Wm(k)-module (see [KP16,
Theorem 6.13]), while d ∈Wm(k)×. This is clear if p = 1. Otherwise, this follows from the fact
that Wm(k) is a Wm(Fp)-algebra and the latter is a finite product of rings of the form Z/pn.
Thus, (1/d)f∗ ◦ f∗ = Id on TCHn(R,n;m). In particular, f∗ is injective. �
Corollary 6.5. Assume k is a finite field and let k′ be a pro-� algebraic extension of k for a
prime � �= p. Let f : R→ Rk′ be the base change homomorphism. Then f∗ : TCHn(R,n;m)→
TCHn(Rk′ , n;m) is injective.

Proof. We can express k′ = lim−→i∈I
ki for fields ki indexed by a directed set I, where each ki

is a finite extension of k such that [ki : k] = �Ni for some Ni ∈ N. In particular, (p, [ki, k]) = 1.
We then have Rk′ = lim−→i∈I

Rki and TCHn(Rk′ , n;m) = lim−→i∈I
TCHn(Rki , n;m) by Lemma 4.6.

The assertion of the corollary therefore follows from Lemma 6.4. �
Lemma 6.6. Assume k is a perfect field and let k′ be a finite extension of k of degree d such
that (d, p) = 1. Let f : R→ Rk′ be the base change homomorphism. Let α ∈ TCHn(R,n;m) be

an element such that f∗(α) ∈ Im(τRk′
n,m). Then α ∈ Im(τR

n,m).

Proof. We write R′ = Rk′ . Note that R ↪→ R′ is a finite étale extension. In particular, R′ is a
regular semi-local k-algebra essentially of finite type. Recall also that a consequence of Witt-
complex structures is that WmΩn−1

R′ and TCHn(R′, n;m) are Wm(k)-modules and τR′
n,m is Wm(k)-

linear. Let f∗(α) = τR′
n,m(ω′) for some ω′ ∈WmΩn−1

R′ . Let ω = d−1ω′ ∈WmΩn−1
R′ . This makes sense

because d ∈Wm(k)×. Then τR′
n,m(ω) = d−1f∗(α).

We also have the push-forward map f∗ : TCHn(R′, n;m)→ TCHn(R,n;m) such that
f∗ ◦ f∗ = d · Id on TCHn(R,n;m). Using this, we obtain

α = f∗(d−1f∗(α)) = f∗ ◦ τR′
n,m(ω).

On the other hand, the primitive element theorem implies that R ↪→ R′ = Rk′ is a simple
extension of regular semi-local k-algebras essentially of finite type. We can therefore apply
Proposition 5.9 to conclude that α ∈ Im(τR

n,m). This finishes the proof. �
Proposition 6.7. Theorem 1.1 holds over all perfect base fields.

Proof. As the map τR
n,m is injective by Lemma 5.4, we only need to show that τR

n,m is surjective.
As we already know that Theorem 1.1 holds for infinite perfect fields by Corollary 6.3, we can
now assume that the base field k is finite.

We let k′ be a pro-� algebraic extension of k for a prime � �= p. Let f : R→ Rk′ be the base
change homomorphism. We write k′ = lim−→i∈I

ki for fields ki indexed by a directed set I as in the
proof of Corollary 6.5. Let Ri := Rki := R⊗k ki and R′ := Rk′ .
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For every i ∈ I, we have a commutative diagram

WmΩn−1
R

f∗
i

��

τR
n,m

��

WmΩn−1
Ri

��

τ
Ri
n,m

��

lim−→i∈I
WmΩn−1

Ri

�
��

��

WmΩn−1
R′

τR′
n,m

��

TCHn(R,n;m)
f∗

i
�� TCHn(Ri, n;m) �� lim−→i∈I

TCHn(Ri, n;m) �
�� TCHn(R′, n;m)

(6.2)

by Proposition 5.1 such that the composite horizontal arrows on the top and the bottom are
f∗. The horizontal top right arrow is an isomorphism by [Rül07a, Proposition 1.16] and the
horizontal bottom right arrow is an isomorphism by Lemma 4.6.

Let α ∈ TCHn(R,n;m) be arbitrary. As k′ is infinite and perfect, we can write f∗(α) =
τR′
n,m(ω) for some ω ∈WmΩn−1

R′ . It follows that there exist i ∈ I and ωi ∈WmΩn−1
Ri

such
that λ∗i (f

∗
i (α)− τRi

n,m(ωi)) = 0, where λi : Ri ↪→ R′ is the inclusion map. We conclude from
Corollary 6.5 that f∗i (α) = τRi

n,m(ωi). We now apply Lemma 6.6 to deduce that α ∈ Im(τR
n,m).

This finishes the proof. �

6.3 The general case
We shall now finish the proof of Theorem 1.1 using a limit argument. Let k be an arbitrary
field of exponential characteristic p > 1. Let R be a regular semi-local k-algebra essentially of
finite type. We write R = lim−→i∈I

Ri as in Lemma 2.3, for a directed system of regular semi-local
Fp-algebras Ri essentially of finite type, whose transition maps are injective and faithfully flat.
Let m,n ≥ 1 be two integers. This leads to the following diagram of restricted Witt complexes
over R.

lim−→i
WmΩn−1

Ri

lim−→i
τ

Ri
n,m

��

��

lim−→i
TCHn(Ri, n;m)

��

WmΩn−1
R

τR
n,m

�� TCHn(R,n;m)

(6.3)

The left vertical arrow is an isomorphism of restricted Witt complexes by [Rül07a,
Proposition 1.16] and the right vertical arrow is an isomorphism of restricted Witt complexes by
Lemma 4.6. It follows from Proposition 5.1 that (6.3) is commutative.

Proposition 6.8. Theorem 1.1 holds over all base fields.

Proof. As the result holds for all perfect base fields by Proposition 6.7, to deal with the remaining
imperfect base field case we can assume p > 1. In this case, we can use the commutative diagram
(6.3). It follows from Proposition 6.7 that τRi

n,m is an isomorphism for each i ∈ I. In particular,
the top horizontal arrow in (6.3) is an isomorphism. As the two vertical arrows are isomorphisms,
we conclude that the bottom arrow τR

n,m is an isomorphism. The naturality of τR
n,m follows from

Proposition 5.1. �

6.4 p-typicalization of additive Chow groups
Let k be any field of exponential characteristic p > 1 and let R be a regular k-algebra essentially of
finite type. Let P = {1, p, p2, . . .}. Recall from (2.3) that there is a direct product decomposition
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into the p-typical ones for each n ≥ 1:

θR : WmΩn−1
R

�−→
∏
n∈Ip

WP∩(m/n)Ω
n−1
R , (6.4)

where m = {1, . . . ,m} and Ip is the set of positive integers prime to p. This decomposition is
natural in R.

Definition 6.9. Suppose R is semi-local in addition. We can use Theorem 1.1 to define the
p-typical additive higher Chow groups as

TCHn(R; pi) := τR
n,pi−1 ◦ θ−1

R (WP∩pi−1Ωn−1
R ), (6.5)

where WiΩn−1
R = WP∩pi−1Ωn−1

R is identified with WP∩pi−1Ωn−1
R × {0} × · · · × {0} on the

right-hand side of (6.4).

We thus have an immediate application of Theorem 1.1.

Corollary 6.10. Let k be a field of exponential characteristic p > 1 and let R be a regular
semi-local k-algebra essentially of finite type. For every n, i ≥ 1, there is a natural isomorphism
of p-typical Witt complexes

τR
n,pi : WiΩn−1

R
�−→ TCHn(R; pi). (6.6)

Remark 6.11. One may hope that these p-typical additive higher Chow groups can be defined
for a bit more general schemes beyond the semi-local case, e.g. all regular k-schemes essentially
of finite type. For this purpose, we may not be able to use Theorem 1.1. We do not know how to
do it in general, but at least when k is perfect, we can use Lemmas 4.1 and 4.3 (or Theorem 5.2).
Here, {TCHn(R,n;m)}n,m≥1 forms a restricted Witt-complex over R. When m = pi−1, the ring
Wm(R) acts on TCHn(R,n; pi−1). We shall define the p-typical additive higher Chow groups of
regular k-algebras as follows.

Definition 6.12. Let k be a perfect field of exponential characteristic p > 1 and let R be a
regular k-algebra essentially of finite type. For any integers n, i ≥ 1, we define the p-typical
additive higher Chow groups of R to be the Wpi−1(R)-submodule

TCHn(R; pi) := WP∩pi−1(R) · TCHn(R,n; pi−1), (6.7)

where we are regarding the factor Wi(R) = WP∩pi−1(R) of Wpi−1(R) in the decomposition (6.4)
for n = 1, as an ideal of Wpi−1(R).

The subgroups TCHn(R; pi) ⊂ TCHn(R,n; pi−1) are natural in R. Note that when R is semi-
local and k-perfect, the definitions (6.5) and (6.7) coincide.

7. Applications

In this section, we discuss several applications of Theorem 1.1. Apart from these, we mention
that Theorem 1.1 is also an essential part of the proofs of the main results of [GK19] and [GK20].
We fix a field k.

7.1 Crystalline cohomology via algebraic cycles
Let k be a perfect field. It was shown in [KP16, Theorem 4.5] that the additive higher Chow
groups form presheaves of abelian groups on the category SmAff ess

k of smooth affine schemes
essentially of finite type over k. Using the left Kan extension, these groups extend to presheaves
on Schess

k as follows.
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For X ∈ Schess
k , let (X ↓ SmAff ess

k ) be the category whose objects are the k-morphisms X →
A, with A ∈ SmAff ess

k . A morphism from h1 : X → A to h2 : X → B, with A,B ∈ SmAff ess
k is

given by a k-morphism g : A→ B such that g ◦ h1 = h2. The category (X ↓ SmAff ess
k ) is clearly

cofiltered (see [KP16, § 4.4]).
For m ≥ 0, n, q ≥ 1, and X ∈ Schess

k , we let

T̃CH
q
(X,n;m) := colim

A∈(X↓SmAffess
k )op

TCHq(A,n;m).

By [KP16, Proposition 4.8], we know that T̃CH
q
(−, n;m) is a presheaf on Smess

k and Schess
k .

There is a natural homomorphism αX : T̃CH
q
(X,n;m)→ TCHq(X,n;m). This is an iso-

morphism for X ∈ SmAff ess
k . We let T CHq(n;m) denote the sheaf on the big Zariski site of

Schess
k associated to the presheaf T̃CH

q
(−, n;m). For X ∈ Schess

k , we denote the restriction of
T CHq(n;m) to the small Zariski site of X by T CHq(n;m)X .

Assume now that p > 1. For n, i ≥ 1 and X ∈ Schess
k , using Definition 6.12, we let

T̃CH
n
(X; pi) := colim

A∈(X↓SmAffess
k )op

TCHn(A; pi). (7.1)

As the p-typical additive higher Chow groups are presheaves on smooth affine schemes over k,
it follows from [KP16, Proposition 4.8] that T̃CH

n
(−; pi) is a presheaf on Smess

k and Schess
k .

We let T CHn(pi) denote the sheaf on the big Zariski site of Schess
k associated to the presheaf

T̃CH
q
(−; pi). ForX ∈ Schess

k , we denote the restriction of T CHn(pi) to the small Zariski site ofX
by T CHn(pi)X . The Leibniz rule for the additive Chow higher groups implies that T CH•(pi) :=⊕

nT CHn(pi) is a subcomplex of T CH•(•; pi−1).
Recall that WmΩn

X and WiΩn
X are already sheaves of quasi-coherent WmOX -modules on the

Zariski (in fact, étale) site of X. Moreover, it follows from Theorem 5.2 that there are morphisms
between the Zariski sheaves of Witt complexes WmΩ•

X → T CH•(•;m)X [1] and the p-typical Witt
complexes WiΩ•

X → T CH•(pi)X [1].
We can now state the following result which describes the crystalline cohomology over W (k)

defined by Berthelot and Grothendieck [Ber74] in terms of algebraic cycles. This result can
therefore be viewed as the cycle-theoretic avatar of the theorem of Bloch [Blo77] which described
the crystalline cohomology in terms of algebraic K-theory. Recall that the crystalline cohomology
was originally defined by Berthelot and Grothendieck as the cohomology of the structure sheaf
OX,crys on the complicated crystalline site of X.

Theorem 7.1. Let k be a perfect field of exponential characteristic p > 1. Let X be a
smooth quasi-projective scheme over k and n ≥ 0 an integer. Then there is a canonical
isomorphism

Hn
crys(X/W ) �−→ lim←−

i≥1

Hn+1
zar (X, T CH•(pi)X).

Proof. By [Ill79, Théorème II.1.4], there is a canonical isomorphism of cohomology groups
Hn

crys(X/W ) �−→ lim←−
i≥1

Hn
zar(X,WiΩ•

X). On the other hand, we have a morphism of the inverse

systems of the complexes of Zariski sheaves WiΩ•
X → T CH•(pi)X [1]. This is an isomorphism by

Corollary 6.10. The theorem now follows. �

7.2 Gersten conjecture for additive higher Chow groups
Let k be an arbitrary field. For a presheaf F of abelian groups defined on Smk, the Gersten
conjecture for F asks whether the Cousin complex of F is locally exact. The exactness of this
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complex plays an important role in the study and applications of the presheaf F . This conjecture
is known for many presheaves. For instance, it is known for higher algebraic K-theory by Quillen
[Qui73, Theorem 5.11], for Milnor K-theory by Kerz [Ker09], and for the de Rham–Witt complex
by Gros [Gro85]. We have the following answer for the additive higher Chow groups. For X ∈
Smk, let X(i) denote the set of codimension i points on X.

Theorem 7.2. Let k be an arbitrary field and let X be a smooth scheme of finite type over k.
Then the Cousin complex of the Zariski sheaves of additive higher Chow groups is exact on X.
That is, there is an exact sequence of Zariski sheaves

0→ T CHn(n;m)X →
∐

x∈X(0)

(ix)∗H0
x(X, T CHn(n;m)X)

→
∐

x∈X(1)

(ix)∗H1
x(X, T CHn(n;m)X)→

∐
x∈X(2)

(ix)∗H2
x(X, T CHn(n;m)X)→ · · ·

for every m ≥ 0 and n ≥ 1.

Proof. As all groups are zero for m = 0 by [KP17b, Theorem 1.5], we can assume m ≥ 1. As
T CHn(n;m)X is a Zariski sheaf on X, all maps in the above sequence are well-defined. To show
its exactness, we can assume that X = Spec(R), where R is a smooth local k-algebra essentially
of finite type. Using Theorem 1.1, it suffices to prove the exactness for the Cousin complex of
WmΩn

X . If p = 1, then WmΩn
X is a direct sum of the sheaves of absolute Kähler differentials for

which the exactness is classically known. If p > 1 and k is perfect, the exactness follows directly
from [Gro85, Proposition 5.1.2, p. 57] and the p-typical decomposition of WmΩn

X .
Suppose now that k is imperfect. Using the p-typical decomposition, it suffices again to prove

the theorem for the p-typical de Rham–Witt-complex. We can now use Lemma 2.3 and write
R = lim−→i

Ri, where {Ri}i∈I is a direct system of local Fp-algebras essentially of finite type, such
that the transition maps are faithfully flat and the inclusions Ri ↪→ R are also faithfully flat. In
particular, the maps X → Spec(Ri) are surjective. As we saw in the proof of Lemma 2.3, any
prime ideal p ⊂ R is an extension of a prime ideal pi ⊂ Ri for some i ∈ I. In this case, it is clear
that (Ri ∩ p)R = p. In other words, there is i ∈ I and a prime ideal pi ⊂ Ri such that pi = p ∩Ri

and p = piR.
On the other hand, if pi ⊂ Ri is a prime ideal of height j for any i ∈ I and j ≥ 0 and p is a

minimal prime of piR, then we must have pi = p ∩Ri. In this case, the flatness of the inclusion
Ri ↪→ R and [GW10, Corollary 14.95] together imply that p is a prime ideal of R of height j.
It follows that X(j) coincides with the inverse limit of Spec(Ri)(j) where i runs through I. As
the cohomology with support commutes with direct limits, it follows that the Cousin complex
of WmΩn

R is a direct limit of the Cousin complexes of WmΩn
Ri

. However, the exactness of these
latter complexes follows from the case of perfect base field shown above. �

Using Theorem 1.1 and Proposition 2.8, we deduce the following piece of the Gersten con-
jecture for the additive higher Chow groups of regular (not necessarily smooth) semi-local
k-algebras.

Corollary 7.3. Let k be an arbitrary field and R be a regular semi-local k-algebra essentially
of finite type. Let K denote the total ring of quotients of R. Then the canonical map

TCHn(R,n;m)→ TCHn(K,n;m)

is injective for all m ≥ 0 and n ≥ 1.
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7.3 Applications to algebraic K-theory
Let k be an arbitrary field with the exponential characteristic p ≥ 1 and let R be a regular semi-
local k-algebra essentially of finite type. We can use Theorem 1.1 and the results of [Hes05] to
describe the algebraic K-theory of the truncated polynomial algebras over R in terms of algebraic
cycles as follows. This shows that the algebraic K-groups of these truncated polynomial algebras
are motivic. Using Theorem 1.1, it is shown in [GK19] and [GK20] that the Milnor K-groups of
these truncated polynomial algebras are also motivic.

For m ≥ 1, we let Rm = R[t]/(tm). Let K(Rm, (t)) denote the relative K-theory spectrum
for the augmentation ideal (t) ⊂ Rm.

Theorem 7.4. Let m ≥ 2 and q ≥ 1 be two integers.

(i) If p = 1, there is a natural isomorphism

Kq(Rm, (t))
�−→

⊕
n≥0

TCHq+1−2n(R, q + 1− 2n;m− 1).

(ii) If p > 1, there is a natural long exact sequence

· · · →
⊕
i≥0

TCHq−2i(R, q − 2i;m(i+ 1)) Vm−−→
⊕
i≥0

TCHq−2i(R, q − 2i; i+ 1)

ε−→ Kq(Rm, (t))→ · · · .
Proof. Combine Theorem 1.1 with [Hes05, Theorem 10.1, p. 27] for part (i), and with
[Hes05, Theorem 12.1, p. 32] for part (ii). �

7.4 Milnor K-theory and de Rham–Witt complex
Let k be an arbitrary field and let R be a regular semi-local k-algebra essentially of finite type.
If k is infinite, it is easy to see that the map d log : (R×)⊗n → Ωn

R, given by a1 ⊗ · · · ⊗ an �→
d log(a1) ∧ · · · ∧ d log(an), defines a group homomorphism KM

n (R)→ Ωn
R. Even if the existence

of this map at the level of de Rham–Witt complex was a folklore, a written proof was pro-
vided relatively recently in [GH05, Appendix B]. When R is a field, this map was probably
already known to Bloch and Kato [BK86, Corollary 2.8] even if they did not write a proof. As
the referee pointed out, the dlog map for general k-algebras can be deduced from the case of
fields.

Using Theorem 1.1, we obtain an alternate and simple proof of the existence of dlog map
from the Milnor K-theory to the de Rham–Witt complex of regular semi-local k-algebras using
algebraic cycles. Recall from § 2.2 that KM∗ (R) denotes the Milnor K-theory in the sense
of Gabber and Kerz [Ker10], and it may differ from the classical Milnor K-theory if k is
finite.

Corollary 7.5. For every m,n ≥ 1, there is a natural homomorphism

d log : KM
n (R)→WmΩn

R;

d log({a1, . . . , an}) = d log([a1]) ∧ · · · ∧ d log([an]).

Proof. We have the natural maps

CHn(R,n)→ CHn(R,n)⊗Z TCH1(R, 1;m)→ TCHn+1(R,n+ 1;m),

where the first arrow takes an element α ∈ CHn(R,n) to α⊗ Γ(1−t) (see (4.1)). The second arrow
is the cap product map of Corollary 4.9. We denote the composite map by d log′.
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By Totaro [Tot92], the map {a1, . . . , an} �→ V (t1 − a1, . . . , tn − an) defines an isomorphism
KM

n (F ) �−→ CHn(F, n) for every field F . By comparing the Gersten resolutions of Milnor
K-theory from [Ker10, Proposition 10] and higher Chow groups from [Blo86, Corollary, p. 300]
and using the Totaro’s theorem for fields, it follows that Totaro’s map is also defined for R
and yields an isomorphism νR

n : KM
n (R) �−→ CHn(R,n). We remark here that Bloch proved the

Gersten resolution when R is smooth over k. However, the argument of Theorem 7.2 easily
extends Bloch’s theorem to regular algebras.

We therefore get a diagram

(R×)⊗n �� ��

d log ����
��

��
��

�
KM

n (R)
νR

n
��

��

CHn(R,n)

d log′
��

WmΩn
R

τR
n+1,m

�� TCHn+1(R,n+ 1;m)

(7.2)

in which νR
n is an isomorphism. It is clear from the definitions of various maps that the outer

trapezium is commutative (see Lemma 6.1). Note that the classical Milnor K-theory of R surjects
onto our Milnor K-theory KM∗ (R) (see § 2.2). This shows that (R×)⊗n → KM

n (R) is surjective.
As τR

n+1,m is also an isomorphism by Theorem 1.1, it follows that the d log map factors through
the quotient d log : KM

n (R)→WmΩn
R such that

d log′ ◦νR
n = τR

n+1,m ◦ d log . (7.3)

This finishes the proof. �
As WmΩn

R is a Wm(R)-module, it follows from Corollary 7.5 that there is a natural map of
Wm(R)-modules:

KM
n (R)⊗Z Wm(R)→WmΩn

R;
{a1, . . . , an} ⊗ a �→ ad log([a1]) ∧ · · · ∧ d log([an]).

(7.4)

We similarly have maps

KM
n−1(R)⊗Z Wm(R)

d log⊗Id−−−−−→WmΩn−1
R ⊗Z Wm(R)→WmΩn

R,

where the last map takes ω ⊗ a to d(a) ∧ ω. We thus obtain a map

(KM
n (R)⊕KM

n−1(R))⊗Z Wm(R)→WmΩn
R. (7.5)

We denote this map by γR
n,m.

The following result provides a simple presentation of the de Rham–Witt complex.

Corollary 7.6. Assume that either k is infinite or R is local. Let m,n ≥ 1 be any two integers.
Then the map

γR
n,m : (KM

n (R)⊕KM
n−1(R))⊗Z Wm(R)→WmΩn

R

is surjective.

Proof. This follows directly from Corollary 7.5 and [RS18, Proposition 4.7] (if R is local) and
[GK19, Lemma 4.3] (if k is infinite). �
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7.5 Application to motivic cohomology
Let k be an arbitrary field of exponential characteristic p > 1 and let R be a regular semi-local
k-algebra essentially of finite type. For m, i ≥ 1, we have the natural maps

CHn(R,n)
d log′−−−→ TCHn+1(R,n+ 1; pi−1) � TCHn+1(R; pi), (7.6)

where the second arrow is the quotient map given by the p-typical decomposition of
TCHn+1(R,n+ 1; pi−1) (see (2.3) and (6.5)). We let TCHn+1

log (R; pi) denote the image of the
composite map in (7.6). Let Ha

M(R,Z/pi(b)) denote Voevodsky’s mod-p motivic cohomology
of R. Another consequence of Theorem 1.1 is the following cycle-theoretic description of this
motivic cohomology and Milnor K-theory mod-p.

Corollary 7.7. There are natural isomorphisms

CHn(R,n)/pi �−→ Hn
M(R,Z/pi(n)) �−→ KM

n (R)/pi �−→ Kn(R,Z/pi) �−→ TCHn+1
log (R; pi).

Proof. The field case of the two middle isomorphisms are shown in [GL00, Theorems 8.1, 8.3].
These isomorphisms for R follow from the Gersten resolutions of the underlying groups in [Ker09]
and [Ker10]. It suffices therefore to show that KM

n (R)/pi 	 TCHn+1
log (R; pi).

We now consider the following commutative diagram.

KM
n (R)/pi

νR
n

��

d log

��

CHn(R,n)/pi

d log′
��

WiΩn
R

τR
n+1,pi

�� TCHn+1(R; pi)

(7.7)

We have seen previously that νR
n is an isomorphism, while τR

n+1,pi is an isomorphism by
Corollary 6.10. The map d log : KM

n (R)→WiΩn
R of Corollary 7.5 factors through KM

n (R)/pi

and induces an isomorphism of the latter group onto its image (see [Mor19, Theorems 1.2
and 5.1]). We conclude from the definition of TCHn+1

log (R; pi) that d log′ induces an isomorphism

CHn(R,n)/pi �−→ TCHn+1
log (R; pi). This finishes the proof. �

7.6 Trace maps for de Rham–Witt complex
As we briefly discussed earlier, there is a theory of trace for the p-typical de Rham–Witt forms
due to Ekedahl [Eke84]. Using the p-typical decomposition, this allows one to obtain trace maps
for the big de Rham–Witt forms. However, Ekedahl’s trace is obtained using a complicated
duality theory for these objects. Consequently, it becomes very hard to work with his trace.
Furthermore, it takes a lot of work to check that Ekedahl’s trace behaves well with various
operators.

Using Theorem 1.1, we can give a much simpler construction of the trace map on the big
de Rham–Witt forms for all finite extensions of regular semi-local k-algebras. Our trace is nothing
but the easily and explicitly defined push-forward map between the additive higher Chow groups.
Furthermore, using this definition, it becomes simple to check all desired properties of the trace
map. For instance, we can verify the compatibility of the trace with V and F operators directly
because they are simply the pull-back and push-forward on cycles via the map φr : A1

k → A1
k,

given by t �→ tr.

Theorem 7.8. Let k be an arbitrary field. Let f : R ↪→ S be a finite extension of regular semi-
local k-algebras essentially of finite type. Then there exists a trace map TrS/R : WmΩn

S →WmΩn
R
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for every n ≥ 0 and m ≥ 1. It is transitive: if R ⊂ S ⊂ S′ are finite extensions of regular semi-
local k-algebras essentially of finite type, then we have TrS′/R = TrS/R ◦ TrS′/S . Moreover, there
is the following commutative diagram.

WmΩn−1
S

τS
n,m

��

TrS/R

��

TCHn(S, n;m)

f∗
��

WmΩn−1
R

τR
n,m

�� TCHn(R,n;m)

(7.8)

Proof. We consider the following diagram.

WmΩn−1
S

τS
n,m

��

��

TCHn(S, n;m)

f∗
��

WmΩn−1
R

τR
n,m

�� TCHn(R,n;m)

(7.9)

The push-forward map f∗ on the level of additive higher Chow groups exists (see e.g. [KL08]
or [KP17a]). The two horizontal arrows in (7.9) are isomorphisms by Theorem 1.1. It follows
that there is a unique map TrS/R : WmΩn−1

S →WmΩn−1
R such that (7.9) is completed to be a

commutative diagram. The transitivity of TrS/R is clear from the corresponding property of the
push-forward map on additive higher Chow groups. �

Over perfect base fields, we can prove the existence of the trace map without assuming that
the underlying rings are semi-local.

Theorem 7.9. Let k be a perfect field. Let f : R ↪→ S be a finite extension of regular k-algebras
essentially of finite type. Then there exists a trace map TrS/R : WmΩn

S →WmΩn
R for every n ≥ 0

and m ≥ 1 satisfying the properties described in Theorem 7.8.

Proof. Let X = Spec(R), Y = Spec(S) and f : Y → X is the corresponding finite map. Recall
from § 7.1 that T CHn(n;m)X is the Zariski sheaf on X associated to the presheaf U �→
TCHn(U, n;m) for n,m ≥ 1. We let T̂ CH

n
(n;m)X denote the Zariski sheaf on X associated

to the presheaf U �→ TCHn(f−1(U), n;m).
As the push-forward map f∗ on the additive higher Chow groups commutes with flat

pull-back, it induces a natural map f∗ : T̂ CH
n
(n;m)X → T CHn(n;m)X of Zariski sheaves.

It follows from Theorem 5.2 that for n ≥ 1, there is the following diagram of sheaves
on XZar.

f∗(WmΩn−1
Y )

τY
n,m

��

��

T̂ CH
n
(n;m)X

f∗
��

WmΩn−1
X

τX
n,m

�� T CHn(n;m)X

(7.10)

The two horizontal arrows in (7.10) are isomorphisms of Zariski sheaves onX by Theorem 1.1.
It follows that there is a unique map of Zariski sheaves TrY/X : f∗(WmΩn−1

Y )→WmΩn−1
X on X
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satisfying the properties described in Theorem 7.8. As the de Rham–Witt forms are quasi-
coherent Zariski sheaves of WmOX -modules, the map TrY/X induces the desired trace map

TrS/R : WmΩn
S

�−→ H0(X, f∗(WmΩn−1
Y ))→ H0(X,WmΩn−1

X ) �←−WmΩn
R

for all m,n ≥ 1. �
Remark 7.10. From the construction of TrS/R in Theorems 7.8 and 7.9 and from (4.1), one checks
that TrS/R coincides with the trace map for the ring of Witt vectors in [Rül07a, Appendix] when
we take n = 0. It also follows from [Rül07a, Lemma 3.22] that TrS/R of Theorem 7.8 coincides
with that in Theorem A.2 in the appendix, when R and S are fields. Using the compatibil-
ity of Ekedahl’s trace with various operators, one knows that his trace coincides with that of
Theorem A.2 for fields. Using Proposition 2.8 and Corollary 7.3, one can then check that trace
maps of Theorems 7.8 and 7.9 coincide with that of Ekedahl for regular semi-local rings.

7.7 Galois descent for additive higher Chow groups
Let k be an arbitrary field and let R be a regular semi-local k-algebra essentially of finite type.
Let G be any finite group. Assume that G acts freely on R as k-algebra automorphisms so that
the inclusion RG ↪→ R is finite and étale, where RG denotes the ring of invariants. In particular,
RG is a regular semi-local k-algebra essentially of finite type. Using Theorem 1.1, we can prove
the following Galois descent for the Milnor range additive higher Chow groups.

Theorem 7.11. The inclusion RG ↪→ R induces an isomorphism

TCHn(RG, n;m) �−→ (TCHn(R,n;m))G

for all m ≥ 1 and n ≥ 0.

Proof. The group G acts on TCHn(R,n;m) and WmΩn
R. As G is finite, it immediately follows

from the functoriality of τR
n,m (see Proposition 5.1) that it is G-equivariant.

We now let X = Spec(RG) and X ′ = Spec(R). We let f : X ′ → X denote the quotient map.
We then have a Cartesian square

G×X ′ μ
��

pX′
��

X ′

f

��

X ′ f
�� X

(7.11)

where pX′ is the projection and μ is the G-action map. As f is étale and WmΩn−1
X is an étale

sheaf, it follows using the equalizer definition of a sheaf that the canonical map f∗ : WmΩn−1
RG →

(WmΩn−1
R )G is an isomorphism (between Wm(RG)-modules).

We now prove the theorem. We let n ≥ 1 and consider the following diagram.

WmΩn−1
RG

τRG
n,m

��

f∗
��

TCHn(RG, n;m)

f∗

��

(WmΩn−1
R )G

τR
n,m

�� TCHn(R,n;m)G

(7.12)

This diagram is commutative by Theorem 1.1. The lower horizontal arrow is induced by the
G-equivariance of τR

n,m. The two horizontal arrows are isomorphisms by Theorem 1.1. The left
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vertical arrow is an isomorphism as shown above. It follows that the right vertical arrow is also
an isomorphism. �
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Appendix A. The de Rham–Witt complex and additive Chow
groups over a field: the characteristic 2 case

Kay Rülling1

The main theorems of [Rül07a] (see also [Rül07b]) were stated only for fields of characteristic
other than 2. This originates in the use of [HM04, Theorem 4.2.8] which was only for odd primes.
In this appendix, it is explained that thanks to [Cos08], the results of [Rül07a] extend directly
to the characteristic 2 case. I thank Amalendu Krishna and Jinhyun Park for the opportunity
to detail this extension here.

A.1 Let (WSΩ•
A)S denote the big de Rham–Witt complex from [Hes15], where A is a ring

and S is running through all truncation sets. It comes with the maps d, Fn, Vn, restriction,
and multiplication. For m ≥ 1 we set WmΩ•

A := W{1,...,m}Ω•
A and for a fixed prime p we denote

the p-typical de Rham–Witt complex by WnΩ•
A := W{1,p,...,pn−1}Ω•

A. Note that, in general, d ◦ d
is not zero in WSΩ•

A. Denote by WSΩ•
A/Z

the Witt complex from [Hes15, Remark 4.8] (with
k = W(Z)); it is the initial object in the category of Witt complexes with W(Z)-linear differential.
Note that WSΩ•

A/Z
is always a DGA, in particular we have d ◦ d = 0. Furthermore, if A contains

a field, then WSΩ•
A/Z

= WSΩ•
A, see [Hes15, Remark 4.2, c)]. If A is an Fp-algebra, then the

p-typical de Rham–Witt complex is the one from Bloch–Deligne–Illusie. In addition, in case A
is an Fp (or a Q)-algebra, the decomposition

WSΩ•
A =

∏
(j,p)=1

WP∩S/jΩ
•
A, (A.1)

from [Rül07a, Theorem 1.11] is valid in the case p = 2. (Indeed, in this case the construction
of the V -complex in [Rül07a, Proposition 1.2] goes through and the same proof as in [Rül07a,
Theorem 1.11] shows that it is the initial object in the category of Witt complexes as in [Hes15]
and that it decomposes as in (A.1).)

1 kay.ruelling@uni-wuppertal.de; Bergische Universität Wuppertal, Fakultät Mathematik und Naturwissenshaften,
Gaußstraße 20, D-42119, Wuppertal, Germany. The author is supported by the DFG Heisenberg Grant RU
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Theorem A.1 ([Rül07a, Theorem 3.20] for char(k) �= 2). Let k be a field. There is a canonical
isomorphism

WmΩn−1
k

�−→ TCHn(k, n;m), m, n ≥ 1,

where the right-hand side is the additive Chow groups of Bloch–Esnault. Furthermore, via this
isomorphism, the maps d, Fn, Vn, restriction and multiplication on the de Rham–Witt side
correspond to D, Fn, Vn, restriction, and ∗, on the Chow side, as defined in [Rül07a, Definition-
Proposition 3.9].

Thanks to [Cos08], which was not at our disposal when [Rül07a] was written, the proof of
[Rül07a, Definition-Proposition 3.9] goes through, also for p = 2. We explain this in more detail
in the following. Note that TCHn(k, n;m) is written as CHn+1(A1

k|(m+ 1) · {0}, n) in [Rül07a].

A.2 We fix a prime p. Let A be a Z(p)-algebra and denote by A[x] the polynomial ring in
the variable x. Then the group WnΩq

A[x]/Z
(respectively, WnΩq

A[x,1/x]/Z
) is freely generated by

elements of the following type:

a[x]j , a ∈WnΩq
A/Z

, j ≥ 0 (respectively, j ∈ Z),

b[x]j−1d[x], b ∈WnΩq−1
A/Z

, j ≥ 1 (respectively, j ∈ Z),

V s(a[x]j), a ∈Wn−sΩ
q
A/Z

, s ∈ {1, . . . , n− 1}, j ≥ 1 with (j, p) = 1

(respectively, j ∈ Z \ pZ),

dV s(b[xj ]), b ∈Wn−sΩ
q−1
A/Z

, s ∈ {1, . . . , n− 1}, j ≥ 1 with (j, p) = 1

(respectively, j ∈ Z \ pZ).

For A[x] and p odd, this is [HM04, Theorem 4.2.8] and for p = 2, this follows from [Cos08,
Theorem 4.3] (one has to observe that the functor P constructed in these references sends a
W(Z)-linear p-typical Witt complex over A to a W(Z)-linear p-typical Witt complex over A[x]
and that it preserves surjections). The result for A[x, 1/x] is deduced from this as in [Rül07a,
Theorem 2.1], where (at least in the case p = 2) the reference to [Rül07a, Proposition 1.18] should
be replaced by [Hes15, Theorem C].

Theorem A.2 ([Rül07a, Theorem 2.6] for char(k) �= 2). Let L/k be a finite field extension.
Then there exists a trace map

TrL/k : WSΩ•
L →WSΩ•

k,

which satisfies properties (i)–(v) from [Rül07a, Theorem 2.6]. Furthermore [Rül07a,
Proposition 2.7] holds.

Proof. The proof for p = 2 is the same as in [Rül07a, Theorem 2.6], once we made the following
remarks: [Rül07a, Lemma 1.20] also holds for any F2-algebra A with the same proof; [Rül07a,
Lemma 2.3] also holds for p = 2, this follows from [Ill79, I, Propositions 3.2 and 3.4] and a limit
argument; [Rül07a, Proposition 2.4] holds with the same proof also for p = 2 once the reference
to [Rül07a, Theorem 2.1] is replaced by the first paragraph of § A.2 above. �

A.3 Let p be a prime and A a Z(p)-algebra. For a finite truncation set S, we define

FilS,j := Ker(WSΩ•
A[[t]]/Z

→WSΩ•
A[[t]]/(tj)/Z

), j ≥ 1,
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and
WSΩ̂•

A((t))/Z
= lim←−

j

WSΩ̂•
A((t))/Z

/FilS,j .

Then any element in WSΩ̂•
A((t))/Z

can be uniquely written as in [Rül07a, (2.9.1)], and we can
define

R̂es
q

t,n : WnΩ̂q
A((t))/Z

→WnΩq−1
A/Z

as in [Rül07a, (2.9.2)]. (Using § A.2), the proof is similar to that in [Rül07a, Lemma 2.9].)
We define Resq

t,n as the composition

WnΩq
A((t))/Z

can.−−→WnΩ̂q
A((t))/Z

R̂es
q

t,n−−−−→WnΩq−1
A/Z

.

If A contains a field and S is a finite truncation set, then we define

Resq
t,S : WSΩq

A((t)) →WSΩq−1
A (A.2)

as in [Rül07a, Definition 2.11], using that in this case we have WSΩ•
A = WSΩ•

A/Z
and that the

decomposition (A.1) also extends to WSΩ̂.
For any Z(p)-algebra A, the map Resq

t,n satisfies properties (i)–(viii) of [Rül07a,
Proposition 2.12] and [Rül07a, Lemma 2.14] holds. If A contains a field, the same holds for
Resq

t,S , S any finite truncation set. (The case Resq
t,n for p = 2 is proven as in [Rül07a, Proposi-

tion 2.12], the case Resq
t,S follows from this. Note, however, that even in the case A contains a

field, the proofs use reduction to the torsion-free case. As the absolute de Rham–Witt complex
of a torsion-free Z(2)-algebra is not a DGA, we prefer to work with the W(Z)-linear complex.)

Remark A.3. For an Fp-algebra A, the residue Rest : WnΩq
A((t)) →WnΩq−1

A was also con-
structed in [Kat80, § 2, Proposition 3] using algebraic K-theory and Bloch’s approach to the
de Rham–Witt complex.

Theorem A.4 ([Rül07b, Theorem 2] for char(k) �= 2). Let C be a connected regular projective
curve over a field k with function field K = k(C). Let S be a finite truncation set. Then∑

P∈C

ResP (ω) = 0, for all ω ∈WSΩq
K , q ≥ 1,

where the sum is over all closed points in C and ResP : WSΩq
K →WSΩq−1

k is defined as in
[Rül07b, Definition-Proposition 1] (using Resq

t,S from (A.2) and Tr from Theorem A.2.)

Proof. The proofs of [Rül07b, Theorem 2] and [Rül07a, Theorem 2.19] work also for p = 2 once
we have made the following remarks: the proof of the well-definedness of ResP is the same
as in [Rül07a, Definition-Proposition 2.15] because [Rül07a, Lemma 1.16] holds in general.
Proposition 2.18 of [Rül07a] holds with the trace from Theorem A.2. At the end of the
proof of [Rül07a, Theorem 2.19] (on pp. 140–141), an element is lifted to WSΩ1

A((t)), with
A = Z(p)[za, zb, zc]. Replace this by the following argument (at least if p = 2): first observe that
the desired vanishing can be reduced to the p-typical case by the definition of ResP . Then lift
the element ω2,P to the W (Z)-linear complex WnΩ1

A((t))/Z
and proceed as in the proof using the

Rest from (A.2). �
Proof of Theorem A.1. The proof of [Rül07a, Theorem 3.20] (see also [Rül07b]) works also for
p = 2 once we made the following remarks: in [Rül07a, Lemma 3.5], replace WmΩr

A by WmΩr
A/Z

(at least if p = 2); at the end of the proof of [Rül07a, Theorem 3.6] (on p. 148), refer to
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Theorem A.4 instead of [Rül07a, Theorem 2.19]. In [Rül07a, Lemma 3.15], observe that if
char(k) = 2, then DD(α) = 0, because in KM

2 (k), we have {a, a} = {a,−1} = 0, and similarly
also FrDVr = D; this implies that [Rül07a, Proposition 3.17] also holds if char(k) = 2. For the
rest of the proof of [Rül07a, Theorem 3.20], use Theorem A.2 for properties of the trace and
§ A.2 instead of [Rül07a, Theorem 2.1]. �
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