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ABSTRACT

The quantification of operational risk has to deal with various concerns regard-
ing data, much more than other types of risk which banks and insurers are
obliged to manage. One of the main questions that worries both researchers and
practitioners is the bias in the data on the operational losses amounts recorded.
We support the assertions made by several authors and defend that this concern
is serious when modeling operational losses data and, typically, is presented in
all the databases. We show that it’s possible, based on mild assumptions on the
internal procedures put in place to manage operational losses, to make para-
metric inference using loss data statistics, that is, to estimate the parameters for
the losses amounts, taking in consideration the bias that, not being considered,
generates a two fold error in the estimators for the mean loss amount and the
total loss amount, the former being overvalued and the last undervalued. In this
paper, we do not consider the existence of a threshold for which, all losses above,
are reported and available for analysis and estimation procedures. In this sense,
we follow a different approach to the parametric inference. Here, we consider
that the probability that a loss is reported and ends up recorded for analysis,
increases with the size of the loss, what causes the bias in the database but, at
the same time, we do not consider the existence of a threshold, above which,
all losses are recorded. Hence, no loss has probability one of being recorded, in
what we defend is a realist framework. We deduce the general formulae, present
simulations for common theoretical distributions used tomodel (operational re-
ported) losses amounts, estimate the impact for not considering the bias factor
when estimating the value at risk and estimate the true total operational losses
the bank incurred.
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1. INTRODUCTION

This paper presents an approach to estimate the distribution of the true losses
based on the reported losses that can be used to correct the bias in the V@R
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and in the total operational losses. In Section 2, we define our sample (reported
losses) and sampling frame (occurred losses). In Section 3, we recall the defi-
nition of weighted distributions and prepare it to apply it to operational risk
in Section 4. In this Section, we deduce formulae for Exponential and Pareto
distributions. In Section 5, we apply our formulae to four distributions (Ex-
ponential, Pareto, Lognormal and Weibull) with detailed explanation for the
Exponential distribution, we check the accuracy of our methodology and ob-
tain V@R, TV@R and the expected value of the true operational losses that the
bank incurred. Section 6 presents some remarks and conclusions.

The quantification of operational risk has to deal with various concerns re-
garding data, much more than other types of risk which banks and insurers are
obliged tomanage. Several studies, at first more empirical and at present already
more theoretical and mathematical supported, document several of those con-
cerns. First of all, the lack of internal or external data on operational losses.
Although this problem has, in the last years, been dealt with by researchers
and practitioners, by using data collected by commercial vendors, these com-
mercial databases still have various handicaps that, more or less, summarize
the problems regarding operational loss data and, at the same time, drives the
motivation to our approach to the problem of making parametric inference,
using loss data statistics, in some cases aggregated data, e.g. totals or mean
values.

We can summarize the main problems for operational losses data by:

a. Some of the databases reported in several papers, contain data only for big
banks. Shih et al. (2000) and Chapelle et al. (2005) measured the depen-
dence between a bank size and operational losses in different studies.When
they regresses log-losses on a bank’s log-sizes Shih et al. (2000) estimated
a coefficient of 0.25 and Chapelle et al. (2005) estimated 0.15. We can say
that they are related but there is no fix coefficient, so part of the industry
(small banks) is not represented. Another question is raised by themethods
applied to compile the databases that, usually, have to depend on public
disclosed losses. See, for instance de Fontnouvelle et al. (2003), where the
authors compare results for two commercial databases collected this way,
raising some interesting questions about the data or de Fontnouvelle et al.
(2005) where some concerns about a completely different collectionmethod
and database are reported.

b. Usually these vendors can collect only data for losses that exceed some
threshold, 1 million USD being common.

c. Deciding if a loss is an operational loss or not, is another problem posed to
data compilers and, once decided that the loss can be classified as such, they
have to define in which business line and type to classify the loss. The com-
mon classification being eight business lines, Corporate Finance; Trading
and Sales; Retail Banking; Payment and Settlement; Agency Services; Com-
mercial Banking; Asset Management; and Retail Brokerage and seven loss
types, Internal Fraud; External Fraud; Employment Practices and Work-
place Safety; Clients, Products and Business Practices; Damage to Physical
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Assets; BusinessDisruption and SystemFailure; andExecution, Delivery and
Process Management.
Hence, when considering the caveats above we can say that (a) and (b) poses
problems of bias. In the first case, we have a structural bias due to the large
size of companies that supply the data, leaving us with a potentially bi-
ased database of institutions. For several reasons, mainly because the data
is compiled from publicly available sources, only large institutions are con-
sidered, this should motivate not so large institutions to compile their own
data resulting from their specific experience. In the second case, we have to
deal with a confirmed biased sample of operational losses since, the vendors
or the data collectors, only report data above a predefined threshold. Again,
small companies will not be represented if only large losses are recorded. In
the last case (c), we can have misclassification of operational losses, where
some losses will not be reported as operational losses, or end up wrongly
labeled among the line of business or loss type.

Our motivation is to propose a method to deal with the bias posed not only
by the references (a)-(b) above, but also by our experience when dealing with
small size insurers and banks. Our experience tells us that it is unlikely that all
operational losses end up reported. Even when the institutions have in place
methods to detect and document operational losses, intending to be exhaustive
and error free, not every operational loss ends us reported. There are two main
reasons for that relative small losses, unless all the process is automated, will
tend not to be reported (see also, Moscadelli (2004)[page 17]). First, it usually
implies cumbersome work and the time used is perceived by professionals not
to provide a good cost/benefit relation. Secondly, more usually than not, it im-
plies to recognize an own or a colleagues’ error. So that, we are lead to consider
that there is a size bias, making more likely to report bigger losses than small
losses. However, mainly due to protect the company image and reputation, even
some of the largest losses can end up not being reported. Perry and Fontnou-
velle (2005) and Cummins et al. (2004) study the reputational consequences of
operational loss announcements on the value of a bank.

This final consideration being our leitmotif.We are lead to believe that, when
dealing with loss data reported due to operational risk, we are always in the
presence of a biased sample, no matter if the data comes from a commercial
vendor or it is provided by internal procedures to manage operational losses.
Even in the situation where there is no threshold for the losses being recorded,
that is, even when the institutions try to record all operational losses, we think
that the probability of a loss being reported, is still positively correlated with
value of the loss, but, at the same time, not all the largest losses are reported.
Meaning that, even for high thresholds, there is a chance that a loss will not
be reported. The framework for this paper is that, the probability that a loss is
reported and ends up recorded for analysis, increases with the size of the loss,
what causes the bias in the database but, at the same time, we do not consider
that a threshold exists, above which all losses are recorded and available for
analysis, hence, no loss has probability one of being recorded.
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In our application, we make use of some data, collected by a small Por-
tuguese retail bank that, due to disclosure concerns we will not identify. For
instance, in this case, the risk department estimated a probability of 1/250, for
an operation to generate a operational loss and of 85%, for the loss ending up
reported and documented. The remain data for our application, namely, the
sample descriptive statistics comes from Table 6.3 of Chernobai et al. (2007)
based on the original data set available from Cruz (2002). We will use V@R
as the standard risk measure used to evaluate exposure to risk since, although
Artzner et al. (1999) [page 216] shows that is not a coherent measure of risk, fail-
ing to verify the subadditivity property, not only it’s a very common measure,
almost standard due to Solvency II and Basel III directives, but also because in
Danielsson et al. (2005) the authors show that for most practical applications
V@R is subadditive.

Our approach is different from the usual nonstandard approaches: the class
of heavy-tailed, alpha-stable distributions (extensive analysis of this distribu-
tions and their properties can be found for instance in Rachev and Mittnik
(2000)), the extreme value theory as applied byMoscadelli (2004), by Embrechts
et al. (2007) or by Dutta and Perry (2007) (also with a comprehensive evalua-
tion of commonly used methods) or truncated distributions that also try to lead
with the missing data in the databases and the reporting bias problem (see for
instance Chernobai et al. (2007)).

2. SAMPLING FRAME AND SAMPLE

We consider that the original random process we want do model is represented
by the random variable (rv) X with a cumulative distribution function (cdf)
FX(·). In our case, the rv will be the individual operational loss amount.

We follow the usual model and consider that this random process originated
a random sample of the operational losses occurred over a period (usually a
year or several years), that is, SX = {Xi , i = 1, . . . N} with the Xi independent
and identically distributed (i.i.d.) with FX(·).

Now, consider that, due to several reasons, some presented in Section 1, it is
possible that not all the observations originated by X are to be registered and
considered in future analysis, that is, not all the observations presented in the
original sample SX, will be available to model operational losses and for statis-
tical inference, namely, parametric estimation. We call sample the observations
available for estimation and represent them by SY = {Yj , j = 1, . . .M}, with
M≤ N. We call sampling frame the unobservable SX, produced by the original
random process. Here, we make use of the usual denominations from sampling
theory, that we will be using in our results.

Let us now suppose that, each individual loss presented in SX has a proba-
bility, say pi , i = 1, . . . , n, of being recorded and, in that case, belonging to the
sample SY, the data that is available to us to study the phenomenon.
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If all the observations in SX have the same probability of being recorded,
the distribution of the Yj would not depart from the distribution of the origi-
nal random process. If not, the recorded observations will not have the original
distribution. In this case, the sample will have a different distribution from the
sampling frame.

We suppose that the researcher of operational losses ends up with a biased
sample of all the operational losses that should have been reported. The bias
is originated due to the positive correlation between the loss amount and the
probability of being reported.

Let us now consider that each element in the sampling frame SX, has proba-
bility of inclusion in the sample SY, depending on the quality of the mechanism
put in place to filter the sampling frame and on the size of the element, with
largest elements having bigger probabilities. If the mechanism is perfect, all the
elements in the sampling frame would be selected and end up in the sample, so
that we would have no loss of information and no biased sample.

At the same time, we need a sampling scheme that takes in consideration the
rarity of the largest elements, without giving probability one to all the elements
above some threshold. That is, we want to put the probability of sampling the
elements in SX in perspective not only to their absolute values. For instance, if
a loss of below 500.000$ is almost as common as a loss of below 1.000.000$,
we want to preserve this relative relation. On the contrary, if a loss of below
500.000$, is unlikely but below 1.000.000$, is very likely, we want to have amuch
higher probability to select 1.000.000$, than 500.000$.

That is, once the sampling frame is defined, we want the sampling scheme,
representing the mechanism put in place to record operational losses, to take in
consideration the random process origination the sampling frame and not only
if a loss amount is twice another loss amount.

Let us consider that, after realization, the probability for an operational loss
to be reported (or recorded, using the terminology of the probability theory)
is, somehow, dependent on the quality of the mechanism put in place to record
operational losses, and if the mechanism is not perfect, proportional to its like-
lihood.

The imperfections could arise for several reasons, for instance, due to the
relative small size of some losses, that the staff do not consider worthwhile to
report, due to managerial decisions, misclassification and, ultimately, because
perfect control systems are difficult to implement, if at all possible.

3. WEIGHTED DISTRIBUTIONS

It’s well known that, if the recording probabilities of the sampling units are not
equal, then the distribution of the Yi (sample) may differ from the distribution
of Xi (sampling frame).
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In ourmodel N (and of courseM) is a random variable, although, depending
on the sampling scheme used, the distribution of M conditional on N may be a
degenerated random variable.

We propose an approach considering a sampling scheme proportional to size
and depending on the likelihood, in this case, proportional to the size of the loss,
should be considered when dealing with loss data reported due to operational
risk. In this framework, somehow contrary to the approach thatmakes the trend
at the moment to deal with problems of modeling and making inference for
operational risk, the Extreme Value Theory and Peeks Over Thresholds, not all
the largest values have to be recorded and available to the researcher. In this case,
we are not sure that all the big losses are available for study or even took part in
the aggregated figures reported, e.g. total losses; mean loss, that the institution
produce for accounting support.

We consider that the observations appear in the frame in a given order
{X1, . . . , XN} and that the sample membership indicator, Ik, are independent
with k = 1, . . . , N. The sampling scheme implies naturally that the sampling is
made without replacement. The sample membership indicator are distributed
relating to size according to

P(Ik = 1 | Xk) = F ξ

X(xk), ξ ∈ [0, +∞[. (3.1)

So, Ik | Xk ∼ B(F ξ

X(x)) has a Bernoulli distribution with F ξ

X(x) the proba-
bility of success (in this case the probability to report the loss). We can say that
this is a particular case of a Poisson sampling design, with inclusion probabilities
proportional-to-size, about it see, for instance, Sarndal et al. (2003).

It’s possible to think of ξ as a censorship parameter (other possible analogies
can be a disclosure or a quality parameter). If ξ = 0 (implying no censorship,
total disclosure of all losses or a system so effective that all losses end up re-
ported) we would have P(Ik = 1 | Xk) = 1, so that SY = SX, and we would be
in the usual situation of a random sample from FX(·).

However, when ξ > 0, we are in the presence of some degree of censorship in
our sample, making more likely that big losses are included in the sample than
small losses.

The following proposition helps us in establishing the framework for our
model.

Proposition 3.1. Let X1, . . . , XN be a random sample of individual losses, with
Xi independent of N a random variable with support on N. If we consider SX =
{X1, . . . , XN} as our sampling frame (or simply frame) and apply on SX a sam-
pling scheme proportional-to-size with no replacement, such that, P(Ii = 1 | Xi =
x) = F ξ

X(x), with i = 1, . . . N, where FX(·) is the cdf of Xi and ξ ∈ [0, +∞[ is the
censorship parameter, then:
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a. Not conditional on knowledge of the frame, the inclusion variables are i.i.d.

Bernoulli with π = 1
ξ+1 the probability of success; B

(
1

ξ+1

)
= B (π), that is,

P(Ii = 1) = 1
ξ + 1

= π , i = 1, . . . N.

b. Since �SY =
∑
X

Ik =
N∑
i=1

IXi , we have that, E(�SY | N) = Nπ = N
ξ+1 .

c. P(SY = s) =
(
1
ξ

)�s ∑
j≥�s

(
ξ

ξ + 1

) j

P(N = j), where s is the observed

sample.
d. P(Xj = x | I j = 1) = F ξ

X(x) fX(x)(ξ + 1), j=1,. . .N, ξ ∈ [0, +∞[.

Proof. a. The independence follows from the sampling scheme. The
Bernoulli distribution from:

P(Ik = 1) =
∫

R

P(Ik = 1 | X = x)P(X = x)dx

=
∫

R

F ξ

X(x) fX(x)dx = E

(
F ξ

X(X)
)

= 1
ξ + 1

[
F ξ+1
X (x)

]+∞

−∞
= 1

ξ + 1
. (3.2)

b. It follows directly from (a).
c. Conditional on the knowledge of the frame X, we have for the probability
of observing the specific samples s, P(SY = s | X) =

∏
k∈s

πk
∏

j∈SX−s
(1 − π j ),

so that, due to the independence of the inclusion variables, we have:

P(SY = s) =
∫

RN

∏
k∈s

πk fX(xk)
∏

j∈SX−s
(1 − π j ) fX(xj )d

N∏
i=1

xi

=
∏
k∈s

∫
R

πk fX(xk)dxk
∏

j∈SX−s

∫
R

(1 − π j ) fX(xj )dxj

=
∏
k∈s

∫
R

F ξ

X(xk) fX(xk)dxk
∏

j∈SX−s

∫
R

(
1 − F ξ

X(xj )
)
fX(xj )dxj

=
∏
k∈s

[
1

ξ + 1
F ξ+1
X (x)

]+∞

−∞

∏
j∈SX−s

(
1 −

[
1

ξ + 1
F ξ+1
X (x)

]+∞

−∞

)
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=
(

1
ξ + 1

)�s (
1 − 1

ξ + 1

)N−�s

I{�s,�s+1,...}(N)

≡
(

1
ξ + 1

)�s (
1 − 1

ξ + 1

)N−�s

I≥�s(N).

Now integrating in order to N, we have:

P(SY = s) =
∑
j≥�s

(
1

1 + ξ

)�s (
1 − 1

1 + ξ

) j−�s

P(N = j).

d.

P(Xj = x | I j = 1) = P(I j = 1 | X = x)
P(X = x)
P(I j = 1)

= F ξ

X(x)
fX(x)

1
ξ+1

= F ξ

X(x) fX(x)(ξ + 1). (3.3)

From this result it follows immediately that:

P(Xj ≤ x | I j = 1) = F ξ+1
X (x). (3.4)

Proposition 3.2. With the assumptions of Proposition 3.1, the distribution of the
observations in the sample, that is, the distribution of the losses recorded, hence,
the distribution of the observations available to the researcher to make inference,
is a weighted distribution on fX(·) with weight function w(x) = F ξ

X(x).

Beforewe start the proof, we introduce the definition ofweighted distribution.
Following Rao (1965) we have,

Definition 3.3. Assume that interest is in a random variable X, with probability
density function (pd f ) (or probability mass function (pmf )) f (x), with param-
eters θ ∈ � a given parameter space. Also, assume that the values x and y are
observed and recorded in the ratio of w(x)/w(y), where w(x) is a non-negative
weight function, such that E (w(X)) exists. If the relative probability that x will
be observed and recorded is given by w(x) ≥ 0, then the pd f of the observed data
is

fw(x) = w(x)
ω

f (x),where w(x) ≥ 0 and ω =
∫

R

w(x) fX(x)dx = E (w(X)) .

The pd f fw(x) is denominated the weighted pd f corresponding to f (x).
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We can read the early work on weighted distributions in Fisher (1934). The
problem of parameter estimation using non equally probable sampling scheme
was first addressed by Rao (1965), Patil and Rao (1977) and Patil and Rao
(1978). In these papers, the authors identified various sampling situations which
can be modeled using weighted distributions and calculated the Fisher infor-
mation for certain exponential families, focusing primarily on w(x) = x, for
nonnegative random variables, denominating this weighted distributions by the
size-based form of the original distribution.

Proof. (Proposition 3.2): By considering (d) in Proposition 3.1 and equation
(3.2), we’ve:

P(Xj = x | I j = 1) = F ξ

X(x) fX(x)(ξ + 1) = F ξ

X(x)
1

(ξ+1)

fX(x)

= F ξ

X(x)

E

(
F ξ

X(X)
) fX(x),

and obviously F ξ

X(·) is non-negative, so the conclusion follows:

The most common situation studied in the specialized literature deals with

the size-biased weighted distribution, so that fw(x) = x
E (w(X))

f (x) =
x

E(X)
f (x), where X is a non-negative random variable with first order moment.

In this paper, we propose that this weight function, originating the denomi-
nated sized-biased distribution, gives tomuchweight to the larger losses or, if you
prefer, is to light on the smaller losses, not allowing the recording of to much of
smaller losses and, at the same time, does not take in consideration the original
process X for the operational losses.

The introduction of the ξ(≥ 0) parameter, allows us to define in a natural
way the quality of the in place mechanism to record operational losses, since
we have that E (IX = 1) = 1/(ξ + 1), being possible for the people involved in
the process of controlling and managing the operational risk, to have a good
“informed guess” for the value of ξ , for instance if ξ = 1/2 then 2/3 of all
the operational losses end up recorded, or even, through some specific methods
to estimate the parameter ξ . For instance, by inserting in the system erroneous
impacts, that should be detected and document by the control system in place,
with the objective of estimating the success rate 1/(ξ + 1). Naturally, the usual
statistical inference methods can and should be applied here.

From (3.3), we can write f (x) as a function of fw(x) and F(x):

f (x) = 1
ξ + 1

F(x)−ξ fw(x),
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Observing that Fw(x) = ∫ x
∞ F ξ (y)(ξ + 1) f (y)dy = F ξ+1(x) we can also

write f (x) as a function of fw(x) and Fw(x) :

f (x) = 1
ξ + 1

Fw(x)−
ξ

ξ+1 fw(x). (3.5)

4. WEIGHTED DISTRIBUTIONS APPLIED TO MODEL OPERATIONAL RISK

In this section, we will consider two distribution models for the individual op-
eration loss amounts, the Exponential and Pareto (type I). We will deduce the
impact in the parameters estimates, when using aggregate data, and not con-
sidering the bias presented in the sample, produced by a mechanism to record
operational losses that is not perfect, that is by not considering a ξ > 0, in
Proposition 3.1.

We will consider that the operational losses, Xi in SX = {Xi , i = 1, . . . N},
the sampling frame, have pd f f (x) and the recorded operational losses, Yj in
SY = {Yj , j = 1, . . .M}, the sample available to make inference, have pd f
fw(x). We will analyze the impact for not considering the bias presented in the
sample SY and estimating the parameters as if the distribution is the original
distribution f (x).

For this distributions, we will consider that we know fw(x) and we want to
estimate E(X) and V(X), the more frequent scenario.

4.1. The exponential model

Consider Yj ∼ fw(x) as the Exponential density with parameters λ and β

by (3.5) we have f (x) = 1
ξ+1 (1 − e− x−λ

β )
− ξ

ξ+1 1
β
e− x−λ

β I]λ,+∞[(x), considering

x = β ln(y) + λ, noting that ∂
∂x B(x, y) = ∫ 1

0 t
x−1 ln(t)(1 − t)y−1dt, where

B (x, y) = ∫ 1
0 t

x−1(1 − t)y−1dt is the beta function. Note that ∂
∂x B(x, y) =

B(x, y)(ψ(x)−ψ(x+ y)), beingψ(z) = ∂
∂x ln�(x) the digamma function. Con-

sider also that ψ(n) = Hn−1 − γ and ψ(1) = −γ where Hn is the nth harmonic
number or in the generic form, Hx = ∫ 1

0
tx−1
t−1 dt, with γ the Euler–Mascheroni

constant we have:

E (X) = λ + βH 1
ξ+1

, (4.1)

V (X) = β2
(

π2

6
− ψ ′

(
ξ + 2
ξ + 1

))
. (4.2)
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4.2. The Pareto (Type I) model

Consider now that fw(x) is Pareto with parameters α and β by (3.5) we have

f (x) = 1
ξ + 1

(
1 −

(
β

x

)α) −ξ

ξ+1 α

x

(
β

x

)α

I]β,∞[(x).

Considering y =
(

β

α

)α

and observing that B
(
1 − 1

α
, 1

ξ+1

)
=

∫ 1

0
y− 1

α (1 −
y)−ξ/(ξ+1)dy the moments for X are:

E (X) = β

ξ + 1
B

(
1 − 1

α
,

1
ξ + 1

)
,

V (X) = β2

ξ + 1
B

(
1 − 2

α
,

1
ξ + 1

)
− β2

(ξ + 1)2

(
B

(
1 − 1

α
,

1
ξ + 1

))2

.

5. APPLICATION

We consider that the reported losses SY, have a known distribution (Exponen-
tial, Pareto, Lognormal orWeibull). To allow the comparison of results we used
the SampleDescription of Table 6.3 of Chernobai et al. (2007) based on the orig-
inal data set available fromCruz (2002) that give us amean value of 439.725, 99$
and standard deviation of 538.403, 93$ (in dollars). We also consider that the
risk department estimated a probability of 1/250 for an operation to generate a
operational loss and of 85% for the loss ending up reported and documented,
(ξ = (1–85%)/85%). So that, for every 2.941.176 transactions made, we expect
that 11.765 operations originate a loss and 10.000 of this losses are reported.
We used the method of moments to estimate the parameters for each of the
distributions considered.

For a given density function fw(x) (Exponential, Pareto, Lognormal or
Weibull) for the reported losses SY, in our simulation we generated 1.000 sam-
ples of occurred losses SX, each with 11.765 losses with density function f (x)
obtained from formula (3.5). For each sample, we selected the reported losses
SY, according to (3.1), so that, the observations in our sample, that is, the data
available to make inference and take decisions have distribution Fw(x). The ob-
served average sample size of the 1.000 reported losses is 10.020,53$.

We used the simulation to compare the results obtained by the sampling pro-
cess, originating SY, and the ones really experienced, SX. We explain the proce-
dure for the Exponential distribution, the first case presented below and repeat
the process for the Pareto, Lognormal and Weibull distributions, just present-
ing the results. For Lognormal and Weibull distributions we do not derive the
formulas for E (X) and V (X), we just compute the numerical approximation
for the integrals to illustrate the results for this two distributions and allow the
reader to compare results with Chernobai et al. (2007).
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5.1. The exponential model

Following Section 4.1 consider that the reported losses, Y, has an Exponential
density function, fw(x), with λ = 0 and β = 439.725, 99. Usually the avail-
able data are the recorded losses. In this example, E(Y) = 439.725, 99, σ (Y) =
439.725, 99. From (4.1) and (4.2) E(X) = 395.056, 71 and σ(X) = 424.803, 42.
From our 1.000 simulated universes we have estimated Ê(X) = 394.967, 87 and
σ̂ (X) = 424.566, 34. Using (3.1) we collected 1.000 samples from the universes
with Ê(Y) = 439.309, 36 and σ̂ (Y) = 439.141, 89. The results from the sim-
ulation are very closed to the theoretical moments. We present results for the
Kolmogorov–Smirnov and the Chi-squared tests, to check the agreement of the
simulated data with the Exponential λ = 0 and β = 439.725, 99. At a sig-
nificance level of 5% we do not reject 955 (949 for Chi-squared) samples. We
also tested if the universe, X, is Exponential λ = 0 and β using the maximum
likelihood estimators, rejecting all the universes at the significance level of 5%.
Minimum, average and maximum p values for each test can be observed on
Table 5.2.

When considering a Value at Risk analysis, to answer the question “What is
the maximum amount that I can expect to lose with a certain probability over a
given horizon?” for a one year period with a confidence level of 0.1%, we obtain
for the 99.9% percentiles of the individual losses,

F−1
X (99, 9%) = 2.966.094, 54$ versus F−1

Y (99, 9%) = 3.037.519, 53$.

We calculated the empirical TV@R with the same confidence level for X, be-
ing TV@R(X) = 3.408.439, 46$ and for the reported data TV@R(Y) =
3.479.634, 14$.

Estimating the true total operational losses the bank incurred, we have

E

(
N∑
i=1

Xi

)
= (1 + ξ0) × 10.000 × 395.056, 71 = 4.647.726.036, 27$,

obtained with the data from the universe versus

E

(
M∑
i=1

Yi

)
= 10.000 × 439.725, 99 = 4.397.259.900, 00$,

obtained with the data reported. Böcker et al. (2005) developed an approxi-
mated closed-form to compute V@R for the aggregated loss, based on the dis-
tribution of a single loss and the expected value of the losses frequency. Since we
do not define a threshold for the reported losses we have very high frequencies.
Degen (2010) improves on Böcker et al. (2005) and shows that, for high frequen-
cies, the relative error associated to the single-loss approximation is very large,
even for very high α levels. For this reason, we only report the expected value of
the aggregate losses.
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All the results can be seen at Table 5.1. We also report the V@R and TV@R
for the 99% percentile.

5.2. The Pareto (Type I) model

For the Pareto model, we will consider the case where α = 2, 29114 and β =
247.801. Using Section 4.2 and the same methodology as the previous example,
the results can be seen at Table 5.1.

5.3. The Lognormal model

Considering that fw(x) = 1√
2πσx

exp(− (log(x)−μ)2

2σ 2 ), x > 0, σ > 0, μ ∈ R. In this
example, we obtained μ = 12.5359 and σ = 0.957058. The results can be seen
at Table 5.1.

5.4. The Weibull model

Considering that fw(x) = α
β
( x

β
)α−1 exp(−( x

β
)α), x ≥ 0, α > 0, β > 0. In this

example, we obtained α = 0.821926 and β = 395.464, 03. The results can also
be seen at Table 5.1.

5.5. Results

Table 5.1 shows that apart from σ̂ for the Pareto distribution, the empirical re-
sults are in great accordance with the theoretical ones. As expected, the capital
requirement using V@R is higher if we consider the reported losses than if we
consider the occurred losses, 2% for Exponential, 3% for Weibull, 5% for Log-
normal and 7% for Pareto. By the other side, as expected, we have the expected
total amount of losses higher if we consider the occurred losses, 5% for Weibull
case, 6% for Exponential and Lognormal and 12% for Pareto.

The Lognormal distribution has the interesting feature of the sampling
method preserving the distribution, that is, SY and the SX are both Lognormal,
what does not happen with the others tested distributions. We didn’t investigate
much on this particularity of the Lognormal, but we think it relates to the en-
tropy properties of this distribution. The average of the maximum likelihood
estimates for the occurred losses are μ̂ = 12.39161 and σ̂ = 1.005097.

In Table 5.2, we use a single column for the samples SY, because we’ve used
the same set of pseudo-random numbers to generate all the distributions, hence
all the non-parametric tests will produce the same test statistics, originating the
same results and decisions.
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TABLE 5.1

RESULTS FOR ALL THE EXAMPLES.

Exponential Pareto Lognormal Weibull
Occurred Reported

X Y X Y X Y X Y X Y

Theorical

E(X) E(Y) 395.056,71 439.725,99 417.366,59 439.725,19 396.844,27 439.714,09 391.177,00 439.725,99
σ(X) σ (Y) 424.803,42 439.725,99 499.950,66 538.399,43 510.258,76 538.389,17 514.422,01 538.403,93
V@R99%(X) V@R99%(Y) 1.953.938,46 2.025.013,02 1.723.425,99 1.849.400,38 2.430.724,95 2.577.549,87 2.427.557,18 2.535.410,19
V@R99,9%(X) V@R99,9%(Y) 2.966.094,54 3.037.519,53 4.706.580,84 5.052.366,95 5.111.227,25 5.354.412,53 4.033.829,50 4.152.317,56

E
(∑N

i=1 Xi
)

E
(∑M

i=1 Yi
)

4.647.726.036 4.397.259.900 4.910.195.194 4.397.251.910 4.668.756.082 4.397.140.937 4.602.082.353 4.397.259.900

Empirical

Ê(X) Ê(Y) 394.967,87 439.309,36 417.237,35 439.358,53 396.697,70 439.210,72 391.046,61 439.173,74
σ̂ (X) σ̂ (Y) 424.566,34 439.141,89 432.830,30 464.561,01 509.877,14 537.529,65 514.103,86 537.646,01
TV@R99%(X) TV@R99%(Y) 2.395.587,73 2.467.134,25 3.061.988,15 3.286.507,23 3.576.296,68 3.765.141,86 3.123.561,05 3.236.677,66
TV@R99,9%(X) TV@R99,9%(Y) 3.408.439,46 3.479.634,14 8.316.902,89 8.912.776,77 6.888.269,49 7.367.649,69 4.787.108,09 4.908.582,01
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TABLE 5.2

p VALUES FOR KOLMOGOROV–SMIRNOV AND CHI2 TESTS.

X

Exponential Pareto Lognormal Weibull Y

K-S p values

min 0 0 3,9212E-02 1,5616E-04 3,4932E-04
average 4,0669E-04 4,0265E-04 6,7963E-01 1,1667E-02 5,0641E-01
max 2,3191E-01 2,2921E-01 9,9999E-01 6,4403E-02 9,9952E-01
# not reject 0 0 999 5 955

Chi2 p values

min 0 0 2,5390E-04 4,7621E-11 6,0648E-05
average 4,0529E-23 1,1096E-24 4,8810E-01 7,4905E-03 5,0170E-01
max 2,8235E-21 8,0041E-22 9,9846E-01 2,4295E-01 9,9934E-01
# not reject 0 0 948 44 949

6. REMARKS AND CONCLUSIONS

As expected using the reported losses the capital requirement (using V@R) is
overestimated (from 2% to 7% in our examples) and the total amount of losses
is underestimated (from 5% to 12%). If the bank is in the presence of a heavy
tail distribution for the reported losses, the values are of considerable amount
to be ignored.

Even when the institutions have in place methods to detect and document
operational losses, intending to be exhaustive and error free, not every opera-
tional loss ends up reported. We are lead to believe that, when dealing with loss
data reported due to operational risk, we are always in the presence of a bi-
ased sample, no matter if the data used to model the individual losses and total
losses, comes from a commercial vendor or it is provided by internal procedures
to manage operational losses.

Using weighted distributions, we are able to consider that the probability of
a loss to be reported and ends up recorded for analysis, increases with the size
of the loss but, at the same time, we do not consider that a threshold exists,
above which all losses are recorded and available for analysis, hence, no loss has
probability one of being recorded.

Since operational risk management relies more on qualitative approaches
than on quantitative ones, more work is needed to better understand and model
the exposure to operational risk. The bias presented in operational losses data,
mainly due to the natural emphasis given to (public) very large losses, makes it
more challenging.

Our model takes in consideration the sample bias towards the largest losses
by defining a weight function functional dependent on the distribution of the
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original random process and on the reliability recording the operational losses.
In this way, we can infer how the bias affects the original distribution and the
estimators of the parameters.
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