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Relative dispersion experiments are often analysed using theoretical predictions from two-
and three-dimensional turbulence. These apply to infinite inertial ranges, assuming the
same dispersive behaviour over all scales. With finite inertial ranges, the metrics are less
conclusive. We examine this using pair separation probability density functions (PDFs),
obtained by integrating a Fokker–Planck equation with different diffusivity profiles. We
consider time-based metrics, such as the relative dispersion, and separation-based metrics,
such as the finite scale Lyapunov exponent (FSLE). As the latter cannot be calculated
from a PDF, we introduce a new measure, the cumulative inverse separation time (CIST),
which can. This behaves like the FSLE, but advantageously has analytical solutions in
the inertial ranges. This allows the establishment of consistency between the time- and
space-based metrics, something which has been lacking previously. We focus on three
dispersion regimes: non-local spreading (as in a two-dimensional enstrophy inertial range),
Richardson dispersion (as in an energy inertial range) and diffusion (for uncorrelated
pair motion). The time-based metrics are more successful with non-local dispersion, as
the corresponding PDF applies from the initial time. Richardson dispersion is barely
observed, because the self-similar PDF applies only asymptotically in time. In contrast, the
separation-based CIST correctly captures the dependencies, even with a short (one decade)
inertial range, and is superior to the traditional FSLE at large scales. Nevertheless, it is
advantageous to use all measures together, to seek consistent indications of the dispersion.

Key words: geostrophic turbulence, dispersion

1. Introduction

Relative dispersion is the study of pairs of particles separating in a flow. It is important for
diagnosing the spread of passive tracers, like oil and biological material (Bennett 2006).
It is also of interest because pair dispersion is linked to the kinetic energy spectrum, so
that pair observations can potentially be used to deduce spectra. As drifter technology has
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improved, particularly with the advent of GPS positioning, the sampled scales are now
well below those resolved by satellite (Ohlmann et al. 2005; Lumpkin & Pazos 2007;
Lumpkin, Özgökmen & Centurioni 2017). Thus drifter relative dispersion studies are a
potential window on ‘submesoscale’ dynamics in the ocean (e.g. Ohlmann et al. 2012;
Schroeder et al. 2012; Poje et al. 2014; Shcherbina et al. 2015; Beron-Vera & LaCasce
2016; Bracco et al. 2016; Ohlmann et al. 2017; Essink et al. 2019; Berti & Lapeyre 2021).

To deduce spectra, one can use velocity differences between pair members to calculate
velocity structure functions (e.g. Batchelor 1953; Lindborg 2015; Balwada, LaCasce &
Speer 2016; Beron-Vera & LaCasce 2016; Pearson et al. 2019). For isotropic, homogeneous
turbulence, the second-order structure function, S2, is related to the energy spectrum via a
Hankel transform. But this direct approach fails because the transform from S2 magnifies
noisy contributions at large separations, degrading the spectral estimate (LaCasce 2016).

Given this, we must rely on pair dispersion metrics to deduce turbulence characteristics.
These metrics can be separated in two classes: those which are averaged in separation
and are functions of time, and those averaged in time which vary with separation. The
time-based measures include the various separation moments: the relative dispersion (the
second moment), the kurtosis (the normalized fourth) and the relative diffusivity (the
time rate of change of the relative dispersion). These have a long history in Lagrangian
data analysis (e.g. Richardson 1926; Richardson & Stommel 1948; Okubo 1971; Lin
1972; Morel & Larcheveque 1974; Er-El & Peskin 1981; LaCasce & Bower 2000;
Lacorata, Aurell & Vulpiani 2001; LaCasce & Ohlmann 2003; Ollitrault, Gabillet & de
Verdiere 2005; Koszalka, LaCasce & Orvik 2009; Lumpkin & Ellipot 2010; Mantovanelli
et al. 2012; Ohlmann et al. 2012; Schroeder et al. 2012; Ohlmann et al. 2017; Sansón,
Pérez-Brunius & Sheinbaum 2017; Dräger-Dietel et al. 2018; Balwada et al. 2021; Spydell,
Feddersen & MacMahan 2021). Reviews have been given by Babiano et al. (1990),
Sawford (2001), Bennett (2006), LaCasce (2008) and Salazar & Collins (2009), among
others.

How the metrics vary in time depends on the turbulent regime. The behaviour can
be deduced by examining the probability density function (PDF) of pair separations,
from which the moments derive. For isotropic, homogeneous turbulence, the PDF can
be obtained by solving a Fokker–Planck equation. This equation was originally proposed
by Richardson (1926), and put on rigorous footing by Kraichnan (1966), using his
‘Lagrangian history direct interaction approximation’, and by Lundgren (1981), assuming
a velocity field delta correlated in time.

The link in the Fokker–Planck equation to the turbulent inertial range is the relative
diffusivity, which varies with separation. Once specified, one can obtain analytical
solutions. For example, Richardson deduced that the relative diffusivity scales as
separation to the 4/3 power, based on observations from the atmospheric boundary layer
and from the surface of a lake (Richardson 1926; Richardson & Stommel 1948). That
such a dependence was consistent with the inertial range of three-dimensional (3-D)
turbulence was shown thereafter by Obhukov (1941) and Batchelor (1952). Incorporating
this diffusivity, Richardson (1926) derived a self-similar solution to the Fokker–Planck
equation. The PDF can then be used to derive the relative dispersion, which increases as
time cubed (§ 2). Being a self-similar solution, Richardson’s applies after the ‘memory’ of
the initial condition has been lost. The full PDF, applicable for a set of pairs with the same
initial separation, is given in Bennett (2006). The resulting dispersion exhibits a transient
adjustment to cubic growth.

Solutions to the Fokker–Planck equation for 2-D turbulence have also been derived.
Two-dimensional turbulence exhibits two inertial ranges, one in which energy cascades
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to large scales and another in which enstrophy cascades to small (Kraichnan 1967).
The PDF for the energy cascade range is very similar to that in three dimensions and
exhibits transient adjustment to cubic growth of the dispersion (LaCasce 2010). Lundgren
(1981) derived the PDF for the direct (enstrophy) cascade range. This ‘non-local’ solution
is so called because the dispersion is dominated by eddies at the top of the inertial
range; indeed, the same solution applies whenever the energy spectrum E(K) is steeper
than K−3, where K is the wavenumber. Lundgren’s PDF is log–normal and yields a
relative dispersion which increases exponentially in time (as anticipated by Lin (1972)
using scaling arguments). Significantly, Lundgren’s PDF is not self-similar and applies
from a delta function initial condition (corresponding to all pairs having the same initial
separation). As such, there is no adjustment to an asymptotic regime.

General solutions to the Fokker–Planck equation in two dimensions, for any local
spectrum such that E(K) ∝ K−n, with 1 < n < 3, are given by Foussard et al. (2017).
Both the full solutions (for the delta function initial condition) and asymptotic solutions
are given. We focus hereafter on Richardson dispersion, but note that the results can be
generalized to any local regime.

In all the aforementioned analytical solutions, the diffusivity is assumed to have the
same separation dependence over all scales. This is equivalent to having a spectrum with
an infinite inertial range. But actual inertial ranges are of course finite (e.g. Nastrom
& Gage 1985), and particle pairs will experience different types of dispersion as they
separate.

This was a motivation behind the development of metrics which are functions of
separation rather than time. Perhaps the most familiar is the finite scale Lyapunov exponent
(FSLE) (Artale et al. 1997; Aurell et al. 1997; Lacorata et al. 2001; Boffetta & Sokolov
2002; Lacorata et al. 2004; Haza et al. 2008; Schroeder et al. 2012; Cencini & Vulpiani
2013; Corrado et al. 2017; Berti & Lapeyre 2021). The FSLE is found by calculating
the times required for pair separations to increase over pre-specified bins; then the mean
inverse time is averaged for each bin. The FSLE advantageously does not depend on the
initial separation, employing all pairs sampling the chosen bins. However, the measure
involves subjective decisions, for example which ‘crossing time’ to employ for each pair
(the first or the fastest, etc.). The measure is also sensitive to the temporal resolution of the
data; if the crossing times are less than the temporal resolution, the spatial dependence is
incorrectly captured (LaCasce 2008; Lumpkin & Ellipot 2010; Meunier & LaCasce 2021).
In addition, the FSLE only has exact analytical solutions under non-local dispersion. An
asymptotic solution under Richardson dispersion was given by Boffetta & Sokolov (2002),
but this applies only at long times. Thus the dependence of the FSLE on separation is
usually rationalized by scaling.

Unfortunately, the results from the time- and separation-based metrics are frequently
inconsistent. Morel & Larcheveque (1974) deduced exponential dispersion for pairs of
balloons in the EOLE experiment in the lower stratosphere, while Lacorata et al. (2004)
found that the FSLE was more consistent with Richardson dispersion. Similarly, Poje
et al. (2014) identified Richardson dispersion for a large set of surface drifters in the
Gulf of Mexico using a proxy for the FSLE, while Beron-Vera & LaCasce (2016) deduced
non-local spreading with time-based metrics.

Part of the problem is that, when the inertial ranges are finite, the scaling regimes can
be obscured. This is true even when using thousands of synthetic particles from direct
numerical simulations (DNS). So we still require more sensitive, and consistent, dispersion
metrics.

Hereafter, we study relative dispersion by numerically solving the Fokker–Planck
equation with prescribed, variable diffusivity profiles. This represents essentially a
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‘perfect’ dispersion experiment and thus the best chance to deduce the inertial ranges. We
also examine pair data from 2-D turbulence experiments, for comparison. We use time-
and space-based metrics, and introduce a new measure for the latter. All have analytical
solutions, allowing one to obtain consistent indications of the dispersion, and hence of the
kinetic energy spectrum.

2. Measures

The Fokker–Planck equation governing the PDF of pair separations in homogeneous,
isotropic turbulence is given by

∂

∂t
p = 1

rd−1
∂

∂r

(
κ2rd−1 ∂

∂r
p
)

, (2.1)

where r is the pair separation, p(r, t) is the separation PDF, κ2(r) the relative diffusivity
and d the dimension of the flow (Richardson 1926; Kraichnan 1966; Bennett 2006;
LaCasce 2010; Foussard et al. 2017). We focus hereafter on 2-D flows and set d = 2.
Analytical solutions to (2.1) can been obtained assuming self-similarity or using the
Laplace transform with a delta function initial condition

p(r, 0) = p0δ(r − r0). (2.2)

The time-based metrics centre around the (raw) statistical moments

〈rn〉 = 2π

∫ ∞

0
rn+1p dr. (2.3)

The PDF is normalized so that the n = 0 moment is one. The relative dispersion has n = 2

〈r2〉 = 2π

∫ ∞

0
r3p dr, (2.4)

while the kurtosis is the normalized fourth moment

Ku = 2π

〈r2〉2

∫ ∞

0
r5p dr. (2.5)

Further, the relative diffusivity is defined

K2(t) = 1
2

d
dt

〈r2〉 (2.6)

Note that K2, a function of time, differs from the diffusivity in (2.1), which is a function
of separation. It is common to plot the relative diffusivity against the root-mean-square
(r.m.s.) separation, rrms =

√
〈r2〉, but the measure is nevertheless time based.

The PDF depends on both separation and time. Thus, it is also possible to use p(r, t) to
deduce separation dependencies. The one we propose is based on the cumulative density
function (CDF), the integral of the PDF

c(r, t) = 2π

∫ r

0
p(r′, t)r′ dr′. (2.7)

The CDF measures the fraction of pairs which have which have yet to reach a separation r
at time t. Inverting this, the CDF can be used to diagnose the time required for the pairs to
reach a separation, r.
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Figure 1. A figure illustrating the concept of the CIST. The Lundgren PDF (3.1) is plotted at two times (in blue
and red, respectively) and the corresponding CDFs are shown by the dashed curves. These times are precisely
when the CDF equals 0.5 at two chosen separations, r = 0.75 and twice that, r = 1.5. The CIST corresponds
to the inverse of the difference of these times.

We focus on the delta function initial condition and consider scales exceeding the initial
separation r0. Then the CDF is one initially at a given separation and is a monotonically
decreasing function of time. Thus we can identify the time when the CDF has a specific
value, for example c = 0.5. The difference between the times at two separations, r2 > r1,
then reflects the average time for pair separations to grow from r1 to r2. We refer to the
inverse of this difference as the ‘cumulative inverse separation time’ (CIST). A significant
advantage of the CIST is that it permits analytical solutions in the inertial ranges, as shown
below.

The method is illustrated in figure 1. This shows the Lundgren PDF, applicable for
non-local dispersion (see below) at two times. At the first time, the CDF is 0.5 at a
separation of r = 0.75. At the second time, it is 0.5 at a larger separation, r = 1.5. The
CIST is the inverse of the difference of these two times.

For comparison with the CIST, we employ an alternative version of the FSLE, proposed
by Cencini & Vulpiani (2013). This is defined as

F = d
dt

ln(rrms) = 1
2〈r2〉

d
dt

〈r2〉 = K2

〈r2〉 . (2.8)

The measure (the ‘pFSLE’ hereafter) is an exact proxy for the FSLE in the limit of
vanishing bin size and initial separations (Meunier & LaCasce 2021). It can also be
calculated from the PDF and as such, permits analytical expressions in the inertial ranges.
Note, however, that as F derives from the relative dispersion, it is actually a time-based
metric.

3. Analytical results

We consider the analytical solutions for the metrics in three cases: (i) non-local dispersion
(for the 2-D forward enstrophy cascade), (ii) Richardson dispersion (for the 2-D inverse
energy cascade) and (iii) diffusive spreading (for uncorrelated pair motion).
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3.1. Non-local dispersion
When the inertial range is such that E(K) ∝ K−n with n ≥ 3, the relative diffusivity can
be written κ2 = r2/T , where T is a time scale. In the 2-D enstrophy range, T ∝ η−1/3,
where η is the enstrophy dissipation rate; with a steeper spectrum, T ∝ Z−1/2, if Z is the
area-integrated enstrophy. With this diffusivity, the solution to (2.1) is

p(r, t) = 1
4πr2

0
√

πt/T
exp

(
−(ln(r/r0) + 2t/T)2

4t/T

)
(3.1)

(Lundgren 1981; Bennett 2006). From this, one obtains the relative dispersion and kurtosis

〈r2〉 = r2
0 exp

(
8t
T

)
, Ku = exp

(
8t
T

)
(3.2a,b)

(LaCasce 2010). Both grow exponentially in time, with an e-folding time of T/8.
The relative diffusivity in turn is

K2 = 1
2

d
dt

〈r2〉 = 4
T

〈r2〉 = 4
T

r2
rms. (3.3)

Like κ2, this exhibits a quadratic dependence on the separation. But the two expressions
differ by a factor of 4, as one is a function of separation and the other of the r.m.s.
separation. The pFSLE follows

F = K2

〈r2〉 = 4
T

. (3.4)

Thus, F is constant in the non-local range and inversely proportional to the non-local time
scale, T .

The CIST derives from the CDF, which is given by

c = 1
2
√

πt/Tr2
0

∫ r

0
exp

(
−(ln(r′/r0) + 2t/T)2

4t/T

)
r′ dr′

= 1
2

(
1 + erf

(
ln(r/r0) − 2t/T

2
√

t/T

))
. (3.5)

Setting the threshold value cr = 0.5 yields

erf
(

ln(r/r0) − 2t/T
2
√

t/T

)
= 0, (3.6)

so that

ln
(

r
r0

)
= 2t

T
. (3.7)

Solving for the time yields

t = T
2

ln
(

r
r0

)
. (3.8)

This depends on the initial separation, r0, as one might expect (the time is larger the further
r is from r0). But taking the difference between two separations, r2 and r1, yields

Δt = T
2

ln
(

r2

r1

)
, (3.9)
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which does not. If we employ geometrically increasing separations, so that r2 = αr1, the
logarithmic factor above is a constant, ln(α). Taking the inverse of the resulting time
difference yields the CIST

Cs = 2
T ln(α)

. (3.10)

Like the FSLE, the CIST is constant in the non-local inertial range and inversely
proportional to T . Note that the standard FSLE is multiplied by ln(α) (Aurell et al. 1997),
and doing so with the CIST would yield 2/T . But we leave the estimate as is, in anticipation
of the other regimes for which this factor is absent.

3.2. Richardson dispersion
With an inverse energy cascade, with a spectrum of E(K) ∝ K−5/3, the relative diffusivity
can be written κ2 = βr4/3. Here, β ∝ ε1/3, if ε is the energy dissipation rate. The solution
to (2.1) in two dimensions, given a delta function initial condition, is

p(r, t) = 3

4πβtr2/3
0 r2/3

exp

(
−9(r2/3

0 + r2/3)

4βt

)
I2

(
9r1/3

0 r1/3

2βt

)
(3.11)

(LaCasce 2010). At large separations and times (r0 	 r 	 (βt)3/2), this asymptotes to

p(r, t) ≈
(

3
2

)5 1
4πβ3t3

exp
(

−9r2/3

4βt

)
, (3.12)

which is the 2-D analogue of the Richardson (1926) self-similar solution. Relation (3.12)
applies after the memory of the initial condition is lost. The adjustment to the asymptotic
state is a factor which will be important hereafter.

In the asymptotic limit, the relative dispersion and kurtosis are given by

〈r2〉 = 5.2675β3t3, Ku = 5.6. (3.13a,b)

The cubic dependence on time was noted earlier, and the kurtosis is constant because the
asymptotic PDF is self-similar. The kurtosis with the full PDF is always less than or equal
to this value. The relative diffusivity on the other hand is

K2 =
(

3
2

)
5.2675β3t2 = 2.6099βr4/3

rms. (3.14)

Again, the pre-factor differs from that of κ2 as the dependence is on the r.m.s. separation
rather than the separation. The pFSLE follows

F = K2

〈r2〉 = 2.6099βr−2/3
rms . (3.15)

The asymptotic CDF can be shown to be

c = γ

(
3,

9r2/3

4βt

)
, (3.16)

where γ (n, x) is the lower incomplete gamma function of order n. Setting cr = 0.5 and
solving for the time, we have

t = 9r2/3

4βd
, (3.17)
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where

d = γ −1(3, 0.5) = 2.6741 (3.18)

is the inverse gamma function of order 3. Thus the CIST, based on the difference in times
between r and αr, is

CS = 4βd
9(α2/3 − 1)

r−2/3. (3.19)

The decrease as r−2/3 is as expected for the standard FSLE based on scaling (Aurell et al.
1997; Cencini & Vulpiani 2013), but here we obtain the explicit dependence based on β.
Thus the CIST can in principle be used to deduce the energy dissipation rate, ε.

3.3. Diffusion
For 2-D diffusive spreading, after the memory of the initial condition has been lost, the
PDF is also self-similar and given by

p(r, t) = 1
4πκ2t

exp
(

− r2

4κ2t

)
(3.20)

(LaCasce 2010). The dispersion and kurtosis follow:

〈r2〉 = 4κ2t, Ku = 2. (3.21a,b)

Thus the kurtosis is less than in the energy inertial range. The diffusivity is

K2 = 2κ2 (3.22)

and the pFSLE is

F = 2κ2

r2
rms

. (3.23)

Again, the dependence of F on the separation was deduced previously with scaling (Aurell
et al. 1997).

The CDF on the other hand can be shown to be

c = 1 − exp
(

− r2

4κ2t

)
. (3.24)

Thus the CIST, using cr = 0.5 and geometrically spaced bins, is

Cs = 4κ2 ln(2)

α2 − 1
1
r2 . (3.25)

Hence, the diffusivity, κ2, can also be deduced from the CIST.

4. Numerical integration of the Fokker–Planck equation

4.1. Method
Hereafter, we solve (2.1) numerically for specified diffusivity profiles, κ2(r). As noted,
this represents a ‘perfect’ dispersion experiment, with a smoothly evolving PDF. We found
that a standard FTCS (forward in time, centred in space) discretization was sufficient to
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capture the evolution. Using a second-order Runge–Kutta scheme in time produced the
same results. Thus we solved

pn+1
j = (−uj + sj)pn

j−1 + (1 − 2sj)pn
j + (uj + sj)pn

j+1, (4.1)

with

u(r) = dt
2 dr

1
r

∂

∂r
(rκ2), s(r) = κ2 dt

dr2 . (4.2a,b)

Here, dt and dr are the grid spacings in time and separation. Both were taken to be fixed
(a variable spacing in separation might be preferable, to resolve the behaviour at small
scales while speeding execution. But the code runs rapidly on a laptop computer, so we
retained the simpler constant spacing). The boundary conditions are no flux ((∂/∂r)p = 0)
at r = 0 and p = 0 at r = rmax. Note that rmax must be sufficiently large so as not to impede
the late dispersion. We approximate a delta function initial condition, δ(r − r0), with a
(normalized) Heaviside function spanning one grid cell.

We will focus on two cases, with either Richardson or non-local dispersion at small
scales and diffusive spreading at large. Thus we assume a piece-wise linear power law
dependence

κ2 =
{

κL(r/rc)
n if r < rc

κL if r ≥ rc
, (4.3)

with n = 2 for non-local dispersion n = 4/3 for Richardson. Note that as such, the
parameters β and T are determined by the large scale diffusivity, κ2, and the decorrelation
scale, rc. Thus we have

T = r2
c

κL
, (4.4)

and

β = κL

r4/3
c

. (4.5)

We will also examine a case with two sub-diffusive ranges

κ2 =

⎧⎪⎨
⎪⎩

κL(rc1/rc2)
2(r/rc1)

4/3 if r < rc1

κL(r/rc2)
2 if rc1 ≤ r < rc2

κL if r ≥ rc2

, (4.6)

with

β = κLr2/3
c1

r2
c2

, (4.7)

in the small scale range and T as in (4.4) in the intermediate range. This case has relevance
for both the atmosphere and ocean, as local dispersion is expected at the smallest scales
and non-local dispersion at intermediate scales (e.g. Nastrom & Gage 1985). The question
is to what extent either regime can be observed with the metrics.

The numerical integration was tested against analytical solutions for the non-local PDF
in (3.1) and for the full and asymptotic Richardson distributions (3.11) and (3.12), as shown
in figure 2. The decorrelation scale is rc = 100 km and the initial separation is r0 = 1 km.
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Figure 2. Numerically calculated PDFs at two times, as compared with the corresponding analytical solutions,
for non-local dispersion (a,b) and Richardson dispersion (c,d). The left panels are semi-logarithmic plots, to
show the behaviour at small scales, while the right panels are logarithmic, to capture the large scales. The PDFs
are plotted against the dimensional separation (in km). The dashed curves in the upper panels correspond to
the Lundgren (1981) solution (3.1). The dashed curves in the lower (not visible) are the full solution under
Richardson dispersion (3.11), while the dash-dot curves are the asymptotic solution in (3.12).

The asymptotic two particle diffusivity is set to κL = 1500 m2 s−1, corresponding to a
single particle diffusivity of 750 m2 s−1, a typical value in the subsurface ocean (e.g.
LaCasce 2000; Ollitrault et al. 2005; LaCasce et al. 2014).

With non-local dispersion (figure 2a,b), the numerical solution exhibits small deviations
from the analytical solution below the initial separation, r0 = 1 (a) and also at the
largest separations (b). The latter stem from the boundary condition at the maximum
separation, 1000 km, which affects the moments when the mean separation exceeds
the decorrelation scale, rc = 100 km. Under Richardson dispersion (c,d), the agreement
with the full solution (3.11) is excellent, except again near the maximum separation.
The asymptotic PDF on the other hand is too large for separations r < 10. The
discrepancy decreases at t = 40, as the full PDF approaches the asymptotic limit.
This signals a disagreement with moments from the asymptotic relation, as confirmed
below.
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Figure 3. Results from the non-local (n = 2) simulations for three different decorrelation scales: rc = 100r0,
50r0 and 20r0. (a) Relative dispersion plotted against t/T , with the exponential solution. (b) The scaled kurtosis
vs t/T . The solid curves are the truncated analytical solutions in (4.8), integrated to 2rc. (c) The CIST plotted
against the separation (asterisks) and the proxy FSLE plotted against r.m.s. separation (lower dots). Both
the CIST and pFSLE have been scaled by T−1, and the separations by the decorrelation scale. The solid
curves are the respective analytical solutions for non-local and diffusive dispersion. (d) The relative diffusivity,
normalized by κ2, against separation normalized by rc. The solid curves are the analytical solutions.

4.2. Results
The results from integrating the Fokker–Planck equation (2.1) with non-local dispersion at
small scales are shown in figure 3. The relative dispersion (a) was calculated via numerical
integration of (2.4). This is shown for three cases, in which the decorrelation scale, rc, is
20, 50 and 100 times the initial separation, r0. Thus rc would be 20, 50 and 100 km, if
the initial separation were 1 km. Such scales are typical of surface drifter experiments,
assuming the decorrelation scale is the Rossby deformation radius.

By re-scaling time by the non-local time scale T in (4.4), the initial portions of the curves
collapse onto a single exponential profile, with the dispersion increasing as exp(8σ), if
σ = t/T . In all cases the dispersion deviates thereafter, and always prior to t = T . With
rc = 100r0, the deviation is evident at a separation of roughly 30r0, while with rc = 20r0,
the difference is apparent by 7r0. The dispersion slows from exponential growth when a
significant portion of the wing of the PDF reaches the decorrelation scale. Then the PDF
extends more slowly at larger separations, reducing the second moment compared with
that with an infinite inertial range.
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The same effect impacts the relative kurtosis (figure 3b). With all three separations,
the kurtosis grows exponentially before peaking and decreasing toward the Rayleigh value
of 2. Similar behaviour is frequently seen with data, both from the surface and subsurface
ocean (LaCasce 2000; LaCasce & Ohlmann 2003; Koszalka et al. 2009; Beron-Vera &
LaCasce 2016; Balwada et al. 2021) and from atmospheric reanalysis data (Graff, Guttu &
LaCasce 2015).

The peak value depends on the decorrelation scale; the larger rc, the higher the peak.
This can be captured by integrating the non-local kurtosis to a finite separation rather than
to r = ∞ as in (2.5). This ‘truncated’ kurtosis can be shown to be

Kut = 2 eσ erfc(5σ 1/2 − ln(r/r0)/(2σ 1/2))

[erfc(3σ 1/2 − ln(r/r0)/(2σ 1/2))]2 . (4.8)

The solid curves in the figure, obtained by setting r = 2rc in (4.8), match the timing and
magnitude of the peaks. Thus the maximum kurtosis could in principle be used to infer
the decorrelation scale. As would be expected, the truncated kurtosis curves deviate later
on, as the separations approach the decorrelation scale and the PDF deviates from the
Lundgren distribution (3.1).

The CIST for the three decorrelation scales is plotted on a log–log plot in figure 3(c).
The analytical expressions for non-local and diffusive dispersion, from (3.10) and (3.25),
are indicated by the straight lines. Re-scaling the separation by the decorrelation scale
and the CIST by T−1 collapses the results onto a single curve, which agrees well with
the respective analytical expressions. The CIST exhibits a plateau at small separations and
decreases as r−2 at the largest scales. The transition at r = rc is fairly sharp, so that the
CIST tracks each analytical curve up to nearly the decorrelation scale. Essentially the only
difference between the three cases is the range of scales covered, with the CIST for the
largest rc shifted toward smaller (re-scaled) separations.

The pFSLE, given in (2.8), is plotted against the r.m.s. separation in the same panel.
This also asymptotes smoothly to its respective analytical expressions, given in (3.4) and
(3.23). But the transition between the two regimes is more gradual than with the CIST.
This stems from the pFSLE being a time-based metric, and hence averaging over a range
of separations.

The relative diffusivity is plotted in figure 3(d). The r.m.s. separation is again scaled
by the correlation scale and the diffusivity by the asymptotic value, κL. The analytical
expressions (3.3) and K2 = 2.0 are indicated by the straight lines. The curves for the
different decorrelation scales collapse again onto a single curve, with the choice of rc
determining the range of scales sampled. The curves increase as r2 at small separations and
asymptote to 2.0 at separations larger than roughly twice the decorrelation scale. Recall
that 2rc was the upper limit used when calculating the truncated kurtosis in (4.8). As with
the pFSLE, the transition between regimes is more gradual than with the CIST.

The results with Richardson dispersion at small scales are shown in figure 4. The relative
dispersion is now plotted against βt, with β given by (4.5); this collapses the curves
at the earliest times. Significantly, none of the dispersion curves follows the asymptotic
Richardson t3 law (solid line). All three are briefly tangent to this, but exhibit weaker
growth both before and after. Very similar behaviour has been seen previously with surface
drifter data (Koszalka et al. 2009; Sansón et al. 2017). The lack of t3 dispersion is a result
of both the slow approach to the asymptotic PDF and the weaker dispersion above rc.

Likewise, the kurtosis (panel b, also plotted against βt) increases toward the asymptotic
Richardson value of 5.6 in all three cases but never reaches it. Rather, it quickly decays
again toward the Rayleigh value of 2.
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Figure 4. As in figure 3, but for the Richardson case (n = 4/3). Time has been normalized by β−1 in the
upper panels, and the analytical curves are for asymptotic Richardson and diffusive dispersion.

The CIST on the other hand (panel c) captures both the asymptotic Richardson and the
diffusive scaling regimes, and again exhibits a sharp transition near r = rc. As before,
increasing the decorrelation scale only shifts the curve to the left while maintaining its
shape.

The pFSLE also agrees well with the analytical predictions, but exhibits a somewhat
more gradual transition at rc. The relative diffusivity (d), plotted against the normalized
r.m.s. separation, collapses onto a single curve and agrees well with the analytical solution
for the asymptotic Richardson curve (3.14) at small scales. As with the pFSLE, the
transition at rc is smoothed.

Lastly, we consider the mixed dispersion regime (figure 5), with the diffusivity as
given in (4.6). The two transition scales are set to 10 and 100 km, the latter representing
approximately the oceanic deformation radius at mid-latitudes and the former the
transition to the submesoscales (Thomas, Tandon & Mahadevan 2008). Note the metrics
are not scaled in this case.

The relative dispersion (panel a) increases rapidly initially, then is briefly parallel to the
exponential curve. Despite this, the identification of non-local dispersion is inconclusive
and there is little indication at all of Richardson dispersion. The kurtosis (panel b) likewise
grows faster than exponentially initially and reaches a value of 16, signalling non-local
dispersion. But again, Richardson dispersion cannot be identified.
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Figure 5. The results with Richardson dispersion between 1 and 10 km and non-local dispersion between 10
and 100 km. The dispersion is dimensional, with units km2, as is the relative diffusivity, in m2 s−1. The CIST
and the pFSLE, both with units s−1, are plotted in the lower left panel, with analytical dependencies for both for
the three ranges. The relative diffusivity, with units m2 s−1, is in the lower right panel, with the corresponding
analytical curves.

The CIST on the other hand (panel c) captures all three regimes. The curve overlies the
three analytical predictions (3.19), (3.10) and (3.25), and the transitions at 10 and 100 km
are sharp. The pFSLE (red dots) is consistent with Richardson dispersion at small scales,
but is less successful at capturing the non-local dispersion or the diffusive dependence at
large scales. This is due to the gradual transitions obscuring the respective regimes. The
relative diffusivity (panel d) behaves similarly. It agrees with the Richardson diffusivity
(3.14) at small scales but exhibits only a brief non-local regime and a somewhat delayed
approach to the diffusive limit.

Thus the time-based relative dispersion and kurtosis provide clearer indications of
non-local dispersion than of Richardson dispersion. This is due in large part to the slow
adjustment to the asymptotic regime in the latter case. Better agreement is obtained when
using the moments for the full Richardson PDF (3.11) (not shown), but the expressions
are significantly more complicated to use in practice (Graff et al. 2015). The pFSLE
and the relative diffusivity, also time based but plotted against r.m.s. separation, are
more successful at detecting the different dispersion regimes, but these exhibit gradual
transitions between regimes, blurring the picture with multiple inertial ranges. The clearest
indications come from the CIST, the only truly separation-based metric. This agrees well
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Figure 6. The equilibrated energy spectra from the model runs used in this section. The simulation at left
was forced in the wavenumber band [1, 5], while that at right was forced in the band [100, 120]. The left case
exhibits a non-local inertial range, slightly steeper than K−3. The left case has an inverse cascade range with a
slope of K−5/3.

with the analytical predictions, even for the asymptotic Richardson regime, and is the most
accurate in the transition regions.

5. DNS simulations

We now examine how the metrics fare when applied to synthetic particle data from
turbulence simulations.

5.1. Method
The numerical model is a doubly periodic, single layer (2-D) model, with 512 × 512
grid points (Flierl, Malanotte-Rizzoli & Nabusky 1987; LaCasce 2010, 2016; Meunier &
LaCasce 2021). The flow was forced in localized wavenumber bands, to simulate forward
enstrophy and inverse energy cascades, and damped with Rayleigh friction. The forcing
amplitude was chosen such that the equilibrated energy had a value of roughly 1.0.

Spectra from the two runs are shown in figure 6. In panel (a), the forcing was applied
in the wavenumber band [1, 5], and an enstrophy range develops at smaller scales.
The inertial range slope is somewhat steeper than K−3, but is sufficient for non-local
dispersion. The forcing for the run in panel (b) was applied in the range [100, 120], yielding
an inverse energy cascade at larger scales with an inertial range slope of K−5/3.

After the model energy had equilibrated, 2000 particles were deployed with a specified
grid pattern and advected using a fourth-order interpolation scheme. The smallest initial
separation was 0.01, with 2920 pairs. Of course more pairs could easily be obtained, but we
prefer the smaller number in line with what is possible in an observational experiment. The
separation PDFs and other diagnostics were calculated from the subsequent trajectories.
The PDFs were compared previously with the Lundgren (3.1) and asymptotic Richardson
PDFs (3.11) and (3.12) by LaCasce (2010).

For the CIST, the PDF was cumulatively integrated to obtain the CDF. The CDF
at each time was then interpolated onto a geometrically increasing separation vector,
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Figure 7. As in figure 3, for the forward enstrophy turbulence simulation, with the spectrum shown in
figure 6(a). Two non-local time scales are found, from the relative dispersion and kurtosis, respectively, and the
asymptotic diffusivity is obtained from the relative diffusivity. The analytical predictions are indicated by the
straight lines. Note the pFSLE is not shown in the lower left panel; that is plotted in figure 9.

with α = 1.2. Then the CDFs at these separations were plotted against time and the portion
0.1 < c < 0.9 was fit with an exponential, allowing the value at c = 0.5 to be extracted.
The difference in times between adjacent bins was found, and the inverse difference yields
the CIST. Other methods were also tested, but this yielded the best results. Note the
procedure does not produce estimates at separations where the CDF has not decreased
to 0.5 by the end of the experiment.

5.2. Results
The results with an enstrophy cascade (figure 6a) are shown in figure 7. By fitting the
dispersion and the kurtosis to exponential profiles, we extract the non-local time scale, T .
Interestingly this yields two different values: T1 = 1.5 from the dispersion and T2 = 2.5
from the kurtosis. The difference reflects deviations in the actual PDF from the Lundgren
solution, so that the second and fourth moments differ. The large scale diffusivity on the
other hand was obtained from the asymptotic value of K2, in the lower right panel. This
yielded κL = 0.5.

The relative dispersion grows exponentially up to t = 1, with the shorter non-local time
scale, T1. Thereafter it increases more slowly, in line with the linear growth expected
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for diffusion. The kurtosis also grows exponentially, but with the slower time scale T2. It
peaks at a value near 30 and decreases thereafter.

The CIST plateaus below r = 1.0, which is comparable to the diffusive scale inferred
from the energy spectrum (figure 6) and the relative diffusivity (see below). The value
agrees with the theoretical value based on the kurtosis time scale, Cs = 2/(T2 ln(α)). The
value based on T1 is too large. The prediction for the diffusive range, using the value
of κL deduced from the diffusivity, agrees well. Thus the CIST correctly captures both
exponential growth and the diffusive spreading. However, the transition between the two
regimes at r = 1.0 is somewhat less sharp than in the previous examples.

The relative diffusivity increases as r2 at small scales, as expected, and agrees more
closely with the theoretical result when using the smaller time scale, T1. This is
unsurprising, since the diffusivity derives from the dispersion. At scales greater than
roughly r = 3 the diffusivity saturates, as the pairs become decorrelated.

The case with small scale Richardson dispersion (figure 6b) is shown in figure 8. Both
β and κL are extracted from the relative diffusivity, which exhibits a clear r4/3 growth
at smaller scales and a plateau above the correlation scale. The relative dispersion closely
resembles that obtained when integrating the Fokker–Planck equation (figure 4), in that the
dispersion is tangent to the theoretical t3 curve only briefly; the growth is slower before and
after. Subtracting the initial separation squared, r2

0, as suggested by Babiano et al. (1990),
improves the agreement initially somewhat, but does not bring the curve in line with a t3
dependence.

Interestingly, however, the kurtosis increases exponentially at the beginning, exceeding
the Richardson limit of 5.6. Thus there is a brief period of non-local dispersion at small
scales, something which is not evident in the dispersion. This indicates that the smallest
scales are more viscous in this simulation, yielding approximately constant strain and
hence exponential dispersion (e.g. Batchelor 1952).

The non-local range is confirmed by the CIST, which exhibits a plateau at the smallest
scales. Extracting a non-local time scale, T , by fitting the initial kurtosis, we find that the
CIST agrees well with the resulting theoretical plateau of Cs = 2/(T ln(α)). Thereafter,
the CIST decreases as r−2/3, in line with (3.19) using the value of β from the relative
diffusivity. And at large scales the CIST decays as r−2, in line with (3.25) when using the
κL deduced from the relative diffusivity. Thus the CIST neatly captures all three scaling
regimes present.

The results from the numerical simulations are thus in line with those from the
Fokker–Planck integrations. The relative dispersion and kurtosis yield clear indications
of non-local dispersion but not of Richardson dispersion. The relative diffusivity plotted
against r.m.s. separation is more successful at capturing the different regimes, but is also
noisier than in the Fokker–Planck cases. Again, however, the CIST yields the clearest
indications of the ranges. The identification is significantly aided by having analytical
expressions for the metric.

5.3. The CIST and the FSLE
How does the CIST compare with the traditional FSLE? As the latter is based on pair data,
it can easily be calculated for these simulations. We used two methods to do this. The first
involved the ‘first crossing method’, which averages the first times which pairs cross the
boundaries of the chosen separation bins (LaCasce 2008; Lumpkin & Ellipot 2010). The
second involves the ‘finite amplitude growth rate’ (FAGR), introduced recently by Meunier
& LaCasce (2021). With this, one calculates the instantaneous exponential growth rates
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Figure 8. As in figure 7, for the inverse energy turbulence simulation (spectrum shown in figure 6b). The
results indicate a short non-local range at the smallest scales, as seen in the kurtosis and the CIST. Thereafter,
the results are consistent with Richardson dispersion followed by diffusion. The parameter T was obtained
by fitting the initial portion of the kurtosis, while β and κL were obtained from the relative diffusivity. The
analytical predictions are indicated by the straight lines.

from individual pairs, at all times, and then average them in the chosen separation bins.
Only positive FAGR values are used, corresponding to growing pair separations. We used
the same bins for both measures as with the CIST calculation, with α = 1.2.

The results are shown in figure 9. The two FSLE estimates were very similar, so only the
FAGR-based FSLE is shown (in circles). The CIST is plotted in asterisks. We also include
the pFSLE, plotted against the r.m.s. separation (dots).

With non-local dispersion (panel a), the CIST and the FSLE plateau below the
decorrelation scale of r = 1.0, with the FSLE lying below the CIST. The pFSLE also
flattens, but at somewhat smaller scales. It begins to decrease when the separation is
slightly larger than r = 0.1.

Above the decorrelation scale, the CIST decays as r−2 in line with the analytical
prediction, as seen previously. The pFSLE does as well, approaching the analytical curve
in (3.23). The FSLE on the other hand decreases with a slope less than the r−2 expected
for diffusive motion. This slower decay is almost always seen in surface drifter analyses
(e.g. Lacorata et al. 2001; LaCasce & Ohlmann 2003; Schroeder et al. 2012; Sansón et al.
2017).
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Figure 9. Comparing the CIST (asterisks) with the FSLE of Meunier & LaCasce (2021) (circles) and the
proxy FSLE of Cencini & Vulpiani (2013). The enstrophy cascade case is shown in the left panel, and the
energy cascade in the right. The analytical results for the CIST and pFSLE are indicated by the straight lines.

With the inverse cascade (panel b), the results are similar. As noted before, the CIST
exhibits three regimes and matches the analytical expressions for all three (3.10), (3.19)
and (3.25). The pFSLE captures the Richardson and diffusive regimes, also agreeing with
the analytical curves (3.4) and (3.23), but the non-local dispersion at small scales is not
observed. The FSLE does exhibit an exponential growth plateau at the smallest scales,
with values less than for the CIST, and the intermediate range is also seen, with a slope
consistent with r−2/3. But as before, the slope at the largest scales is shallower than r−2.
Indeed, the lower portion of both curves is well fit with a power law of r−1.1.

Thus the FSLE is qualitatively consistent with the CIST and the pFSLE in the inertial
ranges, below the decorrelation scales. But the CIST and pFSLE are superior above that
scale, giving clearer indications of diffusive spreading.

As noted above, Boffetta & Sokolov (2002) derived an equation for the PDF of the FSLE
(‘doubling times’ in their article) and solved it using a Bessel series. In the long time limit
the solution is dominated by the gravest term, yielding analytical expressions for the PDF
and the doubling time (their (12)). This is the only analytical expression to our knowledge
which exists for the FSLE in the Richardson range. Inverting this and multiplying by ln(α),
in line with the definition of the FSLE, yields

F = 4
3

ln(α) · α2/3

α2/3 − 1
CFβr−2/3. (5.1)

The constant

CF =
(

5.2675 × 243
1280

)1/3

, (5.2)

comes from equating the energy dissipation rate, ε, and a constant, k0, in their original
expression with our β (by matching the relative dispersion). We tested this against the
FSLE in the energy cascade experiment and the result (not shown) was nearly the same
as the prediction for the pFSLE shown in figure 9. Thus while the slope is correct,
the amplitude is too small. This is most likely because the time is too short to warrant
neglecting other terms in their expansion; but we did not explore this further.
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Figure 10. The CIST with fewer pairs, for the enstrophy cascade simulation (a) and the energy cascade (b).
The pairs were chosen randomly from the total set, with the numbers as indicated in the legends.

The CIST, like all relative dispersion measures, degrades when one has fewer pairs. The
effect, however, at least with the present experiments, is fairly modest. Shown in figure 10
is the measure with N = 2920, N = 1500, N = 500 and N = 200 pairs (with the smaller
sets chosen randomly from the largest set). Note that N = 200–1000 pairs is now typical
in surface drifter experiments. The curves exhibit more noise with fewer pairs, but the
shapes of the curves are retained in all cases. Thus the comparison with the theoretical
predictions would be successful, even with only 200 pairs. We note, however, that the
degradation could be worse in an actual experiment, if the turbulence is less homogeneous
than in these experiments.

6. Summary and conclusions

We have examined relative dispersion with finite inertial ranges of differing extents. For
this, we integrated the Fokker–Planck equation governing the pair separation PDFs, using
the relative diffusivity profiles for the respective ranges. We considered both non-local and
local (Richardson) dispersion, with diffusive spreading at large scales. We also examined
results from virtual particles in two 2-D turbulence simulations.

The Fokker–Planck integrations, representing essentially an ‘ideal’ pair dispersion
experiment, yield a PDF which evolves in space and time. The PDF can then be used to
calculate the moments (relative dispersion, kurtosis, etc.) by integrating over separations.
The PDF can also be integrated to obtain temporally evolving CDFs. These are the basis
of a new measure, the CIST, a PDF-based counterpart to the FSLE. The advantage with
all the PDF-based measures is that they permit analytical solutions in the inertial ranges
and under diffusive spreading.

With non-local dispersion at small scales, the relative dispersion and kurtosis increase
exponentially in time and the relative diffusivity increases as 〈r2〉. These tendencies are
clearly evident because the non-local PDF is not self-similar and applies from t = 0.
Nevertheless, the exponential growth is transient and can be difficult to resolve if the initial
separation, r0, is not significantly smaller than the decorrelation scale, rc. The situation is
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worse with Richardson dispersion, since the results are compared with an asymptotic PDF
which only pertains at long times. As such, the well-known t3 dispersion expected under
an energy cascade is barely glimpsed, even when r0 is one hundred times smaller than rc.

In contrast, the CIST, the only truly separation-based metric examined, yields clear
indications of the dispersion in all inertial ranges, including the asymptotic Richardson
relation. A proxy FSLE, due to Cencini & Vulpiani (2013), and the relative diffusivity,
both plotted against r.m.s. separation, are marginally successful in this. However, as both
involve averaging over separations, the transitions between regimes is less sharp, blurring
the dependencies with short inertial ranges.

The results from the turbulence experiments are largely consistent with the above
conclusions. The CIST, pFSLE and the particle-based FSLE are superior at identifying
the dispersion regimes. However, the CIST and pFSLE have analytical solutions, which the
FSLE lacks. These greatly aid finding consistency with the other measures, from which the
growth parameters can be determined. Moreover, the CIST and pFSLE behave correctly
in the diffusive range, decaying as r−2, while the standard FSLE decays too slowly.

Thus the results support previous studies (e.g. Artale et al. 1997; Aurell et al. 1997;
Lumpkin & Ellipot 2010; Corrado et al. 2017) that separation-based metrics are more
sensitive at detecting dispersion characteristics with finite inertial ranges. It is preferable
nevertheless to study the results in conjunction with the time-based moments. As noted
previously, studies using only time- or separation-based metrics are often inconsistent,
and this need not be the case. Having analytical solutions for both types of metric allows
establishing consistency between them, something which has been lacking before now.

The CIST remains to be tested with in situ data. As noted, the results could be noisier
with inhomogeneous statistics and with fewer numbers of pairs. Indeed, the PDFs in such
cases are noisier (e.g. Ollitrault et al. 2005; Koszalka et al. 2009; LaCasce 2010) which will
complicate assessing the cr = 0.5 criterion used in the CIST calculation. More advanced
curve-fitting routines could potentially improve this, beyond the simple exponential fitting
used here.
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