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We investigate the unsteady motion of a long bubble advancing under either
prescribed pressure pb or prescribed volume flux qb into a fluid-filled flexible-walled
channel at zero Reynolds number, an idealized model for the reopening of a liquid-
lined lung airway. The channel walls are held under longitudinal tension and are
supported by external springs; the bubble moves with speed U . Provided pb exceeds
a critical pressure pcrit, the system exhibits two types of steady motion. At low
speeds, the bubble acts like a piston, slowly pushing a column of fluid ahead of itself,
and U decreases with increasing pb. At high speeds, the bubble rapidly peels the
channel walls apart and U increases with increasing pb. Using two independent time-
dependent simulation techniques (a two-dimensional boundary-element method and a
one-dimensional asymptotic approximation), we show that with prescribed pb >pcrit,
peeling motion is stable and the steady pushing solution is unstable; for pb <pcrit

the system ultimately exhibits unsteady pushing behaviour for which U continually
diminishes with time. When qb is prescribed, peeling motion (with large qb) is again
stable, but pushing motion (with small qb) loses stability at long times to a novel
instability leading to spontaneous relaxation oscillations of increasing amplitude and
period, for which the bubble switches abruptly between slow unsteady pushing and
rapid quasi-steady peeling. This stick–slip motion is characterized using a third-order
lumped-parameter model which in turn is reduced to a nonlinear map. Implications
for the inflation of occluded lung airways are discussed.

1. Introduction
The lung consists of a network of bifurcating flexible airways that conduct air

between the mouth and the alveoli, the site of gas exchange with blood. The thin liquid
lining of the airways plays an important role in determining the airways’ mechanical
properties and stability (Grotberg 1994). It does so via capillary forces arising from
surface tension acting at the air–liquid interface. These forces are mediated by natur-
ally produced pulmonary surfactant, which lowers surface tension, thereby improving
overall lung compliance and enhancing airway stability. When infants are born pre-
maturely the immaturity of the surfactant system can lead to respiratory distress
syndrome (RDS), which is characterized by large regions of atelectatic (closed)
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EH14 4AS, UK.
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airways; these can be opened clinically using mechanical ventilation and surfactant
replacement therapy (SRT). Although SRT has been used routinely since the 1990s
and has dramatically reduced the mortality of RDS, this disease remains the fourth
leading cause of death of premature infants in the United States (Guyer et al. 1999)
and is a cause of long-term lung damage in surviving infants. A related condition in
adults is acute respiratory distress syndrome (ARDS), which can follow insults such
as systemic infection (sepsis), smoke inhalation or radiation poisoning. Here a flux
of liquid into airspaces leads to pulmonary oedema, alveolar flooding and surfactant
inactivation by proteins that escape from the vasculature into airways. In both forms
of RDS, airways can become blocked with liquid, either through liquid-plug formation
arising via a Rayleigh–Plateau (surface-tension-driven) instability of the airway liquid
lining (Kamm & Schroter 1989; Johnson et al. 1991; Halpern & Grotberg 1992),
or through airway collapse induced by low liquid capillary pressures (Rosenzweig &
Jensen 2002; Heil & White 2002), or through a combination of both mechanisms
(Heil 1999a , b).

The process whereby an occluded airway is reopened is thus of fundamental
importance in the treatment and progression of obstructive pulmonary diseases
including asthma, cystic fibrosis and RDS. It is also a key feature of the first breath
of a newborn infant, where air must be drawn rapidly into initially liquid-filled
airways. In general, reopening arises either through the displacement and rupture of
short liquid plugs (Howell, Waters & Grotberg 2000) or through the inflation of an
initially flooded and collapsed airway (Gaver III, Samsel & Solway 1990). A number
of important physiological issues are related to the associated interactions between
airway liquid and deformable airway walls (Grotberg 2001; Gaver III, Jensen &
Halpern 2005). These interactions span many length and time scales. At the organ
level, airway closure may result in abnormal pulmonary mechanical behaviour due to
regional compliance mismatch. This can result in local regions of airway and alveolar
distension and hyperventilation of open regions of the lung, while neighbouring
closed regions receive little or no gas exchange. At the cellular level, the process of
reopening collapsed airways can wound the lung by stretching sensitive alveolar tissue
(Savla, Sporn & Waters 1997; Tschumperlin, Oswari & Margulies 2000). In addition,
interfacial stresses during reopening can damage airway epithelial cells (Bilek, Dee &
Gaver 2003). This damage appears to result from large normal-stress gradients that
propagate across the cells. At the molecular level, the stability of airways and the
stress magnitudes during reopening are directly related to the molecular properties
of surfactant, including the rates of surfactant sorption and the interaction between
surfactant lipids and proteins (Notter 2000).

In this paper we focus on the stability of airway reopening, using a system in which
an airway is modelled as a planar flexible-walled channel, as illustrated in figure 1
(and outlined in detail in § 2 below). The initially liquid-filled channel is confined
by two flexible membranes held under large longitudinal tension η� and supported
externally by linearly elastic springs with stiffness Γ �. The channel width under stress-
free conditions is 2H�. The liquid within the channel is assumed to be Newtonian
with constant viscosity µ� and uniform surface tension γ �. The channel is inflated by
blowing a bubble of air into one end of the channel with either a prescribed pressure
p�

b or a prescribed volume flux q�
b per unit width such that the bubble tip advances

with speed U�(t �) at time t �.
Gaver III et al. (1996) showed theoretically that steady bubble propagation in

this system can occur provided the scaled bubble pressure pb = p�
b/(γ

�/H�) exceeds a
critical value, pcrit, dependent on material parameters and geometry. Corresponding to
this minimum pressure is a dimensionless critical speed Ucrit = µ�U�

crit/γ
� (a capillary
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Figure 1. Schematic of physical model: a bubble of air propagates from left to right,
inflating the liquid-filled channel.

number representing the ratio of viscous to surface-tension forces). For pb >pcrit there
are two steady solution branches (see figure 2a): one for U = µ�U�/γ � <Ucrit along
which U decreases as pb increases; one for U > Ucrit along which U increases with pb.
On the lower branch (with U <Ucrit), the nearly circular bubble tip displaces a long
column of fluid ahead of itself between almost parallel membranes: this is therefore
referred to as the ‘pushing’ branch. Using Bretherton’s (1961) analysis of the steady
low-capillary-number motion of a bubble through a circular tube, Gaver III et al.
(1996) showed that on this branch pb ∼ Γ U−2/3 as U → 0, where Γ = Γ �H�2/γ � is
a dimensionless membrane stiffness. On the upper steady solution branch (U >Ucrit

in figure 2a), as U and pb increase the bubble tip becomes more pointed and the
membrane walls are more tapered in the tip region. Asymptotic analysis in the limit
of large membrane tension (with η = η�/γ � � 1) and weak springs shows that on
this ‘peeling’ branch pb ∼ η1/6Γ 1/2U 1/3 (Jensen et al. 2002). Computations of this
solution branch obtained using two-dimensional computational simulations and a
one-dimensional asymptotic analysis assuming η � 1 both show good agreement with
Perun & Gaver’s (1995b) experimental measurements of steady peeling behaviour
(Jensen et al. 2002).

These two distinct steady reopening responses are robust to variations in modelling
assumptions, persisting for example in three dimensions (Hazel & Heil 2003) and in
the presence of surfactant (Yap & Gaver 1998). Qualitatively new behaviour arises
only at very low speeds when membrane walls are weakly permeable (Jensen &
Horsburgh 2004) or at high speeds when fluid inertia (Heil 2000) and viscoelasticity
(Hsu, Strohl & Jamieson 1994) are significant. Peeling but not pushing behaviour has
been observed experimentally, suggesting that the pushing branch may be unstable
under certain conditions. Furthermore, a transient overshoot in p�

b was observed when
reopening was initiated at constant bubble flux q�

b (Perun & Gaver 1995a , b), and
Perun & Gaver (1995a) reported difficulties in obtaining steady reopening at low
q�

b. While the mechanism of transient overshoot has recently been captured using
a one-dimensional asymptotic model (Horsburgh 2000; Naire & Jensen 2003), the
stability of the two solution branches under different reopening conditions has yet
to be fully explored. Furthermore, experiments in lungs indicate avalanche behaviour
(Suki et al. 1994) that may be a result of flow instability (Alencar et al. 2002). The
use of noise to spawn such instabilities has been suggested as a means for increasing
ventilator efficacy (Suki et al. 1998).
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Figure 2. Steady solution branches, plotted in (a) the (pb, U )-plane, (b) the (qb, U )-plane
and (c) the (qb, pb)-plane. Black circles in each panel show two steady solutions with the
same pb, one on the pushing branch and the other on the peeling branch. Insets in (a) show
characteristic shapes of pushing and peeling solutions.

The aim of the present paper is therefore to investigate the stability of pushing and
peeling motions under conditions of either prescribed bubble pressure or prescribed
bubble flux. We use two complementary time-dependent techniques (outlined in § 3):
a computational two-dimensional Stokes-flow simulation based on the boundary-
element method, and a one-dimensional asymptotic model valid when membrane
slopes are uniformly small. The two methods allow for cross-validation and provide
flexibility in examining detailed flow structures and in integrating over long time
intervals. By subjecting typical pushing and peeling steady-state solutions (the black
circles on figure 2a) to small, prescribed variations in bubble pressure and allowing
U to vary, we will confirm (in § 4.1, following preliminary calculations by Horsburgh
2000) Gaver III et al.’s (1996) conjecture that the pushing branch is unstable to small
perturbations in speed with p�

b held fixed, and that the peeling branch is stable. The
pushing branch loses stability to a direct (zero-frequency) instability, resulting either
in steady peeling motion or a new form of unsteady pushing motion for which U� → 0
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as t � → ∞. We demonstrate also how unsteady pushing behaviour ultimately arises
when pb is held fixed at a value below pcrit.

Because of its relevance to experiment and to clinical ventilation protocols, we then
consider (in § 4.2) the stability of the two solution branches when the bubble volume
flux q�

b is prescribed, taking qb = q�
bµ/(γH�) as a dimensionless control parameter.

Under steady conditions qb ≈ pbU/Γ , since the bubble has approximate width pb/Γ at
its upstream end and propagates with speed U . The two steady solution branches are
therefore single-valued in the (qb, U )- and (qb, pb)-planes (figure 2b, c), with U ∝ q3

b

and pb ∝ q−2
b for small qb (pushing) and U ∝ q

3/4
b and pb ∝ q

1/4
b for large qb (peeling).

These single-valued solution branches give no obvious indication of any direct
instabilities when qb is a control parameter. However we find that at low qb the
system exhibits a novel and unexpected instability resulting in growing oscillations.
These develop increasingly large amplitude, with alternating pushing and peeling
motion leading to abrupt and non-periodic variations in bubble pressure and bubble
speed. The mechanism of the instability is clarified using a third-order (lumped-
parameter) ODE model in § 5, which characterizes some of the more striking features
of this dynamical system. In particular, we show that the primary instability is not
(as might be expected) a Hopf bifurcation, but is instead a dynamic bifurcation of
a time-dependent state, and that large-amplitude oscillations exhibit a self-similar
structure. The relevance of this instability to airway reopening is discussed in § 6.

2. Model formulation
We consider a model similar to that treated by Gaver III et al. (1996) and Jensen

et al. (2002), as illustrated in figure 1. The channel is inflated by a bubble of incom-
pressible, inviscid gas that is forced into the channel with either prescribed pressure p�

b

or prescribed volume flux q�
b per unit width. Gravitational and inertial effects in the

liquid are assumed to be negligible. In a laboratory frame of reference, we introduce
Cartesian coordinates (x�, y�) with x� increasing in the direction of the moving bubble,
y� = 0 on the channel centreline and the origin fixed far to the left of the moving
bubble tip, which lies at x� = L�

b(t
�). Relative to these axes, the membranes lie at

y� = ±h�(x�, t�) and the air–liquid interface lies at y� = ±f �(x�, t�) in 0 � x� � L�
b(t

�).
The flow is assumed to be symmetric about y� =0. Far ahead of the bubble tip (as
x� → ∞), h� → H�, the springs are unstressed and the liquid is stationary relative to
the membranes.

Non-dimensional variables (without stars) are defined with respect to a length H�,
a pressure γ �/H�, a speed γ �/µ� and a time H�µ�/γ �. This yields the following
parameters:

Γ =
Γ �H�2

γ �
, η =

η�

γ �
, pb =

p�
bH

�

γ �
, qb =

q�
bµ

�

γ �H�
, (2.1)

which define the dimensionless spring stiffness, membrane tension, bubble pressure and
bubble flux respectively. The dimensionless speed of the bubble satisfies U (t) = Lbt .
In the following, subscripts x, y and t denote derivatives.

The Stokes and continuity equations for the liquid are given by

∇ · u = 0, ∇p = ∇2u, (2.2)

where u = (u, v) is the dimensionless fluid velocity and p the pressure. The stress and
kinematic boundary conditions at the air–liquid interface are

τ ≡ σ · n = −(pb + κi)n, ft = v − ufx on y = f (x, t), (2.3)
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where n is the unit normal pointing out of the liquid, σ = −pI+ ∇u + ∇uT is the
stress tensor and κi = fxx/(1 + f 2

x )3/2 is the interfacial curvature. At the flexible wall,
the stress and the kinematic boundary conditions are

m · σ · ey = ηκmmy − Γ (h − 1), u = 0, v = ht on y = h(x, t). (2.4)

Here m = (mx, my) is the unit normal facing out of the liquid and κm =hxx/(1 + h2
x)

3/2

is the membrane curvature. The vertical component of the fluid stress is balanced by
membrane tension and elastic forces due to the springs. In this model, we assume that
any shear-stress-induced or stretch-induced variations in membrane tension are negli-
gible compared to the mean value, as justified by Gaver III et al. (1996). Since
the membranes move only vertically (2.4b, c), the springs provide a stress only in
the vertical direction. These assumptions follow closely those used in Gaver III et al.
(1996) and Jensen et al. (2002). As we shall see in § 3.3, the small change in the wall
kinematic boundary condition due to the small-slope approximation nearly replicates
the steady solutions of Gaver III et al. (1996). Furthermore, this model captures the
behaviour seen in studies using more sophisticated wall models (Heil 2000; Hazel &
Heil 2003).

Along y =0 ahead of the bubble tip (x > Lb) we have the symmetry conditions

uy = 0 and v = 0. (2.5)

Far ahead of the bubble tip,

lim
x→∞

h(x, t) = 1. (2.6)

2.1. Modelling assumptions

Next, we describe several model assumptions which make the problem described
above more manageable. We assume first that η � 1, so that the membrane tension
greatly exceeds surface tension. As the bubble advances, a film of (typically) non-
uniform thickness is deposited on the membrane behind the bubble tip. While the
flux of fluid escaping past the bubble plays a significant role in the bubble dynamics,
the subsequent surface-tension-driven redistribution of the film on the membrane is
dynamically passive, since the membrane shape is controlled primarily by membrane
tension rather than surface tension.

In the analysis below (§ 2.1.1–§ 2.1.2) it is convenient to split the flow domain into
the four regions (I–IV) shown in figure 3. Approximate relationships for regions I, II
and IV are derived below. The manner in which these are coupled to region III (which
has fixed length and which contains the bubble tip) is discussed in detail in § 3.

2.1.1. Modelling the flow around the bubble

As shown in figure 3, the domain that spans the far-upstream region to the area
directly downstream of the bubble tip comprises regions I–III. In regions I and II, the
membrane and the adjacent fluid interface have small slope, since we assume η � 1.
Thus the normal stress conditions (2.3a), (2.4a) reduce to

p − pb = fxx, p = Γ (h − 1) − ηhxx. (2.7)

Further, neglecting the contribution of surface tension to the membrane shape, (2.7)
simplifies to

pb = Γ (h − 1) − ηhxx. (2.8)

Thus in regions I and II, the membrane has an equilibrium configuration, controlled
at leading order by a balance of membrane tension and spring stiffness.
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Figure 3. The flow domain (top) is split into four regions: region I is spatially uniform of
length L1(t) where L1t = U ; region II is of fixed length L2 where the membrane is in equilibrium
but spatially non-uniform; region III is a fixed length region that includes the bubble tip; and
region IV is the region ahead of the bubble. The boundary-element domain (below) consists
of segments AB, BC, CD, DE and EA.

Far upstream is region I, which has length L1(t) that (by definition) grows at a rate
equal to the bubble tip speed, so that L1t = U (t), L1(0) = 0. Here the membrane is
assumed to be spatially uniform, so that (from (2.8)) h = h1(t) where

h1(t) ≡ (pb/Γ ) + 1. (2.9)

Region II is of fixed length L2 and it translates with the bubble tip. Here the
membrane is spatially non-uniform but is again assumed to be in equilibrium,
satisfying (2.8), so that

h(x, t) = [h2(t) − h1(t)]
sinh [α(x − L1(t))]

sinh(αL2)
+ h1(t) (L1 < x < L1 + L2), (2.10)

where h2(t) = h(L1 + L2, t) and α =
√

Γ/η. In practice, αL2 � 1, so that the membrane
asymptotes to h1 within region II. h2(t) is determined by conditions in region III, as
described in § 3 below.

2.1.2. Modelling the flow ahead of the bubble

Region IV lies far downstream of the bubble tip in the long fluid-filled channel
where the membrane slope is uniformly small and thus lubrication theory is applicable.
The liquid pressure here does not vary significantly across the film and is determined
from (2.7b). The streamwise momentum equation (2.2b) reduces to uyy = px , yielding

u = 1
2
px(y

2 − h2). (2.11)
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Mass conservation then demands that

ht + qx = 0, q = − 1
3
h3px, px = Γ hx − ηhxxx, (2.12)

where q is the liquid flux in the laboratory frame.

2.1.3. Pressure evolution equation

We wish to simulate the system with either pb or qb prescribed. In the former case,
we seek the evolution of f, h and U . In the latter case, an additional evolution equation
for pb(t) must to be derived. This equation arises from a macroscopic conservation
of mass over regions I–III. The rate of change of bubble volume must equal the flow
rate qb, i.e.

qb = VIt + VIIt + VIIIt , (2.13)

where VI, VII and VIII are the bubble volumes in regions I, II and III, respectively:

VI =

∫ L1(t)

0

f (x, t) dx, VII =

∫ L1(t)+L2

L1(t)

f (x, t) dx, VIII =

∫ Lb(t)

L1(t)+L2

f (x, t) dx. (2.14)

In regions I and II the liquid is assumed to sit passively on the membrane wall. We
differentiate VI +VII with respect to time and apply the mass conservation condition

(h − f )t + qx = 0, (2.15)

where q =
∫ h

f
u dy is the liquid flux in the laboratory frame. We assume q(0, t) = 0

and q(L1 + L2, t) = 0, implying negligible surface-tension-driven flow of the liquid
film. Then (2.9), (2.10) yield

VIt + VIIt =

[
L1 + L2 − 1

α

(
cα − 1

sα

)]
pbt

Γ
+

1

α

(
cα − 1

sα

)
h2t

− U

(
h2 − pb

Γ
− 1

)
+ Uf (L1 + L2, t),

where cα ≡ cosh(αL2), sα ≡ sinh(αL2) and h2t = Uhx(L1 +L2, t) +ht (L1 + L2, t). In
addition, using (2.3b), VIIIt can be expressed in terms of the surface velocity as

VIIIt = −Uf (L1 + L2, t) −
∫ sb

0

u|y=f · n ds, (2.16)

where s is the arclength measured along the bubble surface from the bubble tip, and
sb(t) denotes the length of the bubble surface in region III. On applying (2.13), the
evolution equation for the bubble pressure is obtained:

pbtL1

Γ
+

{
pbt

Γ

[
L2 − 1

α

(
cα − 1

sα

)]
+

h2t

α

(
cα − 1

sα

)
− U

(
h2 −

(
pb

Γ
+ 1

))}

−
∫ sb

0

u|y=f · n ds = qb(t). (2.17)

The first term in (2.17) determines the rate of inflation or deflation of region I; the
terms grouped in brackets {· · ·} represent the rate of inflation or deflation of region II,
and the integral arises from volume changes in region III. At steady state, (2.16) and
(2.17) imply that pb = Γ qb/U (noting that in this case h − f = 1 at x = L1 + L2).

Given an initial bubble shape and membrane wall deflection, values for the
dimensionless spring stiffness Γ and wall tension η, and either a prescribed bubble
pressure, pb, or bubble flux, qb, as defined in (2.1), the governing momentum and
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continuity equations, (2.2), are solved numerically subject to the boundary conditions
(2.3)–(2.6). The methods used to solve these equations are described next.

3. Methods of solution
Two approaches are used to solve this initial-value problem. The first (§ 3.1) involves

the use of a two-dimensional boundary-element method (BEM), extending that
presented in Gaver III et al. (1996) and Jensen et al. (2002) to incorporate unsteady
effects. The second approach (§ 3.2) uses a one-dimensional asymptotic approximation,
extending that presented in Jensen et al. (2002) and Naire & Jensen (2003). In both
approaches the flow domain is divided into the four regions shown in figure 3, in
which simplified approximate problems are solved as described in § 2.1: in regions I
and II the membrane is assumed to be in equilibrium, to have small slope, and the
deposited film is assumed dynamically passive; in region IV, (2.12) is used to model
the interaction between the flow and the evolution of the membrane shape.

The primary difference between the BEM and asymptotic approaches is the
treatment of region III. In the BEM approach, region III is a long computational
domain that extends many channel widths upstream and downstream of the bubble tip
(see domain A–E of figure 3). In this region, the full unsteady governing equations are
solved subject to boundary conditions determined by patching to regions II and IV.
Thus regions II–IV are simultaneously evolved as described in § 3.1 below. In the
asymptotic approach, region III is centred on the bubble tip and is much shorter,
with an order-unity aspect ratio; the membranes are assumed to be almost parallel
and the local motion is assumed to be quasi-steady, allowing existing solutions of
bubble flow in a weakly tapered channel to be exploited. Boundary conditions for the
unsteady flow in region IV are determined by formal asymptotic matching.

3.1. The boundary-element method (BEM)

For given initial conditions (i.e. bubble and membrane shapes and qb or pb) we
compute the unknown velocity or stress fields on the boundaries of region III by
integrating numerically the boundary-element equations. We march in time by solving
the kinematic boundary conditions on the bubble and membrane interfaces, which
are coupled to regions II and IV as described below.

Stokes’ equations (2.2), at any given time t , are solved by using Green’s theorem
to derive an integral equation involving the velocity and stress on the boundary S of
region III,

Ckiui(x) +

∫
S

Tik(x, y)ui( y) ds( y) =

∫
S

Uik(x, y)τi( y) ds( y), (3.1)

where x represents the position vector of a point on S, Cki is a matrix which allows
for a jump in normal stress, and τ = σ · n is the stress vector, n being the unit outward
normal to S. The kernels Uik and Tik are

Uik(x, y) = − 1

4π

(
δik log |x − y| − (xi − yi)(xk − yk)

|x − y|2

)
, (3.2a)

Tik(x, y) = − 1

π

(xi − yi)(xj − yj )(xk − yk)nj ( y)
|x − y|4 . (3.2b)

To solve (3.1), S is discretized into N elements, each consisting of 3 node points.
The position, velocity and stress fields are approximated using quadratic polynomials
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over each element. A linear system of equations is then obtained for the unknown
velocities and stresses on each of the boundaries

Hw = Gt, (3.3)

where H and G are respectively 4N × 4N and 6N × 6N matrices whose entries are
computed using Gaussian quadrature rules, and w and t are vectors of velocities and
stresses at each of the N nodes. Applying the boundary conditions (see below), (3.3)
can be rearranged into a system of equations for the unknown velocities and stresses
which is solved using Gaussian elimination with partial pivoting.

The boundary S is divided into five piecewise smooth segments (A–E in figure 3)
along which either velocity or stress conditions are applied. Given an initial bubble
shape, its curvature can be computed, and hence the normal stress condition (2.3a) is
known along segment DE. Along segment AB , the horizontal component of velocity
is zero and the vertical component of the stress condition is prescribed by (2.4a).
Along segment CD, the symmetry conditions (2.5) are applied. Along segment EA,
we impose u =0 (in the laboratory frame) and τy = 0. Along segment BC, we specify a
horizontal component of velocity given by (2.11) and a vertical shear stress component
τy which is obtained by differentiating (2.11), which couples the flow to region IV. At
the corner B , we require that the position, slope and curvature of the membrane be
continuous.

Time-stepping for the evolution of regions I–IV occurs using an implicit time-
stepping method (LSODES, see Hindmarsh 1982). The evolution for region III
is simulated by solving (2.3b) and (2.4c) using velocities from the BEM solution.
Simultaneously, the membrane shape in region IV is determined by solving (2.12) using
the method of lines with the spatial derivatives approximated using finite differences
over a non-uniform grid. Region II adapts itself automatically to the evolution of
region III following (2.10). Simultaneous time-stepping of regions II–IV is essential
to provide the necessary end conditions for region III. The bubble tip velocity is
subtracted from the x-component of velocity in the kinematic boundary conditions,
which allows our domain to be fixed to the bubble-tip frame of reference. After
solving the membrane and meniscus shapes, the flow field can be readily computed.

A different approach is taken when seeking steady-state solutions. In this case an
iterative scheme using Newton’s method on the kinematic boundary conditions is
used to update the shapes of the meniscus and the membrane. This method improves
upon the technique described in Gaver III et al. (1996) by simultaneously iterating
both the meniscus and membrane shapes.

3.2. Asymptotic reopening model

The formal aspects of the asymptotic model under steady conditions are discussed
in Jensen et al. (2002). Here, we briefly present the analogous unsteady version,
following Naire & Jensen (2003) who treated a different initial-value problem in a
related physical system. We develop an asymptotic expansion in the small parameter
ε = η−1/3 � 1, assuming that the membrane slope is uniformly small. Once again,
in regions I and II the membrane is in equilibrium and the deposited film plays
no dynamical role. In region III, now assumed to have O(1) length and width, the
local Stokes flow around the bubble tip is two-dimensional and is assumed to be
quasi-steady (relative to the slow evolution of region IV). Since the membrane slope
is small, the flow here is equivalent to that of a bubble in a weakly tapered channel.
We exploit previous numerical studies of this problem (Halpern & Jensen 2002) to
provide estimates of key flow quantities (the pressure drop across the bubble tip, and
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the thickness of the deposited film) that we incorporate into boundary conditions for
region IV; this region is described using lubrication theory.

We move to the bubble tip frame and make a long-wavelength approximation by
setting

X = ε(x − Lb(t)), T = εt, H (X, T ) = h(x, t), P = εp, Pb = (ε/δ)pb, (3.4)

where the parameter δ =
√

εΓ is assumed to be O(1). Then, in region IV, (2.12)
becomes

HT + QX = 0, Q = − 1
3
H 3PX − HU, P = δ2(H − 1) − HXX, (3.5)

in X � 0, where Q is the two-dimensional volume flux in the frame of the bubble tip.
Equations (3.5a–c) are solved subject to boundary conditions obtained by matching
to regions I and II. To explain these, we first re-write (2.10) using (3.4), assuming
αL2 � 1, so that in region II

H = (h2 − h1) eδ(X+εL3) + h1, h1 = (Pb/δ) + 1, L3 = Lb − L1 − L2 = O(1),

and deduce that

HX(0) = δ(h(0) − 1) − Pb + O(ε2), HXX(0) = δ2(h(0) − 1) − δPb + O(ε2). (3.6)

The boundary conditions we apply to (3.5) are then

HX(0, T ) = −θ = −Pb(T ) + δ(Hb − 1), (3.7a)

HXX(0, T ) = δ2(Hb − 1) − δPb − εUP0(U )/Hb, (3.7b)

Q(0, T ) = −λ(U, εθ)HbU, (3.7c)

lim
X→∞

H (X, T ) = 1. (3.7d)

Here Hb(T ) = H (0, T ) is the membrane width at the bubble tip. Equation (3.6a) shows
that (3.7a) ensures continuity of slope across region III; (3.6b) shows that (3.7b)
is a pressure balance, supplemented with a term P0(U ) representing the pressure
jump across the tip of a semi-infinite bubble in a parallel-sided channel at capillary
number U . Equation (3.7c) is a flux balance; here λ(U, εθ) = λ0(U ) + εθλ1(U ) is the
film thickness left behind a meniscus advancing with speed U through a uniformly
tapered channel with taper angle εθ � 1. We use regression formulae for λ0, λ1 and
P0 given in Jensen et al. (2002), obtained from a range of numerical studies (and
repeated for convenience in Appendix A). Equations (3.5)–(3.7) have error O(ε2) as
ε → 0 with δ = O(1).

The relationship between the rate of change of pressure and the flow rate (2.17)
after scaling (using (3.4)) is

Q(0, T ) = qb − PbT

δ

(
L − 1

δ

)
− U

(
1 +

Pb

δ

)
− HbT

δ
(1 − δεL3) , (3.8)

where L = εLb and L3 is the O(1) length of region III. In the following L3 was set
to zero; this made negligible difference to the results.

3.3. Validation of steady solutions

We tested the present reopening models against that of Gaver III et al. (1996) by
computing steady solutions with Γ = 0.5, η = 100. The models presented herein have
slightly different wall boundary conditions from those of Gaver III et al. (1996) as
discussed in § 2.1. Specifically, instead of (2.4b, c), Gaver III et al. (1996) used the
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Figure 4. Bubble speed U versus bubble pressure pb for steadily propagating bubbles, showing
comparisons between current BEM model (dashed), the asymptotic model (dot-dashed) and
previous results of Gaver III et al. (1996) (solid), for η = 100, Γ = 0.5.

following kinematic boundary conditions at the membrane in a bubble-tip frame of
reference:

u = n2
x − 1, v = nxny, (3.9)

corresponding to a travelling wave propagating at the same speed as the meniscus
tip, which is only appropriate for steady state motion. If a small-slope approximation
is made, in steady state these conditions are identical to (2.4b, c) (noting that the
latter are given in the laboratory frame). Also, Gaver III et al. (1996) applied a stress
boundary condition normal to the wall, while in (2.4a) we apply the condition in the
vertical direction only. As with the kinematic boundary conditions (2.4b, c), these are
equivalent in the small-slope limit. These modifications of the boundary conditions
provide only slight differences in the solutions, as we shall see below.

Figure 4 shows the pressure–speed relationship for steadily propagating bubbles.
The figure demonstrates that the agreement between BEM computations, the
asymptotic model and predictions from Gaver III et al. (1996) is very good for
small U , but small deviations occur as U increases. The closeness of the results at small
U (for ‘pushing’ solutions) may be attributed to the fact that the wall slope is
small over most of the wall and therefore nx ≈ 0 in (3.9); this results in u ≈ 0, exactly
the boundary condition used in the current model (see 2.4b). The deviation between
the asymptotic model and numerical results of Gaver III et al. (1996) increases slightly
as U increases along the ‘peeling’ solution branch because the small-slope assumption
is less accurate.
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4. Numerical results
In this section we examine the stability of the steady solutions found in § 3.3

(figure 4) using the time-dependent models derived above. We examine perturbations
both in bubble pressure (§ 4.1) and volume flux (§ 4.2) to representative pushing and
peeling solutions (indicated with symbols in figure 2), each of which has pb = 2.23
(according to BEM) at steady state.

4.1. Stability of pressure-driven reopening

To examine the stability of the two branches of the steady solution curve shown in
figure 4, pb was perturbed according to

pb(t) =

{
pb0 + 1

2
�pb(1 − cos(2πt/�t)), 0 � t � �t,

pb0, t > �t,
(4.1)

where pb0 is the initial pressure, and |�pb| is the maximum bubble pressure
perturbation, occurring at t =�t/2.

4.1.1. Stability of peeling motion

The response of the peeling solution at pb0 = 2.23 to a positive pressure perturbation
is shown in figure 5. Both the BEM and asymptotic models show the bubble speed
returning to its initial value for t >�t . Note that the discrepancy between the solutions
provided by the two approaches is similar in magnitude to that demonstrated in
figure 4. Similar behaviour was observed for a negative pressure perturbation (not
shown). In all cases that we examined, steady peeling solutions were found to be
stable to finite pressure disturbances for which pb returns to its original value.

4.1.2. Stability of pushing motion

Figure 6 illustrates the response of the pushing solution at pb0 = 2.23 to a positive
pressure perturbation acting over 300 time units (figure 6a). The tip velocity initially
increases quite slowly, then accelerates at t = 15000 and eventually approaches the
steady peeling velocity having the same value of pb0 (figure 6b). Again, the BEM and
asymptotic methods both predict very similar behaviour. This validates our simulation
methods and justifies the assumption (for the one-dimensional simulations) that the
flow near the bubble tip is quasi-steady. Figure 6(c) shows how, as U increases towards
its steady peeling value for t > �t , the bubble tip becomes more pointed and the
membrane develops a characteristic damped wavy shape. Correspondingly, the vertical
component of stress along the wall, τy , develops a deep minimum coincident with the
region of high membrane curvature, characteristic of peeling motion (figure 6d).

In contrast, if the same pushing solution (pb0 = 2.23) is subject to a negative pressure
perturbation (figure 7a), the tip velocity initially decreases and increases in concert
with the fall and rise of pb. However, after the pressure perturbation is complete the
velocity overshoots its initial value slightly and then falls indefinitely (figure 7b). As
the bubble slows, the thickness of the film being deposited behind the tip decreases,
and fluid accumulates ahead of the bubble tip, as shown in figure 7(c). The vertical
component of stress decreases more gently towards zero as the length of the filling
region increases (figure 7d).

A transition from peeling to similar unsteady pushing behaviour can be obtained if
a peeling solution is subject to a sustained reduction in bubble pressure, so that pb is
reduced to pb <pcrit. The large-time behaviour then resembles that shown in figure 7.
The bubble acts as a leaky piston, continually accumulating fluid ahead of the tip,
but slowing as the lengthening fluid column is displaced under a fixed pressure drop.
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Figure 5. The effect of a positive pressure perturbation (a) (with �pb = 0.5, �t = 100 in
(4.1)) on the tip velocity (b) of a peeling solution, with Γ = 0.5, η = 100, pb0 = 2.23.

This behaviour is analysed further in § 5 below, where the self-similar nature of the
large-time evolution in figure 7 is described, and the dynamics of unsteady pushing
motion is characterized using a simple first-order ODE.

4.2. Stability of flow-driven reopening

We now examine the stability of the same steady solutions to perturbations in qb,
given by

qb(t) =

{
qb0 + 1

2
�qb(1 − cos(2πt/�t)), 0 � t � �t,

qb0, t > �t,
(4.2)

where qb0 is the initial (steady) flow rate, and |�qb| is the maximum flux perturbation
occurring at t = �t/2.
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Figure 6. The effect of a positive pressure perturbation (�p = 0.1, �t = 300) on the steady
pushing solution with pb0 = 2.23, showing evolution towards steady peeling; other parameter
values as for figure 5. (a) pb and (b) U versus t; (c) membrane and bubble shapes and (d)
vertical stress versus x − Lb, at t = 8000, 9000, 10000, 11000 and 12000, obtained using BEM
calculations.

4.2.1. Stability of peeling motion

Figure 8 demonstrates how the steady peeling solution with qb0 = 3 (and pb = 2.23
based on BEM) is stable to a large positive flow-rate perturbation. Both U and pb

increase as qb increases with time (figure 8a, b). We define the parameter qbΓ/(Upb),
as an ‘unsteadiness’ parameter. Since pb/Γ is the bubble width, qbΓ/(Upb) = 1 if the
flow is steady. Figure 8 shows that the unsteadiness parameter initially rises above
unity, but begins to decrease before qb reaches its maximum (figure 8c). In contrast,
pb and U continue to rise until after qb begins to decline. At some point qbΓ/Upb < 1,
but it eventually increases towards unity, as both pb and U decrease towards their
steady-state values, exhibiting a weak overshoot in doing so. Very similar behaviour
was seen when a negative perturbation (�qb = −1) was applied (not shown). Once
again, solutions obtained using the BEM and asymptotic models show qualitatively
similar behaviour.

4.2.2. Stability of pushing motion

The evolution of a steady pushing solution to either positive or negative perturba-
tions of qb is shown in figure 9. Here �qb = 0.31 and −0.29, �t = 500, Lb(0)−L2 = 50
and only BEM simulations are shown. During the perturbation, U and pb vary
smoothly and appear, initially, to settle back to their original values, albeit with a
slight overshoot that is not evident in the figure. However over very long times, U and
pb exhibit unexpected non-periodic oscillations (figure 9a, b). This type of oscillation
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Figure 7. The effect of a negative pressure perturbation (�p = 0.1, �t = 300) on the steady
pushing solution with pb0 = 2.23, showing the transition to continually slowing unsteady
pushing; other parameter values as for figure 5. (a) pb and (b) U versus t; (c) membrane and
bubble shapes and (d) vertical stress versus x −Lb, at t = 5000, 10000, 15000, 20000 and 25000,
obtained using BEM calculations.

also arises if �qb = 0. In this case the perturbation arises due to very slight ‘noise’
that inevitably appears in numerical simulations.

Figure 9 demonstrates that the oscillations have very long periods, and show a
dramatic increase in amplitude as t increases. The phase but not the character of
the instability is sensitive to the sign of the initial perturbation in �qb. During each
oscillation, the bubble propagates very slowly for long periods of time as pb rises
gently; then, suddenly, U rises dramatically, and then both U and pb fall to low
values once more. The growing oscillations are conveniently plotted on the (pb, U )-
phase plane (figure 9c), which highlights the two phases in each oscillation. First the
bubble progresses for long periods of time in an unsteady pushing mode (below the
steady pushing curve). During this stage the channel slowly inflates while U decreases
slowly and pb increases slowly. Then U begins to increase, first slowly and then very
rapidly while pb remains nearly constant. At this point the pushing behaviour quickly
switches to quasi-steady peeling motion as a large amount of fluid is able to escape
past the bubble tip. However once in the peeling mode, qb is too small to sustain
high-speed motion, and the solution drifts down the steady peeling branch (with U

and pb both decreasing) to the minimum of the steady solution curve. The cycle
then repeats, but with a bubble that is much longer than during the prior oscillation.
This causes the following pressure and velocity excursions to be much greater. The
essential elements of the dynamics of this oscillation are captured using a third-order
ODE model in § 5 below.
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Figure 8. The effect of a positive flow-rate perturbation (�qb = 1, �t = 500) on the peeling
steady solution for which qb0 = 3, Γ = 0.5 η = 100, computed using BEM (solid) and the
asymptotic model (dashed). (a) U versus t; (b) pb versus t; (c) qb versus t; (d) qbΓ/(Upb)
versus t .

To validate the BEM predictions, simulations using both BEM and the asymptotic
model are presented in figure 10, for which the flow rate is ramped down from
qb = 3 to 1 and then held constant (figure 10c). Solutions obtained independently with
the two solution methods show good qualitative agreement, even when integrated
over long times. However, the asymptotic model has the advantage that long-time
integrations are considerably less expensive than with BEM. Once again, since the
bubble is elongating the system is continually changing size, and the period and
amplitude of oscillations both increase as the bubble lengthens.

In summary, with qb prescribed, the simulations we conducted all suggest that
the peeling branch (i.e. for qb > qcrit where qcrit is the flux corresponding to the
turning point of the pb–U curve, see figure 2) is stable to either a positive or
negative perturbation of qb. Such a perturbation causes the system to overshoot in
an oscillatory fashion, followed by a decay to the corresponding steady state on
the peeling branch. For the pushing branch (qb <qcrit), however, we find that the
corresponding steady solution appears stable for intermediate times but eventually
loses stability as the bubble grows in length (figures 9 and 10). We have isolated
the cause of the instability as the term pbtL1 in (2.17), which contributes to changes
in the bubble volume via transverse inflation. Since the magnitude of the volume
variation is proportional to L1, this term becomes significant only when L1 is large
(i.e. when the bubble is sufficiently long). This allows small fluctuations in pb to induce
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Figure 9. An example of the system exhibiting growing non-periodic, large-amplitude
relaxation oscillations for t > 2000. (a) Tip velocity U versus t; (b) bubble pressure pb versus t;
and (c) U versus pb, where arrows indicate increasing time. Here qb = 1.25, Γ = 0.5, �t =500
and L2 = 80. The solid lines correspond to a positive pressure perturbation �qb = 0.31, and
the dashed lines to a negative pressure perturbation (to a steady pushing solution) with
�qb = −0.29. Also shown in (c) are the steady-state solutions (the dash-dot line) consisting of
solutions obtained from BEM for U > 0.15 and from the asymptotic model for U < 0.15.

large changes in bubble volume. Switching off this term in simulations suppresses the
instability and stabilizes pushing solutions. The mechanism underlying the instability
is explored further below.
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Figure 10. The effect of a reduction in flow rate from qb = 3 to qb = 1. (a) U versus t; (b) pb

versus t; (c) qb versus t; (d) qbΓ/(Upb) versus t .

5. A lumped-parameter model of unsteady pushing and peeling
We have demonstrated that a bubble propagating into a flexible channel can exhibit

either an ever-slowing pushing motion at low speeds when pb(< pcrit) is prescribed
or alternating pushing/peeling motion when qb(< qcrit) is prescribed. To gain further
insight into these instabilities, we now characterize unsteady pushing and quasi-steady
peeling motion with a simple lumped-parameter model that highlights the key physical
mechanisms operating in each case.

5.1. Unsteady pushing

A channel being inflated in the pushing mode is sketched in figure 11. This mode
can be characterized by a long expanded region that extends ahead of the bubble
tip of approximate length L(t) and volume per unit width V(t). We may represent
the bubble with its height W(t), length Lb(t) and tip speed U (t) = Lbt � 1. In what
follows we aim to capture only basic scaling relationships between these variables
rather than to be quantitatively accurate, and so most numerical coefficients are set
to unity.

Conservation of fluid volume in the region surrounding the bubble tip gives

Vt = U (1 − λ(U )W) (5.1)
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Figure 11. Schematic of unsteady pushing motion.

using the quasi-steady flux condition (3.7c), where λ is the film-thickness function
discussed in § 3.2 (see also Appendix A); at low speeds λ∼ U 2/3 (Bretherton (1961)),
which is appropriate in the pushing regime.

Two methods can be used to estimate L. Balancing the two terms that contribute to
the volume flux within V (see (2.12b)) provides h3px ∼ Uh. Integrating this relation-
ship over x while assuming h is nearly constant over the length L, and noting that
the pressure scales as pb ∼ Γ h (see (2.7b)), we estimate L ∼ Γ h3/U where h ∼ W.
Alternatively, the estimate of L follows from the integral force balance

pbW =

∫ L

0

τ dx (5.2)

where τ is the horizontal component of stress along the wall downstream of the bubble
tip. Equation (2.11) implies τ ∼ pxh; the quasi-steady flux balance (2.12b) implies
τ ∼ U/h, so that (5.2) becomes pbW ∼ UL/W, and hence L ∼ p3

b/(Γ
2U ), given that

W ∼ pb/Γ (from (2.8)).
The volume V ∼ WL can then be estimated to be

V ∼ Γ W4/U ∼ p4
b

/
Γ 3U, (5.3)

given that W � 1. Assuming pb (and hence W) is held fixed, (5.1) reduces (modulo
O(1) numerical factors) to

Ut = −U 3Γ 3

p4
b

(
1 − pbU

2/3

Γ

)
. (5.4)

Equation (5.4) provides a closed system parameterized by pb and Γ . Its dynamics are
described in § 5.3 below. It is a statement of conservation of liquid volume ahead of
the bubble, incorporating an expression relating the pressure drop across the liquid
volume to viscous resistance as it advances.

If instead qb is prescribed, since the bubble volume Vb ≈ WLb, the flux qb =Vbt

satisfies

qb = (pbU + pbtLb)/Γ. (5.5)

Using (5.3b) and (5.5), (5.1) can be written as

Ut =
4U

pbLb

(Γ qb − pbU ) − Γ 3U 3

p4
b

(
1 − pb

Γ
U 2/3

)
, (5.6a)
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which, along with

Lbt = U, (5.6b)

pbt = (Γ qb − pbU )/Lb, (5.6c)

provides a closed system, parameterized by qb and Γ . Note that if pb is held fixed,
qb = pbU/Γ and (5.6a) reduces to (5.4). Equation (5.6a) again expresses conservation
of liquid volume, but it additionally accounts for volume changes arising from
temporal variations in pb driven by inflation of the bubble. As we show in § 5.4 below,
it accounts for the unsteady pushing phase of an oscillation; to capture a complete
oscillation, we must also describe peeling.

5.2. Quasi-steady peeling

In the same spirit as § 5.1, we assume that the steady peeling branch lies along
pb = Γ 1/2η1/6U 1/3, consistent with the asymptotic limit identified in Jensen et al. (2002).
As before, the pushing branch is taken to lie along pb = Γ U−2/3. These are approx-
imations to the two solution branches in figure 2(a). The pushing and peeling branches
are assumed to terminate at their intersection point (pc, Uc) = (Γ 2/3η1/9, Γ 1/2η−1/6) (a
crude estimate of the true turning point (pcrit, Ucrit)). When qb <pcUc/Γ is held fixed,
we would like to be able to describe how during an oscillation the solution tracks
quasi-steadily down the peeling branch from some initial state (pm, Um), where
Um = p3

mΓ −3/2η−1/2, to (pc, Uc).
From (2.8), the bubble volume Vb ≈ (1 + (pb/Γ ))(Lb −

√
η/Γ ). Assuming that

1 � η � L2
b, we may write Vb ≈ pbLb/Γ . The motion of the bubble then satisfies

qb = Vbt and U = Lbt . Treating Lb as an independent variable, we therefore have

qb = U
d

dLb

(
Γ −1/2η1/6U 1/3Lb

)
. (5.7)

Integrating (5.7) and imposing the initial condition U = Um when Lb =Lm, say, we
may therefore describe quasi-steady peeling using

qb

(
L4

b − L4
m

)
= η1/6Γ −1/2

(
L4

bU
4/3 − L4

mU 4/3
m

)
, U = Lbt . (5.8)

Assuming Lb = Lc when U falls to Uc, (5.8) becomes

Lc

Lm

=

(
pmUm/Γ − qb

pcUc/Γ − qb

)1/4

. (5.9)

This equation describes the proportional growth in bubble length during peeling as
U decreases from Um to Uc.

Combining (5.6) to describe pushing and (5.8) to describe peeling, we are now in a
position to reproduce a full nonlinear relaxation oscillation with prescribed qb. First,
however, we consider behaviour with fixed pb.

5.3. Unsteady motion at fixed pb

Equation (5.4) provides a model equation capturing unsteady pushing motion at fixed
pb. The fixed point, pb = Γ U−2/3, approximating the steady pushing branch of solu-
tions when U � 1, is evidently unstable according to (5.4). If pb <Γ U−2/3, Ut < 0 and
thus U diminishes indefinitely. Furthermore, (5.4) predicts that U ∝ t−1/2as t → ∞. If
pb >Γ U−2/3, U increases without bound. In practice, the solution will saturate once it
reaches the peeling branch at pb ≈ Γ 1/2η1/6U 1/3, a feature not included in (5.4).

To establish the accuracy of (5.4), we solved it numerically setting pb = 2.23,
Γ = 0.5. Figure 13(a) in Appendix B illustrates how U behaves in comparison to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

30
9X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200400309X


74 D. Halpern, S. Naire, O. E. Jensen and D. P. Gaver

predictions of the asymptotic model. While no attempt was made to achieve quanti-
tative accuracy, (5.4) shows how the delicate balance between the fluxes entering and
leaving the volume V leads to bubble speeds that decay slightly quicker than t−1/2,
achieving this limit only at extremely large times. We show in Appendix B that the
t−1/2 behaviour is better captured by a similarity solution of the asymptotic model
for which unsteady effects are retained throughout the inflated region ahead of the
bubble tip, and that a more complex time-dependence (associated with the slow flux
past the bubble tip) can be introduced to capture the evolution at earlier times.

On the basis of both the PDE and ODE models, we can interpret the evolution of
the system under fixed pb as a simple dynamical system. The two non-trivial steady
solution branches (figure 2a) arise through a saddle–node bifurcation; the pushing
solution acts like a saddle point, the peeling solution acts like a stable node. The
trivial solution U = 0 is also stable, attractive to all initial conditions if pb <pcrit and
locally attractive for pb <pcrit. In contrast, the dynamics when qb is held fixed is much
less straightforward.

5.4. Unsteady motion at fixed qb

We can use (5.6) to understand the origin of the oscillatory instability identified in
§ 4.2.2. As described in § 4.2.2, the term pbtL1 in (2.17), representing bubble volume
changes associated with transverse bubble expansion, is necessary for the instability
to arise. The ODE model reflects this: removing the equivalent term from (5.5) implies
qb =pbU/Γ , and (5.6a) reduces to

Ut = − U 7

q4
bΓ

(
1 − qb

U 1/3

)
. (5.10)

The fixed point U = q3
b of (5.10) is now stable.

Restoring the critical term pbtLb in (5.5), we first examine the linear stability of
the solution of (5.6) representing a steadily propagating bubble: U = q3

b, pb =Γ/q2
b,

Lb = q3
bt . An analysis of perturbations of this time-dependent base state (Appendix C)

indicates that the instability develops when L = O(Γ/q11
b ) and t = O(Γ/q14

b ); thus the
smaller qb, the longer the instability takes to initiate. For t � Γ/q14

b , perturbations
diverge from the base state along pb ≈ Γ/q2

b. This is illustrated in the phase portrait in
figure 14 in Appendix C. Because the base state is time-dependent, the initial instability
cannot be classified in simple terms (it is a dynamic bifurcation of a non-autonomous
system); somewhat surprisingly, the analysis in Appendix C shows that linearized per-
turbations ultimately grow monotonically rather than having an oscillatory character.

The behaviour of perturbations after they move away from the steady solution
branch in the (pb, U )-plane is illustrated in figure 12(a). Here we integrated (5.6)
with Γ = 0.5, η = 100 and qb = 0.65, starting from immediately beneath (pc, Uc); each
trajectory leaving this point follows a looping path beneath the steady pushing
solution that ultimately brings it back up to the peeling solution branch; we then used
(5.8) to track the motion back down the peeling branch. Around each loop Lb increases
significantly, as shown in figure 12(c), while U and pb perform nonlinear growing relax-
ation oscillations (figure 12b, d). There is good qualitative agreement with the comp-
utational simulations shown in figure 9, suggesting that this simple model captures
well the dominant features of the instability. The ODE model allows us to simulate
multiple growing oscillations and to estimate the rate at which the system evolves
over very long time scales.

The sequence of events during an oscillation becomes clear once the bubble is very
long. In this limit, a detailed asymptotic analysis of (5.6), presented in Appendix D for
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Figure 12. Numerical solution of (5.6) and (5.8), with qb = 0.65, Γ = 0.5, η = 100 and
Lb(0) = 103, showing (a) (pb, U )-phase portrait; (b) U versus t; (c) Lb versus t and (d) pb

versus t . The turning point (pc, Uc) lies at (1.05, 0.33); the fixed point representing the
steady pushing solution at this flux lies at (pb, U ) = (1.18, 0.27), the intersection of the lines
U = Γ qb/pb and U = (pb/Γ )−3/2 in (a).

Lb � 1, shows how different balances of terms operate during different phases of the
oscillation, which we summarize here. Suppose Lb =L0 � 1, say, on entering the push-
ing phase of an oscillation at (pc, Uc). Initially U falls rapidly with p ≈ pc. In this
phase the bubble grows by widening rather than lengthening, and V grows slowly by
accumulating fluid from ahead of the bubble, losing negligible quantities past the
meniscus. Widening of the bubble causes pb to rise slowly. From (5.3) we see that, for
fixed V, an increase in pb allows the bubble to travel faster, there being lower viscous
dissipation in a wider channel. Thus U falls to a minimum value Umin(∝ L

−1/2
0 ) before

starting to rise along a path U ∝ p
3/2
b in the (pb, U )-plane (figure 12a). Eventually U

increases sufficiently to cross the steady solution branch pb = Γ U−2/3, at which point
more fluid escapes past the meniscus than is swept up from ahead of the bubble.
Correspondingly V starts to fall, from a maximum value of O(L11/12

0 ), and U begins to
rise rapidly. Shortly thereafter the system crosses the curve Γpb = qbU , at which point
pb rises to a maximum value pb max(∝ L

1/6
0 ), beyond which bubble growth now occurs

by lengthening rather than widening. The bubble then undergoes a rapid transition
from pushing to peeling motion, with pb ≈ pbmax and U rising abruptly to the peeling
branch, where it attains its maximum value Umax(∝ L

1/2
0 ). The rapid rise reflects the

existence of a finite-time singularity in (5.6). We can therefore identify (pm, Um) in (5.9)
with (pb max, Umax). It is shown in Appendix D that the duration of pushing is L

7/6
0 ,
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and the change in Lb during pushing is O(L11/12
0 ), which formally (for L0 � 1) is small

compared to L0. This allows us to set Lm ≈ L0 in (5.8), (5.9).
The system then moves quasi-steadily back from (pm, Um) to (pc, Uc) along the

peeling branch. Since U is small during the majority of the pushing phase, but large
during the peeling phase, the bubble elongates predominantly during peeling. Lb(t)
therefore has a clear ‘staircase’ shape at large times (figure 12c), with the bubble tip
switching abruptly between ‘sticking’ (during pushing) and ‘slipping’ (during peeling).
We can estimate the increase in bubble length during peeling by noting that for
L0 � 1, pmUm ∝ L

2/3
0 , so that (5.9) implies Lc = O(L7/6

0 ). Likewise (5.8) reduces for

large L0 to LbU
1/3 = L0U

1/3
max, representing conservation of bubble volume assuming

that fluxes due to qb are negligible. This may be integrated to give

L4
b = L4

0 + 4L3
0Um(t − tm), (5.11)

assuming t = tm when U =Um. Since Lc � L0 when t = tc, say, the duration of the
peeling phase of the oscillation is therefore tc − tm = O(L7/6

0 ), comparable to that of
the pushing phase.

Having established the structure of an individual oscillation in terms of the length L0

at the start of the pushing phase, we can finally describe the evolution of the system
over multiple oscillations. Let L

(n)
b be the bubble length at t = t (n−1)

c , the start of the

pushing phase of the nth oscillation. We have already established that L
(n)
b ∝ [L(n−1)

b ]7/6,
which we may write as

log L
(n)
b ≈ 7

6
log L

(n−1)
b , (5.12a)

the constant of proportionality being negligible for sufficiently large L
(n)
b . The end of

the pushing phase occurs at time t (n)
m = t (n−1)

c + J [L(n)
b ]7/6 for some constant J . Assum-

ing t (n)
m � t (n−1)

c , this implies

log t (n)
m ≈ 7

6
log L

(n)
b . (5.12b)

Likewise the end of peeling, at time t (n)
c , also satisfies (to leading order)

log t (n)
c ≈ 7

6
log L

(n)
b . (5.12c)

In the (log t, log Lb)-plane, points defining the start of pushing lie at (log t (n−1)
c , log L

(n)
b )

for n= 1, 2, . . . . From (5.12a, c), for large n these points lie on a line of slope 1, as
shown in figure 12(c); likewise, points at the start of peeling at (log t (n)

m , log L
(n)
b ) lie

(from (5.12b)) on a line of slope 6
7
. Since U (n)

m ∝ [L(n)
b ]1/2, U

(n)
min ∝ [L(n)

b ]−1/2 and p(n)
m ∝

[L(n)
b ]1/6 (Appendix D), the maxima along the curve in figure 12(b) at (log t (n)

m , 1
2
log L

(n)
b )

lie along a line of slope 3
7
, the minima at (log t (n−1)

c , − 1
2
log L

(n)
b ) lie along a line of

slope − 1
2

and the maxima in figure 12(d) at (log t (n)
m , 1

6
log L

(n)
b ) lie along a line of

slope 1
7
. Thus the oscillations grow in a self-similar fashion. Averaging over oscillations,

the bubble elongates roughly linearly in time, although excursions in bubble volume
and pressure grow like t3/7 and t1/7 respectively.

6. Discussion
In this paper we have examined the unsteady behaviour of a model of airway

reopening wherein elastically supported flexible walls occluded by a viscous fluid are
separated and opened by the progression of a long bubble of air. Two approaches
were used to simulate the model system numerically: a spatially two-dimensional
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boundary-element method (BEM) and a one-dimensional asymptotic model. The
BEM model computes the Stokes flow around the bubble tip and connects to
a downstream region that is modelled using a lubrication approximation. The
asymptotic model assumes that the membrane region near the tip is nearly parallel,
allowing prior studies for the quasi-steady flow of a bubble in a weakly tapered
channel (Halpern & Jensen 2002) to be exploited. Agreement between BEM and
asymptotic simulations confirm that the flow around the bubble tip region is quasi-
steady and that much of the unsteady motion is controlled by the liquid-filled region
ahead of the bubble tip. We also developed a simple lumped-parameter (ODE) model
that captures the dominant dynamics of the system.

As with all modelling investigations, approximations may limit the validity of
the studies. In this study we assumed that the lining fluid had a constant surface
tension and was Newtonian. However, pulmonary lining fluid contains surfactant,
which dynamically alters the surface tension. Studies by Yap & Gaver (1998) indicate
that surfactant transport modifies the reopening pressures; however, the ‘pushing’
and ‘peeling’ branches remain. We therefore expect that surfactant transport will not
qualitatively modify the stability behaviour of the system. We have also assumed that
the channel walls are supported by a linearly elastic bed. However, lung airways are
nonlinearly compliant (discussed below), and are tethered to neighbouring airways.
Parenchymal tethering will reduce the reopening pressures but should not change the
general form of the response, as observed in Perun & Gaver (1995a). We thus do not
expect that the general stability behaviour will be modified substantially by tethering.

In our studies, steady pressure-driven flow is characterized by a non-monotonic
pressure–speed relationship (see figures 2a and 4). The low speed ‘pushing’ regime is
characterized by a long fluid-filled region downstream of the bubble tip that is
displaced by the moving meniscus. High-speed reopening is characterized by a large
peeling angle at the meniscus tip, which produces a low pressure that holds the channel
walls in apposition. We found the pushing branch to be unstable when pb is fixed, with
a positive pressure perturbation resulting in a migration of the system to the peel-
ing branch, and a negative perturbation resulting in an ever-slowing bubble that
accumulates liquid in the region ahead of the bubble. The peeling branch was found
to be stable to both positive and negative perturbations. As anticipated from the steady
solution structure, the system exhibits dynamical behaviour typical of that associated
with a saddle–node bifurcation.

In contrast, when qb is prescribed the dynamics of the system are quite different,
for three important reasons. First, the flux–speed and flux–pressure relationships are
now single-valued (figure 2b, c), precluding any obvious direct instabilities of steadily
propagating solutions. Second, the system has an extra degree of freedom, since pb(t)
now becomes a dependent variable. Third, the solutions shown in figure 2(b, c) are
not strictly steady solutions of the problem, since they depend explicitly on bubble
length, which increases with time. Our studies demonstrate that the peeling mode
(with high qb) is again stable. However, arbitrarily small perturbations of the pushing
mode ultimately result in growing non-periodic oscillations (figures 9 and 10). Each
oscillation has two distinct phases. During the pushing phase the bubble inflates
predominantly by widening, its tip speed is very low, and it slowly accumulates fluid
ahead of the tip. Once the bubble is sufficiently wide the tip suddenly pierces the
accumulated fluid and there is an abrupt transition into the peeling phase, during
which the bubble inflates by predominantly by lengthening and its tip travels quickly
forwards. Subsequently, the slow pushing mode is restored and the cycle begins anew,
albeit with greater oscillation amplitude and period.
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This novel oscillatory instability arises through a global flow–bubble–structure
interaction. We have isolated its origins to be the increasing upstream compliance as
the bubble travels forward and leaves behind an increasing length of open channel.
As the compliance increases, small fluctuations in pb induce very large changes in
bubble volume, allowing the bubble to switch spontaneously between pushing and
peeling modes of reopening, resulting in an effective stick–slip motion (figure 12c).
While the full problem is an infinite-dimensional dynamical system, we found that
we could capture this non-periodic relaxation oscillation using a simple third-order
ODE model. We showed that steady pushing motion (a solution having explicit time
dependence in the ODE model) is linearly unstable to a direct instability at sufficiently
large times (described using Kummer’s functions, see Appendix C). The theory of
non-autonomous dynamical systems does not yet appear sufficiently well developed
(Langa, Robinson & Suárez 2002) for this type of instability to have been classified.
The direct linear instability grows into an inherently nonlinear oscillation. We were
able to provide a detailed analysis of the sequence of events during a large-amplitude
oscillation (Appendix D), showing self-similarity between consecutive oscillations
captured through a nonlinear map (5.12).

With a linearly elastic channel support, the stick–slip response has an ever-growing
oscillation amplitude. Simplistically, bubble inflation occurs in two ways: with slowly
increasing length and rapidly increasing width (slow pushing); or with nearly constant
width and rapidly increasing length (quick peeling). We have shown that at a fixed
flow rate in long linearly elastic channels, the system can spontaneously switch
between these two states. However, true pulmonary airways are nonlinearly elastic
structures, with a compliance that decreases as the internal pressure increases. We
would thus not expect that oscillations would continuously grow in more realistic
structures. For similar reasons, we do not expect to see the instability appear strongly
in the membrane-between-plates configuration, since the plates prevent transverse
bubble expansion. Our previous simulations of the membrane-between-plates model
exhibited overshoot upon startup, but did not exhibit instability, at least for the range
of parameters we investigated (Naire & Jensen 2003). Experiments demonstrate similar
startup responses, but do not exhibit obvious oscillations (Perun & Gaver 1995b).
However, slow reopening in a flow-rate-driven system with an elastically supported
membrane between rigid plates did exhibit unstable behaviour at low speeds, typically
by an ever-slowing bubble tip. It is possible that this represents the onset of a peeling-
to-pushing response (Perun & Gaver 1995a).

The oscillatory response of the flow-based system is intriguing, and we speculate
that this response may explain (in part) the ‘avalanche’ reopening of sequential
airways described by Suki et al. (1994). To explore this behaviour, recent experiments
by Alencar et al. (2002) investigated the inflation of isolated, degassed rat lungs that
were inflated at a constant flow rate. These studies show that the pressure increases
and then exhibits intermittent regions of decreasing pressure, similar to that shown in
figure 10(b). The oscillatory variation of pressure was interpreted as coinciding with
an avalanche of airway reopening, which rapidly increases the volume of the open
region of the lung. While the present model is incapable of replicating the complexities
of the whole lung response, the behaviour reported in Alencar et al. (2002) may be
related to the instabilities observed in our constant-flow studies. In this case, the patent
region of the lung provides the upstream compliance for the system, thus providing a
mechanism for the pendelluft-like behaviour that induces oscillations similar to that
observed in our models. As described above, because of the nonlinear compliance
of the lung, we would not expect the oscillation magnitude to grow without bound.
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Future studies may be able to determine whether the responses observed in vitro are
consistent with present models.

This work was supported by EPSRC grant GR/M84572 and GR/R08292/01,
NASA grant NAG3-2734, NIH grant P20 EB001432-01, NSF grant BES-9978605
and Wellcome Trust grant 061142. We wish to acknowledge the contributions of
Mark Horsburgh to the early stages of this work.

Appendix A. Regression formulae
The following regression formulae are used for U > 0.01:

λ0 = 0.417(1 − exp(−1.69U 0.5025)),

log10(−P0) = −2.00858 + 8.92426 exp(−0.038332(Z + 5)2.17398) + 0.898217Z,

λ1 = 0.0769 − 0.04119z − 4.63 × 10−3z2 + 4.46 × 10−3z3

+ 2.47442 × 10−4z4 − 2.12954 × 10−4z5 − 2.51264 × 10−5z6,

where Z = log10(U ) and z = log(U ). For U < 0.01, we use the asymptotic expressions
λ0 = λ1 ≈ 1.337U 2/3, UP0 ≈ −1−3.80U 2/3. Graphs of these functions may be found in
Jensen et al. (2002).

Appendix B. Quasi-self-similar large-time pushing motion
Figure 13(a), computed using the asymptotic model, shows the large-time evolution

of an unsteady pushing solution. Over extremely long times, the scaling U ∼ T −1/2 is
evident, a feature captured by the ODE model (5.4).

Setting ξ = X/T 1/2 and U = U/T 1/2, and assuming H = H (ξ ), (3.5) and (3.7) become,
with error o(T −1/3),

1
2
ξHξ + UHξ + 1

3
δ2(H 3Hξ )ξ = 0, (B 1)

subject to the boundary conditions at ξ =0,

δ2(Hb − 1) − δPb = −ε/Hb, (B 2a)

Hb

(
U + 1

3
δ2H 2

b Hξ

)
= αU 5/3T −1/3, (B 2b)

and H → 1 as ξ → ∞. We have used UP → −1 and λ= αU 2/3 as U → 0 in (B 2a)
and (B 2b), where α ≈ 1.337 (Bretherton 1961). We neglect the O(T −1/3) flux past the
bubble in (B 2b) to start with, but anticipate that it could be retained as a quasi-steady
boundary condition. Note that we cannot apply the slope boundary condition (3.7a)
since membrane tension does not appear at leading order in (B 1).

The problem may be simplified by rescaling, setting ξ = (δ/
√

3)Z and U =(δ/
√

3)V ,
so that (B 1) and (B 2) reduce to

1
2
ZHZ + V HZ + (H 3HZ)Z = 0, (B 3a)

Pb = δ(Hb − 1) + ε/(δHb), (B 3b)

V + H 2
b HZ = α(δ2/3)1/3V 5/3T −1/3, (B 3c)

H → 1 as Z → ∞. (B 3d)

The solution strategy is as follows. For Z → ∞, solutions of (B 3a) can be written as

H ∼ 1 + A
√

π eV 2

erfc
(

1
2
Z + V

)
. (B 4)
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Figure 13. (a) U versus T (solid), computed using the asymptotic model, showing the T −1/2

scaling at very long times; the dashed curve shows a solution of (5.4). (b–d) Profiles of H , P
and Q/U versus ξ = X/T 1/2, with pb = 2.23, ε = 0.215, δ =0.328, T = (5, 8, 13, 20, 30) × 103;
the dashed curve shows the infinite-time similarity solution, the dot-dashed curve shows the
quasi-self-similar solution at T =30000.

For fixed V and T , one can shoot with Z decreasing to 0, and vary A until (B 3c) is
satisfied. Then we read off the corresponding value of Pb from (B 3b). The choice of
V is then adjusted to obtain the required value of Pb.

Large-time solutions of the asymptotic model are plotted versus X/T 1/2 in
figure 13(b–d), in the case pb = 2.23, along with the infinite-time similarity solution
(for which V ≈ 8.0). Even for T well in excess of 10000, the infinite-time solution does
not match well to solutions of the PDEs, nor do the PDE solutions collapse particu-
larly well when plotted in rescaled variables. However, by including the quasi-steady
flux past the bubble tip, much improved agreement is obtained; this is shown by
computing the quasi-self-similar solution at T = 30000, for which we found V ≈ 10.2.
The effects of tension, neglected in the similarity solution, are confined to a small
damped wave at the leading edge of the advancing disturbance and a weak boundary
layer near X = 0 giving rise to a small adjustment in the membrane slope ahead of
the bubble tip.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

30
9X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200400309X


Unsteady bubble propagation in a flexible channel 81

Appendix C. Stability of the pushing solution to small perturbations
Writing U = p4

bW , (5.6a–c) become

Wt = −Γ 3p4
bW

3
(
1 − p

11/3
b W 2/3

/
Γ

)
, (C 1a)

pbt =
(
Γ qb − p5

bW
)/

Lb, (C 1b)

Lbt = p4
bW. (C 1c)

The equations have a base state for which pb and W are constant but Lb increases
steadily with t . We perturb around this solution by writing

pb =
Γ

q2
b

+
Γ 5

q13
b

p̃b, W =
q11

b

Γ 4
+ W̃ , t =

Γ

q14
b

t̃ , Lb =
Γ

q11
b

L̃b. (C 2)

Assuming that L̃b and t̃ are O(1) and that either p̃b and W̃ are small or p̃b and W̃

are O(1) and qb � Γ 11/4, (C 1) becomes

W̃ t̃ = 2
3
W̃ + 11

3
p̃b, (C 3a)

p̃bt̃ = −(W̃ + 5p̃b)/L̃b, (C 3b)

L̃bt̃ = 1. (C 3c)

Integrating (C 3c) to give L̃b = L̃b0 + t̃ for some constant L̃b0, (C 3a, b) can be re-
expressed as the second-order system

W̃ t̃ t̃ +

(
5

t̃ + L̃b0

− 2

3

)
W̃ t +

1

3(t̃ + L̃b0)
W̃ = 0. (C 4)

The transformation t̃ + L̃b0 = 3
2
T gives T W̃T T + (5 − T ) W̃ T + 1

2
W̃ = 0, which is

Kummer’s equation (Abramowitz & Stegun 1965), the general solution of which
is W̃ = AMK (T ) + BUK (T ) for constants A and B . Here we use the special functions
MK (T ) ≡ M(− 1

2
, 5, T ) and UK (T ) ≡ U (− 1

2
, 5, T ). Note that MK (T ) ∼ 1− 1

10
T ,

UK (T ) ∼ −3/(
√

πT 4) as T → 0, and MK (T ) ∝ T −11/2eT , UK (T ) ∼ T 1/2 as T → ∞.
Figure 14(a) illustrates some characteristic curves in the phase-plane diagram of
W̃ versus p̃b. The corresponding time evolution of W̃ is shown in figure 14(b). For
T � 1, both W̃ and p̃b decay rapidly in magnitude. This is because contributions in W̃

and p̃b proportional to UK decay rapidly while those proportional to MK are almost
constant. This indicates that the base states are attractive at early times. However,
as T increases the contributions of W̃ and p̃b proportional to MK grow rapidly and
ultimately dominate (figure 14b), demonstrating instability of the base state. For
T � 1, W̃ ( ∝ T̃ −11/2eT̃ ) grows more rapidly than p̃b( ∝ T̃ −13/2eT̃ ).

Appendix D. Asymptotics of the ODE model for pushing motion
Equation (5.6) may be simplified when the bubble is long, since during pushing

motion U is small and so changes in Lb may be neglected to leading order. We set
Lb = L0 + L̂0(t), where |L̂0| � L0. Then (5.6) may be written as L̂0t = U and

Ut =
4U

pbL0

(Γ qb − pbU ) − Γ 3U 3

p4
b

(
1 − pb

Γ
U 2/3

)
, (D 1a)

pbt = (Γ qb − pbU )/L0. (D 1b)
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Figure 14. (a) Phase-plane diagram of W̃ versus p̃b showing four trajectories labelled (1)–(4)
and the nullclines W̃ = −11p̃b/2 and W̃ = −5p̃b; (b) corresponding evolution of W̃ versus T .
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Figure 15. Time evolution of (a) pb and (b) U during the sixth oscillation of figure 12. The
dashed curves correspond to the asymptotic solutions (D2b, c) and (D7a); parameter values
are t0 ≈ 9.9 × 108, L0 ≈ 3 × 108, pc = 1.05, Γ = 0.5 and qb = 0.65.

This system now permits an asymptotic analysis, taking 1/L0 as a small parameter.
The motion has distinct temporal phases that we analyse in turn, as illustrated in
figure 15.

(i) Sudden slowing. As long as pbU = O(1), for L0 � 1 changes in pb are small, and
the evolution of U is equivalent to that for which pb is prescribed. Thus if U lies
just below the steady solution branch pb = Γ U−2/3, the dynamics initially follow (5.4)
with constant pb. Linearizing (5.4) around the steady solution (Appendix C) shows
that U initially falls from its steady value exponentially on a time scale p7

b/Γ
6, i.e.

Γ/q14
b if evolving from the steady pushing solution, or p7

c/Γ
6 is evolving from the

turning point of the two steady solution branches. We focus here on the latter case,
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taking pb ≈ pc. Thus U rapidly falls to low values, being governed (once U is small)
by Ut ≈ − Γ 3U 3/p4

c . Meanwhile, pb starts to rise slowly via (D 1b), so that for t > t0
for some constant t0

L ≈ L0 +

(
2p4

c

Γ 3
(t − t0)

)1/2

, U ≈
(

p4
c

2Γ 3(t − t0)

)1/2

, pb ≈ pc +
Γ qb

L0

(t − t0). (D 2)

The sudden fall in U and the slow rise in pb in (D 2b, c) compare favourably to a
solution of (5.6) in figure 15(b). Once t − t0 =O(L0pc/qbΓ ), this approximation breaks
down.

To analyse subsequent behaviour we first reduce (D 1a, b) to the first-order system

dU

dpb

=
4U

pb

− Γ 3U 3L0

p4
b

(
1 − pbU

2/3/Γ
)

(Γ qb − pbU )
. (D 3)

Setting U = p4
bW (pb) and α = Γ 2L0/qb, (D 3) becomes

dW

dpb

= −αW 3p4
b

(
1 − p

11/3
b W 2/3

/
Γ

)
(
1 − p5

bW
/
(Γ qb)

) . (D 4)

Equation (D 4) relates pressure to volume, since W = 1/(Γ 3V), where V is the fluid
volume ahead of the bubble (figure 11). For α � 1, the trajectory in the (pb, W )-plane
has three further phases.

(ii) Minimum speed. We first set W =α−1/2W1, pb = p1, and assume W1 and p1 are
O(1) variables. Then (D4) becomes

dW1

dp1

= −W 3
1 p4

1

(
1 − p

11/3
1 W

2/3
1

/(
Γ α1/3

))
(
1 − p5

1W1

/(
Γ qbα1/2

)) . (D 5)

At leading order, dW1/dp1 ≈ − W 3
1 p4

1, which has the solution

W 2
1 =

5

2
(
p5

1 − p5
c

) , (D 6)

imposing the boundary condition W1 → ∞ as p1 → pc + ; in this limit (D 6) matches
with (D 2). In the original variables, (D 6) is U 2 = 5p8

b/(2α(p5
b − p5

c )), which has a

turning point in the (pb, U )-plane at pb = pc(8/3)1/5, U =Umin ≡ α−1/2p
3/2
c 2(8/3)3/10.

Using the parameter values in figure 15, this predicts log Umin ≈ −8.22, in close
agreement with the ODE solution.

As p1 increases well beyond pc, (D 6) asymptotes to W 2
1 ≈ 5/(2p5

1). During this
stage,

U ≈
(

5Γ

2

)1/2
q2

b

L2
0

(t − t0)
3/2, pb ≈ Γ qb

L0

(t − t0). (D 7)

The scaling U ∝ p
3/2
b is demonstrated in figure 12, and (D7a) compares well with the

ODE solution in figure 15(b).
(iii) Maximum volume. The next phase arises as the system crosses the steady pushing

solution branch (see figure 12a). To describe this, we set W1 =α−5/12W2, p1 = α1/6p2,
and now treat W2 and p2 as O(1) variables. Equation (D 5) becomes

dW2

dp2

= −W 3
2 p4

2

(
1 − p

11/3
2 W

2/3
2

/
Γ

)
(
1 − p5

2W2

/(
Γ qbα1/12

)) . (D 8)
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Without the α−1/12 term, which is negligible for sufficiently large L0, (D 8) captures
a turning point in the (p2, W2)-plane. For p2 → 0, (D 8) has the asymptotic solution
W 2

2 ≈ 5/(2p5
2). Beyond the turning point, as W2 grows, the dynamics are described by

dW2/dp2 ≈ W
11/3
2 p

23/3
2 /Γ . This has the solution

W
−8/3
2 =

8

26Γ

(
p

26/3
2� − p

26/3
2

)
(D 9)

for some constant p2�, implying that W2 → ∞ as p2 → p2�−. Using (D 7), the time t �

at which p2 approaches p2� is given to leading order by

t � = t0 +

(
L7

0

q7
bΓ

4

)1/6

p2�. (D 10)

As p2 rises linearly in t towards p2�, U rises abruptly like (t � − t)−3/8.
(iv) Maximum pressure. The blowup in (D 9) is mediated by the denominator of (D 8),

which becomes important during the final phase of pushing motion. Here, we set

p2 = p2� + Γ −5/3q
−8/3
b α−2/9p

17/3
2� p3, W2 = Γ qbα

1/12p−5
2� W3, (D 11)

now treating p3 and W3 as O(1) variables. Equation (D 8) becomes, to leading order for
α � 1,

dW3

dp3

=
W

11/3
3

1 − W3

, (D 12)

which has the solution

p3 − p3� = 3
5
W

−5/3
3 − 3

8
W

−8/3
3 (D 13)

for some O(1) constant p3�. As W3 → 0 in (D 13), the balance p3 ≈ − 3
8
W

−8/3
3 matches

with (D 9); at this stage, pb continues to increase linearly with t towards t � as in (D 7b),
while U ∝ (t �−t)−3/8. As t approaches t �, pb passes through its maximum value (pb max,
say) and then falls slightly according to (D 13), while U continues to increase abruptly.
Thus to leading order,

pb max = (Γ 2L0/qb)
1/6p2� + O

(
L

−2/9
0

)
, (D 14)

where p2� is an O(1) constant. Once W3 becomes large, p3 ≈ p3� + 3
5
W

−5/3
3 . At this stage

U grows according to Ut = Γ 2U 11/3/p3
b max (see (D 1a)), so that U ∝ (tm − t)−3/8,

pb max − pb ∝ (tm − t)5/8 and Lm − L ∝ (tm − t)5/8, where Lm and tm(≈ t �) denote the
length and time at the end of the pushing phase.

In conclusion, during the pushing phase, U falls to a minimum value Umin ∝ L
−1/2
0 ,

pb rises to a maximum value pb max ∝ L
1/6
0 and the pushing phase lasts a time O(L7/6

0 ).
Simulations confirm that the largest change in bubble length occurs predominantly
during the period in which U and pb satisfy (D 7). Since Lt ∝ (t − t0)

3/2/L2
0 while

t − t0 = O(L7/6
0 ), the change in length during the oscillation �L = O(L11/12

0 ). Thus
�L/L0 → 0 in the limit L0 → ∞, consistent with the original approximation that L0

may be assumed constant, although L0 must obviously be very large to ensure L
−1/12
0

is numerically small.
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Langa, J. A., Robinson, J. C. & Suárez, A. 2002 Stability, instability, and bifurcation phenomena
in non-autonomous differential equations. Nonlinearity 15, 887–903.

Naire, S. & Jensen, O. E. 2003 An asymptotic model of unsteady airway reopening. Trans. ASME
J. Biomech. Engng 125, 823–831.

Notter, R. H. 2000 Lung Surfactants — Basic Science and Clinical Applications , 1st Edn., Lung
Biology in Health and Disease, vol. 149. Marcel Dekker, Inc.

Perun, M. L. & Gaver, D. P. 1995a An experimental model investigation of the opening of a
collapsed untethered pulmonary airway. Trans. ASME J. Biomech. Engng 117, 245–253.

Perun, M. L. & Gaver, D. P. 1995b Interaction between airway lining fluid forces and parenchymal
tethering during pulmonary airway reopening. J. Appl. Physiol. 79, 1717–1728.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

30
9X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200400309X


86 D. Halpern, S. Naire, O. E. Jensen and D. P. Gaver

Rosenzweig, J. & Jensen, O. E. 2002 Capillary-elastic instabilities of liquid-lined lung airways.
Trans. ASME J. Biomech. Engng 124, 650–655.

Savla, U., Sporn, P. H. & Waters, C. M. 1997 Cyclic stretch of airway epithelium inhibits prostanoid
synthesis. Am. J. Physiol. 273 (5 Pt 1), L1013–9.

Suki, B., Alencar, A. M., Sujeer, M. K., Lutchen, K. R., Collins, J. J., Andrade, J. S., J.,

Ingenito, E. P., Zapperi, S. & Stanley, H. E. 1998 Life-support system benefits from noise.
Nature 393, 127–128.

Suki, B., Barabasi, A.-L., Hantos, Z., Petak, F. & Stanley, H. 1994 Avalanches and power-law
behaviour in lung inflation. Nature 368, 615–618.

Tschumperlin, D. J., Oswari, J. & Margulies, A. S. 2000 Deformation-induced injury of alveolar
epithelial cells. effect of frequency, duration, and amplitude. Am. J. Respir. Crit. Care Med.
162 (2 Pt 1), 357–362.

Yap, D. Y. K. & Gaver, D. P. 1998 The influence of surfactant on two-phase flow in a flexible-walled
channel under bulk equilibrium conditions. Phys. Fluids 10, 1846–1863.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

30
9X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200400309X

