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Abstract

We consider a continuous, infinitely divisible random field in Rd given as an integral of a
kernel function with respect to a Lévy basis with convolution equivalent Lévy measure.
For a large class of such random fields we compute the asymptotic probability that the
supremum of the field exceeds the level x as x → ∞. Our main result is that the
asymptotic probability is equivalent to the right tail of the underlying Lévy measure.
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1. Introduction

In this paper we investigate the extremal behaviour of a field (Xt )t∈B defined by

Xt =
∫

Rd

f (|t − s|)M(ds), (1.1)

where M is an infinitely divisible, independently scattered random measure on Rd , f is some
kernel function, and B is a compact index set. We will assume that the Lévy measure of the
random measure M has a convolution equivalent right tail [11], [12], [21].

In this paper we derive for a random field (1.1) the very useful result that the asymptotic
behaviour of the supremum of Xt , t ∈ B, has a tail that is equivalent to the tail of the underlying
Lévy measure. More precisely under the assumption that the underlying Lévy measure ρ of M

has a tail that is convolution equivalent, we show that

P

(
sup
t∈B

Xt > x
)

∼ Cρ((x, ∞))E exp(βXt0)md(B) as x → ∞,

where C is a known constant and md(B) is the Lebesgue measure of B. The proof of this result
uses an important lemma from a paper by Braverman and Samorodnitsky; see [10, Lemma 2.1].
Measures with a convolution equivalent tail cover the important cases of an inverse Gaussian
(IG) and a normal inverse Gaussian (NIG) basis, respectively; see Section 2 below.

Lévy models as defined in (1.1) provide a flexible and tractable modelling framework that
has recently been used for a variety of modelling purposes, including modelling of turbulent
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flows [9], growth processes [17], Cox point processes [16], and brain imaging data [18]. In [18],
a model (1.1) with M following a NIG distribution was suitable for modelling the neuroscience
data under consideration. For such data it is typically of interest to detect for which t ∈ B a
given field obtains values that are significantly large.

To the best of the authors’knowledge, the extremal behaviour of a NIG field or more generally
a field (1.1) with convolution equivalent Lévy measure has not yet been studied in detail. For
Gaussian random fields it is known that the distribution of the supremum of the field can be
approximated by the expected Euler characteristic of an excursion set (see [2] and the references
therein). In [15] an exact asymptotic result was obtained for Gaussian random fields under the
assumption of α(t)-local stationarity. However, in [18] it was shown by simulations that using
a model based on the NIG distribution gives results that are substantially different from those
obtained by Gaussian models.

The supremum of a non-Gaussian field given by integrals with respect to an infinitely divisible
random measure has already been studied, when the random measure has regularly varying tails.
Results for the asymptotic distribution of the supremum are found in [27], and these results
were refined in [3] and [4], where results were obtained on the asymptotic joint distribution
of the number of critical points of the excursion sets. The arguments are—as in this paper—
based on finding the Lévy measure of a dense countable subset of the field. However, the
remaining proofs rely heavily on the assumption of regularly varying tails and can therefore
not be translated into the convolution equivalent framework.

Note that convolution equivalent distributions have heavier tails than Gaussian distributions
and lighter tails than those of regularly varying distributions. The latter statement follows from
the fact that convolution equivalent distributions have exponential tails while regularly varying
distributions have power function tails.

For real-valued one-dimensional infinitely divisible distributions it was shown in [11], [12],
and [21] that if the Lévy measure has a convolution equivalent right tail, then the distribution
has a right tail that is asymptotically equivalent. The proofs are based on a decomposition of
the distribution into a compound Poisson part that is dominating in the tail and a part with a
lighter tail. The arguments in this paper apply a similar decomposition to the distribution of a
dense countable subset of the field.

In [13], results for a moving average process on R, obtained as an integral with respect to
a Lévy process with convolution equivalent tail, were derived. But here the kernel function f

satisfies f (t) = 0 for t < 0 such that

Xt =
∫ t

−∞
f (t − s)M(ds).

This paper is organised as follows. In Section 2 we give a short introduction to random
fields defined as an integral of a kernel function with respect to a Lévy basis. Such a field X

can be decomposed into a sum X1 + X2 of two independent fields, where X1 is a compound
Poisson sum. In Section 3 the tail asymptotics for X1 are studied, while it is shown in Section 4
that the supremum of the field X2 has lighter tails than the supremum of X1. This makes it
possible to derive the overall extremal behaviour of the supremum of X, which is also done in
Section 4. The asymptotic behaviour of excursion sets is briefly discussed in Section 5. Proofs
concerning the existence of continuous versions of the random fields considered are deferred
to Appendix A.
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2. Preliminaries

Consider an independently scattered random measure M on Rd . Then for a sequence of
disjoint sets (An)n∈N ⊆ Rd in B(Rd) the random variables (M(An))n∈N are independent and
satisfy M(∪An) = ∑

M(An). Assume furthermore that M(A) is infinitely divisible for all
A ∈ B(Rd). Then M is called a Lévy basis; see [9] and the references therein.

For a random variable X let C(λ � X) denote its cumulant function log E(eiλX). We shall
assume that the Lévy basis is stationary and isotropic such that for A ∈ B(Rd) the variable
M(A) has a Lévy–Khintchine representation given by

C(λ�M(A)) = iλamd(A)+ 1

2
λ2θmd(A)+

∫
A×R

(eiλu −1− iλu1[−1,1](u))F (ds, du), (2.1)

where md is the Lebesgue measure on (Rd , B(Rd)), a ∈ R, θ ≥ 0, and F is a measure on
B(Rd × R) of the form

F(A × B) = md(A)ρ(B). (2.2)

We assume that ρ has an exponential tail with index β > 0, i.e. for all y ∈ R,

ρ((x − y, ∞))

ρ((x, ∞))
→ eβy as x → ∞. (2.3)

Furthermore, letting ρ1 be a normalization of the restriction of ρ to (1, ∞), we assume that ρ1
has a convolution equivalent right tail, i.e.

(ρ1 ∗ ρ1)((x, ∞))

ρ1((x, ∞))
→ 2M as x → ∞, (2.4)

where M < ∞. Here, ρ1 ∗ ρ1 denotes the convolution. In fact, M = ∫
eβyρ1(dy), cf. [21,

Corollary 2.1(ii)]. Writing ρ((x, ∞)) = L(x)e−βx , it is seen from (2.3) that, for all y ∈ R,

L(x − y)

L(x)
→ 1 as x → ∞. (2.5)

For each a, b ∈ R, the limit (2.5) holds uniformly in y ∈ [a, b], cf. [21, p. 408].
We furthermore assume that ∫

z2ρ(dz) < ∞. (2.6)

Note that integrability along the right tail is already assumed and that
∫

[−1,1]
z2ρ(dz) < ∞

is needed for ρ to be a Lévy measure.
It follows from [21, Lemma 2.4] that if ρ satisfies, for x > 0,

ρ((x, ∞)) ∼ ax−δe−βx, (2.7)

where a > 0, δ > 1, and β > 0, then (2.3) and (2.4) are fulfilled. Here we use the convention
that f (x) ∼ g(x) if f (x)/g(x) → 1 as x → ∞.
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Example 2.1. (IG basis.) Suppose that M is inverse Gaussian,

M(A) ∼ IG(ηmd(A), γ ), η, γ > 0.

Then C(λ � M(A)) has the representation (2.1) from above with

a = η

γ

∫ 1

0
x−1/2e(−1/2)γ 2x dx, θ = 0, ρ(dx) = η√

2π
1R+(x)x−3/2e(−1/2)γ 2x dx;

see, e.g. [7], [8], [17]. Thereby,

ρ((x, ∞)) = η√
2π

∫ ∞

x

y−3/2e(−1/2)γ 2y dy ∼ η

γ 2

√
2

π
x−3/2e(−1/2)γ 2x as x → ∞.

Thus, (2.7) is fulfilled with δ = 3
2 .

Example 2.2. (NIG basis.) Suppose that M is normal inverse Gaussian,

M(A) ∼ NIG(α, β, μmd(A), δmd(A)),

0 ≤ |β| < α, μ ∈ R, and 0 < δ. Then C(λ � M(A)) has the representation (2.1) from above
with

a = μ + 2δα

π

∫ 1

0
sinh(βx)K1(αx) dx, θ = 0, ρ(dx) = δα

π

1

|x|K1(α|x|)eβx dx,

where K1 is the modified Bessel function of the second kind and index 1. For further details
concerning the Lévy measure of the NIG distribution; see [5] and [6]. Using an asymptotic
formula for K1 it can be shown that

ρ((x, ∞)) ∼ δ
√

α√
2π

∫ ∞

x

|y|−3/2e−α|y|+βy dy ∼ δ

α − β

√
α

2π
x−3/2e−(α−β)x as x → ∞.

For details, see [26, Example 2.2]. Again, (2.7) is fulfilled with δ = 3
2 .

Now assume that f : [0, ∞) → [0, ∞) is an integration kernel satisfying

f (0) = 1, f (x) < 1 for x > 0,

∫
Rd

f (|s|) ds < ∞, (2.8)

and

f (x) ≤ K1

(x + 1)d
for all x ≥ 0 (2.9)

for a finite, positive constant K1. Assume furthermore that f is differentiable with f ′ satisfying

|f ′(x)| ≤ K2

(x + 1)d
for all x ≥ 0 (2.10)

for a finite, positive constant K2. Let B be a compact subset of Rd with md(B) > 0 and
consider the family of random variables (Xt )t∈B defined by

Xt =
∫

Rd

f (|t − s|)M(ds).
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The integrals defining each Xt exist according to [24, Theorem 2.7], where the conditions (i)–
(iii) can be easily verified under the given assumptions on M and f . As explained inAppendixA,
Theorem A.1, there furthermore exists a version of (Xt )t∈B with continuous sample paths. In
the following, it will be useful to note that∫

Rd

sup
t∈B

f (|t − s|) ds < ∞. (2.11)

Example 2.3. (Exponential kernel function.) Suppose that f (x) = e−σx, σ > 0, then the
assumptions (2.8)–(2.10) are satisfied.

Example 2.4. (Gaussian kernel function.) Suppose that f (x) = e−σx2
, σ > 0, then the

assumptions (2.8)–(2.10) are satisfied.

Example 2.5. (Matérn kernel function.) Suppose that

f (x) = 1

2η−1(η)
|λx|ηKη(λ|x|),

where Kη is the modified Bessel function of the second kind, index η, and λ > 0. The use of
this kernel function in Lévy-based modelling and its relation to the so-called Matérn correlation
structure of the field (Xt )t∈B were discussed in [18]. For a further discussion of modelling,
using a Matérn correlation structure, see [14]. Since for η = 1

2 ,

K1/2(x) =
√

π

2
x−1/2e−x,

the Matérn kernel reduces to the exponential kernel for η = 1
2 . It can be shown that for η ≥ 1

2
the Matérn kernel satisfies the assumptions (2.8)–(2.10). In the arguments it is essential that,
for all η > 0,

Kη(x) ∼
√

π

2
x−1/2e−x as x → ∞.

See [26, Example 2.5] for details.

For the study of the extremal behaviour of (Xt )t∈B , we will use the fact that the cumulant
function of Xt = ∫

Rd f (|t − s|)M(ds) takes the following form:

C(λ � Xt) = iλa

∫
Rd

f (|t − s|) ds + 1

2
λ2θ

∫
Rd

f (|t − s|)2 ds

+
∫

Rd

∫
R

(eif (|t−s|)λu − 1 − if (|t − s|)λu1[−1,1](u))ρ(du) ds,

cf. e.g. [24, Theorem 2.7]. A similar formula holds for finite linear combinations of the
Xt s. Here, f (|t − s|) is substituted by

∑
t βtf (|t − s|). It follows that all finite-dimensional

distributions of (Xt )t∈B are infinitely divisible. As a consequence, any countable field (Xt )t∈T

is itself infinitely divisible; see [20] for existence and uniqueness of the infinite divisibility of
the entire field. It follows from direct manipulations and it is also noted in, e.g. [27] that the
Lévy measure of (Xt )t∈T is the measure ν on (RT , B(RT )) defined by ν = F ◦ V −1, where
V : Rd × R → RT is given by

V (s, z) = (zf (|t − s|))t∈T .
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We will from now on assume that T = B ∩ Qd , where Qd are the rational numbers in Rd . For
β ∈ RT with βt = 0 for all but finitely many t ∈ T , we find that

log E

(
exp

(
i
∑

t

βtXt

))
= i

∑
t

βtat + 1

2
θ

∫
Rd

(∑
t

βtf (|t − s|)
)2

ds

+
∫

RT

(
exp

(
i
∑

t

βtxt

)
− 1 − i

∑
t

βtxt1[−1,1]T (x)

)
ν(dx)

(2.12)

for an appropriate choice of (at )t∈T ∈ RT . It is furthermore seen that (at )t∈T is bounded.
Because of the infinite divisibility of (Xt )t∈T , we have the following decomposition; see, e.g.
[27]:

Xt = X1
t + X2

t ,

where the fields (X1
t )t∈T and (X2

t )t∈T are independent. The first field (X1
t )t∈T is a compound

Poisson sum

X1
t =

N∑
n=1

Un
t ,

where N is Poisson distributed with parameter ν(A) and

A =
{
x ∈ RT : sup

t∈T

xt > 1
}
.

InAppendixA, it is shown that ν(A) < ∞; see LemmaA.1. The fields (Un
t )t∈T are independent

and identically distributed with common distribution ν1 = νA/ν(A), where νA is the measure
on (RT , B(RT )) obtained by restricting ν to A. Furthermore, (X2

t )t∈T is infinitely divisible
with a Lévy measure νAc , the restriction of ν to Ac, and a cumulant function that is similar to
(2.12) but with ν replaced by νAc .

It will be crucial for the arguments in the following sections that the fields X1 and X2 can be
extended to continuous fields indexed by B. Note that each of the fields (Un

t )t∈T almost surely
has the form zf (|t − s|). Hence, there almost surely exists a continuous extension (Un

t )t∈B .
Since X1 is a finite sum of such fields it has a continuous extension to B as well. As already
stated, the field (Xt )t∈B has continuous sample paths, see also Theorem A.1. Thereby also X2

has continuous sample paths.

3. Tail asymptotics for compound Poisson sum of Lévy fields

In this section we will determine the extremal behaviour of P(X1
t > x − yt for some t)

for increasing values of x and (yt )t∈B a continuous field. The main result, formulated in
Theorem 3.3 below, will be used in the next section to study the extremal behaviour of
P(supt∈B Xt > x), using the fact that X = X1 + X2 and conditioning on X2.

It is convenient to introduce a notation that can be seen as a refinement of the event
{supt∈T Xt > x}. If (xt )t∈T is a field in RT , we define ((xt )t∈T ) to be the following subset in
B(RT ):

((xt )t∈T ) = {(yt )t∈T : yt > xt for some t ∈ T }.
If xt = x for all t ∈ T we shall use the notation (x). Note that {supt∈T Xt > x} = {X ∈ (x)}.

The first step will be determining the behaviour of P(U ∈ ((x − yt )t∈T )), when U is a
field with distribution ν1.
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Theorem 3.1. Let (yt )t∈B be continuous and bounded on B. Then

ν1(((x − yt )t∈T ))

L(x) exp(−βx)
→ 1

ν(A)

∫
B

exp(βys) ds as x → ∞. (3.1)

Furthermore,
ν1((x))

L(x) exp(−βx)
→ 1

ν(A)
md(B) as x → ∞, (3.2)

and
ν1(((x − yt )t∈T ))

ν1((x))
→

∫
B

exp(βys) ds

md(B)
as x → ∞. (3.3)

Proof. The results (3.2) and (3.3) are direct consequences of (3.1), so we focus on the proof
of (3.1). We can assume that (yt )t∈B is nonnegative. Simply write x = x′ − x0 for a suitable
x0 such that (x0 + yt )t∈B is nonnegative, and find the limit of

ν1(((x′ − (x0 + yt ))t∈T ))

L(x′) exp(−βx′)
as x′ → ∞.

We find that

ν1(((x − yt )t∈T ))

= 1

ν(A)
F ◦ V −1(((x − yt )t∈T ))

= 1

ν(A)
F ({(s, z) ∈ Rd × R : there exists t ∈ T : zf (|t − s|) > x − yt })

= 1

ν(A)
F

({
(s, z) ∈ Rd × R : z > inf

t∈T

x − yt

f (|t − s|)
})

= 1

ν(A)

∫
Rd

L

(
inf
t∈T

x − yt

f (|t − s|)
)

exp

(
−β inf

t∈T

x − yt

f (|t − s|)
)

ds

= 1

ν(A)

∫
B

L

(
inf
t∈T

x − yt

f (|t − s|)
)

exp

(
−β inf

t∈T

x − yt

f (|t − s|)
)

ds

+ 1

ν(A)

∫
Rd\B

L

(
inf
t∈T

x − yt

f (|t − s|)
)

exp

(
−β inf

t∈T

x − yt

f (|t − s|)
)

ds. (3.4)

First, we show that the second term in (3.4) is o(L(x) exp(−βx)). Let y∗ = sups∈T ys . Utilising
the fact that L(x) exp(−βx) is decreasing the second term is, for x > y∗,

≤ 1

ν(A)

∫
Rd\B

L

(
x − y∗

supt∈T f (|t − s|)
)

exp

(
−β

x − y∗

supt∈T f (|t − s|)
)

ds. (3.5)

Now we use the fact that (2.5) implies that L(log(x)) is slowly varying. Then from the
representation theorem for slowly varying functions, we obtain

L(x) = a(x) exp

(
−

∫ x

0
ε(y) dy

)
,

where a(x) → a > 0 and ε(x) → 0. It follows that for all γ > 0 there exists x0 > 0 and
C > 0 such that

L(αx)

L(x)
≤ Ce(α−1)γ x for all x ≥ x0, α ≥ 1. (3.6)
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Using (2.5), (3.6), and the facts that supt∈T f (|t − s|) < 1 for all s ∈ Rd \ B and

L(x) exp(−γ x) → 0 for all γ > 0,

it is seen that the integrand in (3.5) is o(L(x) exp(−βx)). If we denote the integrand of (3.5)
by h(s; x), it follows by the dominated convergence theorem that (3.5) is o(L(x) exp(−βx)) if
we can find an integrable function g such that

h(s; x)

L(x) exp(−βx)
≤ g(s), s ∈ Rd .

Let 0 < γ < β and f0(s) = supt∈T f (|t − s|). Then, using (3.6) and the boundedness of
L(x − y∗)/L(x), we can find a constant C̃ and x0 > y∗ such that, for x ≥ x0,

h(s; x)

L(x) exp(−βx)
≤ C̃ exp(βy∗) exp

(
−(β − γ )

(
1

f0(s)
− 1

)
(x0 − y∗)

)
. (3.7)

Now, choose r > 0 such that B ⊆ Cr(0), where Cr(0) is the ball with radius r and centre
0 ∈ Rd . Then, using (2.9), we obtain, for s /∈ Cr(0),

f0(s) ≤ sup
t∈Cr(0)

f (|t − s|) ≤ sup
t∈Cr(0)

1

(|t − s| + 1)d
= 1

(|s| − r + 1)d
.

It follows that (3.7) is integrable.
The theorem now follows from applying dominated convergence to the first term of (3.4).

Since, for s ∈ B,

inf
t∈T

x − yt

f (|t − s|) − (x − ys) → 0 as x → ∞,

we have

L

(
inf
t∈T

x − yt

f (|t − s|)
)

exp

(
−β inf

t∈T

x − yt

f (|t − s|)
)

∼ L(x − ys) exp(−β(x − ys)),

so
L(inf t∈T ((x − yt )/f (|t − s|))) exp(−β inf t∈T ((x − yt )/f (|t − s|)))

L(x) exp(−βx)
→ eβys .

Using again the fact that L(x) exp(−βx) is decreasing, we have, for large x,
∣∣∣∣L(inf t∈T ((x − yt )/f (|t − s|))) exp(−β inf t∈T ((x − yt )/(f (|t − s|))))

L(x) exp(−βx)
− eβys

∣∣∣∣
≤ L(x − y∗) exp(−β(x − y∗))

L(x) exp(−βx)
+ eβys

≤ (C + 1)eβy∗
,

where C is chosen such that L(x − y∗)/L(x) ≤ C. The result is integrable over B. �

Below, we extend the result of Theorem 3.1 to the P(U1 +· · ·+Un ∈ ((x − yt )t∈T )) case,
where Ui , i = 1, . . . , n, are independent with common distribution ν1. For this purpose, we
need the corollary below.
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Corollary 3.1. Let (Ut )t∈T be distributed according to ν1. Then, the distribution of supt∈T Ut

is convolution equivalent. In particular, we have
∫

eβ supt∈T zt ν1(dz) < ∞.

Proof. From Theorem 3.1 and [21, Lemma 2.4(i)], the distribution of supt∈T Ut has a
convolution equivalent right tail and then the result follows from [21, Corollary 2.1(ii)]. �

If (Ut )t∈T and (Vt )t∈T are independent random fields with distributions ν and μ on

(RT , B(RT )),

then we will use the notation ν ∗μ for the distribution of (Ut +Vt )t∈T . Similarly, we write ν∗n

for the n-fold convolution of ν. We have the following theorem.

Theorem 3.2. For all n ∈ N and (yt )t∈B bounded and continuous, it holds that

ν∗n
1 ((x − yt )t∈T )

ν1((x))
→ n

md(B)

(∫
B

eβys

∫
eβzs ν

∗(n−1)
1 (dz) ds

)
as x → ∞.

Proof. As in the proof of Theorem 3.1, we can assume that (yt )t∈B is nonnegative. The
result is shown by induction over n. For n = 1, the result is shown in Theorem 3.1. Assume
now that the theorem is correct for some n ∈ N. Let (Ut )t∈T and (Vt )t∈T be independent and
with distribution ν1 and ν∗n

1 , respectively. Then, we have

(ν∗n
1 ∗ ν1)(((x − yt )t∈T ))

= P(there exists t : Ut + Vt > x − yt )

= P

(
there exists t : Ut >

x − yt

2
, there exists t : Vt >

x − yt

2
,

there exists t : Ut + Vt > x − yt

)

+ P

(
for all t : Ut <

x − yt

2
, there exists t : Ut + Vt > x − yt

)

+ P

(
for all t : Vt <

x − yt

2
, there exists t : Ut + Vt > x − yt

)
. (3.8)

The first term is bounded from above by

P

(
there exists t : Ut >

x − yt

2
, there exists t : Vt >

x − yt

2

)

≤ ν1

(


(
x − y∗

2

))
ν∗n

1

(


(
x − y∗

2

))
,

where y∗ = supt∈T yt . Since both factors are equivalent to ρ1((x/2, ∞)) it follows from the
proof of [11, Lemma 2] that the product is o((ρ1 ∗ ρ1)((x, ∞))). In particular, the product
above is o(ρ1((x, ∞))) due to the convolution equivalence.

For the evaluation of the remaining terms in (3.8), we can assume that all the fields z =
(zt )t∈T have continuous extensions to B, since the distribution ν1 is concentrated on a set of
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fields with this property. The two remaining terms in (3.8) divided by ν1((x)) can be written
as ∫

Cx,y

ν∗n
1 (((x − yt − zt )t∈T ))

ν1((x))
ν1(dz)

+
∫

C̃x,y

ν1(((x − yt − ∑n
k=1 zk

t )t∈T ))

ν1((x))
ν∗⊗n

1 (d(z1, . . . , zn)), (3.9)

where ν∗⊗n
1 is the n-fold product measure of ν1, Cx,y = {z : zt < (x − yt )/2 for all t}, and

C̃x,y = {(z1, . . . , zn) : ∑n
k=1 zt < (x − yt )/2 for all t}. Using the induction assumption and

Theorem 3.1, the two integrands of (3.9) converge to, as x → ∞,

f1(z) = n

md(B)

∫
B

eβ(ys+zs )

∫
eβus ν

∗(n−1)
1 (du) ds

and

f2(z
1, . . . , zn) = 1

md(B)

∫
B

eβ(ys+∑n
k=1 zk

s ) ds,

respectively. We want to show that (3.9) converges to∫
f1(z)ν1(dz) +

∫
f2(z

1, . . . , zn)ν∗⊗n
1 (d(z1, . . . , zn))

= n + 1

md(B)

(∫
B

eβ(ys+zs )

∫
eβus ν∗n

1 (du) ds

)
.

Using Fatou’s lemma, it is enough to find integrable functions g1(z; x) and g2(z
1, . . . , zn; x)

that are upper bounds of the two integrands of (3.9) such that g1(z) = limx→∞ g1(z; x) and
g2(z

1, . . . , zn) = limx→∞ g2(z
1, . . . , zn; x) exist with∫

g1(z; x)ν1(dz) +
∫

g2(z
1, . . . , zn; x)ν∗⊗n

1 (d(z1, . . . , zn)) (3.10)

converging to the similar integrals with g1(z) and g2(z
1, . . . , zn). Let ν̃∗n

1 be the n-fold con-
volution of the distribution ν̃1 of supt∈T Ut . Then as functions g1(z; x) and g2(z

1, . . . , zn; x),
we can use

g1(z; x) = 1Cx (z)
ν̃∗n

1 ((x − supt∈T yt − supt∈T zt , ∞))

ν1((x))
,

where Cx = {z : supt∈T zt < x/2}, and

g2(z
1, . . . , zn; x) = 1

C̃x
(z1, . . . , zn)

ν̃1((x − supt∈T yt − ∑n
k=1 supt∈T zk

t , ∞))

ν1((x))
,

where C̃x = {(z1, . . . , zn) : ∑n
k=1 supt∈T zk

t < x/2}. Noting that ν1((x)) = ν̃1((x, ∞)) and
using that ν̃1 is convolution equivalent, from [12, Corollary 2.11], we obtain

g1(z; x) → g1(z) = neβ(supt∈T yt+supt∈T zt )(E(eβ supt∈T Ut ))n−1.

According to Theorem 3.1, we have

g2(z
1, . . . , zn; x) → g2(z

1, . . . , zn) = exp

(
β

(
sup
t∈T

yt +
n∑

k=1

sup
t∈T

zk
t

))
.
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We observe that ∫
g1(z)ν1(dz) +

∫
g2(z

1, . . . , zn)ν∗⊗n
1 (d(z1, . . . , zn))

= (n + 1) exp
(
β sup

t∈T

yt

)(
E

(
exp

(
β sup

t∈T

Ut

)))n

. (3.11)

Furthermore, both ν̃∗n
1 and ν̃1 have exponential tails, so according to [11, Lemma 2], (3.10) is

asymptotically equal to

exp
(
β sup

t∈T

yt

) ν̃
∗(n+1)
1 ((x, ∞))

ν1((x))

which, by another reference to [12, Corollary 2.11], is seen to converge to (3.11). �
We are now ready to prove the main result of this section concerning the extremal behaviour

of P(X ∈ ((x − yt )t∈T )) for large x. For a dominated convergence argument, we need the
lemma below. Recall that (U1

t )t∈T , (U2
t )t∈T , . . . are independent and identically distributed

fields with common distribution ν1.

Lemma 3.1. There exists a constant K such that for all n ∈ N and all x ≥ 0,

ν∗n
1 ((x)) ≤ Knν1((x)).

Proof. Since supt∈T U1
t has a convolution equivalent tail according to Corollary 3.1, it

follows from [12, Lemma 2.8] that there exists K such that

P

( n∑
k=1

sup
t∈T

Uk
t > x

)
≤ KnP

(
sup
t∈T

U1
t > x

)
.

The result is seen directly by noting that P(supt∈T U1
t > x) = ν1((x)) and

ν∗n
1 ((x)) ≤ P

( n∑
k=1

sup
t∈T

Uk
t > x

)
.

This completes the proof. �
We have defined the field X1 from the fields (U1

t )t∈T , (U2
t )t∈T , . . . and an independent

Poisson distributed variable N with parameter ν(A) by

X1
t =

N∑
n=1

Un
t .

Theorem 3.3. We have E exp(β supt∈T X1
t ) < ∞ and for a continuous field, (yt )t∈B ,

lim
x→∞

P(X1 ∈ ((x − yt )t∈T ))

ν((x))
=

∫
B

eβys E(eβX1
s ) ds

md(B)
.

Proof. The first result follows, since supt∈T X1
t ≤ ∑N

n=0 supt∈T Un
t and E exp(β supt∈T U1

t )

is finite. For the proof of the limit result, we use the fact that

P(X1 ∈ ((x − yt )t∈T )) = e−ν(A)
∞∑

n=1

ν(A)n

n! ν∗n
1 (((x − yt )t∈T )).
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Utilising Lemma 3.1, we obtain

∞∑
n=1

ν(A)n

n!
ν∗n

1 (((x − yt )t∈T ))

ν1((x − supt∈T yt ))
≤

∞∑
n=1

ν(A)n

n!
ν∗n

1 ((x − supt∈T yt ))

ν1((x − supt∈T yt ))

≤
∞∑

n=1

Knν(A)n

n!
ν1((x − supt∈T yt ))

ν1((x − supt∈T yt ))

=
∞∑

n=1

Knν(A)n

n!
< ∞,

and, furthermore, from Theorem 3.2, we obtain

lim
x→∞

ν∗n
1 (((x − yt )t∈T ))

ν1((x − supt yt ))
= n

eβ supt∈T yt md(B)

(∫
B

eβys E(eβUs )n−1 ds

)
.

Then, dominated convergence gives

lim
x→∞

P(X1 ∈ ((x − yt )t∈T ))

ν1((x − supt∈T yt ))

= e−ν(A) 1

eβ supt∈T yt md(B)

∞∑
n=1

ν(A)n

n! n

(∫
B

eβys E(eβUs )n−1 ds

)

= ν(A)
1

eβ supt∈T yt md(B)

∫
B

eβys exp[ν(A)(E(eβUs ) − 1)] ds

= ν(A)

∫
B

eβys E(eβX1
s ) ds

eβ supt∈T yt md(B)
,

which with a final reference to Theorem 3.1 and the definition of ν1 concludes the proof. �

4. The main theorem

Recall that we can write the field (Xt )t∈T as Xt = X1
t + X2

t , where the fields (X1
t )t∈T and

(X2
t )t∈T are independent, and (X1

t )t∈T is a compound Poisson sum of fields with distribution ν1.
Each of the fields in the decomposition has a continuous extension to B. In Theorem 3.3 of
Section 3 the extremal behaviour of X1 was determined. In this section we shall investigate the
extremal behaviour of X2 in order to obtain the main result on X, presented in Theorem 4.2
below.

Lemma 4.1. We have for all γ > 0 that E(exp(γ supt∈T X2
t )) < ∞ and

lim
x→∞ eγ xP(X2 ∈ (x)) = 0.

Proof. Recall the disjoint decomposition ν = νA + νAc , where νA is the restriction of ν to
the set A. For this proof we shall decompose νAc such that νAc = ν(−∞,−1] + ν[−1,1], where
ν(−∞,−1) is the restriction of νAc to the set {x ∈ RT : inf t∈T xt < −1}. We can write X2 as
the independent sum of two fields X2

t = Z1
t + Z2

t , where (Zt ) is an infinitely divisible field
with cumulant function identical to the cumulant function of (Xt ) in (2.12), but with ν replaced
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by ν[−1,1]. Since ν(−∞,−1) is finite due to Lemma A.1, we can write the field (Z1
t )t∈T as a

compound Poisson sum

Z1
t =

M∑
k=1

V k
t ,

where M is Poisson distributed with parameter ν(−∞,−1)(R
T ), and the fields (V k

t )t∈T are
independent and having identical distributions given by a normalized version of ν(−∞,−1).
Note that for ν almost all x ∈ RT it holds that either xt > 0 for all t ∈ T or xt < 0 for all t ∈ T .
Thus, for each k we have supt∈T V k

t ≤ 0, and we see in particular that E(exp(γ supt Z1
t )) is

finite for all γ > 0.
We note that both Z1 and Z2 have continuous extensions to B, since X2 has a continuous

extension, and Z1 is finite sum of fields with continuous extensions. Thus, P(supt∈T |Z2
t | <

∞) = 1. Since clearly ν[−1,1]({x ∈ RT : supt∈T |xt | > 1}) = 0, it follows from [10,
Lemma 2.1] that E(exp(γ supt∈T |Z2

t |)) is finite for all γ > 0. �

Theorem 4.1. It holds that

lim
x→∞

P(supt∈T Xt > x)

ν((x))
= E exp(βXt0) as x → ∞

with t0 ∈ B arbitrarily chosen.

Proof. Let π1 be the distribution of (X1
t )t∈T and π2 be the distribution of (X2

t )t∈T . First
note that

P(supt∈T Xt > x)

ν((x))
= P(supt∈T Xt > x)

π1((x))

π1((x))

ν((x))
,

where, according to Theorem 3.3,

π1((x))

ν((x))
→

∫
B

E(eβX1
s ) ds

md(B)
as x → ∞.

It therefore suffices to show that

P(supt∈T Xt > x)

π1((x))
→ md(B)E(eβXt0 )∫

B
E(eβX1

s ) ds
as x → ∞.

We have

P(supt∈T Xt > x)

π1((x))
=

∫
π1(((x − yt )t∈T ))

π1((x))
π2(dy) =

∫
f (y; x)π2(dy),

say. Letting

f (y) =
∫
B

eβys E(eβX1
s ) ds∫

B
E(eβX1

s ) ds
,

Theorem 3.3 implies that f (y; x) → f (y) as x → ∞. It remains to prove that

∫
f (y; x)π2(dy) →

∫
f (y)π2(dy) as x → ∞. (4.1)
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According to Fatou’s lemma, (4.1) follows if we can find integrable nonnegative functions
g(y; x) and g(y) such that

f (y; x) ≤ g(y; x), (4.2)

g(y; x) → g(y), (4.3)∫
g(y; x)π2(dy) →

∫
g(y)π2(dy). (4.4)

For this purpose, let

g(y; x) = π1((x − supt∈T yt ))

π1((x))
.

Then, (4.2) is satisfied. Furthermore, using Theorem 3.3, we find that (4.3) is fulfilled with
g(y) = eβ supt∈T yt . To prove (4.4), note that

∫
g(y; x)π2(dy) = P(supt∈T X1

t + supt∈T X2
t > x)

π1((x))
.

Note that supt∈T X1
t has a convolution equivalent tail according to Theorem 3.3 and [21,

Lemma 2.4(i)]. Combining this with Lemma 4.1, [21, Lemma 2.1], and [21, Lemma 2.4(ii)]
we obtain

lim
x→∞

P(supt∈T X1
t + supt∈T X2

t > x)

π1((x))
= E

(
exp

(
β sup

t∈T

X2
t

))

=
∫

lim
x→∞

π1((x − supt∈T yt ))

π1((x))
π2(dy).

It follows that (4.4) is fulfilled. �

The theorem below is the main result of our paper. In the formulation of the theorem, we
explicitly state the assumptions under which the limit holds.

Theorem 4.2. Under the assumptions (2.1)–(2.6) on M and (2.8)–(2.10) on f ,

lim
x→∞

P(supt∈B Xt > x)

L(x) exp(−βx)
= E exp(βXt0)md(B) as x → ∞

with t0 ∈ B arbitrarily chosen.

Proof. This follows from Theorem 4.1 and Theorem 3.1. Note that due to the continuity of
X supt∈T can be replaced by supt∈B . �

Example 4.1. We consider a model with a NIG basis with parameters α = 0.8, β = 0.6, μ =
0.1, δ = 0.1, and an exponential kernel function with parameter σ = 0.1; see Examples 2.2
and 2.3. Furthermore, we let B = [0, 20]2. The level of these parameters is—after a
reparameterisation—similar to the level of the parameters estimated in [18]. In Figure 1,
simulations of the probabilities P(supt∈B Xt > x) based on 2500 replications of the field are
plotted together with the function

E exp(βXt0)md(B)x−3/2 exp(−(α − β)x).
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Figure 1: Simulated values of P(supt∈B Xt > x) are plotted as a function of x (dashed) together with
the asymptotic theoretical curve (solid) in the case of a NIG basis and an exponential kernel function.

5. Excursion sets

In this paper we have been focusing on the asymptotic probability that the supremum of the
random field (Xt )t∈B exceeds a level x as x → ∞. Under the assumptions of our paper, it is
also possible to obtain asymptotic results for excursion sets

Ax = {t ∈ B : Xt ≥ x}, x ∈ R.

One example is the asymptotic behaviour of the probability that an excursion set contains a ball
of a given size, i.e. the probability of the event{

there exists t0 ∈ B : inf
s∈Cr(t0)

Xs ≥ x
}
,

where Cr(t0) is the ball in Rd with radius r and centre t0. Also, this probability is asymptotically
described by the right tail of the Lévy measure. The proof is based on the same type of reasoning
as in Sections 3 and 4 and is part of a forthcoming paper [25].

Appendix A. Continuous versions of the relevant random fields

In this appendix we make the assumptions (2.1)–(2.6) on M and (2.8)–(2.10) on f .

Theorem A.1. There exists a continuous version of (Xt )t∈B .

Proof. We can write X as the independent sum X = Y 1 + Y 2, where Y 2 is the Gaussian
part of X, such that

Y 2
t =

∫
Rd

f (|t − s|)M2(ds),

where M2 is a Gaussian Lévy measure satisfying C(λ � M2(A)) = iλ2θmd(A). We will find
continuous versions of Y 1 and Y 2 separately.
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For Y 1 we shall refer to [19, Theorem 2.1] (see also [19, Theorem 3.1] that corresponds
to the case where B is one-dimensional). Note that Theorem 2.1 requires a separable field,
but a separable version can be chosen for all random fields; see, e.g. [23]. Let B̃ ⊇ B be a
box in Rd containing B. With a change of measure (see [22] for the existence of a Lévy–Ito
decomposition of M), we can write Yt = Y 1

t − EY 1
t in the form

Yt =
∫

Rd×R

xf (|t − s|)[N(ds, dx) − F(ds, dx)],

where N is a Poisson random measure on Rd × R with intensity measure F . The integral is
well defined since (as is easily verified)∫

Rd×R

((xf (|t − s|))2 ∧ |x|f (|t − s|))F (ds, dx) < ∞;

see, e.g. [19, Section 2] and the references therein. Let D be the diameter of B̃. Since B̃ is a
box in Rd it follows that there exists a > 0 such that amd(Cr(t) ∩ B̃) ≥ (r/D)d for all t ∈ B̃

and r ∈ (0, D). Using the notation from [19], we have

Iq(amd, | · |, δ) = sup
t∈B̃

∫ D

0

(
log

1

amd(Cr(t) ∩ B̃)

)1/q

dr ≤
∫ D

0
d(log D − log r)1/q dr

which is finite for all q ≥ 1, δ ∈ (0, D], and in particular for q = 2 and δ = D. Furthermore,
we see that limδ↓0 Iq(amd, | · |, δ) = 0. From (2.10) and the mean value theorem, we find
constants C1, C2 > 0 such that

sup
0<h≤D

|f (x + h) − f (x)|
h

≤ C1

(x + C2)d
for all x > 0.

Thus, with g(t, (s, x)) = xf (|t − s|) (recalling (2.9)), we can find

‖g‖(s, x) = |x|
(

D−1f (|s|) + sup
t,u∈B̃,t �=u

|f (|t − s|) − f (|u − s|)|
|t − u|

)
≤ |x| K3

(|s| + K4)d

for some constants K3, K4 ≥ 1 such that, for all c ∈ (0, 1],

c2F({(s, x) : ‖g‖ ∧ 1 > c}) ≤ c2F

({
(s, x) : |x| K3

(|s| + K4)d
∧ 1 > c

})

≤ c2F

({
(s, x) : |x|K3

c
> |s|d , |x| >

c

K3

})

= c2
∫

[−c/K3,c/K3]c
md(C(K3|x|/c)1/d (0))ρ(dx)

∝
∫

[−c/K3,c/K3]c
|x|

(
c

K3

)
ρ(dx)

≤
∫ ∞

0
x2ρ(dx)

< ∞.

Furthermore, f is bounded and continuous so it follows from [19, Theorem 2.1] that (Yt )t∈B̃

has a version with continuous sample paths. In particular, (Y 1
t )t∈B has a continuous version.
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The field (Y 2
t )t∈B has covariance function cov(Y 2

t1
, Y 2

t2
) = R(|t2 − t1|), where for some

constant V ,

R(t) = V

∫
Rd

f (|s|)f (|t + s|) ds;
see, e.g. [18, Section 2]. The sum s + t is interpreted as adding a vector of length t and fixed
direction to s. We note that R is continuous and, furthermore,

R(0) − R(t) ≤ V

∫
Rd

f (|s|)|f (|t + s|) − f (|s|)| ds ≤ V C′|t |
∫

Rd

f (|s|) ds,

where we have used the mean value theorem to obtain

|f (|t + s|) − f (|s|)| = |f ′(ξ)|||t + s| − |s|| ≤ C′|t |
with ξ ∈ (|s| ∧ |t + s|, |s| ∨ |t + s|) and C′ an upper bound for f ′ chosen according to (2.10).
In particular, for given ε > 0 there exists C > 0 such that R(0)−R(t) ≤ C/| log(t)|1+ε for all
t > 0 smaller than the diameter of B. The existence of a continuous version of (Y 2

t )t∈B now
follows from a corollary to [1, Theorem 3.4.1]. �

Define for all ε > 0 the subsets of RT ,

Aε = {x ∈ RT : sup xt > ε} and Bε = {x ∈ RT : inf xt < −ε}
Lemma A.1. For all ε > 0, we have ν(Aε) < ∞ and ν(Bε) < ∞.

Proof. For Aε, we obtain

ν(Aε) = F({(s, z) ∈ Rd × R : sup
t∈T

zf (|t − s| > ε})

=
∫

Rd

ρ

((
ε

supt∈T f (|t − s|) , ∞
))

ds

= 1

ε

∫
Rd

sup
t∈T

f (|t − s|)
∫

x1{ε/ supt∈T f (|t−s|),∞}ρ(dx) ds

≤ 1

ε

(∫
Rd

sup
t∈T

f (|t − s|) ds

)(∫ ∞

ε

xρ(dx)

)

which is finite due to (2.6) and (2.11). The proof for ν(Bε) < ∞ is identical. �
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