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Direct numerical simulations (DNS) of oscillatory flow around a cylinder show that the
Stokes–Wang (S–W) solution agrees exceptionally well with DNS results over a much
larger parameter space than the constraints of βK2 � 1 and β � 1 specified by the S–W
solution, where K is the Keulegan–Carpenter number and β is the Stokes number. The
ratio of drag coefficients predicted by DNS and the S–W solution, ΛK , mapped out in
the K–β space, shows that ΛK < 1.05 for K ≤ ∼0.8 and 1 ≤ β ≤ 106, which contradicts
its counterpart based on experimental results. The large ΛK values are primarily
induced by the flow separation on the cylinder surface, rather than the development
of three-dimensional (Honji) instabilities. The difference between two-dimensional and
three-dimensional DNS results is less than 2 % for K smaller than the corresponding K
values on the iso-line of ΛK = 1.1 with β = 200–20 950. The flow separation actually
occurs over the parameter space where ΛK ≈ 1.0. It is the spatio-temporal extent of
flow separation rather than separation itself that causes large ΛK values. The proposed
measure for the spatio-temporal extent, which is more sensitive to K than β, correlates
extremely well with ΛK . The conventional Morison equation with a quadratic drag
component is fundamentally incorrect at small K where the drag component is linearly
proportional to the incoming velocity with a phase difference of π/4. A general form of
the Morison equation is proposed by considering both viscous and form drag components
and demonstrated to be superior to the conventional equation for K < ∼2.0.
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1. Introduction

Oscillatory flow around a stationary cylinder or its identical twin of flow around an
oscillating cylinder in still water is dependent on K = UmT/D and β = Re/K = D2/νT ,
where Um and T are the amplitude and period of the oscillatory velocity (U = Um sin θ

with θ = 2πt/T , where t is time), respectively; Re(= UmD/ν) is the Reynolds number,
D is the diameter of the cylinder, ν is the kinematic viscosity of the fluid.

The in-line force acting on the cylinder consists of the drag and inertia components and
can be expressed through the Morison equation (Morison, Johnson & Schaaf 1950) as

Fx = Fd + Fi, Fd = 1
2ρDCdU|U|, Fi = π

4
ρD2Cm

dU
dt

, (1.1a–c)

where Fx represents the in-line force acting on the cylinder per unit length, and ρ is
the fluid density. Fd and Fi are the time-dependent drag and inertia components of
Fx respectively. Equation (1.1a–c) also introduces time-independent drag and inertia
coefficients, i.e. Cd and Cm, respectively.

The drag induced by the oscillation of a cylindrical structure is normally denoted as the
hydrodynamic damping or viscous damping because it acts as a damping to the structure
motion, e.g. limiting the oscillation amplitudes of vortex induced vibration of risers. The
estimation of hydrodynamic damping induced by an oscillating cylinder in still water at
low K values has attracted significant attentions because of its applications to fatigue
design and the flow-induced motion of cylindrical structures in marine engineering. The
typical K values for wave-induced motions of a typical tension leg platform and water
intake risers of floating liquefied natural gas platforms are of the order of 0.01 and 1
respectively (e.g. Chaplin 2000; Sarpkaya 2006b; Gao et al. 2020).

The analytical solution for viscous oscillatory flow around a cylinder was developed first
by Stokes (1851) and then extended by Wang (1968) under the assumption of laminar flow
and no flow separation. The Stokes–Wang (S–W) solution of Cd and Cm based on (1.1a–c)
can be written as

{Cd}S–W = 3π3

2K

[
(πβ)−1/2 + (πβ)−1 − 1

4
(πβ)−3/2 + · · ·

]
,

{Cm}S–W = 2 + 4(πβ)−1/2 + (πβ)−3/2 + · · · .

⎫⎪⎬
⎪⎭ (1.2)

Wang (1968) stated that (1.2) is only applicable for βK2 � 1 and β � 1, which implies
1 � β � 1/K2. The asymptotic form of (1.2) for β � 1 reads {KCd

√
β}S–W ≈ 26.24.

Considerable experimental studies have been conducted in recent years to examine the
validity and applicable parameter ranges of the S–W solution with contradicting outcomes
(e.g. Bearman et al. 1985; Chaplin 2000; Sarpkaya 2001, 2006a, 2010). On the one hand,
measured Cd values through physical experiments agree very well with that predicted by
the S–W solution. For example, the physical tests conducted by Sarpkaya (1986) showed
that the measured Cd agrees well with the S–W solution for K < ∼0.75 at β = 1035,
which clearly violates the condition of β � 1/K2. On the other hand, large deviations
of Cd with the S–W solution are observed at small K and large β values, such as the
measured Cd by Chaplin (2000), which is approximately twice the value predicted by
(1.2) over 0.001 < K < 0.1 at β = 670 000. To systematically investigate the validity and
applicable parameter ranges of the S–W solution, Sarpkaya (2006a) and Sarpkaya (2010)
proposed a quantitative measure for the difference between measured Cd values and the
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Figure 1. Experimental results for smooth cylinders reproduced in the K–β parameter space by Sarpkaya
(2010). The straight blue and green solid lines indicate the Hall line (Kh) and Sarpkaya line (Kr) provided
by Hall (1984) and Sarpkaya (2002), respectively. The red line indicates the limiting line of β = 1/K2. The
grey shaded areas below Kh line represent the ΛK value reproduced based on the results given in Sarpkaya
(2001), Sarpkaya (2006a) and Sarpkaya (2010), denoted as {ΛK}S. It should be noted that the {ΛK}S are only
approximate boundaries which vary in different tests and are sensitive to experimental conditions, as mentioned
in Sarpkaya (2001). QCS, quasi-coherent structures; HTCS, Honji-type coherent structures.

S–W solution,

ΛK = {KCd
√

β}Exp

{KCd
√

β}S–W
, (1.3)

where {·}Exp and {·}S–W represent the experimental and S–W solution values, respectively.
Figure 1 shows ΛK values compiled by Sarpkaya (2001), Sarpkaya (2006a) and Sarpkaya
(2010), i.e. {ΛK}S, over the K–β parameter space, together with a limiting line of β =
1/K2 for K < 0.1 and the famous Hall (Kh) and Sarpkaya (Kr) lines that represent the
demarcations between two-dimensional (2-D) and three-dimensional (3-D) flows (Hall
1984; Sarpkaya 2002). According to Wang (1968), the S–W solution is applicable below
the limiting line of β = 1/K2. The flow is meant to be two-dimensional in the region of
K < Kr and transitional with quasi-coherent structures (QCS) in the spanwise direction
for Kr < K < Kh and eventually forms the Honji-type coherent structures (HTCS) based
on experimental results (Sarpkaya 2002). On the right of the Kh line, the HTCS eventually
undergoes complex interactions, leading to flow separation and turbulence.

The results shown in figure 1 are rather interesting. The good agreement between
experimental results and the S–W solution with {ΛK}S ≈ 1 in a region below the limiting
line of β = 1/K2 is somewhat expected because the flow in the region is definitely stable
and two-dimensional and the influence of flow separation is negligible. The two surprises
observed in figure 1 are: (i) the {ΛK}S ≈ 1 region above the limiting line of β = 1/K2

and (ii) the {ΛK}S ≈ 2 region below the β = 1/K2 line. The two surprises arise because
the ‘no flow separation’ assumption is likely violated in the region above the β = 1/K2

line and satisfied in the region below the β = 1/K2 line, according to Wang (1968).
The surprise (i) appears to suggest the condition imposed by the S–W solution is overly
strict and {ΛK}S ≈ 1 is observed well beyond the line of β = 1/K2, whereas the surprise
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(ii) indicates the applicable parameter range of the S–W solution suggested by Wang
(1968) may not be appropriate when β exceeds a critical value. The flow separation appears
to be the only physical mechanism behind {ΛK}S ≈ 2 in the region between the β = 1/K2

and Kr lines, because the flow is primarily two-dimensional in the region. The above
observations lead to two puzzling questions:

(i) What are the exact applicable upper- and lower-bound β values of the S–W solution?
(ii) How does the S–W solution compare with direct numerical simulation (DNS) results

and what are the key flow mechanisms responsible for the large discrepancies
between the S–W solution and measured Cd values in physical experiments,
especially in the area below the Kr line shown in figure 1 where the flow is meant to
be two-dimensional?

The above question (i) is of practical significance and question (ii) is of a fundamental
nature. The present study aims to provide answers to both questions where possible.
The remainder of the paper is organised in the following manner. In § 2, the governing
equations, numerical model and determinations of Cd and Cm are introduced. In § 3,
distributions of ΛK over the K–β parameter space are presented. The influences of
three-dimensionality and flow separation on Cd are addressed. A general form of the
Morison equation is then proposed in this section. Discussion on the contradictory results
obtained from experimental and present numerical results is offered in § 4, along with
a brief discussion on the appropriateness of the present numerical model. Finally, major
conclusions are drawn in § 5.

2. Numerical approach

2.1. Numerical method and computational domain
The governing equations for the present problem are the non-dimensional incompressible
Navier–Stokes (N–S) equations:

∇ · u = 0;
∂u/∂t = −(u · ∇)u − ∇p + Re−1∇2u,

}
(2.1)

where u = (u, v) is the velocity vector, p is the pressure, ρ is the fluid density and t is
time. The diameter of the cylinder D and the amplitude of oscillatory flow Um are used to
normalise the above equations. A reference Cartesian coordinate system (x, y) is defined
with its origin being placed at the centre of the cylinder. Oscillatory flow is imposed in the
x-direction.

The system (2.1) is solved using the spectral/hp element method embedded in Nektar++
(Cantwell et al. 2015). For 2-D meshes, the total mesh resolution is determined by the
distribution of h-type elements and the interpolation order Np for the p-type refinement. A
quasi-3-D approach is employed for the 3-D cases reported in § 3.2, where the spectral/hp
element method is employed in the (x, y)-plane and a Fourier expansion is used in the
spanwise direction (z-direction) to reveal 3-D structures. The velocity vector is written
in the form of the Fourier expansion with a total node number of Nz in the spanwise
direction. Hence, only a 2-D mesh is required for this quasi-3-D approach. A more detailed
illustration can be found in Cantwell et al. (2015) and Bolis (2013). In the present study,
fifth-order Lagrange polynomials are used on Gauss–Lobatto–Legendre quadrature points.
A second-order time integration method is employed, together with a velocity correction
scheme in the Galerkin formula. Further details about these numerical schemes can be
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found in Karniadakis, Israeli & Orszag (1991), Guermond & Shen (2003), Blackburn &
Sherwin (2004) and Vos et al. (2011).

The distances from the origin of the coordinate system to four boundaries of the
rectangular domain are defined as Lo. The boundaries are Lo = 25D away from the
cylinder surface for cases at K ≤ 3 but Lo = 50D is used for cases at K > 3 with a due
consideration of the increased propagation length of shed vortices in the wake of the
cylinder as K is increased. The present blockage ratios are 2 % and 1 % respectively for
K ≤ 3 and K > 3, which are judged to be adequate based on the experiences reported in
the literature. For instance, previous investigations on Honji instabilities by An, Cheng &
Zhao (2011), Suthon & Dalton (2011) and Xiong et al. (2018a) employed domain sizes
with blockage ratios of 6.67 %, 2.5 % and 1.67 % respectively. For studies associated with
quantifying flow regimes on multiple cylinders, 1.67 % and 3.33 % were used for two
circular cylinders (Zhao & Cheng 2014) and the range 2 %–2.91 % was selected for a
cluster of four cylinders (Tong et al. 2015; Ren et al. 2019).

The boundary conditions employed in the present study are identical to those reported
by Xiong et al. (2018c) and Ren et al. (2019) and are described briefly. The free-stream
velocity is specified as u∞ = U = Um sin(2πt/T) and v∞ = 0 at all domain boundaries.
No-slip boundary condition is enforced on the cylinder surface. A high-order Neumann
pressure condition, as suggested by Karniadakis et al. (1991) and Blackburn & Sherwin
(2004), is specified on all domain boundaries. Zero initial conditions for velocities and
pressure are employed in the simulations. Xiong et al. (2018c) showed that the present inlet
and outlet boundary conditions have negligible influence on the numerical results as long
as the boundaries are far away from the cylinder. Given that the present blockage ratios
(2 % and 1 %) are comparable to that (1.67 %) used by Xiong et al. (2018c), the present
choice of boundary conditions and domain size is unlikely to have significant influence
on the numerical results. The validation and domain-size dependence check presented in
appendix A demonstrated the appropriateness of the present choices of domain size and
boundary conditions.

2.2. Determinations of Cd and Cm

The time-independent drag and inertia coefficients in (1.1a–c), i.e. Cd and Cm, are
determined based on the Fourier-averaged method, which was originally proposed by
Keulegan & Carpenter (1958). The method utilises the orthogonality of the drag and
inertia terms in (1.1a–c) and calculates the force coefficients by the following:

Cd = 3
4

∫ 2π

0

Fx sin θ

ρDU2
m

dθ,

Cm = 2K
π3

∫ 2π

0

Fx cos θ

ρDU2
m

dθ.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.2)

The phase-average in-line force over 50 fully developed oscillation cycles is used to
determine Cd and Cm in the present study, which is consistent with the number of cycles
employed in Sarpkaya (1986).

3. Results

3.1. Force coefficients
Extensive 2-D DNS is conducted to quantify the applicable bound K and β values of the
S–W solution over β from 1 to 106 and K from 0.01 to 20. The K–β–ΛK map based on the
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Figure 2. Distributions of ΛK over the K–β parameter space. Discrete symbols are the present 2-D DNS
cases, while the filled colour, with labels shown on the top right corner, in each symbol indicates the
ratio of Cd between DNS and the S–W solution, ΛK . The dashed lines are the iso-ΛK lines for ΛK =
1.05, 1.1 and 1.50 using correlations of {β}ΛK = A0/(K − K∞)2, where A0 = 0.6exp(4ΛK) − 35.326 and
K∞ = −571.5exp(−6.16ΛK) + 1.7. The straight blue and green solid lines indicate the Hall line (Kh) and
Sarpkaya line (Kr) provided by Hall (1984) and Sarpkaya (2002), respectively. The red line indicates the
limiting line of β = 1/K2. The grey shaded areas below Kh line are {ΛK} ≈ 1 region reproduced based on
the results given in Sarpkaya (2006a) and Sarpkaya (2010).

present numerical results and (1.2) is presented in figure 2. The DNS results of Cd agree
extremely well with the S–W solution at low K values, forming a significant contrast to the
results shown in figure 1. The parameter space covered by {ΛK} ≈ 1 is much larger than
its experimental counterpart of {ΛK}S ≈ 1 shown in figure 1. The iso-lines of ΛK = 1.05,
1.10 and 1.50, determined based on the DNS results, are plotted in figure 2 to provide a
quantitative measure of applicable K and β bound values of the S–W solution. Taking
ΛK = 1.05 as an example, the applicable upper-bound K values is approximately 0.8 for
β > 102 and increases with decreasing β for β ≤ 102. The surprise observation (ii) from
figure 1 is not observed in figure 2. The applicable K and β bound values of the S–W
solution, e.g. those on the iso-line of ΛK = 1.05, are much wider than those suggested by
Wang (1968). The variation trend of ΛK with K and β for ΛK > 1.05 is similar to that of
ΛK = 1.05 and is more sensitive to K than β. The iso-lines of ΛK shown in figure 2 can
be approximately fitted by

{β}ΛK = A0

(K − K∞)2 , where 1.05 ≤ ΛK ≤ 1.5, 1 ≤ β ≤ 106. (3.1)

The fitting parameters, K∞ and A0 in (3.1), are selected based on the asymptotic K values
at β ∼ 1 and β ∼ ∞ as A0 = 0.6exp(4ΛK) − 35.326 and K∞ = −571.5exp(−6.16ΛK) +
1.7.

A detailed comparison of the present DNS results with the S–W solution is provided
in figure 3 at β = 1035 and 11 240 over a range of K values, where experimental
results by Sarpkaya (1986) are available. Since the present focus is on low K values, our
discussions on the results shown in figure 3 are limited to K < 1.8 only with the following
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Figure 3. Distributions of Cd and Cm with respect to K at (a) β = 1035 and (b) β = 11 240. The grey lines,
black solid symbols and grey hollow symbols represent the force coefficients obtained from the S–W solution,
present 2-D DNS and experimental results (Sarpkaya 1986) respectively. The grey and blue dashed lines are
the critical K values at corresponding β values obtained in terms of the Kr and Kh lines (Hall 1984; Sarpkaya
2002).

general observations:

(i) The present 2-D DNS results of Cd values agree fairly well with the S–W solution
at both β = 1035 and 11 240 with ΛK ≤ 1.05 for K ≤ ∼0.8 and the deviation from
the S–W solution increases with increasing K for K > 0.8.

(ii) The experimental Cd at β = 1035 agrees well with the S–W solution and DNS
results for K ≤ 0.7, deviates considerably from the S–W solution and DNS results
for K > 0.7, reaches a minimum value at K ≈ 1.6 and increases with increasing K
for K > ∼1.6.

(iii) The experimental Cd at β = 11 240 shows significant departures from the S–W
solution and DNS results within the range of for K > 0.8. The ratio between {Cd}Exp
and {Cd}S–W increases from ∼1.2 at β = 1035 to ∼5 at β = 11 240, as shown by
the grey circles in figure 3(b).

(iv) The present 2-D DNS results of Cm values agree fairly well with the S–W solution
and experimental results at both β = 1035 and 11 240.

Corresponding instantaneous vorticity contours to the time instant marked as a filled
circle in the inset are depicted in figure 4 for cases at K = 0.1, 1.2, 1.8 and 2.0 and
β = 1035, to illustrate the variation of general flow features at different K values. The
symmetric features of 2-D flows described here use the nomenclature proposed by Elston,
Blackburn & Sheridan (2006). The flow holds an x-reflection symmetry condition, i.e.
ωz(x, y, t) = −ωz(x, −y, t) (ωz is the vorticity of 2-D flows), about y/D = 0 at small K
values in figure 4(a,b). As K is increased, e.g. K = 1.8 in figure 4(c), the far tips of the
shear layers on the cylinder become asymmetric and finally lead to vortex shedding and
transition to turbulent flow at K = 2.0 in figure 4(d).

The increasing deviation of the present DNS results from the S–W solution for K > 1.0
is primarily due to the influence of flow separation, which will be discussed in detail later
on. Sarpkaya (1986) attributed the large deviations of the experimental Cd from the S–W
solution observed in the case of β = 1035 to the development of 3-D instabilities and
the hysteresis effect. We subsequently checked the hysteresis effect through separate DNS
tests at β = 1035 and 1380 by gradually increasing and decreasing K values and failed to
identify a noticeable difference in Cd from those DNS with zero initial conditions. The
influence of 3-D instabilities on Cd will be discussed in the subsection to follow. Since the
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Figure 4. Flow characteristics represented by vorticity contours for cases at (a) (K, β) = (0.1, 1035),
(b) (1.2, 1035), (c) (1.8, 1035) and (d) (2.0, 1035) at a selected instant, where the sampling phase is marked as
a red circle filled with black in the sinusoidal velocity signal in the inset of (a).

minimum K(= 0.8) value tested was relatively large for the case of β = 11 240, the large
deviation observed did not attract much attention in Sarpkaya (1986). We suspect, based
on our 2-D and 3-D DNS results, that the large deviation was induced by experimental
uncertainties.

3.2. Three-dimensionality
To check the influence of 3-D effect on Cd, a limited number of 3-D DNS are conducted
at K values that are smaller than the corresponding K values on the iso-line of ΛK = 1.5
with β = 200–20 950. The results from 3-D DNS at β from 200 to 20 950 are compared
with the S–W solution and 2-D DNS results in table 1. The difference between Cd values
predicted by 3-D and 2-D DNS does increase with increasing K and β values. For instance,
the difference increases from 0.50 % to 7.68 % as K is increased from 0.8 to 1.4 in the
case of β = 20 950. For a constant K value, e.g. K = 1.2, the difference increases from
0.30 % at β = 1035 to 2.69 % at β = 20 950. The present results appear to contradict
with previous findings reported in the literature (Nehari, Armenio & Ballio 2004; Rashid,
Vartdal & Grue 2011) that the 3-D effect does not affect the drag coefficient significantly.
This contradiction arises because previous studies were mainly concerned with flows
at small β values, while the large differences between 2-D and 3-D DNS results are
observed at either high β or K values in the present study. For the cases with small ΛK
values investigated in the present study, e.g. ΛK ≤ 1.1, the difference between Cd values
predicted by 2-D and 3-D DNS is less than 2 %, suggesting 2-D DNS is sufficient for
the parameter space bounded by ΛK ≤ 1.1. For this reason, the following discussions are
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(K, β) 3-D struct. {Cd}S–W {Cd}2-D {Cd}3-D

(1.8, 200) — 1.0715 1.2988 1.2991 (0.02 %)
(2.0, 200)

√
0.9437 1.2302 1.2302 (0.08 %)

(1.0, 1035) — 0.8299 0.8877 0.8873 (0.05 %)
(1.2, 1035)

√
0.6916 0.7661 0.7684 (0.30 %)

(1.8, 1035)
√

0.4610 0.6005 0.6027 (0.35 %)
(2.0, 1035)

√
0.4149 0.5928 0.6039 (1.88 %)

(1.2, 3000)
√

0.4033 0.4482 0.4509 (0.60 %)
(1.8, 3000)

√
0.2689 0.3629 0.3774 (3.99 %)

(0.8, 20 950)
√

0.2275 0.2383 0.2395 (0.50 %)
(1.0, 20 950)

√
0.1820 0.1962 0.1994 (1.64 %)

(1.2, 20 950)
√

0.1517 0.1685 0.1740 (2.69 %)
(1.4, 20 950)

√
0.1300 0.1536 0.1654 (7.68 %)

Table 1. Comparisons of Cd values in the S–W solution, 2-D and quasi-3-D simulations, i.e. {Cd}S–W, {Cd}2-D
and {Cd}3-D respectively. The values in the brackets behind the {Cd}3-D are the relative differences compared
with the corresponding 2-D results.

based on 2-D results. Further research efforts are recommended to investigate the potential
cause of the significant difference between 2-D and 3-D DNS at large K and β values.

3.3. Flow separation
We speculate that the large ΛK values are mainly induced by flow separations around the
cylinder surface because the S–W solution does not take into account the influence of
boundary layer separation on the solution. To examine the influence of flow separation on
the ΛK values, the spatio-temporal variations of flow separation on the upper surface of
the cylinder are first quantified. The separation point is defined as the location where the
vorticity on the cylinder surface changes sign and is measured by the separation angle (αs)
relative to the front stagnation point of the cylinder, (x/D, y/D) = (−0.5, 0) (see the inset
in figure 5a).

The influence of K on the variation of αs with θ is examined for a number of K values
at β = 1035 in figure 5(a). Corresponding evolutions of free-stream velocity (red solid
line) and acceleration (green dashed line) are plotted at the bottom of figure 5(b). For
K < 1.0, the separation initially develops at (x/D, y/D) = (0.5, 0) during the deceleration
phase of the free-stream velocity (θ = 90◦–180◦, where θ = 2πt/T is the phase angle of
incoming flow). It then propagates towards the upstream, featured by a decrease of αs
with increasing θ , and terminates by merging with the upstream separation bubble for
θ > 135◦. The increase of K induces an early onset of flow separation and a reduction of
propagation rate, ∂αs/∂θ , in the phase space. For instance, the critical phase angle (θcr)
at which separation is initiated equals 122◦ at K = 0.4 and decreases to 92◦ at K = 1.0.
A general trend observed in figure 5(a) is that αs decreases almost linearly with θ for
αs > 90◦ and drops sharply for αs < 90◦. Another flow separation bubble develops from
the upstream stagnation point at θ ≈ 135◦, quickly climbs upwards and merges with the
separation bubble originated from the downstream. The major flow separation features
observed at different β values with K = 1 in figure 5(b) are similar to those observed in
figure 5(a). The average propagation rate of the separation point along the cylinder surface
appears to be less affected by β than K. Although θcr may be sensitive to β, the overall
spatio-temporal development patterns of αs at different β values are similar. For example,
αs at β = 20 950 remains near 180◦ for 70◦ < θ < 90◦ before it propagates upstream at a
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Figure 5. Variations of the instantaneous separation angle (αs) as a function of phase angle θ at (a) β = 1035
and (b) K = 1. Corresponding evolutions of free-stream velocity (red solid line) and acceleration (green dashed
line) are plotted at the bottom of (b). (c) Evolution of boundary layer separation along the cylinder, represented
by streamlines (line with arrows) and vorticity contours, at (K, β) = (1.2, 1035). The yellow and red contours
represent positive and negative vorticities around the cylinder surface. The streamlines with blue and green
colours represent the positive and negative signs of the shear stress.

similar rate to those at other β values. The early occurrence of θcr in this case has little
influence on ΛK , as shown in figure 2.

The θcr value approaches 135◦ at small K values, e.g. (K, β) = (0.01, 1035) in
figure 5(a), with a propagation rate close to infinity. This case can be considered equivalent
to no flow separation because the separation point moves from the back stagnation point
to the front stagnation point instantly at θ ∼ 135◦, which is identical to the critical phase
angle in the Stokes solution of oscillatory flow over a flat plate when the wall shear stress
changes sign(Stokes 1851). Furthermore, the leading term of the friction in-line force (Fs)
in the S–W solution by Wang (1968) (see (3.6) in § 3.4) also shows a reversal of skin
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friction at 135◦. This behaviour is expected as the flow with small K and large β is unlikely
to feel the curvature effect induced by the cylinder. Since the flow velocity near the cylinder
surface is in phase with the shear stress on the cylinder surface and leads the free-stream
velocity by 45◦, the reversal of the boundary layer flow direction at θ = 135◦ is responsible
for the above flow behaviour. It is worth noting that the point (K, β) = (0.01, 1035) is
bounded by the β = 1/K2 line in figure 2, where no flow separation is implied by Wang
(1968).

The temporal evolution of flow separations at (K, β) = (1.2, 1035) is visualised through
streamlines near the cylinder surface, as shown in figure 5(c). The blue and green colours
of the streamlines represent the positive and negative signs of the shear stress. The red and
orange contours represent positive and negative vorticities (ωz) around the cylinder at each
phase angle. Although the separation point undergoes substantial development along the
circumferential direction on the cylinder surface, the size of the separation bubble in the
radial direction is rather limited in this case.

The above observations clearly show that flow separation occurs on the cylinder surface
even at very low K values, as shown in figure 5(a), which is different from the assumption
made by Wang (1968). It is the spatio-temporal extent of the flow separation that is
dependent on K values. For example, the flow separation develops near the end of the
deceleration phase of local flow near the cylinder (around θ = 135◦) and vanishes shortly
after the reversal of local flow near the cylinder at K = 0.2 and 0.4. The onset of flow
separation advances forward in the phase space and vanishes at approximately the same
phase after the reversal of local flow as K is increased. To quantify the influence of K on
flow separation, a measure for the extent of flow separation over a half-oscillation period
is proposed as follows:

Γ = 1
π2

{ ∫ π

0
(π − αs(θ))dθ +

∫ π

0
α∗

s (θ)dθ
}
, (3.2)

where a∗
s and as represent the front and back separation bubbles, respectively; Γ

effectively measures a normalised spatio-temporal extent of flow separation (the shaded
area shown in figure 5a) during a half-oscillation period. The results shown in figure 6(a,b)
suggest that Γ increases almost linearly with K over a range of β values and is less
sensitive to β. This variation trend of β with K appears to correlate surprisingly well
with the variation trend of ΛK with K shown in figure 2. Correlation between Γ and ΛK
over a series of K and β values is plotted in figure 6(c) and can be represented by

ΛK ∼ 1 + 101.03Γ 3. (3.3)

The results shown in figure 6(c) suggest that ΛK correlates extremely well with Γ .
The larger the Γ , the more influence it has on ΛK . The influences of flow separation on
pressure and shear stresses on the cylinder surface and hence the drag force are further
explored below.

3.4. Time-dependent in-line forces on the cylinder surface
The instantaneous in-line force acting on the cylinder under the oscillatory flow condition
(U = Um sin θ ) is comprised of three components (Stokes 1851; Wang 1968; Bearman
et al. 1985). The first component is the inviscid inertia force, F0, induced by the
acceleration of the outer flow, which can be estimated through the potential flow
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Figure 6. Variations of the extent of flow separation Γ with respect to (a) K and (b) β values.
(c) Correlations between Γ and ΛK for cases shown in (a,b).

theory as,

F0 = π2

K
ρU2

mD cos θ. (3.4)

The second component considers the contribution of viscous interactions of boundary
layers with the cylinder. The viscous boundary layer on the cylinder surface affects the
in-line force in two ways (Stokes 1851; Wang 1968). The boundary layer profiles determine
the distribution of skin friction τw along the cylinder surface. The shear force, Fs, can be
determined by integrating τw along the cylinder surface as

Fs =
∫ 2π

0
τw sin α dα, (3.5)

where α measures the angle from the cylinder surface relative to (x/D, y/D) = (−0.5, 0).
As the growth of the boundary layer is not uniform over the surface of the cylinder due
to the curvature of the body, it induces a perturbation to the pressure distribution around
the cylinder surface which subsequently alters the in-line force as well (Stokes 1851; Wang
1968). This force is denoted as the viscous force, Fv , in the present study. In the analytical
solution given by Wang (1968), Fs and Fv are identical and can be calculated as

Fv = Fs = π2

K
ρU2

mD
[
(πβ)−1/2(sin θ + cos θ) + (πβ)−1 sin θ

+1
4
(πβ)−3/2(cos θ − sin θ)

]
. (3.6)

The third component of the in-line force is induced by extensive separations of viscous
boundary layer flow and the generation of vortices (Bearman et al. 1985), which modify
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Hydrodynamic damping of an oscillating cylinder

the distributions of pressure and shear stress around the cylinder. This force is similar to
the form drag in steady flow past a stationary cylinder and is denoted as Fp in the present
study. The value of Fp becomes significant as K exceeds a critical value, depending on β.

Since Fv , Fp and Fi are determined by the pressure distribution around the cylinder
surface, they cannot be separated easily in analysing DNS results. In order to quantify
the influence of Fp and to compare DNS results of Fv with the S–W solution, the
following approximations are made to quantify Fv and Fp in DNS. We assume Fi in DNS
at low K value is identical to the inviscid solution, F0 ((3.4)), and the remaining part,
F′ = ∫ 2π

0 pw cos α dα − F0, constitutes an approximation to Fv + Fp. Here, F′ is expected
to reduce to Fv and be identical to Fs when the spatio-temporal extent of flow separation
is insignificant at small K values. The contribution of Fp to F′ will be large when the
spatio-temporal extent of flow separation is significant at large K values. To validate the
above understanding, corresponding variations of {Fs}DNS and {F′}DNS, based on DNS
results at (K, β) = (0.1, 1035), (1.4, 1035) and (2.0, 1035), are depicted in figure 7(a–c),
together with {Fs}S–W based on the S–W solution ((3.6)). The red solid line represents the
scaled free-stream velocity. As expected, evolutions of {Fs}DNS and {F′}DNS are identical
and agree very well with {Fs}S–W for the case at (K, β) = (0.1, 1035) in figure 7(a). The
good agreement observed in this case is because the contribution of flow separation is
negligible (Fp ∼ 0) at K = 0.1. The value of F′ reduces to Fv and is identical to the
S–W solution ((3.6)). As K is increased to 1.4 and 2.0, {Fs}DNS is slightly larger than
{Fs}S–W. The value of {F′}DNS, on the other hand, deviates significantly from {Fs}S–W both
in amplitude and phase. The large deviations observed in those two cases are suspected
to be primarily due to the Fp induced by flow separation. Since Fv = Fs based on the
S–W solution, the approximation of F′ ≈ Fv + Fp ≈ Fs + Fp would allow us to infer
the influence of flow separation on Fp by quantifying the influence of flow separation on
{Fs}DNS over a half of flow oscillation period, through a measure proposed in the present
study:

Ψ =

∫ T/2

0
{Fs}DNS dt∫ T/2

0
{Fs}S–W dt

. (3.7)

The variations of Ψ values as a function of K at β = 1035 and 20 950 shown in figure 7(d)
suggest the spatio-temporal extent of flow separation has little effect on Fs along the
cylinder surface. For instance, flow separation induces only a Ψ ∼ 1.06 difference on Fs
at (K, β) = (2.0, 1035), whereas the measured Cd is around ΛK = 1.43 times of that by
the S–W solution. The large ΛK value in this case is clearly caused by the form drag
component Fp.

3.5. General form of the Morison equation
The validity of the conventional Morison equation (1.1a–c) is questionable under the
condition of low K values where the drag component of Fv + Fs dominates the total
drag. The first term in (1.1a–c), proportional to U2, represents the form drag component
Fp (Sumer 1997). The S–W solution shows that Fs + Fv is inversely proportional to U,
rather than to U2. Based on the results shown in § 3.4, Fs + Fv generally dominates the
total drag prior to the onset of extensive flow separations on the cylinder surface and Fp
becomes important after the extent of flow separation increases beyond a certain level.
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Figure 7. Time evolutions of Fs = ∫ 2π

0 τw sin α dα (orange short-dashed line) and F′ = ∫ 2π

0 pw cos α dα − F0
(blue dashed line) obtained in terms of DNS results at (a) (K, β) = (0.1, 1035), (b) (1.4, 1035) and (c) (2.0,
1035) over one flow oscillation period. The grey solid lines represent the corresponding shear force calculated
based on (3.6) in the S–W solution, i.e. {Fs}S–W. The red solid line represents the scaled free-stream velocity
U. (d) Variations of Ψ values for cases at β = 1035 and 20 950.

It is plausible to infer that there will be a parameter space where Fs + Fv is comparable
to Fp. Since Fs is in phase with ∂uα/∂r|r=0.5, where α and r are the polar coordinates, it
contributes to the drag only. The solution of the laminar oscillatory flow above a flat plate
shows that τw, uα and ∂uα/∂r|r=0.5 on the plate lead the free-stream velocity U by π/4.
It is not difficult to deduce from (3.6) and figure 7(a) that this relationship also applies to
oscillatory flow around a circular cylinder, where both Fs and Fv are linearly proportional
to U with a phase lead of π/4.

Based on above reasoning, the use of (1.1a–c) under small K conditions is fundamentally
incorrect because it cannot account for the linearity and phase lead of Fs + Fv to U.
Applications of (1.1a–c) will not only lead to an incorrect Cd but also poor predictions
of time-dependent drag. To rectify the problem, a general form of the Morison equation is
proposed in the present study as

Fx = 1
2
ρDCd1U2

m sin(θ + π/4) + 1
2
ρDCd2U2

m sin(θ)| sin(θ)| + π

4
ρD2Cm

dU
dt

, (3.8)

where U = Um sin θ , Cd1 and Cd2 are the viscous and form drag coefficients, respectively.
The first, second and third terms of (3.8) represent Fs + Fv , Fp and Fi respectively.
The above equation recovers to the conventional Morison equation (1.1a–c) when Fp
significantly outweighs Fs + Fv at large K values. Assuming the form drag component
is negligible under the applicable condition of the S–W solution, we get the analytical
form of Cd1 based on the S–W solution as {Cd1/Cd}S–W = 16/(3

√
2π) ≈ 1.2 and the

asymptotic form of Cd1 for β � 1 reads {KCd1
√

β}S–W ≈ 31.49. This outcome suggests
that (1.2) underestimates the peak value of the hydrodynamic damping force by 1.2 times.
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Since three terms in (3.8) have π/4, 0 and π/2 phase differences relative to U, respectively,
a specific procedure is needed to determine the hydrodynamic coefficients in (3.8), based
on the total in-line force, Fx, measured in DNS or physical experiments.

The following three options are available to determine the force coefficients in (3.8)
based on the numerical results from DNS:

Method I, calculate Fs + Fv and hence Cd1 based on the S–W solution and determine
Cd2 and Cm based on ({Fx}DNS − {Fs + Fv}S–W).

Method II, let Fs + Fv = 2Fs, estimate Fs based on DNS results and determine Cd2 and
Cm using ({Fx − 2Fs}DNS).

Method III, calculate Cd1 and Cm based on the S–W solution and determine Cd2 based
on ({Fx}DNS − {Fs + Fv + Fi}S–W).

The above three methods are expected to be identical at small K values and yield
different results at intermediate K values. To evaluate the goodness of fit by using those
methods, cases at β = 1035 over a range of K values from 0.1 to 8.0 are used to determine
a sensible choice of methods I, II and III. Corresponding distributions of Cd2 and Cm based
on methods I–III, together with those using the conventional Morison equation in (1.1a–c),
denoted as method 0 hereafter, are shown in figure 8(a). Figure 8(b) shows the variation
of a goodness-of-fit parameter ζ (proposed by Justesen 1989) with K. The goodness-of-fit
parameter ζ is determined based on the measured and predicted phase-averaged drag force
over one period T as

ζ =

∫
T
({Fd}m − {Fd}p)

2 dt∫
T
{Fd}2

m dt
, (3.9)

where {Fd}m and {Fd}p are the time-dependent measured and predicted drag components.
The lower the ζ , the better the prediction is. The results suggest that method II yields the
best fit and the method 0 leads to the worst fit for K < ∼2.0 at β = 1035. The results by
method I are only slightly worse than those by method II at K < ∼2.0. The above results
are not totally surprising because method II allows the influence of flow separation to be
reflected in all three coefficients, while method I ignores the influence of flow separation
on Cd1. Although method I leads to a slightly worse prediction than method II, method I
is recommended to quantify Cd1, Cd2 and Cm in (3.8) due to the convenience of using the
analytical solution of {Cd1}S–W in the equation.

Reconstructions of temporal variations of the drag force based on (1.1a–c) (method
0) and (3.8) (method I) over one T at β = 1035 are illustrated in figure 9. Four cases
at K = 0.1–4.0 are selected to depict the performance of the proposed general form
of the Morison equation. By comparing the absolute difference of the measured and
predicted drag components, i.e. {Fd}m − {Fd}p, (3.8) significantly outperforms (1.1a–c)
for K < ∼2.0. At small K, e.g. K = 0.1 in figure 9(a), the reconstructed drag agrees fairly
well with both measured drag values in DNS and the S–W solution ({Fs + Fv}S–W). Due
to the development of the form drag component, the reconstructed drag through method I
deviates from the S–W solution as K is increased (figure 9 b,c). The general form Morison
equation slightly outperforms the conventional one for K > ∼2.0 (figure 9 d), suggesting
(3.8) gradually reduces to (1.1a–c) as K is increased.

Variations of Cd1 and Cd2 with K and β, obtained by using (3.8) through method I, are
shown in figure 10(a). As expected, opposite trends of Cd1 and Cd2 are clearly observed
as K is increased. It is seen in figure 10(a) that Cd1 is approximately 10 times larger than
Cd2 for the cases of K < ∼1.0 over a wide range of β, which means the second term
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green dash dotted line in (a,b) represent the variations using methods 0–III, respectively.

0/4

0

–0.6

0.3

0.6

–0.3

1/4 2/4 3/4

θ (π) θ (π)
5/44/4

0

–0.2

–0.4

0.2

0.4

6/4 7/4 8/4 0/4 1/4 2/4 3/4 5/44/4 6/4 7/4 8/4

0/4 1/4 2/4 3/4 5/44/4

0

–0.2

–0.4

0.2

0.4

6/4 7/4 8/40/4 1/4 2/4 3/4

Fd

Fd

5/44/4

0

Method 0: {Fd}m

Method I: {Fd}m

Method 0:

Method I: Measured drag

Measured drag

Reconstructed drag

Reconstructed drag

Absolute error

Absolute error

Method 0: {Fd}p

Method 0: {Fd}p

1

–2

–5
–4
–3

2
3
4
5

–1

6/4 7/4 8/4

(a) (b)

(c) (d)

Figure 9. Time evolution of measured drag, {Fd}m, and reconstructed drag, {Fd}p, at (a) (K, β) = (0.1, 1035),
(b) (1.4, 1035), (c) (2.0, 1035) and (d) (4.0, 1035) over one period. Corresponding {Fd}m, {Fd}p and {Fd}m −
{Fd}p obtained through method 0 (red) in (1.1a–c) and method I (blue) in (3.8) are shown as thick solid, dashed
and dotted lines.

on the right-hand side of (3.8) can be ignored. Both Cd1 and Cd2 are equally important
at intermediate K, e.g. 0.1 < Cd1/Cd2 < 10 at K = 1.0–8.0, where the newly proposed
general form of the Morison equation should be utilised. Distributions of ζ with respect
to K over a range of β values for method 0 and method I are shown in figure 10(b).
The general form of the Morison equation in (3.8) shows an excellent improvement over
(1.1a–c) for K < 2.0. It is also slightly better than (1.1a–c) for 2.0 ≤ K ≤ 8.0. For large K
values, e.g. K > 8.0, above which asymmetry and vortex shedding occur and the in-line
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Figure 10. Variations of (a) Cd1, Cd2 and (b) ζ as a function of K for β = 200 − 105. The solid lines with
square symbols in (a) are the viscous drag coefficient, Cd1, obtained through the S–W solution, while the
triangles indicate the form drag coefficient, Cd2, determined by using method I.

force is largely drag dominated (Bearman et al. 1985; Sarpkaya 2010), (3.8) recovers to
(1.1a–c) where Cd2 is significantly larger than Cd1.

4. Discussion

Previous experimental studies showed controversial results of the measured Cd values at
different β values. For instance, the physical tests conducted by Sarpkaya (1986), through
U-tube measurements at small β ≤ 11 240, have shown that the measured Cd deviates
from the S–W solution after 3-D instabilities develop, leading to a hysteresis effect in
the vicinity of the deviation (see grey circles in figure 3a). The potential reasons for the
hysteresis are unclear, even now, as this phenomenon has not been observed other than by
Sarpkaya (1986). For cases at β > 105, most of the physical tests at low K observed that Cd
was approximately twice {Cd}S–W for cases below the Kr line (e.g. Chaplin 2000; Sarpkaya
2001, 2010). We originally hoped that some physical mechanisms would have manifested
to allow meaningful explanations for the hysteresis effect at small β and nearly doubled
Cd at large β. Unfortunately, both 2-D and 3-D DNS failed to identify any culprit for the
large discrepancy. The excellent agreement between the S–W solution and DNS results
in the region below the Kr line, where the flow is deemed to be two-dimensional and yet
large discrepancies between experimental results and the S–W solution exist, appears to
suggest that the DNS results are correct and the experimental results are questionable.
Since the identification of experimental uncertainties is beyond the scope of the present
work, some potential effects are briefly discussed and readers are referred to Sarpkaya
(2001) and Sarpkaya (2010) for details.

First of all, accurate measurements of Cd at low K values are challenging, because
the drag accounts for a very small proportion of the total in-line force. Experimental
uncertainties may easily contaminate the drag separated from the total in-line force
measured in the experiment. This conjecture is supported by a recent experimental study
conducted by Gao et al. (2020) at β = 20 950, where the measured Cd (not shown in this
paper) agrees fairly well with both the S–W solution and the present studies at K ∼ 1.
Significant deviations from the S–W solution are observed as K is decreased in Gao
et al. (2020), which contradicts the observations reported in the literature at similar β

(Bearman & Mackwood 1992; Sarpkaya 2006a). Secondly, Sarpkaya (2001) pointed out
that the Kr line was only an approximate boundary, depending on uncontrolled conditions
in experiments, such as residual background turbulence, undesirable vibrations, nonlinear
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interaction of various types of perturbations, etc. No attempt is made to quantify the
influence of different noises in DNS, since it is not straightforward to examine those effects
fully in DNS, based on the current DNS models and computing resources.

We now focus on the appropriateness of the present DNS. An immediate question
concerns the possibility that large scale spanwise 3-D structures such as the regime C
structure reported by Elston et al. (2006) and Xiong et al. (2018b) exist and were not
resolved by the present 3-D DNS. We cannot rule this possibility out because the selection
of the computational domain size and mesh resolution in the spanwise direction are based
on the empirical characteristic length of the Honji-type 3-D structure (λ) reported by
Sarpkaya (2002). The magnitude of λ/D is O(10−3) when β ∼ O(106). The present use
of Lz > 4λ might not be able to resolve large scale spanwise 3-D structures. The existing
knowledge on the flow suggests different 3-D instabilities such as regimes C, D and F often
occur at large K values that are beyond the parameter range of present DNS. No further
attempt was made to address this issue due to the constraint of available computational
resources.

No turbulence model is employed in the present study. This choice is primarily made
based on an understanding that turbulence is unlikely in the parameter space of present
interest. For example, under an assumption of negligible curvature effect, the boundary
layer on the cylinder surface in the tests reported by Chaplin (2000) at β = 670 000 with
0.001 < K < 0.1 is deemed to be in the laminar regime based on the existing knowledge
of oscillatory flow above a smooth plate. In addition, the independent experience of
using turbulence models to simulate the flow has not been very positive. For instance,
3-D large-eddy simulations with a dynamic Smagorinsky model in Rashid et al. (2011)
showed a large relative difference from experimental results by Sarpkaya (1986) at large
K, e.g. 28.97 % at (K, β) = (4.86, 1035) and 29.3 % at (4, 11 240). The 2-D nonlinear
eddy-viscosity model based on the unsteady Reynolds-averaged Navier–Stokes equations
conducted by Saghafian et al. (2003) showed that Cd was overestimated with respect to
the S–W solution at small K, e.g. 17.1 % at (K, β) = (0.5, 1035), a point at which both
experimental results by Sarpkaya (1986) and the present results show good agreements
with the S–W solution.

5. Conclusions

The applicable bound values of the Keulegan–Carpenter (K) number and Stokes (β)
number for the S–W solution (Wang 1968), which were given asymptomatically as
βK2 � 1 and β � 1, are investigated by conducting a series of 2-D and 3-D DNS over
K from 0.01 to 20 and β from 1 to 106. The S–W solution is found to be applicable over
a parameter range that is much larger than the constraints of βK2 � 1 and β � 1, based
on DNS results. We consider this finding significant as the S–W solution can potentially
be used in practical applications over much wider parameter ranges than those suggested
by Wang (1968) and the experimental findings reported in the literature. The spanwise
structure, such as the Honji instability, which has been speculated as the major cause for
the deviation of force coefficients with the S–W solution, is affirmed to have a less effect
on the drag and inertia coefficients, i.e. Cd and Cm, at small K values. We found that
the discrepancy between DNS and the S–W solution, i.e. ΛK , is mainly associated with
the spatio-temporal extent of flow separation on the cylinder surface. Flow separation on
the cylinder surface starts from the downstream half of the cylinder surface, propagates
towards the upstream half and merges with the front separation bubble over a half of a
flow period, relative to the direction of incoming flow. A measure for the spatio-temporal
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extent of flow separation, i.e. Γ , is introduced to quantify the influence of flow separation,
which is more sensitive to K than to β. The ΛK value is found to correlate extremely well
with Γ . The larger the Γ , the larger the ΛK .

Our results showed that the viscous and form drag components are equally important
at intermediate K. On this basis, a general form of the Morison equation is proposed by
considering both viscous and form drag coefficients. The viscous drag has a π/4 phase
difference relative to the incoming flow. In this Morison equation, the linear viscous drag
is analytically derived based on the S–W solution. The quadratic form drag and inertia
force can be decomposed using the conventional approach based on the remaining parts of
the in-line force. The general form of the Morison equation proposed in the present study
is demonstrated to be superior to the conventional Morison equation for K < ∼2.0 over a
wide range of β values.

Unfortunately, the present DNS results do not support the experimental findings of a
nearly doubled drag force as predicted by the S–W solution at large β and small K values.
More research efforts on analysing potential experimental errors or exploring potential
flow structures that cause the large differences are recommended.
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Appendix A

A.1. Cross-sectional mesh selections
The 2-D mesh convergence check is conducted in the plane perpendicular to the axis
of the cylinder. The major tasks in the mesh check include selecting appropriate mesh
size and domain size to resolve the flow and minimise the blockage effect. For the mesh
type and the computational domain shown in figure 11, we specifically need to select the
size of the first layer macro-elements next to the cylinder surface, represented by Δr and
πD/Nc in the radial and circumferential directions, the total number of macro-elements
in the domain Nel, the polynomial order of the macro-element Np and the distances from
the centre of cylinder to the boundaries of the rectangular domain L0, where Nc is the
number of macro-elements used to discretise the cylinder surface. The value of Δr is
primarily determined by the number of macro-elements needed to resolve the boundary
layer around the cylinder. The normalised thickness of the Stokes boundary layer, δSt/D,
can be estimated by δSt/D = 2.82β−1/2 (Sarpkaya 2001). The order of δSt/D is estimated
to be from O(0.001) to O(1) for the β values investigated in the present study, which is
employed to govern the selection of Δr. The larger β is, the smaller the Δr required. In
order to save computational costs, the macro-element sizes are gradually changed with
increasing distance from the cylinder surface. The expansion ratio of the h-type mesh near
the cylinder surface is set as q1 = 1.15, whereas expansion ratios for the outer domain
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Figure 11. Computational domain, h-type mesh distribution oscillatory flow past an isolated cylinder at
200 < β ≤ 1035 (Mesh 1 in table 2). Each element contains N2

p quadrature points, as in the close-up views of
hp-refined meshes (Np = 5) around the cylinder in (b,c), where the p-type mesh is in grey. Velocity boundary
conditions are shown in blue boxes. The total element number (Nel) in (a) is 7156; q1 and q2 in (a) are the
expansion ratios near the cylinder and in outer domain, respectively.

Mesh Mesh parameters Hydrodynamic forces

Nel Np Δr/D (Nr) Nc Lo Cd Cm

Mesh 1 (reference) 7156 5 0.001 (19) 120 25D 0.7661 2.0502
Mesh 2 7156 3 0.001 (19) 120 25D 0.7669 2.0498
Mesh 3 7156 7 0.001 (19) 120 25D 0.7661 2.0502
Mesh 4 7867 5 0.0004 (25) 120 25D 0.7660 2.0501
Mesh 5 6436 5 0.002 (14) 120 25D 0.7660 2.0501
Mesh 6 5236 5 0.009 (6) 120 25D 0.7662 2.0501
Mesh 7 3316 5 0.09 (1) 120 25D 0.8473 2.0439
Mesh 8 21 076 5 0.001 (19) 360 25D 0.7681 2.0639
Mesh 9 3908 5 0.001 (19) 64 25D 0.7660 2.0501
Mesh 10 7924 5 0.001 (19) 120 50D 0.7657 2.0495
Mesh 11 2884 5 0.009 (6) 64 25D 0.7661 2.0501

Table 2. Influence of the mesh sizes on in-line force coefficients, Cd and Cm, at (K, β) = (1.2, 1035). Here,
Nel is the total number of macro-elements of the domain; Np is the polynomial order; Δr is the height of the
first macro-element next to the cylinder surface; Lo is the distance from (x/D, y/D) = (0, 0) to the domain
boundaries; Nr = 
log{1 + (q1 − 1)δSt/Δr}/ log q1� represents the number of macro-elements required to
resolve the boundary layer. The time-step size Δt = 0.0005 is used in this case. The thickness of Stokes
boundary layer at β = 1035 equals to δSt/D = 2.82β−1/2 ∼ 0.09.

are set below q2 = 1.3. A parameter Nr = 
log{1 + (q1 − 1)δSt/Δr}/ log q1�, is defined
to represent the number of macro-elements required to resolve the Stokes boundary layer.

In light of the above, different h-type mesh resolutions around the radical and
circumferential directions near the cylinder surface for different (K, β) parameter ranges
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Figure 12. Computational meshes used in different K–β parameter regions. Diamond symbols indicate four
discrete points at (K, β) = (0.4, 106), (1, 20 950), (1.2, 1035) and (2, 200) used for mesh convergence check,
as detailed in table 3. Triangular symbols are two cases at (K, β) = (8, 200) and (8, 1035) utilised for selecting
Lo at K > 3. The grey hollow circles are the 2-D DNS cases conducted in the present study.

are considered in the mesh dependence check. The employment of different 2-D meshes
over different K–β parameter zones is aimed at minimising the computational costs. To
ensure adequate mesh resolutions in the focused parameter space of the present study,
i.e. the region from small K values to the vicinity of the Kh line shown in figure 2, a
careful mesh dependence check is conducted at four discrete points at (K, β) = (0.4, 106),
(1, 20 950), (1.2, 1035) and (2, 200), as shown by the diamond symbols in figure 12. The
mesh determined at each of those four points is used uniformly in each of the parameter
regions governed by the point (the shaded areas with inclined lines in figure 12), e.g. the
mesh chosen at (K, β) = (0.4, 106) is used for all simulations conducted with K ≤ 0.4
and 20 950 < β ≤ 106 (Case 4 shown in figure 12).

The convergence check is first conducted at (K, β) = (1.2, 1035) to find the correlations
between mesh parameters (Δr (Nr), Nc, Np, Nel and Lo) and β, before the convergence
checks are conducted at the other three points. The mesh with Lo = 25D, Np = 5, Δr =
0.001D (Nr = 19) and Nc = 120 is selected as the reference mesh (see Mesh 1 in table 2).
Detailed mesh distributions near the cylinder surface for the reference mesh are shown
in figure 11. The following four sets of simulations are conducted with different mesh
parameters from those in Mesh 1 to check the influences of the above mesh parameters on
Cd and Cm values:

(i) Np is changed to 3 and 7 in Mesh 2 and Mesh 3 respectively;
(ii) Δr is varied from 0.09D (Nr = 1) to 0.0004D (Nr = 25) in Mesh 4 to Mesh 7;

(iii) Nc is changed to 360 and 64 in Mesh 8 and Mesh 9 respectively;
(iv) Lo is increased to 50D in Mesh 10.

A mesh with the minimum Nel among the meshes shown in table 2 (Mesh 11), where
Nr = 6 and Nc = 64, is checked in order to minimise the computational costs for the cases
with high β values. Detailed parameters for each mesh are listed in table 2, together with
the Cd and Cm values based on corresponding meshes. Except for Mesh 7 with Δr ∼ δSt
(Nr = 1), the Cd and Cm values obtained with different meshes are within 1 % of the
corresponding values obtained using the reference mesh. The above results suggest that
Nr ≥ 6 and Nc ≥ 64 are adequate to resolve the boundary layer and flow separations.
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Cases (K, β) Nel Lo Δr/D (Nr) Nc Δt

Case 1 (2, 200) 6436 25D 0.002 (19) 120 10−3

Case 2 (1.2, 1035) 7156 25D 0.001 (19) 120 5 × 10−4

Case 3 (1, 20 950) 7867 25D 0.0004 (15) 120 10−4

Case 4 (0.4, 106) 8476 25D 0.0002 (8) 120 10−5

Table 3. Computational meshes used in 2-D simulations over K–β parameter space.

The reference mesh listed in table 2 is more than adequate for the case with K ≤ 1.2
and 200 < β ≤ 1035.

Similar mesh checks are conducted at (K, β) = (0.4, 106), (1, 20 950) and (2, 200)
and the mesh parameters determined through the mesh checks are listed in table 3.
The ranges of Nr and Nc used are identical to those listed in table 2. The corresponding Cd
and Cm are within 1 % difference of the meshes listed in table 3, suggesting the meshes
used in the present cases are adequate to obtain accurate results. The time-step size Δt for
cases in different parameter ranges varies from Δt = 10−3 to 10−5 (table 3), based on the
Courant–Friedrichs–Lewy (CFL) stability criterion, which is defined as

CFL = |u|Δt
Δl

, (A1)

where |u| is the magnitude of the velocity in each cell and Δl is the cell size in the
direction of the velocity. The maximum value of CFL is kept below 1 for all the simulations
conducted in the present study.

Simulations are extended for K values beyond the parameter regions governed by those
four points in table 3 during the study to (i) provide more data on the variation of ΛK as K
is increased, as introduced in figure 2, and (ii) validate the proposed general form Morison
equation in § 3.5. Since numerical results in those regions would not significantly affect
the main conclusions drawn in the present study, simulations conducted at points outside
those four parameter regions and K ≤ 3 employ one of the meshes determined in table 3
(shaded areas in figure 12). Another group of mesh dependence checks is conducted by
increasing Lo from 25D to 50D for cases at K = 8 and β = 200 and 1035 (the triangle
symbols in figure 12). As a result, the Cd values calculated with Lo = 25D have 5 %–10 %
differences compared to the corresponding values obtained using Lo = 50D. Considering
the relative difference increases as K is increased, Lo = 50D is selected for all cases at
K > 3 to keep the numerical difference smaller than 5 %. The mesh resolutions around
the cylinder surface are consistent with those introduced in table 3.

A.2. Spanwise mesh selections
The spanwise length of the computational domain Lz and the order of the Fourier
expansion Nz are the two parameters that need to be determined in the mesh dependence
check in the spanwise direction. Previous studies (e.g. An et al. 2011; Xiong et al. 2018a)
showed that good correlations exist between Lz and the characteristic length of 3-D
structures (λ), which can be estimated according to the empirical formula proposed by
Sarpkaya (2002) as, λ/D = 22β−3/5 ( λ ∼ 0.34D at β = 1035). Xiong et al. (2018a)
suggested that a ratio of Lz/λ ≈ 3 and Nz = 18 are generally adequate in resolving
spanwise structures of oscillatory flows. Since the present computational costs are much
higher than those of Xiong et al. (2018a) and An et al. (2011) due to the large β values
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Cases (K, β) Mesh parameters Hydrodynamic forces

Nz Lz 
λ/Δz� Lz/λ Cd Cm

Case 2-1 (reference) (1.2, 1035) 64 2.0D 10 5.85 0.7684 2.0497
Case 2-2 (1.2, 1035) 32 1.0D 10 2.92 0.7682 2.0498
Case 2-3 (1.2, 1035) 128 4.0D 10 11.70 0.7683 2.0498
Case 2-4 (1.2, 1035) 32 2.0D 5 5.85 0.7839 2.0497
Case 2-5 (1.2, 1035) 128 2.0D 21 5.85 0.7686 2.0497
Case 1-1 (2, 200) 64 5.6D 10 6.11 1.2312 2.1254
Xiong et al. (2018a) (2, 200) 64 5.6D 10 6.11 1.2356 2.1331
Xiong et al. (2018a) (2, 200) 128 5.6D 20 6.11 1.2349 2.1384

Table 4. Comparisons of 3-D simulation results for Cd and Cm with previous experimental and numerical
studies at (K, β) = (2, 200) and (1.2, 1035). Here, Lz is the spanwise length used in quasi-3-D simulations; Nz
represents spanwise resolution and Δz = Lz/Nz. The characteristic length of the Honji-type instability λ/D =
22β−3/5 at β = 200 and 1035 is equal to ∼0.92 and 0.34, respectively.

β K Nel Lz Nz 
λ/Δz� Lz/λ Δt

200 1.8–2.0 6436 5.6D 64 10 6.11 10−3

1035 1.0–2.0 7156 2.0D 64 10 5.85 5 × 10−4

3000 1.2–1.8 7156 1.0D 64 11 5.54 5 × 10−4

20 950 1.0–1.4 7867 0.25D 64 14 4.45 10−4

Table 5. Computational meshes used in quasi-3-D simulations.

involved, a mesh dependence check is conducted again to explore the possibilities of
reducing the Lz and Nz values recommended by Xiong et al. (2018a). For this purpose,
the convergence test was initially conducted at (K, β) = (1.2, 1035).

The reference mesh uses an identical cross-sectional mesh to that employed in the
2-D mesh dependence check with Lz = 2D and Nz = 64. The values Lz/λ ≈ 3 − 12
and Nz = 32 − 128, as detailed in table 4, are employed to examine the influence of
different combinations of Lz and Nz on the numerical results. Specifically, Lz is varied
from 1D(∼3λ) to 4D(∼ 12λ) with 
λ/Δz� = 10 in Cases 2-2 and 2-3 and Lz = 2D
and Nz = 32 − 128 in Cases 2-4 and 2-5, where Δz = Lz/Nz represents the thickness
of the spanwise mesh. The Cd and Cm results shown in table 4 demonstrate that use of

λ/Δz� = 5 leads to a large relative error of Cd approximately 2.0 % in Case 2-4 and all
other options, including the Lz = 1D and Nz = 32 in Case 2-2, lead to a relative error
of Cd less than 0.03 % of the corresponding values obtained using the reference mesh.
Therefore the parameters chosen for the reference mesh are considered adequate for the
case of (K, β) = (1.2, 1035).

Based on the above results, a conservative choice of Lz ≥ 4λ and Nz = 64 is made for
different (K, β) ranges to allow a wider spectrum to be included. The mesh parameters
used in the present quasi-3-D simulations are listed in table 5. Comparisons of Cd and Cm
at (K, β) = (2, 200) with numerical results in Xiong et al. (2018a) are offered in table 4,
suggesting the selections of Lz and Nz are sufficient.
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