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Let Xy, ...,X, be independent random variables with X; having survival function
FY i=1,...,n, and let Yy, ...,Y, be a random sample with common population
survival distribution F*, where A= S%A/n. Let X, and Y, denote the
lifetimes of the parallel systems consisting of these components, respectively. It is
shown that X, is greater than Y,., in terms of likelihood ratio order. It is also
proved that the sample range X,., — X., is larger than Y,., — Y., according to
reverse hazard rate ordering. These two results strengthen and generalize the
results in Dykstra, Kochar, and Rojo [6] and Kochar and Rojo [11], respectively.

1. INTRODUCTION

Order statistics have received a great amount of attention from many researchers since
they play an important role in reliability, data analysis, goodness-of-fit tests, statistical
inference, and other applied probability areas. Please refer to David and Nagaraja [5]
and Balakrishnan and Rao [1, 2] for more details. Let X;., < X5., < - -+ < X,,.,, denote
the order statistics of random variables X, X5, ..., X,,. In the reliability context, the
lifetimes of parallel and series systems correspond to order statistics, X,,., and Xj.,,,
respectively, and they have been extensively studied when the components are inde-
pendent and identically distributed (i.i.d.). However, in practice, usually, the obser-
vations are not i.i.d. Due to the complicated nature of the problem, not much work
has been done for the non-i.i.d. case.
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For ease of reference, let us first recall some stochastic orders that will be used in
the sequel. Let X and Y be two nonnegative random variables with distribution func-
tions F and G; survival functions £ and G; and density functions fand g, respectively.

DeriNiTION 1.1 (Shaked and Shanthikumar [17] and Miiller and Stoyan [14]):  If the
ratios below are well defined, X is said to be smaller than Y in the following:

1. likelihood ratio order (denoted by X <. Y) if g(x)/f(x) is increasing in x

2. hazard rate order (denoted by X <y, Y) if G(x)/F(x) is increasing in x

3. reversed hazard rate order (denoted by X <., Y) if G(x)/F(x) is increasing

in x

4. stochastic order (denoted by X <4 Y) if F(x) < G(x) for all x.

It is well known that
X< Y=X<hm Y =X <4 Y.

Let {x(1), X2), - - - » X} denote the increasing arrangement of the components of the
vector X = (X1, X2, ..., X,).

m
DEerINITION 1.2: The vector X is said to majorize the vector'y (denoted by x Zy) if

J

j
Z Xi) < Z Y
i=1

i=1
forj = 1, oo, n— 1 and Z?:l Xy = Z?:l Ya)-

For extensive and comprehensive details on the theory of the majorization order
and its applications, please refer to Marshall and Olkin [12]. Another interesting order

related to the majorization order introduced by Bon and Paltanea [4] is the p-larger
order.

DerINITION 1.3: A vector x in RY" is said to be p-larger than another vector'y in R™

P
(denoted by x = y) if

J j
HXU)SHy(i), j=1,...,n.
i=1 i=1
Khaledi and Kochar [9] proved that, for x, y € R,

m p
XZy = XZYy.

However, the converse is not true.
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Random variables X;,X5,...,X, are said to follow the proportional hazard
rates (PHR) model if for i=1,2,...,n, the survival function of X; can be
expressed as

Fitx) = [F)), (1.1)

where F(x) is the survival function of some random variable X. If r(¢) is the hazard
rate corresponding to the base line distribution F, then the hazard rate of X; is A;#(¢),
i=1,2,...,n. We can express (1.1) as

Fi(x) = e MRO, i=1,2,...,n, 1.2)

where R(x) = [{r(t)dt, is the cumulative hazard rate of X. Exponential random
variables with hazard rates Ay,A,...,A, is a special case of the PHR model
with R(x) = x. Many interesting results have been obtained in the literature for
the PHR model. Pledger and Proschan [15] proved that if (Xi, ..., X,) and X, ...,
X:) have proportional hazard rate vectors (A, ... ,A,) and (/\]k, .. ,)\:), respectively,
then

A M) Z A, A

implies that, fori=1,...,n,
Xi:n Zst X,*n (13)

Subsequently, Proschan and Sethuraman [16] generalized this result from component-
wise stochastic ordering to multivariate stochastic ordering. Boland, El-Neweihi, and
Proschear [3] showed by a counterexample that (1.3) cannot be strengthened from
stochastic ordering to hazard rate ordering. This topic is followed up by Dykstra,
Kochar, and Rojo [6], where they showed that if X, . . ., X, are independent exponential
random variables with X; having hazard rate A;, i=1,...,n, and if ¥,....,Y, is a
random sample of size n from an exponential distribution with common hazard rate
A=>"" | \;/n, then

Yn:n Shr Xn:n- (14)
Under a weeker condition that if Zi, . . . ,Z, are a random sample with common hazard
rate A = (H,’;l)\i)l/", the geometric mean of the A’s, Khaledi and Kochar [7] proved
that

Znn <nr Xnn- (15)

They also showed there that

P
()\17)\27 .. 7/\H)E(A77A;7 .. 7)\2) :>Xn:n >t X

— nn’

(1.6)

which improved the bound given by (1.3). Recently, Khaledi and Kochar [10] extended
the results (1.5) and (1.6) from the exponential case to the PHR model.

https://doi.org/10.1017/50269964807000344 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964807000344

600 S. Kochar and M. Xu

Another interesting topic that has attracted much attention is the sample range,
one of the criteria for comparing variabilities among distributions. Kochar and
Rojo [11] pointed out that in the case of heterogeneous exponentials,

Yn:n - Yl:n Sst Xn:n - Xl:n' (17)
Later, Khaledi and Kochar [8] improved upon this result. They proved that
Zn:n - Zl:n Sst Xn:n - Xl:na

where Z,., is the maximum of a random sample from exponential distribution with
common parameter as the geometric mean of the A;’s.

In this article, the above topics are further studied. We prove that if X, ... X, are
independent random variables with X; having survival function FMi=1,...n, and
Y1, ....Y, are a random sample with common population survival distribution A,
where A = Y% | A;/n, then

Yn:n Slr Xn:n
and
Yn:n - Yl:n Srh Xn:n - Xl:n~

These two results strengthen and generalize (1.4) and (1.7), respectively.
For the sake of convenience, throughout this article, the term increasing is used
for monotone nondecreasing and decreasing is used for monotone nonincreasing.

2. STOCHASTIC COMPARISONS OF PARALLEL SYSTEMS

The following two lemmas will be used to prove our main result.

Lemma 2.1 (Khaledi and Kochar [7]): For x > 0, the functions

1 —e* d x2e™™
an

X (1 — e

are both decreasing.
Lemma 2.2: Let Xy, ...,X, be independent exponential random variables with X;

having hazard rate \;, i=1,...,n. Let Yy,...,Y, be a random sample of size n
from an exponential distribution with common hazard rate A = _7_,A;/n. Then

Yn:n Slr Xn:n . (2 1)

Proor: For x > 0, the distribution function of X,,., is

Fun(t) =[] (1 = e,
i=1
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with density function as

Aje™ M

n A
ﬁl:n(x) = Fn:n(x) Z m .
i=1

Similarly, the distribution function of Y,,.,, for x > 0 is

Gun(x) =1 — ef)_\x)n7

with density function

nXe‘L‘
nn = Gn:n T .-
8rn() = G 7~

Note that, for x > 0,

n /\i —Aix

Jun(X) = Fyn(x)
8nn(X) B nie ™M Gn(x)
l —e
_ ) Fr()
nA Gup(x)’
Where
" Ne N
)
hi(x) = o
1 — e
_ Z A ei‘:‘c —1 .
o 1
Since

(X,,X) -—<m (Ala"'aAn)a

it follows from Theorem 3.2 of Dykstra et al. [6] that

Frn(x)
G (%)

is increasing in x > 0. Thus, it is sufficient to prove that /;(x) is increasing in x > 0.
The derivative of h;(x) is, for x > 0,
Ai N

K (x) = AeM SPE I O N L
|(x) = Ae ;em_l (e >;<€A,x_l)2
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By Lemma 2.1 and CebySev’s sum inequality (Mitrinovié [5, Thm. 1, p. 36]), it holds
that, for x > 0,

. A A Iy AZehir ] e
Ae™ Lo>T : . 2.2
¢ ;e""‘ -17 n &0d- e hv)? — A 22)

Thus, 4(x) will be nonnegative if, for x > 0,

AT — e
- = e)\x -1

holds.
Denote, for x > 0,

n —\ix ~

Ag-1-—
ha(x) = ;ZTe —(1—e™.

i=1

Since the derivative of h5(x) is

L L
h(x) = - Z e A _ Je M

i=1

and by the arithmetic—geometric mean inequality, for x > 0,

n
E ef)\,vx

n
i=1

n

vV
a
+
=
Il
Q
R

it follows that i5(x) > 0; for x > 0; that is, /,(x) is increasing in x > 0. Observing that
h»(0) = 0, we have hy(x) > 0 for x > 0. Hence, h(x) is increasing in x > 0. The
required result follows immediately. |

Now, we are ready to extend the above result to the PHR family.
THEOREM 2.3: Let Xi,...,X, be independent random variables with X; having

survival function F)"’, i=1,...,n. Let Yy, ...,Y, be a random sample with common
population survival distribution F*, where A = 3"7_ \;/n. Then

Yn:n Slr Xn:n-

Proor: Note that the cumulative hazard of F is

H(x) = —log F(x).
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Now, forx >0,i=1,...,n,

P(HX) > x) = P(X; > H '(x)) = FN(F (™) = e,

Where H ! is the right inverse of H. Denoting X; = H(X;), we notice that X/ is expo-
nential with hazard rate A; for i =1, ... ,n. Similarly, let Y/ = H(Y;) be exponential
with hazard rate X for i = 1, ... ,n. It follows from Lemma 2.2 that

Y, }{t:n Slr X, ;

that is,
H(Yn:n) Slr H(Xn:n)~

Since H™ ' is an increasing function, it follows from Theorem 1.C.4 in Shaked and
Shanthikumar [17] that

Yn:n Slr Xn:n~ u

One might wonder whether (1.5) of Khaledi and Kochar [7] can be strengthened
from the hazard rate order to the likelihood ratio order. The following example serves
as a counterexample.

Example 2.4: Let X,,...,X, be independent exponential random variables with
X; having hazard rate A;, i =1,...,n, and Z;, ... ,Z, be a random sample of size n
from an exponential distribution with common hazard rate A = (J]?_,A;)"". Then
the reversed hazard rate of X,,., is

fren) Z e

Fn:n(x) B i=1 - e*/\,'x .

Similarly, the reversed hazard rate of Z,,., is

e M

gn:n(x) N
=nA —.
Gn:n(x) 1— 87’\’(

Let Ay = A, =1, A3 =3, and n = 3; then

Jun(1) Znn(1)
~ 1321 <1339~ .
Fo..(1) o Gpn(1)
Thus,
Xn:n a—brh Zn:na
which implies that
Xn:n -%lr Zn:n~
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Remark: Remark 2.2 of Khaledi and Kochar [7] asserted that the stochastic order in
(1.6) cannot be extended to the hazard rate order. Example 2.4 also shows that

p
AL A2, o A ZALAS, ) A X <ih X

nn —

3. REVERSE HAZARD RATE ORDERING BETWEEN THE
SAMPLE RANGES

Theorem 3.2 will strengthen (1.7) from the stochastic order to the reversed hazard
rate order and also generalize it to the PHR family. First, let us prove the following
lemma.

Lemma 3.1: Let X,,....,X, be independent exponential random variables with
X; having hazard rate A;, i =1, ...,n. Let Yy, ...,Y, be a random sample of size n
from an exponential distribution with common hazard rate A =" A;/n. Then

Yn:n - Yl:n Srh Xn:n - Xl:n~ (31)

Proor: Denote by Ry = X,,., — X;., and Ry =17Y,,.,, — Y}., the sample ranges of X;’s
and Y;’s, respectively. From David and Nagaraja [5, p. 26], the distribution function
of Ry is, for x > 0,

n

FRX(x)z%ijm [[ a-e*.
i i=1  j=1,j#i
=

Thus, we have the density function of Ry as, for x > 0,

l n n /
fRX(x)—,,< il (1—e“)>
Z/\i i=1  j=lj#i

"miwmﬁaﬁd
L i=1

n
Son LET k=1k#ij
1

_ 1 . Y 2”: Aje A ] ﬁ(l iy
Zn:)\; Li=1 ljzl,i;ei(l — e M1 — e | iy
i=1
< —hix
B il:—[l (1 —e™ )i A i )\jef)tjx
U L] — g~ 1 —e N

=1 J=1j#i
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Hence, the reversed hazard rate of Ry is, for x > 0,

. & A L Ne z A .
Tre(¥) = (Zl — e hx Z 1 ieel’\fx> (Zl - e""x> '

i=1 j=lj#i

The reversed hazard rate of Ry is, for x > 0,

ey (0 = (1 — 1)
1—e

Since, for x > 0,

and

it holds that

n /\i n 1— —\ix
Y= 32)
=

Note that, from inequality (2.2),

e v L] — et L
J <n P ——
; (1 — e~hix)? ; AT 1 — e

i=1

Combining this with inequality (3.2), we get, for x > 0,

n iX

A
Z(l _AX)Z Z] —AxZ] e—)\x

i=1

that is, for x > 0,

n /\i n /\ie—/\,-x n )\1-267)"%
; 1— e*)\ix ; 1— 67)\")( - ; (1 _ e—,\,x)Z
n—1<< /\i n /\,-e*)")‘
= : 33
- n ; 1 — g*)\ix ; 1— 67’\"" ( )

Observe that

—X

fx) =

—X
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is convex in x > 0. It follows from Jensen’s inequality that

_Z Nixe Ax Xxe"\x

1— e_’\"C -1 - e—)‘x;
that is,
I <N N M de M
- > . 34
nZl—e"‘x ] —e M (3-4)

Using inequalities (3.3) and (3.4), it holds that, for x > 0,

n

4 Ai nLNe N Ne™
- -1
;1 — e Aix — 1 — e Aix ;(] —)\x)z > (n ) 7MZ — e hx’

Hence, for x > 0,
~1 _
N A MY Ai Ae™ M
(St 3 2 (Siie) 2ot e

that is,

FRy(X) = TRy (X).

The required result follows immediately. ]

Now, we extend the above result to the PHR family.

THEOREM 3.2: Let Xi,...,X, be independent random variables with X; having
survival function F’\", i=1,...,n. Let Yy,...,Y, be a random sample with
common population survival distribution F, where X = S_"_ A;/n. Then

Yn:n - Yl:n Srh Xn:n - Xl:n-

Proor: From David and Nagaraja [5, p. 26], the distribution function of Ry is, for x > 0,

Fr@)=>_ J: M wfa [T Y @) — FY o+ x)ldu

i=1 j=1j#i

Hence, the density function is, for x > 0,

fou @) =>" L NFNT aofao YT MY e u)f e+ i)
i=1 j=1,j#i

X H [F*(u) — F*(u + %) du

k=1k~ij
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Similarly, the distribution function of Ry is, for x > 0,
R » - n-l
Fr,(x) = nJ M w)f ) [F ) — F\u + x)} du.
0

Hence, the density function is, for x > 0,
iy 00 =t = I)J NP f P @+ wf e+ ) [Fx(u) — P+ x)} " du.
0

From the definition, we need to prove that, for x > 0,

Sre () < Jry ()
Fr,(x) ~ Fg,(x)

Thus, it is sufficient for us to prove that the following inequality holds:

{Z AN N )f (u) Z NN 4 uf (x+ ) H [P = P+ ) }
i=1

J=Lj#i k=10

X {n/_\F}‘I(u)f(u) [F;\(u) - FX(M + x)} nl}

> {n(n . 1);\2F;\71(u)f(u)F}\71(x + u)f(x + I/t) |:F5\(u) _ F‘;\(u +x)] ’1—2}

x {Z AP p) T] [P - P ol }
i=1

=l

After some simplifications, the above inequality is reduced to, for x, u > 0,

Z": NEY () Z NEY (x+ )

Fruw) — Fru+
o FAi(u)_FAi(x+u)jl,i;éiF)\j(M)—F/\j(x—Fu)[ () = F (4 x)

S M) <A
> — DAF (u + x);
> ; P e (n — DAF*(u + x)

that is, for x, u > 0,
n

En: /\i Z . {F;X(X)—I}ZZ#M—DX, 3.6)

- Y0 47 P ) — 1 1 - Fl(x)

where

5
Fu) = (;-f(:)x),

https://doi.org/10.1017/50269964807000344 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964807000344

608 S. Kochar and M. Xu

which is the survival function of X, = X — u|X > u, the residual life of X at time u > 0.
Now, using the transform

H(x) = —log F,,(x), u>0,

(3.6) is equivalent to

n

- A - A AHG) A ~
i= J=lj#i

i=1

that is, for x > 0,

£ — e—A,H(x)j:U#il — e MO |\ £ — A
S i
1 — ¢ MHW
Thus, the required result follows from inequality (3.5) |
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