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We consider two-dimensional quasi-geostrophic annular flows around a circular island
with a radial offshore bottom slope. Since the conical bottom topography causes
a certain beta effect, by analogy with the conventional beta plane we term our
model a beta cone. Our focus is on the flows with zero total circulation, which
are composed of two concentric rings of uniform potential vorticity (PV) attached
to the island. The linear stability of such flows on a beta cone was investigated
in a previous publication of ours. In the present paper, we study numerically the
nonlinear evolution of weakly viscous flows, whose parameters are fitted so as to
guarantee the highest instability of the azimuthal mode m = 1, . . . , 6. We study the
production of vortices and Rossby waves due to the instability, consider the effect of
waves on the emerging vortices and the interaction between the vortices. As in the
flat-bottom case, at m> 2, the instability at weak bottom slopes normally leads to the
emission of m dipoles. However, a fundamental difference between the flat-bottom
and beta-cone cases is observed in the trajectories of the dipoles as the latter recede
from the island. When the flow is initially counterclockwise, the conical beta effect
may force the dipoles to make a complete turn, come back to the island and rearrange
in new couples that again leave the island and return. This quasi-periodic process
gradually fades due to filamentation, wave radiation and viscous dissipation. Another
possible outcome is symmetrical settling of m dipoles in a circular orbit around
the island, in which they move counterclockwise. This behaviour is reminiscent
of the adaptation of strongly tilted beta-plane modons (dipoles) to the eastward
movement. If the initial flow is clockwise, the emerged dipoles usually disintegrate,
but sometimes, the orbital arrangement is possible. At a moderate slope, the evolution
of an unstable flow, which is initially clockwise, may end up in the formation of
a counterclockwise flow. At steeper slopes, a clockwise flow may transform into a
quasi-stationary vortex multipole. When the slope is sufficiently steep, the topographic
Rossby waves developing outside of the PV rings can smooth away the instability
crests and troughs at the outer edge of the main flow, thus preventing the vortex
production but allowing the formation of a new quasi-stationary pattern, a doubly
connected coherent PV structure possessing m-fold symmetry. Such an m-fold pattern
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can be steady only if it rotates counterclockwise, otherwise it radiates Rossby waves
and transforms eventually into a circularly symmetric flow.

Key words: quasi-geostrophic flows, topographic effects

1. Introduction
The instability of two-dimensional flat-bottom circular flows with stepwise vorticity

profiles around a rigid cylinder (island) was investigated by Kizner et al. (2013). It
was shown that the instability of azimuthal mode m may lead to the emission of
m vortex dipoles. Rabinovich, Kizner & Flierl (2018) (referenced below as RKF)
considered flows with stepwise potential vorticity (PV) profiles around a circular
island, introducing the so-called beta-cone model, in which the beta effect is caused
by conical bottom topography, i.e. by the background PV with a radial profile.
The stability/instability conditions were established for circular flows with zero net
vorticity. In the present paper we take as the initial flows some of the unstable
configurations found in RKF, and study their time evolution numerically, our aim
being to explore possible evolution scenarios. The parameters of the initial flow are
fitted so as to ensure that one or another azimuthal mode is most unstable.

The experience with dipoles on a beta plane (e.g. Hesthaven, Lynov & Nycander
1993) prompts the idea that the conical beta effect will not allow the dipoles to move
too far from the original flow, but rather will make them turn back after a time.
Another possibility is that the emitted dipoles may settle on a constant-background-PV
line (a circle) and travel around the island in a quasi-steady manner. In this paper, we
show that both outcomes in fact do occur at mild slopes.

Flows possessing circular symmetry were investigated by many authors, who mostly
used the shallow-water model, where the free-surface elevation is not negligible
(contrary to our assumption). For example, spiral gravity waves were found to
emerge around a cylindrical seamount (Longuet-Higgins 1967). Trapping of gravity
waves was found to be possible under certain conditions (Longuet-Higgins 1967,
1969; Rhines 1969; Longuet-Higgins 1970). A natural question would be, what the
form of barotropic waves round a circular island on a beta cone could be, and
whether trapping can occur in our case. We will show that these issues are essential
for understanding the evolution of unstable flows.

In § 2, an outline of the beta-cone model and the basic-state flow is given, followed
by a presentation of the numerical method used. The results of the simulations for
weak slopes are discussed in § 3, where the focus is on the trajectories of the dipoles
emitted due to the flow instability. The mechanism of the dipole formation is not
discussed here because, qualitatively, it is identical to that in the flat-bottom case.
In § 4 we explore some of the basic properties of Rossby waves in the barotropic
beta-cone model to be used in the subsequent sections. Steep-slope effects on the flow
are presented in § 5, where the role of the relatively strong Rossby waves is discussed.
It is shown that strong beta effect prevents the emission of dipoles and brings the flow
to a new quasi-stationary state. In § 6 we discuss the case of an intermediate slope. It
is shown that the weak mode-1 instability leads first to some shift and deformation of
the two PV rings, and at a later stage, to erosion of the inner ring due to filamentation.
No dipole lobes emerge in this case. For higher modes, the dipoles formed due to the
instability stay in the proximity of the island. A special case of the mode-2 instability
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FIGURE 1. (Colour online) Typical profiles of the basic-flow potential vorticity Q̄ (dashed,
blue) and the azimuthal velocity V̄ (solid, red) for β =−0.1, Γ1 = 1, R1 = 2.5 and R2 = 4
(positive Γ1 and negative Γ2).

is examined in detail, where the topographic Rossby waves have a strong impact on
the emitted dipoles. In this case, the beta effect causes the reversal of an initially
counterclockwise flow.

2. Problem statement and methods
2.1. Topographic beta cone. The basic flow

Here we repeat briefly the presentation of the problem statement given in an earlier
publication of ours (RKF). Before turning to simulations, we consider an inviscid
barotropic flow around a cylindrical island, assuming the bottom outside the island
to have a constant radial slope, so that the depth increases linearly offshore. Under
the quasi-geostrophic approximation and the rigid-lid condition at the sea surface, the
flow is two-dimensional. In the polar coordinates r and θ , the radial and azimuthal
components of the velocity, u and v respectively, can be expressed in terms of a
streamfunction ψ as

u=−
1
r
∂ψ

∂θ
, v =

∂ψ

∂r
. (2.1a,b)

The potential vorticity in this model is defined as

Q= ζ + βr, (2.2)

where ζ is the relative vorticity,

ζ =
∂2ψ

∂r2
+

1
r
∂ψ

∂r
+

1
r2

∂2ψ

∂θ 2
; (2.3)

β= const. is proportional to the slope, and is negative by definition for an island in the
northern hemisphere. The inviscid flow is governed by the PV conservation equation,

∂Q
∂t
+

1
r

(
∂ψ

∂r
∂Q
∂θ
−
∂ψ

∂θ

∂Q
∂r

)
= 0. (2.4)

The basic flow is given by two uniform-PV rings (figure 1). The inner ring is
bounded by the rigid contour r= R, where the flow vanishes, and the liquid contour
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r = R1; the outer ring is bounded by the liquid contours r = R1 and r = R2, where
R < R1 < R2. Outside the outer ring, the basic PV is equal to βr. Denoting the PV
of the basic flow by Q̄, and the PV in the inner and outer rings by Γ1 and Γ2,
respectively, we write

Q̄(r)=


Γ1, R 6 r< R1

Γ2, R1 6 r< R2

βr, r > R2.

(2.5)

The condition for zero net vorticity imposes a relation between Γ1 and Γ2,

Γ2 =−
Γ1(R2

1 − R2)− 2
3β(R

3
2 − R3)

R2
2 − R2

1
. (2.6)

The linear stability analysis of this basic flow can be found in RKF. Now we
investigate numerically the nonlinear evolution of unstable flows. Moreover, for our
simulations, we choose parameters R1, R2, β and Γ1 so as to guarantee that a given
azimuthal mode m be most unstable among other modes.

From this point on, we regard all the variables and constants to be non-dimensional,
thus normalized, while keeping the designations unchanged. In this normalization, the
radius of the rigid contour is taken as the length scale; the absolute value of PV in the
inner ring serves as the scale for the potential and relative vorticity, and its inverse, as
the (advective) time scale. So, R= 1 in non-dimensional units, and Γ1 can be either
+1 or −1. The range of non-dimensional β that will be explored is −0.5 6 β 6 0
(see RKF).

2.2. Method of numerical simulations
We conduct high-Reynolds-number simulations employing the coefficient-form partial
differential equation package of the COMSOL software based on the finite-element
method. The vorticity-diffusion term ν∇2Q is added to the right-hand side part
of equation (2.4) in order to maintain numerical stability, the magnitude of the
non-dimensional kinematic viscosity coefficient ν being chosen by trial and error (see
below). The resulting coupled system composed of equation (2.3) and the equation of
PV evolution (i.e. equation (2.4) supplemented with the diffusion term) is solved as
an initial-value problem in a two-dimensional (r, θ) rectangular grid, 1< r < 30 and
0<θ 6 2π. The unknown variables are the streamfunction ψ and the relative vorticity
ζ , which is related to Q via equation (2.2). We apply the periodicity conditions at
θ = 0 and θ = 2π and the no-slip conditions at both radial boundaries by setting
∂ψ/∂r= ∂ψ/∂θ = 0 at r= 30, and ∂ψ/∂r= 0 and ψ = 0 at r= 1. The integration in
time is performed with an implicit second-order backward-difference scheme whose
absolute tolerance is 10−5 and employing fourth-order integration for the rectangular
Lagrangian elements used (for details see Kizner et al. 2013).

The computational domain, 30×2π in size, is divided into two or three subdomains.
The first, fine-grid domain, 1 6 r < 1.5 with the mesh size of 0.05× 0.03, is set off
in order to be able to resolve the viscous boundary layer that may form next to the
cylinder. The second is the main domain 1.56 r< 20 with the mesh size of 0.1× 0.03.
In both domains, ν is set to be 10−4. The third domain, 20 6 r 6 30, is set off
optionally as a wave absorbing layer in the cases where the reflection of waves from
the outer boundary might be considerable. Here the mesh size is 0.1× 0.03 and the
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viscosity coefficient increases parabolically from ν= 10−4 at r= 20 to ν= 10 at r= 30.
This numerical setup implies about 3 × 106 degrees of freedom, consuming about
12 GB of memory. The adequacy of the chosen grid and values of ν was confirmed
by a few dozens of test runs with various dimensions of the three regions and mesh
sizes in them, the tests proving that further increase of resolution would not lead to an
essentially higher accuracy of results, especially, taking into account the computational
cost of each run and the risk of the appearance of the grid instability in finer grids.

The absorbing-layer approach was chosen due to the lack of proper boundary
conditions that could totally prevent reflection (e.g. Israeli & Orszag 1981; Durran
2013). We examined boundary conditions suggested by various authors (e.g. Orlanski
1976; Rasch 1986; Higdon 1994) and found them to be ineffective on the beta
cone, since Rossby waves are dispersive (see § 4), and the frequencies of the waves
radiated during the flow evolution cannot be known in advance. Due to the spiral
shape of the Rossby waves on a beta cone (§ 4), their strength, when they arrive at
the absorbing layer, does not monotonically depend on β, but reaches a maximum at
some intermediate β. This is because at a given m, the smaller is β, the slower is
the wave propagation, while the higher is β, the stronger is the winding of the wave
fronts (§§ 4 and 5), so at considerable distances from the island the radial propagation
of the waves is weak again. We found the introduction of the absorbing layer to be
helpful at β ranging from β =−0.1 to β =−0.35.

In each simulation, the vorticity production next to the inner wall is negligible at the
beginning stage, because the basic velocity profile goes to zero nearly linearly as r→1
(figure 1). Only when the originally two-ring PV field breaks into separate vortex
patches (dipoles) does the fine-structure vortex production (due to the formation and
subsequent separation of the viscous boundary layer) become visible in the vicinity
of the rigid wall. This process was investigated in detail by Kizner et al. (2013),
who compared the results of flat-bottom high-Reynolds-number simulations with those
obtained using a contour-surgery code in the absence of viscosity and found that, for
reasonable thicknesses of the PV rings, the large-scale dynamics in the two cases was
nearly indistinguishable. Aside of the inner wall, in the regions with no sharp PV
gradients, the diffusion term is, on average, smaller by two orders of magnitude than
the advection terms in the equation of PV evolution; so one may speak of the local PV
conservation here. Clearly, in the areas where sharp PV gradients occur, the diffusion
term is higher, and viscosity causes some smoothing in the PV field. This happens to
the PV jumps at r = R1 and r = R2, and to thin filaments emerging during the flow
evolution. Sufficiently thin filaments may be erased by viscosity; note that a somewhat
similar erasing of thin filaments takes place in contour surgery simulations.

As for the initial condition, in order to get a reasonable machine time for the
evolution of linear instability of the flow, we add a random perturbation to the basic
PV field in the form of Gaussian noise. This random noise with zero mean and the
standard deviation of 10−5 is applied on the entire computational grid. The noise
is smaller by at least three orders of magnitude than the relative vorticity of the
basic flow in the sense of the l2-norm calculated on the grid. An alternative initial
perturbation consisting in a small deformation of the liquid contours bounding the PV
rings (see Kizner et al. 2013) is applied only once (§ 3), just to ensure that the m-fold
symmetry expected to hold in the case of an unstable mode m, is maintained long
enough; this enables us to observe the almost symmetric quasi-periodic movement of
the vortices that are generated due to the instability.

To check the global effect of vorticity diffusion and wave radiation/absorption on
the flow evolution, we computed the integrals that are known to be invariant in ideal
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fluid, namely, the angular momentum, the energy and the potential enstrophy, and
followed the rate of change per unit time in each of these integrals. As noted above
(§ 2.1), the unit time corresponds to the advective time scale, which is generally much
shorter than the diffusive time scale (except for the absorbing layer where the viscosity
coefficient is high), so the rates of change are expected to be small as long as the
wave field in the domain 20< r< 30 is weak.

In almost all of our simulations, the angular momentum is conserved to quite a
high degree of accuracy, the change per unit time being under 0.01 %. However, in the
simulation with a clockwise basic flow at a moderate bottom slope (described in § 6.3),
where the growing instability induces intense radial radiation of Rossby waves, the
escaping waves carry a considerable amount of the angular momentum, transmitting
it from the main flow to the absorption domain. As a result, by t= 1000, next to the
island, a counterclockwise flow forms, and the overall angular momentum, which is
positive at the beginning, becomes negative.

Prominent changes in energy and potential enstrophy occur predominantly when the
instability enters its nonlinear stage, i.e. when structural changes of the flow begin. At
this stage, which, depending on the initial conditions, culminates within approximately
50 to 150 time units, strong filamentation, boundary-layer formation and the separation
of the latter from the rigid wall make the viscous dissipation of vorticity especially
effective. During this stage, in all of our simulations except that mentioned in the
previous paragraph, the energy usually decreases by approximately 0.25 % per unit
time. After that, the flow develops rather adiabatically with slow energy dissipation,
about 0.08 % per unit time. In the simulation described in § 6.3, where the effect of
wave radiation/absorption is strong, the energy decrease by t = 150 is approximately
1.13 % per unit time.

When dealing with the enstrophy, we follow the excess potential enstrophy, i.e. the
integral of (ζ + βr)2/2− (βr)2/2. Here too the fastest decrease (usually up to 0.55 %
per unit time) occurs during the stage, in which structural changes in the flow begin;
later on the decrease is much slower, approximately 0.2 % per unit time. We attribute
the observed fact that the decrease of the excess enstrophy is faster than that of the
energy to the well-known phenomenon of inverse energy cascade from small scales
to large scales in two-dimensional flows (e.g. Vallis 2017). In contrast, the potential
enstrophy cascades downscale, where it is more effectively dissipated by viscosity. The
only exception from these observations is represented by the simulation discussed in
§ 6.3, in which the effect of Rossby-wave radiation is dominant.

3. Beta effect at weak slopes. Trajectories of emitted dipoles

As is known, in the flat-bottom case, the m-mode instability of a barotropic flow
around an island may lead to the emission of m dipoles for m > 2 (Kizner et al.
2013). At weak slopes, namely at β of order 0.01, the instability is expected to
evolve basically in the same way, as long as the topographic background vorticity
βr appearing in (2.2) is negligible compared to the vorticity ζ . In fact, the linear
stability analysis carried out in RKF showed no significant difference between the
stability/instability regions in the parameter space for m > 2 between the flat-bottom
case and the weak-slope case.

The flow evolution in the presence of a weak slope is shown in figure 2 for the
case of β = −0.01, Γ1 = 1, R1 = 2.5 and R2 = 4, where mode 2 is most linearly
unstable (compared to other modes). In figure 2, as well as in the following figures,
the highest colour density is determined by the maximum/minimum of vorticity in
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FIGURE 2. (Colour online) Evolution of the vorticity field at β =−0.01, Γ1= 1, R1= 2.5
and R2 = 4, where mode 2 is most unstable. Red/blue colours mark positive/negative
vorticity; grey, the island. Time is specified in non-dimensional units at the upper-left
corner of each panel.

each panel separately. As anticipated, the instability results in the emission of two
dipoles. Just after the emission, the dipoles move in an outward–counterclockwise
direction, owing to the fact that here the positive-vorticity part of a dipole is more
concentrated and is a little stronger (in terms of relative vorticity) than the negative
one. Thus, the negative vortex has a tendency to wrap around the more compact
positive vortex and move counterclockwise. As a dipole increases its distance from
the cylinder, the counterclockwise component in the dipole movement increases, thus
limiting the distance by a maximum of the order 10 (more specifically, 8.4 for the
centroid of the positive-vorticity part of the dipole and 11.3 for the centroid of the
negative-vorticity part). From this moment, t ≈ 88, the dipole begins moving back
to the cylinder, reaching the latter at t ≈ 140. The evolution goes in an essentially
centrally symmetric manner. The mechanism that makes the dipole go back is
explained below in this section.
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Upon reaching the cylinder, the two dipoles collide, exchange their partners, and at
t ≈ 190, two new dipoles emerge. This time, due to wave radiation, dissipation and
filamentation, the dipoles are weaker than previously, so they move a lesser distance
from the origin (about 5 at t ≈ 220), return back to the cylinder, and collide again.
This behaviour exhibits a quasi-periodic tendency and lasts for four quasi-periods
until t ≈ 560. The fifth cycle is never observed, since in the first four cycles, the
dipoles lose too much energy and are no longer strong enough to survive the collision.
They eventually disintegrate; the two positive-vorticity parts attach to the cylinder,
moving together counterclockwise and causing a generally counterclockwise velocity
field around the cylinder. The two negative-vorticity parts are drifted by this flow
and unite in a ring that encircles the cylinder and the positive-vorticity ring around
it. Eventually, due to the viscosity and wave radiation, the negative vorticity spreads
out (t= 968).

The tendency to quasi-periodicity is seen even better in the case of the mode-4
instability. This is illustrated by figure 3, in which the evolution of the flow
corresponding to four full quasi-periods is shown. In contrast to the rest of simulations,
to make the dynamics simpler, here we initiate the growth of instability by applying a
small, order 10−5 mode-4 deformation of the liquid boundaries of the initially circular
PV rings, exactly as was done by Kizner et al. (2013). Starting from the second row
in figure 3, a new cycle begins in any next row. Each cycle includes the dipoles
receding from the island, their swinging and returning to the island’s vicinity. To
identify the vorticity patches, in the middle panel of each row, the positive-vorticity
patches are labelled by the numbers 1, 2, 3 and 4, and the negative-vorticity ones
by the letters A, B, C and D. At first (times 48, 136 and 172), the vortex couples
are 1–A, 2–B, 3–C and 4–D. These couples remain coherent until approximately
t = 306 (third row), when the first collision of the dipoles with the cylinder occurs.
Starting from this collision, any new period begins with ‘exchange of partners’, i.e.
with the formation of a new dipole (any positive-vorticity patch is now coupled with
a different negative-vorticity patch). This quasi-periodic motion lasts until t ≈ 2460
(the two last periods are not shown in the figure). Figure 4 shows the trajectories of
the four dipoles during the second cycle that lasted approximately from t = 350 to
t= 450.

Figure 5 illustrates the behaviour of dipoles in another simulation, where
β = −0.01, Γ1 = 1, R1 = 1.5 and R2 = 1.88. In this case, the four emitted dipoles
make a swing (t ≈ 280), but do not reach the cylinder again. Instead, they meander
about a circle, whose radius is approximately 8.5, and gradually settle symmetrically
on this orbit travelling in a quasi-steady manner. This behaviour is similar to that of
modons on a conventional beta plane, where Q = ζ + βy and, at β > 0, steady
translation of a modon is permitted in the positive direction of the x-axis, i.e.
eastward. If the modon’s axis is tilted at an acute angle (whether positive or negative)
relative to the x-axis, the modon meanders, while travelling predominantly eastward.
Due to the Rossby-wave radiation (and possible viscous dissipation), the modon
relaxes in an almost steady eastward translational movement. An initially northwest-
or southwest-going beta-plane modon (obtuse tilt angle) either makes a turn in a
predominantly eastward direction ending up in a quasi-steady state, or disintegrates
in the course of the turn. This behaviour of the beta-plane modons was discussed in
a number of publications (e.g. Hesthaven et al. 1993; Velasco Fuentes & van Heijst
1994). In this context, the beta-cone model differs from the beta-plane model by the
fact that, on a beta cone, the steady-state trajectories are circles rather than straight
lines (with the tilt angle being defined relative to a tangent line to a circle), and
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FIGURE 3. (Colour online) Evolution of the vorticity field at β =−0.01, Γ1= 1, R1= 1.5
and R2= 2, where mode 4 is most unstable. Positive-vorticity patches are labelled by the
numbers 1, 2, 3 and 4; negative-vorticity patches are labelled by the letters A, B, C and
D. Colours and notations as in figure 2.

by the presence of the inner rigid boundary, where the returning dipoles meet. On
a beta plane, a steady dipole moves with the higher PV to its left, i.e. opposite to
the direction of the phase velocity of the Rossby waves. Similarly, on a beta cone,
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FIGURE 4. (Colour online) Second-cycle trajectories (from t = 350 to t = 550) of
the four dipoles shown in figure 3. Dashed line (blue) indicates the trajectories of
the negative-vorticity vortices (the points of local minima of relative vorticity); dotted
line (red), positive-vorticity vortices; solid line (purple), the middle points between the
minimum and maximum in each dipole.

280 440 900

FIGURE 5. (Colour online) Meandering of the four dipoles in the simulation at β =
−0.01, Γ1= 1,R1= 1.5 and R2= 1.88, where mode 4 is most unstable. The vorticity field
at times 280, 440 and 900; dashed line (purple) indicates the final circular orbit taken by
the dipoles at t > 900. Other colours as in figure 2.

the permitted direction of steady dipoles is counterclockwise (as shown in figure 5),
opposite to the clockwise direction of radiating Rossby waves (see § 4.1).

Figure 6 illustrates the development of the flow, with the same values of β, R1 and
R2 as in figure 2, but this time with the basic flow going in the opposite direction
(i.e. for the case of Γ1 =−1). Again, mode 2 is most unstable here, and the process
of formation of the two centrally symmetric dipoles is similar to that in the case of
Γ1 =+1. This time the dipoles are emitted in the outward–clockwise direction, since
now the negative-vorticity lobe is the more concentrated and strong one. When the
dipoles leave the immediate neighbourhood of the cylinder, the beta effect becomes
significant; as a result, the two dipoles swing around, and equalize so as to align
themselves to the counterclockwise direction, and then, after some meandering
(like that shown in figure 5), continue moving in an approximately circular trajectory.
Figuratively, one may say that the dipoles find the proper direction (counterclockwise)
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FIGURE 6. (Colour online) Evolution of the vorticity field at β=−0.01, Γ1=−1,R1= 2.5
and R2 = 4, where mode 2 is most unstable. Colours and notations as in figure 2.

and the ‘proper latitude’ (i.e. the value of the background vorticity) to move in a
quasi-stationary manner.

The two scenarios presented in figures 2 and 6 differ markedly from each other
because the directions in which the dipoles are emitted are different. The direction of
the azimuthal component of the velocity of the emitted dipole right after the formation
of the latter depends on the direction of the basic flow. Thus the dipoles’ propagation
may be generally aligned or misaligned with the permitted direction of the orbital
movement of a steady-state dipole.

When the basic flow is counterclockwise (figure 2), the dipole movement is
unsteady, but its main direction corresponds to that of a steady-state dipole. The loop
in the dipole’s trajectory is explained by the fact that distancing from the origin has
different effect on the dipole counterparts: due to the beta effect, the positive (in the
relative-vorticity sense) vortex enhances, while the negative one weakens; this causes
the change in the dipole’s direction. On the way back to the cylinder, the beta effect
on the two vortices is opposite to the above-described. Close to the cylinder, the
neighbouring dipoles exchange their partners, and a new cycle of the process begins,
though at a reduced intensity, which is due to the viscous dissipation, Rossby-wave
radiation and filamentation.
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In figure 6 the initial flow is clockwise. The dipoles are emitted almost radially and
then, because now the negative vortex is more compact than the positive one, a dipole
gains a clockwise velocity direction. Therefore, at the beginning, the dipole motion is
not aligned with the permitted steady-state direction. When the dipoles leave the close
neighbourhood of the cylinder, the beta effect becomes significant, and they swing
around, tending to fit the steady-state direction of motion as observed in figure 6 at
t > 460. During this highly unsteady swing, the Rossby-wave radiation is strong
and may lead to the dipoles’ breakdown. In fact, the settling of dipoles in a
quasi-stationary (and almost circular) trajectory is not a common outcome in our
simulations with Γ1 =−1. In most of the simulations, the counterclockwise swing of
the dipoles results in their disintegration.

4. Waves on the beta cone
When β is large enough, the topographic Rossby waves produced by a non-

stationary flow become important, playing a major role in the evolution of the flow.
Here we present the basic theory of steadily propagating Rossby waves on the
beta cone (§ 4.1), and also discuss the waves in the exterior region associated with
growing perturbations of the flow (§ 4.2). The wave–flow interaction observed in the
simulations is examined in the subsequent sections.

4.1. Steadily propagating waves
It is well known that in barotropic flows the beta effect (sloping bottom in our case)
makes possible the development of Rossby waves. We are about to determine the
shape of the wave fronts and the dispersion relation for the steadily propagating
linear Rossby waves on the beta cone. In a frame of reference that rotates with
the angular velocity equal to the azimuthal phase velocity of a wave, the latter is
stationary. Therefore, in what follows, we refer to steadily propagating waves as to
stationary waves. The linearized form of equation (2.4) with the account of (2.2) is:

∂ζ

∂t
−
β

r
∂ψ

∂θ
= 0. (4.1)

Considering a free linear wave at a sufficient distance from the island, we seek a
solution to the pair of equations (2.3) and (4.1) with separable variables in the form
ψ =F(r)ei(mθ−ωt). This is a wave with a constant azimuthal phase velocity ω/m (ω is
real, since only stationary waves are discussed in this section). The wavenumber m
must be an integer due to periodicity in θ of the solution. The function F(r) may be
complex, and can be written as F(r)= |F(r)|ei arg[F(r)]. Therefore, the streamfunction is
ψ=|F(r)|ei{arg[F(r)]+mθ−ωt}, and its argument is φ(r, θ, t)= arg(ψ)= arg(F(r))+mθ −ωt.
Lines of constant φ are the lines at which the wave phase is constant; the wavevector
is

k=∇φ(r, θ, t) (4.2)

(e.g. Whitham 1961; Pedlosky 2013). For the chosen form of solution, equation (4.1)
yields,

d2F
dr2
+

1
r

dF
dr
−

m2

r2
F+

βm
ωr

F= 0. (4.3)
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Introduction of the variable
√

r reduces equation (4.3) to the Bessel equation, the
behaviour of the solution to (4.3) being dependent on the sign of β/ω.

Consider first the case where β/ω> 0. The general solution to (4.3) in this case is
a superposition of the Hankel functions of order 2m,

ψ1 =H(1)
2m(2

√
βmr/ω)ei(mθ−ωt), ψ2 =H(2)

2m(2
√
βmr/ω)ei(mθ−ωt). (4.4a,b)

Since β < 0, such Rossby waves can travel only clockwise (ω < 0). The asymptotic
behaviour of solutions (4.4) at βmr/ω� 1 is

ψ1 ∼
1

r1/4
ei(2
√
βmr/ω+mθ−ωt), (4.5)

ψ2 ∼
1

r1/4
ei(−2

√
βmr/ω+mθ−ωt) (4.6)

(Abramowitz & Stegun 1964). The energy density of the waves is (|v|2 + |u|2)/2,
which by virtue of (2.1), (4.5) and (4.6), decreases asymptotically as 1/r5/2 with
increasing r; hence the waves have finite energy. We note that for real topography,
the depth levels out again after some distance from the island. So, formally, the
infinite beta-cone model will not be applicable. We, however, may assume that this
occurs far enough from the island, so the asymptotic behaviour in the framework of
the beta-cone model still can be applied (see RKF for a detailed discussion of the
limit r→∞ in the beta-cone model).

According to (4.2), (4.5) and (4.6), the asymptotic (as r→∞) wave vectors, which
are perpendicular to the wavefronts, are

k1 = kr1r̂+ kθ1θ̂ =

√
mβ
ωr

r̂+
m
r

θ̂ , k2 = kr2r̂+ kθ2θ̂ =−

√
mβ
ωr

r̂+
m
r

θ̂ , (4.7a,b)

where kr1,2 and kθ1,2 are the radial and azimuthal wavenumbers. Therefore the
asymptotic dispersion relation for each of the two waves is

ω=
kθ1,2β

k2
r1,2
=

mβ
rk2

r1,2
. (4.8)

Notice that in equation (4.8) only kr1,2 are functions of r, while ω, m and β are
constants.

Consider a mode-m wave packet, with the radial wavenumber components close to
kr. The packet is composed of either waves having the form of ψ1 (equation (4.5))
or waves having the form of ψ2 (equation (4.6)). The group velocity of each kind of
packet is readily found from (4.8) (e.g. Whitham 1961; Pedlosky 2013),

cg1 =
∂ω

∂k1r
r̂+

1
r
∂ω

∂k1θ
θ̂ =−2ω

√
ωr
mβ

r̂+
ω

m
θ̂ , (4.9)

cg2 =
∂ω

∂k2r
r̂+

1
r
∂ω

∂k2θ
θ̂ = 2ω

√
ωr
mβ

r̂+
ω

m
θ̂ , (4.10)

where cg1 and cg2 correspond to the packet composed of the waves ψ1 and ψ2,
respectively. The radial components of the group velocities cg1 and cg2, that is, the
velocities at which energy is transferred radially by the packet, are opposite in sign;
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FIGURE 7. (Colour online) Properties of Rossby waves on the beta cone, for m= 2 and
β =−0.1. (a) Dispersion relation, frequency versus the radial wavenumber at r= 3. The
exact relation described by equation (4.12) (solid line, red) and the asymptotic relation
described by equation (4.8) (dashed line, blue). (b) Vorticity distribution for ω = −0.03
at 3 < r < 12 (colours as in figure 2), thin solid lines mark the asymptotic wave fronts
determined by equation (4.13). (c) Typical ray trajectory of a wave packet for ω=−0.03
at 10 < r < 240; the scale is 20 times the scale in (b), the small cross designates the
origin.

namely, the packet of the first kind transfers energy radially outwards, while the
wave packet of the second kind, inwards. The waves that are emitted by the unstable
flow must obey the radiation condition, according to which energy cannot arrive from
outside. These waves are represented by ψ1. The other solution, ψ2, represents a
wave that brings energy from outside. Such a solution might be relevant, for example,
when the domain in which the flow is considered has a distant external circular
boundary, at which the waves of the first kind, represented by ψ1, can be reflected.
Theoretically, this is not our case. That is why, in the simulations, where an external
boundary is introduced for technical reasons and where the reflection can be efficient,
we apply the absorption-layer approach (§ 2.2).

Below in this section we consider in detail only the waves propagating outwards
(the properties of the inward-going waves are then easily deduced). The dispersion
relation (4.8) was found by using the asymptotic expansion of the Hankel functions
in equations (4.5) and (4.6). However, the exact dispersion relation can be easily
calculated by representing the Hankel function of the first kind appearing in (4.5) as
H(1)

2m = |H
(1)
2m |eiΘ2m . In the case of β/ω > 0, which is under consideration now,

Θ2m = arctan
(

Y2m(2
√
βmr/ω)

J2m(2
√
βmr/ω)

)
, (4.11)

where J2m and Y2m are the 2m-order Bessel functions of the first and second kind
(Abramowitz & Stegun 1964). Accordingly, by differentiating the right-hand side of
(4.11) (see (4.2)) and using the identity J2m(x) dY2m(x)/dx− Y2m(x) dJ2m(x)/dx= 2/πx,
we arrive at the exact dispersion relation for Rossby waves on a beta cone,

kr =
1

πr|H(1)
2m(2
√
βmr/ω)|2

. (4.12)

The main characteristics of the beta-cone Rossby waves are illustrated in figure 7
for the case of m= 2 and β=−0.1. Figure 7(a) presents the dispersion relation (4.12)
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for the example of r= 3 (solid line). The dashed line is the dispersion curve according
to equation (4.8), which holds in the asymptotic limit r�ω/mβ, far from the origin.
The asymptotic dispersion relation approaches the exact relation in the limit of small
frequencies ω, or high radial wavenumbers, as can be seen in the figure.

According to equation (4.5) the fronts φ = const. of the outward-propagating wave
ψ1 in the asymptotic regime r�ω/mβ are the lines

2
√

mβr/ω+mθ =Φ, (4.13)

where Φ is an arbitrary constant ranging from 0 to 2π. By choosing different values
of Φ we determine different phases; geometrically, these lines are spirals on the (r, θ)-
plane. In figure 7(b), where the distribution of vorticity, Re(∇2ψ), is shown, the solid
lines mark the fronts obtained by varying the right-hand side of (4.13) with a constant
step for the case of m = 2, β = −0.1 and ω = −0.03. In accordance with equation
(4.13), the spirals get wider with growing r; with increasing |β|, the spirals get denser,
their curvature (understood as the rate of change of a unit tangent vector along the
curve) increasing.

To find the path (rg(t), θg(t)) of the wave packet, the ray-tracing equations are
invoked (Pedlosky 2013). These equations state that the wave packet propagates with
the group velocity, i.e.

drg

dt
= cgr,

dθg

dt
= cgθ . (4.14a,b)

Using (4.9), the solution to (4.14) gives the following trajectory of the wave packet,
which is the trajectory of the energy flux,

rg(θg)=

(
r0 +

√
ωm
β
θg

)2

, (4.15)

where the constant r0 is determined by the initial location of the wave packet. A
typical trajectory is shown in figure 7(c), for the case of m = 2, β = −0.1 and
ω = −0.03. The central radial wavenumber of the wave packet, kr1, decreases with
increasing r (equation (4.7)). This implies that the average distance between adjacent
crests grows as the packet advances in the radial direction.

For the inward-propagating wave ψ2, the vorticity distribution and the trajectory can
be obtained as mirror images of those of ψ1 shown in figure 7(b,c). The azimuthal
direction of an inward-propagating wave is still clockwise.

We now change to the case of β/ω < 0, i.e. where ω > 0. A general solution to
(4.3) is a linear combination of the modified Bessel functions I2m and K2m. For the
solution to be limited as r→∞, I2m should be omitted, so the streamfunction is

ψE ∝K2m

(
2

√
−
βmr
ω

)
ei(mθ−ωt), (4.16)

where the subscript E is added to emphasize that this is an edge-wave solution
that drops exponentially with increasing distance from the island. Asymptotically, as
r→∞, relation (4.16) becomes

ψE ∼
1

r1/4
e−2
√
−(βmr/ω)ei(mθ−ωt), (4.17)
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so this edge wave has a characteristic radial length scale (above which its amplitude
decreases by more than a factor of e) of |ω/4mβ|. It propagates only counterclockwise
and has the highest amplitude at the rigid boundary.

The edge-wave solution given by formulae (4.16) and (4.17) has no radial wave
pattern, i.e. is a strictly azimuthal wave, and dies out rapidly as r→∞. Therefore,
it is suited to describe the far field (periphery) of counterclockwise steadily rotating
highly localized centrally symmetric vortex configurations, say, of a number of dipoles
moving in a circular orbit (§ 3), as well as of the multipoles and of the hexagonal
flow discussed in the next section (cf. Kizner, Khvoles & McWilliams 2007). This
distinction between the clockwise propagation of Rossby waves and the allowed
counterclockwise steady rotation (around the island) of localized vortex structures
on a beta cone is fundamental, exactly as is the distinction between the westward
propagation of Rossby waves and the eastward movement of modons on the beta
plane (see also Kizner et al. 2007, where a similar distinction for the gamma-plane
model was discussed). In what follows, the clockwise propagating Rossby waves will
also be termed ‘radiating’ waves.

Equation (4.3) admits solutions also in the case of β = 0. The streamfunction in
this case is proportional to r−mei(mθ−ωt), so the solution may be interpreted as a strictly
azimuthal wave whose fronts are lines of constant θ . These harmonic (zero-vorticity)
waves are similar in shape to the edge waves discussed above, but decay slower
as r→∞ and may propagate both clockwise and counterclockwise. Such solutions
are suitable for the description of the exterior fields around steadily rotating vortex
patterns on the f -plane (Kizner & Khvoles 2004a,b; Kizner et al. 2007).

4.2. Growing perturbations in the exterior region
During the development of instability of the basic flow, the PV perturbations at the
outer contour grow with time. Therefore, a growing perturbation, i.e. a growing wave,
is forced in the outer region, at r > R2. This wave may be represented in the form
ψ = F(r)ei(mθ−ωt), as in § 4.1, but with a non-real ω. We define σ and g to be the
real and the imaginary parts of ω, i.e. ω= σ + gi. So, the azimuthal frequency of the
wave is σ and its growth rate is g. In the case of growing instability, g is positive.

Equation (4.3) holds also if ω is complex, its two solutions being given by (4.4).
Since 1/ω= (σ − gi)/(σ 2

+ g2), we get

√
−

1
ω
≡ γ + δi=

1
√

2

√√√√√ 1
σ 2 + g2

−
σ

σ 2 + g2
+ i

1
√

2

√√√√√ 1
σ 2 + g2

+
σ

σ 2 + g2
. (4.18)

Here we consider only the wave propagating outwards, i.e. ψ1 (equation (4.4)), and
for simplicity deal with its asymptotic form (at |β|mr/|ω| � 1), given by equation
(4.5) (an exact solution describing the perturbation in the exterior region was given
by RKF). By plugging the first of equalities (4.18) into (4.5), we get the asymptotic
form of the unsteady wave,

ψ1 ∼
1

r1/4
e−2δ

√
mr|β|+gtei(2

√
mr|β|γ+mθ−σ t). (4.19)

The solution (4.19) dies out rapidly as r → ∞, as does the stationary edge-wave
solution (4.17), yet it has also a radial wave pattern like the stationary radiating-wave
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FIGURE 8. (Colour online) Properties of growing waves on the beta cone for m= 2 and
β =−0.1. (a) Vorticity distribution for ω= σ+gi= 0.03+ 0.05i at 3< r< 12 (colours as
in figure 2), and the asymptotic wave fronts determined by equation (4.20) (marked by
solid lines). (b) The curvature of the spirals, γ , and the rate of spatial decay of the wave,
δ, as functions of the ratio g/|σ | of the growth rate g and the magnitude of the angular
phase velocity |σ |. The dotted line (blue) represents γ (at σ < 0) or δ (at σ > 0), and the
solid line (red), δ (at σ < 0) or γ (at σ > 0).

solution (4.5). According to equation (4.19) the fronts φ = const. of the outward-
propagating wave ψ1 in the asymptotic regime r� |ω|/mβ are the lines

2
√

m|β|rγ +mθ =Φ, (4.20)

where Φ is an arbitrary constant ranging from 0 to 2π. Being forced by the growing
perturbation at the outer PV step, this wave may propagate either clockwise or
counterclockwise depending on the forcing, and in any case its asymptotic fronts
(determined by equation (4.20) for r → ∞) are spirals unwinding in the same
direction as in stationary radiating waves. A typical vorticity field of this wave and
its fronts are plotted in figure 8(a). By virtue of (4.19), the parameter δ represents
the rate of spatial decay of the wave, in the sense that the wave’s characteristic radial
length scale is 1/4m|β|δ2, while the parameter γ characterizes the curvature of the
spirals. From now on, we term γ and δ the curvature of the spirals and the rate of
spatial decay the wave, respectively. The profiles of γ and δ as functions of g/|σ | are
shown in figure 8(b), for the two possible propagation directions of the perturbations,
for σ > 0 and σ < 0.

It is instructive to examine the properties of a non-stationary wave when the growth
rate is close to zero (yet the phase velocity of the perturbation is not zero). This
corresponds to the case where any of the flow parameters (such as R1, R2 or β)
is close to its bifurcation value, which distinguishes between stable and unstable
regimes (see RKF for a discussion on the bifurcation due to variation in β). Near
the bifurcation point, g2

� σ 2, so we may evaluate γ and δ to the first order in g/σ
from (4.18). We discriminate two cases according to the rotation direction of the
unstable perturbation.

When the perturbation propagates clockwise (σ < 0), we get

γ ≈
1
√
−σ

, δ ≈−
1
√
−σ

g
2σ

(4.21a,b)

(see also figure 8b). Substitution of (4.21) in (4.19) shows that in the limit g→ 0 the
non-stationary wave (4.19) matches the stationary radiating Rossby wave (4.5). Since
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δ→ 0 as g→ 0, near the bifurcation point the spatial extent of the wave gets wider;
thus, energy can be drained to regions distant from the uniform-PV rings.

When the perturbation propagates counterclockwise (i.e. σ > 0), we get

γ ≈
1
√
σ

g
2σ
, δ ≈

1
√
σ

(4.22a,b)

(see also figure 8b). Substitution of (4.22) in (4.19) shows that, in the limit of g→ 0,
the growing wave (4.19) matches the stationary edge wave (4.17). Since δ→ 1/

√
σ 6=

0 as g→ 0, so this is not the case of radiating instability. Close to the bifurcation
point, when instability shows up, the wave is localized in the island’s vicinity with a
characteristic radial length scale of |σ/4mβ|.

Based on the abovesaid and following Talley (1983), Kamenkovich & Pedlosky
(1996) and RKF, we identify the growing waves as radiating or trapped, according
to the structure of the contiguous stationary wave, which can be either alternating
in the radial direction, as in (4.5), or evanescent as in (4.17). Thus, regarding the
general expression for the non-stationary wave (4.19), the case of σ < 0 (σ > 0) will
be referred to as radiating (trapped) wave. We note that for β > 0, the propagation
directions of the radiating and trapped waves are opposite to those at β < 0, and the
non-stationary waves change their identification as radiating or trapped accordingly.

Growing perturbations may also occur on the f -plane (i.e. where β = 0). In this
case one cannot take directly the limit of β→ 0 in relation (4.19), since the latter is
valid only for |β|mr/|ω|� 1. Instead, the limit β→ 0 can be taken in the expressions
(4.4) or (4.16) using their Laurent-series expansion around zero (see e.g. RKF). The
growing wave is then ψ |β=0 = r−megtei(mθ−σ t). Clearly, this wave carries no vorticity
and has no spirality, contrary to the case of β 6= 0.

5. Beta effect at steep slopes. Formation of quasi-steady patterns
5.1. Phase locking of growing perturbations

While at weak slopes (β=−0.01) the beta effect is well pronounced only at relatively
large distances (§ 3), at steeper slopes it becomes visible already in the region where
formation of dipoles is expected to begin, i.e. next to the outer PV ring. Figure 9
shows the evolution of a counterclockwise flow at β = −0.3, R1 = 2.5 and R2 = 4,
where the gravest unstable mode is m= 2. Until about t= 30, the deformation of the
vorticity rings is similar to that in the flat-bottom case (see Kizner et al. 2013) as
well as in the weak-slope case (figures 2 and 4). However, at β = −0.3, the closed
flow does not emit any dipoles, and remains organized in a two-ring pattern.

When the flow is unstable, the growing perturbation of the shape of the outer liquid
contour forces the development of a spiral wave outside this contour, in the region
where originally the velocity was zero. In the linear approximation, one may talk of
the development of a wave just at r > R2, while the perturbations in the shapes of
the liquid contours can be interpreted as two Rossby waves that develop just at the
basic PV discontinuity contours, r= R1 and r= R2. As known for parallel flows, the
growth of the waves developing on the PV discontinuities is caused by their phase
locking (see e.g. Heifetz, Bishop & Alpert 1999; Vallis 2017). This is also observed
in our simulations for the case of circular flows. Figure 10 shows the amplitude and
phase of the azimuthal mode-2 Fourier component (denoted by ζ̂2) of the vorticity
field at r = R1 = 2.5 and r = R2 = 4 (i.e. where the basic-PV jumps occur), and in
the exterior region at the circles r = 6 and r = 10. As expected, after some period
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0 90

110 140

FIGURE 9. (Colour online) Evolution of the vorticity field at β =−0.3, Γ1 = 1, R1 = 2.5
and R2=4, where mode 2 is most unstable. Colours and notations are as in figure 2. Solid
white arrow (t= 90) designates the propagation direction of the perturbation in the shape
of the PV rings. Dotted black arrow designates the propagation direction of the wave in
the exterior region.
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FIGURE 10. (Colour online) Temporal evolution of the mode-2 waves on the inner and
outer liquid contours r= R1 = 2.5 and r= R2 = 4, and in the exterior region at r= 6 and
r= 10. (a) Amplitude (logarithmic scale); the dashed black line indicates the theoretically
estimated growth rate (only the slope of this line is meaningful). (b) Phase. The flow
parameters as in figure 9.

that takes for mode 2 to get established (but while the perturbation is still small), the
stage of exponential growth of the amplitudes of the waves begins (figure 10a) being
accompanied by phase locking (figure 10b). Here, that a third wave exists at r > R2,
outside the contours r = R1 and r = R2, the phase locking occurs between the three
waves. This stage lasts as long as the nonlinearity is reasonably small.

According to the results of our linear stability analysis (RKF), at the chosen values
of the governing parameters β =−0.3, R1 = 2.5, and R2 = 4, the mode-2 perturbation
must run counterclockwise with the angular frequency σ ≈ 0.07, the growth rate
being g ≈ 0.053. Therefore, at the quasi-linear stage of the instability growth, the
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FIGURE 11. (Colour online) Evolution of the vorticity field at β = −0.35, Γ1 = −1,
R1= 2.3 and R2= 3, where mode 3 is most unstable. Colours and notations as in figure 2.

perturbation induced in the exterior region and having a spiral shape propagates
counterclockwise as well; this can be observed in figure 10, where at 40 6 t 6 100,
the gradients of the almost straight lines correspond well to the theoretically estimated
values of g indicated in figure 10(a) by a dashed line (only its slope makes sense).

At a later, nonlinear stage, when the perturbations actually do not grow, a Rossby
wave behaving in a quasi-stationary manner develops in the exterior region. Since the
exterior PV field has a radially alternating pattern, we are dealing here with a radiating
wave which can propagate only clockwise. This is confirmed by the negative gradients
of the phase at r= 6 and r= 10 when t> 110 (figure 10b). As the energy flux goes
outwards (according to the typical ray trajectory in figure 7c), distant parts of the
spirals become more pronounced with the passage of time (t= 140 in figure 9).

5.2. Prevention of dipole emission. Pattern formation
As seen in figure 9, the developing mode-2 instability manifests itself first in making
the two PV rings somewhat oval (t= 90). If the slope were weaker, this might end up
in the formation of two dipoles (as was the case of beta β =−0.01 in figure 2). Such
a tendency can be observed e.g. at t= 110, but the detachment of the PV lobes does
not occur. We attribute this fact to the strong beta effect, namely, to the smoothing of
the external boundary of the outer PV ring by the clockwise flow associated with the
quasi-steady radiating Rossby wave that establishes in the exterior region (see § 5.1).

Here, instability does not lead to the emergence of dipoles; instead, the sticking of
the main vorticity ‘mass’ to the cylinder at a sufficiently high β makes possible the
formation of a new, multipolar configuration. Whether this new pattern is long lived or
transient depends on the direction of its rotation. For example, as figure 11 suggests,
at β =−0.35, Γ1 =−1, R1 = 2.3 and R2 = 3, where mode 3 is the most unstable one,
the flow passes through a state that resembles a rotating vortex quadrupole (Kizner &
Khvoles 2004a; Kizner et al. 2007; Trieling, van Heijst & Kizner 2010). The direction
of the quadrupole rotation is the same as that of the radiating Rossby waves in the
exterior, i.e. clockwise; this entails its disintegration at a later stage (see § 4.1).

Vorticity strips start emerging at approximately t = 90, becoming best pronounced
at t ≈ 110 and then gradually merging (at t ≈ 140). The emergence of the strips
can be explained through filamentation and interaction between the vorticity lobes
that were generated due to the instability. As the quadrupolar configuration rotates
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0 20 40

60 100 300

FIGURE 12. (Colour online) Evolution of the vorticity field at β =−0.5, Γ1=−1, R1= 4
and R2 = 4.6, where mode 6 is most unstable. Colours and notations are as in figure 2.

clockwise around the island, each of the positive-vorticity patches emits a tail, and
the end of the tail becomes a thin filament (t = 60). This filament is caught by the
next closest positive-vorticity patch, which travels much faster than the filament. The
filament, therefore, rolls over this next patch and its own tail (t = 90). This way,
because of the close proximity of the vorticity patches, each of them catches the
filaments emitted by another. Since the large PV patches rotate synchronously and
the filaments move primarily in the azimuthal direction, they eventually arrange in
a number of distinct strips.

This clockwise-rotating quadrupolar configuration has traits common with the non-
local modon on a beta plane. A non-local modon is a dipole travelling in the direction
in which stationary Rossby waves propagate, i.e. westward on a conventional beta
plane (with the background PV increasing northward). This is an unstable core of
a nonlinear wave that may be described by a formal steady-state solution (Berson
& Kizner 2002). The instability develops especially slow if the perturbations do not
break the dipole’s antisymmetry about the x-axis. In this case, a filament grows slowly
in the modon’s wake, being the main cause of the instability growth. In the same
sense, the observed quadrupole in figure 11 is non-local, which is indicated by the
presence of the long waves surrounding it. The quadrupole’s components only rotate
and nearly do not move radially, which is in analogy with keeping the antisymmetry
by a non-local modon. As distinct from a non-local modon on the beta plane, here
the filament emitted by one vortex is absorbed by the next one; this increases to some
extent the lifespan of the quadrupole.

The unsteadiness of the clockwise 3-fold symmetric pattern manifests itself in the
radiation of relatively strong Rossby waves emitted within the time interval from t=
40 to t= 240. By t= 400, a nearly circular clockwise flow with some residues of the
3-fold symmetry arises near the island, and by t = 800 the flow fully stabilizes in a
circularly symmetric state. Unlike the basic state at t= 0, now the PV in the rings is
not homogeneous, and the rings are wider: the negative vorticity occurs in the range
1 < r < 2.47, and the positive vorticity, in the range 2.47 < r < 4.5. Further, due to
viscosity, the vorticity rings continue increasing their width.

An example of emergence of a steady-state m-fold pattern is shown in figure 12.
Here the slope is considerably steeper (β = −0.5) and the outer PV ring is much
thinner than the inner one; Γ1 = −1, R1 = 4, R2 = 4.6, and mode 6 is the gravest
unstable mode. The mode-6 instability generates six negative-vorticity lobes. But the
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strong Rossby waves gradually smooth away the negative-vorticity protuberances and
filaments, thus making the outer boundary of the flow nearly circular. Since the 6-
fold symmetric pattern rotates counterclockwise, that is, oppositely to the propagation
direction of the radiating beta-cone Rossby waves, it may be steady (see § 4.1). Indeed,
the simulations show that this pattern lasts until the end of the simulation, t= 1000.

In the last three simulations (figures 9–12) the absorbing-layer approach (§ 2.2) was
used. Due to the relatively large values of β, the Rossby waves emitted by the main
flow were not negligible; thus, without the absorbing layer, the reflection from the
outer boundary of the computational domain might have been significant.

Considering the results presented in §§ 3 and 5 we see that the bottom slope
has a significant effect on the flow evolution only when the term βr appearing in
equation (2.2) is comparable in magnitude with the relative vorticity ζ . In § 3, we
considered basic flows with the maximal radius of the outer PV ring being 4 or less,
and β =−0.01. So at the external boundary of the outer PV ring the term βr was of
order 0.04, which is really small compared to the relative vorticity of the flow (order
1 in the rings). The topographic effect in these simulations became noticeable only
when the dipoles moved a considerable distance away from the island. In contrast,
in the basic flows considered in the present section, βR2 was of order 1 or higher,
i.e. comparable with the relative vorticity in the rings; so, the topographic effect was
significant already in close proximity of the island and not at far distances, and the
bottom slope serves as a strong stabilizing factor in this case. These observations
suggest that, along with β itself, the parameter βR2 determines the type of evolution.
Thus, when βR2� 1, we regard the slope as weak, while at βR2 of order 1 or higher,
the slope can be regarded as steep. In the next section we consider the evolution of
unstable flows over moderate slopes, i.e. in the cases where βR2 is smaller than one,
but not by an order of magnitude.

6. Beta effect at moderate slopes
6.1. Mode-1 instability

As explained in RKF, the mode-1 instability emerges in the presence of bottom
topography only. Because of this special character, and for the completeness of the
discussion on the possible evolution scenarios, we briefly present in this section our
results related to the mode-1 instability.

According to our simulations, at weak slopes (when β is of order 0.01) the mode-1
instabilities do not develop to large scales, and this is due to the low growth rate of
the perturbation. The waves at the liquid contours grow at such a long time scale, that
the tendency of viscosity to diffuse them manages to cease their growth to a noticeable
magnitude. Therefore, the flow remains relatively close to its basic configuration (but
with a smoothed radial PV profile).

Figure 13 illustrates the evolution of the flow in the case of β = −0.1, Γ1 = −1,
R1= 2 and R2= 8, when mode 1 is unstable. The basic flow (figure 13a) is composed
of two rings, whose PVs are −1 (inner ring) and −0.517 (outer ring). The relative
vorticity changes sign inside the outer ring, at r = 5.18, and, watching the evolution
of the relative vorticity (figure 13b) might be somewhat misleading. This is why we
present here also the evolution of the PV (figure 13c). As might be seen in this figure,
no dipoles (or neighbouring positive- and negative-vorticity lobes) emerge due to the
mode-1 instability, which fact sets this case apart from the above-considered scenarios
with m > 2 (§§ 3 and 5). The two PV patches remain clearly distinguishable until at
least t = 560, when strong filamentation of the inner patch begins. During the first
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FIGURE 13. (Colour online) Mode-1 instability at β =−0.1, Γ1=−1, R1= 2 and R2= 8.
(a) Profiles of the basic-flow potential vorticity Q̄ (dashed, blue), azimuthal velocity V̄
(solid, red) and vorticity ζ̄ (double, green). (b) Evolution of the vorticity field. Colours
and notations as in figure 2. (c) Evolution of the PV field: magenta marks the outer-ring
PV and blue, the inner-ring and the exterior PV. Notations as in figure 2.

stage of the instability development, the centres of PV mass of the two rings become a
little shifted and the shapes of the rings deformed. The instability manifests itself most
clearly in the change undergone by the inner ring (510 6 t 6 560). This corresponds
to the observation made in the flat-bottom case by Kizner et al. (2013), who noted
that in the case where the inner ring is thin relative to the outer ring, the outer ring
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FIGURE 14. (Colour online) Evolution of the vorticity field at β =−0.1, Γ1= 1,R1= 2.5
and R2 = 4, where mode 2 is most unstable. Colours and notations as in figure 2.

undergoes only minor deformations. In our simulation, however, unlike the flat-bottom
case, the inner ring separates from the island at approximately t= 600 and becomes a
thin filament wandering inside the outer ring. At a later stage, the growing instability
leads to erosion of the inner ring due to the emergence of additional filaments
(t= 730); here, signs of chaotic advection can be noticed.

6.2. Instabilities of mode m > 2
The evolution of mode-2 instability in the case of a counterclockwise flow over
an intermediate slope (β = −0.1) is shown in figure 14. In this case, a structure
forms, reminiscent of the vortex tripole revealed in laboratory experiments (van
Heijst & Kloosterziel 1989; Kloosterziel & van Heijst 1991) and in numerical
simulations (Carton, Flierl & Polvani 1989; Carton & Legras 1994; Morel &
Carton 1994); similar semi-analytical solutions on the f -plane were described by
Kizner & Khvoles (2004a,b), and on the and γ -plane by Kizner et al. (2007). The
positive- and negative-vorticity lobes develop by t= 100 and form two dipoles, whose
positive-vorticity parts stay attached to the island. The negative-vorticity parts of the
dipoles, being weaker in value and less compact compared to their positive-vorticity
partners, become thinner with time and break into filaments that eventually spread
out (due to viscosity) around the positive-vorticity core.

In figure 15, the flow evolution at the same slope (β =−0.1) is shown. Here Γ1=

+1, R1 = 1.5 and R2 = 2. Now not only the gravest unstable mode is higher (m= 4),
but also the area of each ring is smaller than in figure 14. In this case, four dipoles
are emitted due to the instability of the basic flow. Compared to the weak-slope case
(figure 2), the dipoles travel a shorter distance from the origin (approximately 3 by
t = 70) before they start coming back to the cylinder. Close to the cylinder, where
the four dipoles collide, spiral vorticity patterns emerge due to the relatively high
magnitude of β; these are the radiating Rossby waves discussed in § 4.

6.3. Inversion of the near-island flow at mode-2 instability
As we saw, a weak slope affects the paths followed by the emitted dipoles (§ 3), while
at sufficiently steep slopes, dipoles are not emitted at all (§ 4). Moderate slopes with
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FIGURE 15. (Colour online) Evolution of the vorticity field at β =−0.1, Γ1= 1, R1= 1.5
and R2 = 2, where mode 4 is most unstable. Colours and notations as in figure 2.

0 128 146 158

194 220 354 600

FIGURE 16. (Colour online) Evolution of the vorticity at β = −0.1, Γ1 = −1, R1 = 1.5
and R2 = 2, where mode 2 is most unstable. Colours and notations as in figure 2.

initially clockwise flows offer a new situation, where the dipoles are emitted, yet are
subject to strong interaction with the Rossby waves.

Figure 16 shows the evolution of an initially clockwise flow (Γ = −1) in the
case of β = −0.1, with liquid boundaries at R1 = 2.5 and R2 = 4. At the initial
stage, mode 2 is most unstable, and two dipoles begin forming (t = 146). Since the
initial flow is clockwise, the azimuthal component of the dipoles’ movement at the
beginning is clockwise; this is opposite to the direction permitted for steady-state
dipoles. Therefore, at approximately t= 158, the dipoles cease moving clockwise, and
also slow down moving away from the cylinder. In the subsequent highly unsteady
stage, the dipoles swing around, tending to fit the steady-state direction.

So far this is similar to the observed behaviour of the dipoles presented in § 3,
figure 6. However, now the emerged dipoles (t = 146), while making a swing in
their tendency to align themselves to the counterclockwise direction (see § 3), are
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FIGURE 17. (Colour online) Radial profiles of the flow shown in figure 16. (a) The initial
(basic) PV profile Q̄ (blue), the azimuthally averaged vorticity profile ζ̂ at t= 600 (green)
and the azimuthally averaged PV profile ζ̂ + βr at t = 600 (red). (b) The initial (basic)
azimuthal velocity profile V̄ (blue), and the azimuthally averaged velocity profile v̂ at t=
600 (red). Parameters as in figure 16.

drifted and obliterated by the relatively strong Rossby waves (t = 158 to 220).
Two new quasi-dipolar structures tend to form close to the cylinder (t = 158); the
negative-vorticity parts of these quasi-dipoles emerge from the negative-vorticity
parts of the strong Rossby waves at the cylinder’s vicinity (the waves are clearly
seen at t = 158 as vorticity spirals at the background). At later times, the new
negative-vorticity regions get erased by the waves, while the region of pronounced
positive vorticity reorganizes into a ring enveloping the cylinder. By t = 600, an
outer, negative vorticity ring is formed. A two-ring structure is observed in the PV
distribution too (the vorticity and PV profiles are shown in figure 17a). Thus, the
resulting flow is predominantly counterclockwise, i.e. opposite to the initial flow
(figure 17b).

Even though the resulting state at t= 600 is not steady but rather undergoes minor
changes in the PV field, it can be regarded as converging to some stable steady state.
This stability is confirmed by the fact that the azimuthally averaged PV profile at t >
600 is a monotonically decreasing function of r (figure 17a), which fits the Rayleigh
stability criterion (RKF).

7. Conclusion

We studied numerically the evolution of unstable circular flows around an island,
with the sea depth increasing offshore. The bottom slope, which is assumed constant,
causes topographic beta effect (with β < 0). The flow is assumed to have zero total
circulation and to be composed of two uniform-PV rings. Depending on the sign
of the PV in the inner ring, the flow near the island is either counterclockwise, or
clockwise.

At low β (of order 0.01 in dimensionless units), in the near-island region, the beta
effect upon a counterclockwise flow is negligible. Accordingly, as in the flat-bottom
case, if mode m> 2 is most unstable, m dipoles are emitted outwards. However, when
the dipoles recede considerably from the origin, the beta effect is no longer negligible:
it forces the dipoles to turn back to the cylinder. Here they collide, and, by exchanging
partners, rearrange into m new dipoles that run away from the cylinder and then return
again. Due to filamentation, viscous dissipation and wave radiation, this quasi-periodic
process weakens, and ceases in the end. Another possible outcome is meandering and
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gradual symmetrical settling of m dipoles in a circular orbit around the island, in
which they move counterclockwise.

When the initial flow is clockwise (and β is still of order 0.01), the dipoles are
emitted with a velocity component in the clockwise direction, which is opposite to the
direction permitted for steady-state dipoles. Therefore, the emitted dipoles tend to turn
counterclockwise and often disintegrate as a result. But when they manage to make
the swing without breaking, they can eventually settle in a circular orbit, in which
they move counterclockwise.

With increasing steepness of the slope, the radial distance travelled by the emitted
dipoles shortens. When the magnitude of β is high enough (β of order 0.3 or higher),
the dipole emission is prevented. A new flow pattern may form, possessing the
m-fold symmetry, where m is the number of the gravest unstable mode. The pattern
may be steady or intermediate, depending on its rotation direction. If it rotates
counterclockwise, it may be steady; otherwise, Rossby waves are emitted and, finally,
a circular flow forms.

For an initially counterclockwise flow at intermediate slopes (β=−0.1), the dipoles
may be emitted to a short distance before returning back to the cylinder, otherwise
they stay attached to the island, but only with their strongest vorticity parts. In the
case that the basic flow is clockwise, the emitted dipoles manage to travel some short
distance offshore before being affected by the strong Rossby waves. The effect of
the Rossby waves on the PV field is so significant that, eventually, the flow assumes
the opposite direction relative to the original flow. At intermediate slopes, instability
of mode 1 leads first to some shifting and distortion of the rings, and eventually to
erosion of the inner ring due to filamentation.

Closed flows around islands have been observed around Iceland, Taiwan, the islands
of Kuril Chain (Shtokman 1966) and the Pribilof islands (Kowalik & Stabeno 1999).
These closed flows may be induced by inertial and subinertial oscillations, reinforced
by waves trapped by the sloping topography, or generated by winds (Longuet-Higgins
1967, 1969; Shtokman 1966; Brink 1999; Dyke 2005). It is expected that, being
adapted to non-circular islands, some of the results presented above might become
relevant to these kinds of flows. Apart from the currents around islands, after minor
modification, the beta-cone concept can be applied to the treatment of flows in
the presence of conical beta effect in a planetary scale, namely, of the Antarctic
Circumpolar Current. These issues will be considered separately elsewhere.
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