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1. Introduction and main results

The Kramers–Fokker–Planck operator reads as

KV = p∂q − ∂q V (q)∂p +
1
2 (−1p + p2), (q, p) ∈ R2d , (1.1)

where q denotes the space variable, p denotes the velocity variable, x .y =
∑d

j=1 x j y j ,

x2
=
∑d

j=1 x2
j and the potential V (q) =

∑
|α|6r Vαqα is a real-valued polynomial function

on Rd with d◦V = r .
There have been several works concerned with the operator KV with diversified

approaches. In this article, we impose some kinds of assumptions on the polynomial

potential V (q) so that the Kramers–Fokker–Planck operator KV admits a global

subelliptic estimate and has a compact resolvent. This problem is closely related to

the return to equilibrium for the Kramers–Fokker–Planck operator (see [4, 13, 14]).

As mentioned in [6] and [13], the analysis of KV is also strongly linked to that of the

Witten Laplacian1
(0)
V = −1q + |∇V (q)|2−1V (q). This relation yielded the Helffer–Nier

conjecture stated by Helffer and Nier:

(1+ KV )
−1 compact⇔ (1+1(0)V )−1 compact. (1.2)

This conjecture has been partially solved in basic cases (see for example [4, 6] and

[11]), whereas for the operator 1
(0)
V very general criteria of compactness work for
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polynomial potential V (q) of arbitrary degree. These last criteria require an analysis

of the degeneracies at infinity of the potential and rely on extremely sophisticated tools

of hypoellipticity developed by Helffer and Nourrigat in the 1980s (see [5, 13]). Among the

particularities of these last analyses, we mention that the compactness results obtained for

degenerate potentials at infinity were not the same for 1
(0)
+V as 1

(0)
−V . The typical example

that was considered is the case V (q1, q2) = q2
1 q2

2 in dimension d = 2: The operator 1
(0)
−V

has a compact resolvent, while 1
(0)
+V has not.

In the case of the Kramers–Fokker–Planck operator, there have been extensive works

concerned with the case d◦V 6 2 (see [1, 2, 7, 8, 18, 19]). Nevertheless, as far as general

potential is concerned, different kinds of sufficient conditions on V (q) had been examined

by Hérau–Nier [6], Helffer–Nier [4], Villani [17] and Wei-Xi Li [11]. These first results

considered only variants of the elliptic situation at infinity (for nondegenerate potential),

which did not distinguish the sign ±V (q). Lately, a significant improvement of those

works has been done by Li [12] based on some multiplier methods. In [12], Li showed

that for potentials similar to V (q1, q2) = q2
1 q2

2 , the results for K±V were the same as for

1
(0)
±V , thus confirming the idea that conjecture (1.2) is true.

The ultimate goal would be to develop a complete recurrence with respect to d◦V for

the Kramers–Fokker–Planck operator like it is possible to do for the Witten Laplacian as

recalled in [4] (cf. Theorem 10.16, p. 106) and [13] by following the general approach
of Helffer–Nourrigat in [5] and [14]. Although we are not able to write a complete

induction, we establish here subelliptic estimates for KV for a rather general class

of polynomial potentials with criteria that distinguish clearly the sign of V (q). The

asymptotic behaviour of those polynomials is governed by at most quadratic parameter

dependent potentials, and the global subelliptic estimates in which some logarithmic

weights arise are known to be essentially optimal in the quadratic case (see [2]).

Denoting

Op =
1
2 (D

2
p + p2),

and

XV = p∂q − ∂q V (q)∂p,

we can rewrite the Kramers–Fokker–Planck operator KV defined in (1.1) as KV = XV +

Op.

Notations: Throughout the paper, we use the notation

〈·〉 =

√
1+ | · |2.

For an arbitrary polynomial V (q) of degree r , we denote for all q ∈ Rd

Tr+,V (q) =
∑

ν∈Spec(Hess V (q))
ν>0

ν(q),

Tr−,V (q) = −
∑

ν∈Spec(Hess V (q))
ν60

ν(q).
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Furthermore, for a polynomial P ∈ Er := {P ∈ R[X1, . . . , Xd ], d◦P 6 r} and all natural

numbers n ∈ {1, . . . , r}, we define the functions R
>n

P : R
d
→ R and R=n

P : R
d
→ R by

R
>n

P (q) =
∑

n6|α|6r

∣∣∣∂αq P(q)
∣∣∣ 1
|α|
, (1.3)

R=n
P (q) =

∑
|α|=n

|∂αq P(q)|
1
|α| . (1.4)

For arbitrary real functions A and B, we also make use of the following notation:

A � B ⇐⇒ ∃ c > 1 : c−1
|B| 6 |A| 6 c |B| .

This work is essentially based on the recent publication by Ben Said, Nier and Viola [2],

which deals with the analysis of Kramers–Fokker–Planck operators with polynomials of

degree less than 3. In this case, we define the constants AV and BV by

AV = max{(1+Tr+,V )2/3, 1+Tr−,V },

BV = max
{

min
q∈Rd
|∇ V (q)|4/3 ,

1+Tr−,V
(log(2+Tr−,V ))2

}
.

As proved in [2], there is a constant c > 0 such that the following global subelliptic

estimate with remainder,

‖KV u‖2L2(R2d )
+ AV ‖u‖2L2(R2d )

> c
(
‖Opu‖2L2(R2d )

+‖XV u‖2L2(R2d )

+‖〈∂q V (q)〉2/3u‖2L2(R2d )
+‖〈Dq〉

2/3u‖2L2(R2d )

)
, (1.5)

holds for all u ∈ C∞0 (R
2d). Moreover, there exists a constant c > 0 such that

‖KV u‖2L2(R2d )
> c BV ‖u‖2L2(R2d )

(1.6)

holds for all u ∈ C∞0 (R
2d). Hence combining (1.5) and (1.6), there is a constant c > 0 so

that

‖KV u‖2L2(R2d )
>

c

1+ AV
BV

(
‖Opu‖2L2(R2d )

+‖XV u‖2L2(R2d )

+‖〈∂q V (q)〉2/3u‖2L2(R2d )
+‖〈Dq〉

2/3u‖2L2(R2d )

)
(1.7)

is valid for all u ∈ C∞0 (R
2d). The constants appearing in (1.5)–(1.7) are independent of

the potential V and depend only on the dimension d and the degree of the polynomial V .

We recall here that for a smooth potential V ∈ C∞(Rd), our operator KV is essentially

maximal accretive when endowed with the domain C∞0 (R
2d) [4] (cf. Proposition 5.5, p. 44).

As a result, the domain of its closure is given by

D(KV ) =
{

u ∈ L2(R2d), KV u ∈ L2(R2d)
}
.
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Consequently, by the density of C∞0 (R
2d) in D(KV ), all estimates stated in this paper,

which are checked with C∞0 (R
2d) functions, can be extended to the domain of KV .

Given a polynomial V (q) with degree r greater than two, our result will require the

following assumption after setting for κ > 0,

Σ(κ) =
{

q ∈ Rd , |∇V (q)|
4
3 > κ

(
|Hess V (q)| + R

>3

V (q)4+ 1
)}
,

where |Hess V (q)| is the norm of the matrix (∂2
qi ,q j

V (q))16i, j6d .

Assumption 1. There exist large constants κ0,C1 > 1 such that for all κ > κ0, the
polynomial V (q) satisfies the properties

Tr−,V (q) >
1

C1
Tr+,V (q) , for all q ∈ Rd

\Σ(κ) with |q| > C1. (1.8)

Moreover, if Rd
\Σ(κ) is not bounded,

lim
|q|→+∞

q∈Rd
\Σ(κ)

R
>3

V (q)4

|Hess V (q)|
= 0. (1.9)

Those assumptions and in particular the partition Rd
= Σ(κ)t (Rd

\Σ(κ)) have a

simple interpretation. The region Σ(κ) is the one where the gradient dominates the

Hessian and the higher order derivatives so that the analysis in this region is essentially

the same as in the various elliptic cases discussed in [4, 6] and [11]. On the contrary,

the Hessian dominates the gradient and the derivatives of higher degree in the region
Rd
\Σ(κ) and the accurate estimates of the quadratic model given by the second order

Taylor expansion have to be used. Finally, the parameter κ will be adjusted at the end of

the proof so that the main subelliptic estimates control the error terms due to partitions of

unity and Taylor expansions. Distinguishing the sign of the potential arises in particular

when the region Rd
\Σ(κ) is considered. Actually, Tr+,V and Tr−,V play different roles in

the accurate subelliptic estimate without remainder (1.7) for polynomials of degree less

than 3.

The Tarski–Seidenberg theorem and some of its consequences reviewed in Appendix B

transform Assumption (1.9) into R
>3

V (q)4 = O(|Hess V (q)|1−ν) as |q| → +∞, q ∈
Rd
\Σ(κ), for some ν > 0 (with |Hess V (q)| → +∞ as |q| → +∞, q ∈ Rd

\Σ(κ)).

Alternatively, one could simply assume from the beginning the existence of such a ν > 0.

We mention here that one knows that for a potential V satisfying assumption 1, the

resolvent of the Witten Laplacian 1
(0)
V is compact (since the asymptotic models at infinity

are of degree less than 3 without a local minimum; cf. Theorem 10.16 [4]).

In Section 4, we provide some explicit families of polynomial potentials for which

conditions (1.8) and (1.9) both hold.

Our main result is the following.

Theorem 1.1. Let V (q) be a polynomial of degree r greater than two verifying

Assumption 1. Then there exists a strictly positive constant CV > 1 (depending on V )
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such that

‖KV u‖2L2 +CV ‖u‖2L2 >
1

CV

(
‖L(Op)u‖2L2 +‖L(〈∇V (q)〉

2
3 )u‖2L2

+‖L(〈Hess V (q)〉
1
2 )u‖2L2 +‖L(〈Dq〉

2
3 )u‖2L2

)
(1.10)

holds for all u ∈ D(KV ), where L(s) = s+1
log(s+1) for any s > 1.

Corollary 1.2. If V (q) is a polynomial of degree greater than two that satisfies

Assumption 1, then the Kramers–Fokker–Planck operator KV has a compact resolvent.

Proof of Corollary 1.2. Assume 0 < δ < 1. Define the functions fδ : Rd
→ R by

fδ(q) = |∇V (q)|
4
3 (1−δ)+ |Hess V (q)|1−δ.

From (1.10) in Theorem 1.1, there is a constant CV > 1 such that

‖KV u‖2L2 +CV ‖u‖2L2 >
1

CV

(
〈u, fδu〉+ ‖L(Op)u‖2L2 +‖L(〈Dq〉

2
3 )u‖2L2

)
holds for all u ∈ C∞0 (R

2d) and all δ ∈ (0, 1). In order to prove that the operator KV has

a compact resolvent, it is sufficient to show that lim|q|→+∞ fδ(q) = +∞.

To do so, assume A > 0 and denote κ = A
1

1−δ . If q ∈ Σ(κ), one has

|∇V (q)|
4
3 (1−δ) > κ1−δ

= A.

If q ∈ Rd
\Σ(κ) by (1.9) in Assumption 1, lim |q|→+∞

q∈Rd
\Σ(κ)

|Hess V (q)| = +∞. Hence

there exists a constant η > 0 such that |Hess V (q)|1−δ > A for all q ∈ Rd
\Σ(κ) with

|q| > η.

Remark 1.3. The results of Theorem 1.1 and Corollary 1.2 can be extended in the case

V = V1+ V2, where V1 is a polynomial satisfying Assumption 1 and V2 is a function in
S(Rd).

2. Preliminary results

This work is essentially based on two main strategies. The first one consists in the use of

a partition of unity, which is the most important tool that allows one to pass from local

to global estimates.

In this paper, given a polynomial V (q), we make use of a locally finite partition of

unity with respect to the position variable q ∈ Rd∑
j∈N

χ2
j (q) =

∑
j∈N

χ̃2
j

(
R

>3

V (q j )(q − q j )
)
= 1, (2.1)

where

supp χ̃ j ⊂ B(0, a) and χ̃ j ≡ 1 in B(0, b)
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for some q j ∈ Rd with 0 < b < a independent of j ∈ N. In our work, we need to choose

the constant a less than or equal to min(C−1,C ′−1), where the constants C and C ′ are

those in Lemma A.5. Such a partition is described more precisely in Lemma A.8 after

taking n = 3. In our study, introducing this partition yields errors that are under control.

The second approach lies in the decomposition of the operator KV onto two parts so

that the first one is a Kramers–Fokker–Planck operator with polynomial potential of

degree less than three. In this way, based on [2], we derive the result of Theorem 1.1.

In order to prove Theorem 1.1, we need the following basic lemmas.

Lemma 2.1. Assume V ∈ R[q1, . . . , qd ] with degree r ∈ N. Consider the Kramers-
Fokker–Planck operator KV defined as in (1.1). For a locally finite partition of unity,

namely
∑

j∈N χ
2
j (q) = 1, one has

‖KV u‖2L2(R2d )
=

∑
j∈N

(
‖KV (χ j u)‖2L2(R2d )

−‖(p∂qχ j )u‖2L2(R2d )

)
(2.2)

for all u ∈ C∞0 (R
2d).

In particular, when the degree of V is larger than two and the cutoff functions χ j have

the form (2.1), there exists a constant cd,r > 0 (depending only on the dimension d and

the degree of V ) so that

‖KV u‖2L2(R2d )
>
∑
j∈N

(
‖KV (χ j u)‖2L2(R2d )

− cd,r R
>3

V (q j )
2
‖pχ j u‖2L2(R2d )

)
(2.3)

holds for all u ∈ C∞0 (R
2d).

Proof. First, let V be a real-valued polynomial on Rd of degree r ∈ N. Assume that

u ∈ C∞0 (R
2d). On the one hand,

‖KV u‖2L2 =

∑
j∈N
〈KV u, χ2

j KV u〉 =
∑
j∈N
〈u, K ∗Vχ

2
j KV u〉.

On the other hand, ∑
j∈N
‖KV (χ j u)‖2L2 =

∑
j∈N
〈u, χ j K ∗V KVχ j u〉.

Putting the above equalities together,

‖KV u‖2L2 −

∑
j∈N
‖KV (χ j u)‖2L2 =

∑
j∈N
〈u, (K ∗Vχ

2
j KV −χ j K ∗V KVχ j )u〉.

Using commutators, we compute

K ∗Vχ
2
j KV = K ∗Vχ j [χ j , KV ] + K ∗Vχ j KVχ j

= K ∗Vχ j [χ j , KV ] + [ K ∗V , χ j ]KVχ j +χ j K ∗V KVχ j

= K ∗Vχ j [χ j , KV ] + [ K ∗V , χ j ]
(
[ KV , χ j ] +χ j KV

)
+χ j K ∗V KVχ j .
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Thus

K ∗Vχ
2
j KV −χ j K ∗V KVχ j = K ∗Vχ j [χ j , KV ] + [ K ∗V , χ j ]χ j KV + [ K ∗V , χ j ] ◦ [ KV , χ j ].

Now it is easy to check the following commutation relations:
[χ j , KV ] = −[ KV , χ j ] = −[ p∂q , χ j (q) ] = −p∂qχ j

[ K ∗V , χ j ] = [−p∂q , χ j (q) ] = −p∂qχ j

[ K ∗V , χ j ] ◦ [ KV , χ j ] = −(p∂qχ j )
2.

Collecting the terms, we obtain∑
j∈N
(K ∗Vχ

2
j KV −χ j K ∗V KVχ j ) =

∑
j∈N

(
K ∗Vχ j (−p∂qχ j )+ (−p∂qχ j )χ j KV − (p∂qχ j )

2
)

=

∑
j∈N

(
K ∗V
(
− p∂q

(χ2
j

2

))
− p∂q

(χ2
j

2

)
KV − (p∂qχ j )

2
)

= −

∑
j∈N
(p∂qχ j )

2,

where in the last line, we make use of
∑

j∈N χ
2
j (q) = 1.

From this, it follows immediately that

‖KV u‖2L2 =

∑
j∈N

(
‖KV (χ j u)‖2L2 −‖(p∂qχ j )u‖2L2

)
for all u ∈ C∞0 (R

2d).

Next, suppose that the degree of V is greater than two and χ j (q) = χ̃ j (R
>3

V (q j )(q − q j ))

for all indices j and any q ∈ Rd with

supp χ̃ j ⊂ B(0, a) and χ̃ j ≡ 1 in B(0, b).

Then we can write ∑
j∈N
‖(p∂qχ j )u‖2 =

∑
j∈N

∑
j ′∈N
‖(p∂qχ j )χ j ′u‖2

6 cd,r
∑
j∈N

R
>3

V (q j )
2
‖pχ j u‖2,

where cd,r is a constant that depends only on the dimension d and the degree of V . Here

the last inequality is due to the fact that for each index j , there are finitely many j ′ such

that (∂qχ j )χ j ′ is nonzero.

Before stating the following lemma, we fix and recall some notations.

Notations 2.2. Let V be a polynomial of degree r larger than two. Consider a locally finite

partition of unity
∑

j∈N χ
2
j (q) = 1 described as in (2.1).

Set for all κ > 0

J (κ) =
{

j ∈ N, such that supp χ j ⊂ Σ(κ)
}
,
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where we recall that

Σ(κ) =
{

q ∈ Rd , |∇V (q)|
4
3 > κ

(
|Hess V (q)| + R

>3

V (q)4+ 1
)}
.

For a given κ > 0 and all indices j ∈ N, let V (2)
j be the polynomial of degree less than

three given by

V (2)
j (q) =

∑
06|α|62

∂αq V (q ′j )

α!
(q − q ′j )

α, (2.4)

where {
q ′j = q j if j ∈ J (κ)

q ′j ∈ (supp χ j )∩
(
Rd
\Σ(κ)

)
otherwise.

Lemma 2.3. Assume that V is a polynomial of degree r larger than two. Consider a

locally finite partition of unity described as in (2.1). For a multi-index α ∈ Nd of length
|α| ∈ {1, 2} and all j ∈ N, one has∣∣∣∂αq V (q)− ∂αq V (2)

j (q)
∣∣∣ 6 cα,d,r

(
R

>3

V (q ′j )
)|α|

(2.5)

for any q ∈ supp χ j = B(q j , a R
>3

V (q j )
−1), where cα,d,r =

∑
36|β|6r (a C)|β|−|α|.

As a consequence, if V satisfies Assumption 1, there exists a large constant κ1 > κ0 so

that for all κ > κ1 and every j ∈ N,

2−1
∣∣∣∂q V (2)

j (q)
∣∣∣ 6 ∣∣∂q V (q)

∣∣ 6 2
∣∣∣∂q V (2)

j (q)
∣∣∣ , (2.6)

for every q ∈ (supp χ j )∩Σ(κ) and

2−1
∣∣∣Hess V (2)

j (q)
∣∣∣ 6 |Hess V (q)| 6 2

∣∣∣Hess V (2)
j (q)

∣∣∣ , (2.7)

for any q ∈ (supp χ j )∩
(
Rd
\Σ(κ)

)
with |q| > C2(κ), where C2(κ) > 0 is a large constant

that depends on κ.

Proof. Let V be a polynomial of degree r greater than two. In this proof, we are going

to need the following equivalence,

R
>3

V (q) � R
>3

V (q ′) , (2.8)

satisfied for all q, q ′ ∈ supp χ j and proved in Lemma A.5. That is, there is a constant

C > 1 such that for every q, q ′ ∈ supp χ j ,

( R
>3

V (q)

R>3

V (q ′)

)±1
6 C. (2.9)
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Assume α ∈ Nd of length |α| ∈ {1, 2} . For every j ∈ N, observe that

∣∣∣∂αq V (q)− ∂αq V (2)
j (q)

∣∣∣ = ∣∣∣∣ ∑
36|β|6r
β>α

∂
β
q V (q ′j )

(β −α)!
(q − q ′j )

β−α

∣∣∣∣
6

∑
36|β|6r
β>α

∣∣∣∂βq V (q ′j )
∣∣∣

(β −α)!
|q − q ′j |

|β|−|α|

for any q ∈ Rd . Hence regarding equivalence (2.9), there exists a constant cα,d,r > 0
(depending as well on the multi-index α, the dimension d and the degree r of V ) so

that ∣∣∣∂αq V (q)− ∂αq V (2)
j (q)

∣∣∣ 6 ∑
36|β|6r
β>α

1
(β −α)!

(
R

>3

V (q ′j )
)|β|(

a−1 R
>3

V (q j )
)−|β|+|α|

6
∑

36|β|6r
β>α

1
(β −α)!

(a C)|β|−|α|
(

R
>3

V (q ′j )
)|α|

6 cα,d,r
(

R
>3

V (q ′j )
)|α|

(2.10)

holds for all q in the support of χ j , where the constant C > 1 is the one in (2.9) and

cα,d,r =
∑

36|β|6r (a C)|β|−|α|.
In the rest of the proof, let the polynomial V (q) satisfy Assumption 1. In view of (2.10),

when |α| = 1, we get

|∇V (q)−∇V (2)
j (q)| 6 c1,d,r R

>3

V (q ′j ) (2.11)

for all j ∈ N and any q ∈ supp χ j , where c1,d,r =
∑

36|β|6r (a C)|β|−1. By virtue of the

equivalence (2.9), it results from (2.11)∣∣∣∇V (q)−∇V (2)
j (q)

∣∣∣ 6 c1,d,r C R
>3

V (q) (2.12)

for every q ∈ supp χ j . Given κ > κ0, it follows from (2.12) and the definition of Σ(κ) that∣∣∣∇V (q)−∇V (2)
j (q)

∣∣∣ 6 c1,d,r C

κ
1
4

|∇V (q)|
1
3

6
c1,d,r C

κ
1
4

|∇V (q)| (2.13)

for all q ∈ (supp χ j )∩Σ(κ). For the above second inequality, we know that |∇V (q)| > 1
for every q ∈ (supp χ j )∩Σ(κ). Indeed, since q ∈ (supp χ j )∩Σ(κ),

|∇V (q)| > κ
3
4 > κ

3
4

0 > 1.
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Taking the constant κ1 > κ0 such that
c1,d,r C

κ
1
4

1

6 1
2 , we get for every κ > κ1

∣∣∣ |∇V (q)| − |∇V (2)
j (q)|

∣∣∣ 6 |∇V (q)−∇V (2)
j (q)| 6 1

2 |∇V (q)|

for any q ∈ (supp χ j )∩Σ(κ). Therefore, for every κ > κ1,

1
2 |∇V (2)

j (q)| 6 |∇V (q)| 6 3
2 |∇V (2)

j (q)|

holds for all q ∈ (supp χ j )∩Σ(κ).

On the other hand when |α| = 2, by (2.10), there is a constant c2,d,r > 0 so that for all
j ∈ N,

|∂αq V (q)− ∂αq V (2)
j (q)| 6 c2,d,r R

>3

V (q ′j )
2 (2.14)

holds for every q ∈ supp χ j , where c2,d,r =
∑

36|β|6r (a C)|β|−2.

Using the fact that R
>3

V (q) > R=r
V (0) for every q ∈ Rd , we derive from (2.14) that

|∂αq V (q)− ∂αq V (2)
j (q)| 6 c2,d,r

R
>3

V (q ′j )
4

R=r
V (0)2

for all q ∈ supp χ j .

Assuming κ > κ0, we obtain using (1.9) in Assumption 1, if |q ′j | is large enough∣∣∣ ∑
|β|=2

|∂βq V (q)| −
∑
|β|=2

|∂βq V (2)
j (q)|

∣∣∣ 6 ∑
|β|=2

|∂βq V (q)− ∂βq V (2)
j (q)| 6

1
2
|Hess V (q ′j )|

for any q ∈ (supp χ j )∩ (Rd
\Σ(κ)). In other words,

1
2 |Hess V (2)

j (q)| 6 |Hess V (q)| 6 3
2 |Hess V (2)

j (q)|

holds for all q ∈ (supp χ j )∩ (Rd
\Σ(κ)) with |q| > C2(κ), where C2(κ) is a strictly

positive large constant depending on κ.

Lemma 2.4. Consider two positive operators A and B on a Hilbert space H such that

ν‖u‖2 < 〈u, Au〉 6 〈u, Bu〉

for all u ∈ D, where D is dense in D(B1/2) with ν > 1. For all α0 ∈ [0, 1] and k ∈ N,
there exists Ck,α0,ν > 1 such that〈

u,
Aα0

(log(Aα0/2))k
u
〉
6 Ck,α0,ν

〈
u,

Bα0

(log(Bα0/2))k
u
〉

(2.15)

for any u ∈ D.

Proof. Assume that A, B are two positive operators so that

ν‖u‖2 < 〈u, Au〉 6 〈u, Bu〉 (2.16)
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holds for all u ∈ D with ν > 1. For α ∈ [0, 1], the application T 7→ T α is operator

monotone according to [16, Example 6.8]. This provides the inequality

να‖u‖2 < 〈u, Aαu〉 6 〈u, Bαu〉 (2.17)

for any u ∈ D and every α ∈ [0, 1], which is of course related with interpolation in Hilbert

spaces.

Furthermore, for any positive operator C > c IdH, c > 0, with domain D(C), the

logarithm of C (defined by the functional calculus) satisfies for all u ∈ D(C) and v ∈ H:

〈v, log(C)u〉 = lim
α→0+

〈
v,

Cα
− 1
α

u
〉
. (2.18)

Using (2.16),

log(ν)︸ ︷︷ ︸
>0

‖u‖2 < 〈u, log(A)u〉 6 〈u, log(B)u〉 (2.19)

holds for all u ∈ D. Integrating (2.17) with respect to α over [0, α0], where α0 ∈ [0, 1], we

get 〈
u,

1
log(A)

(Aα0 − I )u
〉
6

〈
u,

1
log(B)

(Bα0 − I )u
〉
. (2.20)

Furthermore, by (2.19),〈
u,

1
log(B)

u
〉
6

〈
u,

1
log(A)

u
〉
<

1
log(ν)

‖u‖2. (2.21)

Therefore from (2.20) and (2.21), for any α0 ∈ [0, 1], there exist Cν,C1,α0,ν > 1 such that〈
u,

Aα0

log(A)
u
〉
6

〈
u,

Bα0

log(B)
u
〉
+Cν‖u‖2 6 C1,α0,ν

〈
u,

Bα0

log(B)
u
〉
.

Once the constant Ck,α0,ν > 1 is known for k > 1, the same integration with respect to

α ∈ [0, α0] provides the constant Ck+1,α0,ν > 1. We proved by induction on k ∈ N, the

existence of a constant Ck,α0,ν > 1 such that〈
u,

Aα0

(log(A))k
u
〉
6 Ck,α0,ν

〈
u,

Bα0

(log(B))k
u
〉
,

or equivalently 〈
u,

Aα0

(log(Aα0/2))k
u
〉
6 Ck,α0,ν

〈
u,

Bα0

(log(Bα0/2))k
u
〉
.

Lemma 2.5. Assume that V (q) is a polynomial of degree r greater than two. Let∑
j∈N χ

2
j (q) be a locally finite partition of unity defined as in (2.1). For each j ∈ N,

choose any q ′j ∈ supp χ j .
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There is a constant c = c(d, r) > 1 such that

〈u, (2−1q + R
>3

V (q)4)αu〉 6 c
∑
j∈N
〈u, χ j (2−1q + R

>3

V (q ′j )
4)αχ j u〉 (2.22)

is valid for all u ∈ C∞0 (R
2d) and any α ∈ [0, 1].

As a consequence, there exists a constant c̃ = c̃(d, r) > 1 so that∑
j∈N

∥∥∥L
(
(1−1q + R

>3

V (q ′j )
4)

1
3

)
χ j u

∥∥∥2
>

1
c

∥∥∥L
(
(1−1q + R

>3

V (q)4)
1
3

)
u
∥∥∥2

(2.23)

holds for all u ∈ C∞0 (R
2d), where L(s) = s+1

log(s+1) for all s > 1.

Proof. We first set E0 = L2(R2d) and E1 = {u ∈ L2(R2d), 〈u, (2−1q + R
>3

V (q)4)u〉 <
+∞} endowed respectively with the norms ‖ · ‖E0 = ‖ · ‖L2(R2d ) and ‖ · ‖E1 defined as

follows for all u ∈ L2(R2d):

‖u‖2E1
= 2‖u‖2L2(R2d )

+‖Dqu‖2L2(R2d )
+‖R

>3

V (q)2u‖2L2(R2d )

= ‖(2−1q + R
>3

V (q)4)1/2u‖2L2(R2d )
.

By [15, Theorem X.29], the operator 2−1q + R
>3

V (q)4 is essentially self-adjoint on

C∞0 (R
2d) and hence E1 corresponds to the spectrally defined subspace of L2(R2d).

Given a partition of unity as in (2.1), define the linear map

T : E0 → (L2(R2d))N, u 7→ (u j ) j∈N = (χ j u) j∈N,

and denote F0 := Im T . Note that T : E0 → F0 is unitary. Indeed, for all u ∈ E0,

‖T u‖2F0
=

∑
j∈N
‖χ j u‖2L2 = ‖u‖2L2 = ‖u‖2E0

. (2.24)

Further, the inverse map of T is well defined by

T−1
: F0 → E0, (u j ) j∈N 7→ u =

∑
j∈N

χ j u j .

Now introduce the set

F1 =

(u j ) j∈N ∈ F0,
∑
j∈N
〈u j , (2−1q + R

>3

V (q ′j )
4)u j 〉 < +∞

 ,
with its associated norm defined for all (u j ) j∈N ∈ F1 by

‖(u j ) j∈N‖
2
F1
=

∑
j∈N

(
2‖u j‖

2
L2(R2d )

+‖Dqu j‖
2
L2(R2d )

+‖R
>3

V (q ′j )
2u j‖

2
L2(R2d )

)
=

∑
j∈N
‖(2−1q + R

>3

V (q ′j )
4)1/2u j‖

2
L2(R2d )

.
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Assume u ∈ E0. For all j ∈ N, let q ′j ∈ supp χ j . Observe that

| ‖T u‖2F1
−‖u‖2E1

| =

∣∣∣∣∑
j∈N
〈u j , (2−1q + R

>3

V (q ′j )
4)u j 〉− 〈u, (2−1q + R

>3

V (q)4)u〉
∣∣∣∣

=

∣∣∣∣∑
j∈N
〈u j ,−1qu j 〉− 〈u,−1qu〉+

∑
j∈N
〈u j , (R

>3

V (q ′j )
4
− R

>3

V (q)4)u j 〉

∣∣∣∣
6

∣∣∣∣∑
j∈N
〈u j ,−1qu j 〉− 〈u,−1qu〉

∣∣∣∣+∑
j∈N
〈u j , |R

>3

V (q ′j )
4
− R

>3

V (q)4|u j 〉.

(2.25)

Since we are dealing with cutoff functions satisfying
∑

j∈N |∇χ j |
2 6 c R

>3

V (q)2 6 c R
>3
V (q)4

R=r
V (0)2

and owing to the equivalence R
>3

V (q) � R
>3

V (q ′j ) for all q ∈ supp χ j , it follows from (2.25)

| ‖T u‖2F1
−‖u‖2E1

| 6 c1
∑
j∈N
〈u j , R

>3

V (q ′j )
4u j 〉 6 c1‖T u‖2F1

and

| ‖T u‖2F1
−‖u‖2E1

| 6 c′1〈u, R
>3

V (q)4u〉 6 c′1‖u‖
2
E1
,

where c1, c′1 are two strictly positive constants. As a result,

1
√
(c1+ 1)

‖u‖E1 6 ‖T u‖F1 6
√
(c′1+ 1)‖u‖E1 . (2.26)

In view of (2.24) and (2.26), we conclude by interpolation that for all α ∈ [0, 1],

T : Eα → Fα

verifies ‖T ‖L(Eα,Fα) 6 (c′1+ 1)
α
2 and ‖T−1

‖L(Fα,Eα) 6 (c1+ 1)
α
2 , where Eα and Fα are two

interpolated spaces endowed respectively with the norms

‖u‖Eα = ‖(2−1q + R
>3

V (q)4)α/2u‖L2(R2d )

and

‖(v j ) j∈N‖Fα =
∑
j∈N
‖(2−1q + R

>3

V (q ′j )
4)α/2u j‖L2(R2d ).

Hence there is a constant c > 0 so that

〈u, (2−1q + R
>3

V (q)4)αu〉 6 c
∑
j∈N
〈u j , (2−1q + R

>3

V (q ′j )
4)αu j 〉 (2.27)

holds for all u ∈ C∞0 (R
2d) and any α ∈ [0, 1]. In order to prove (2.23), repeat the same

process as in Lemma 2.4. Starting with

2α‖u‖2 6 〈u, (2−1q + R
>3

V (q)4)αu〉 6 c
∑
j∈N
〈u j , (2−1q + R

>3

V (q ′j )
4)αu j 〉, (2.28)
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for all u ∈ C∞0 (R
2d) and any α ∈ [0, 1], use the functional calculus on the left-hand side

and the Fourier transform on the right-hand side. When integrating with respect to

α ∈ [0, 2
3 ], we can interchange for any fixed u ∈ C∞0 (R

2d) the sum and the integral on the

right-hand side of (2.28) since the partition of unity is locally finite. This leads to

∀u ∈ C∞0 (R
2d , 〈u, φ(1−1q + R>3

V (q)4)u〉 6 c′
∑
j∈N
〈u, φ(1−1q + R>3

V (q ′j )
4)u〉

with φ(t) = (1+t)1/3

log((1+t)1/3 . By referring again to the functional calculus for the left-hand side

and the Fourier transform for the right-hand side, the proof is finished after noting the

uniform equivalence

sup
t∈[1,+∞)

(
φ(t)
ψ(t)

)±1

6 µ

when ψ(t) = 1+t1/3

log(1+t1/3 .

3. Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1. In the sequel, for a given polynomial

V (q) with degree r greater than two, we always use a locally finite partition of unity∑
j∈N

χ2
j (q) =

∑
j∈N

χ̃2
j

(
R

>3

V (q j )(q − q j )
)
= 1,

where

supp χ̃ j ⊂ B(0, a) and χ̃ j ≡ 1 in B(0, b)

for some q j ∈ Rd with 0 < b < a independent of the natural numbers j, defined more

specifically as in Lemma A.8 with n = 3. As mentioned before, we choose the constant

a less than or equal to min(C−1,C ′−1), where the constants C and C ′ are those in

Lemma A.5.

Proof. Let V (q) be a polynomial with degree larger than two that satisfies Assumption 1.

Assume u ∈ C∞0 (R
2d). In the whole proof, we denote u j = χ j u for all natural numbers j.

From Lemma 2.1, we get

‖KV u‖2L2(R2d )
>
∑
j∈N

(
‖KV u j‖

2
L2(R2d )

− cd,r R
>3

V (q j )
2
‖pu j‖

2
L2(R2d )

)
. (3.1)

Given κ > κ0, set

J (κ) = { j ∈ N, such that supp χ j ⊂ Σ(κ)}.

For all indices j ∈ N, let V (2)
j be the polynomial of degree less than three given by

V (2)
j (q) =

∑
06|α|62

∂αq V (q ′j )

α!
(q − q ′j )

α,
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where {
q ′j = q j if j ∈ J (κ)

q ′j ∈ (supp χ j )∩
(
Rd
\Σ(κ)

)
otherwise.

We associate with each polynomial V (2)
j the Kramers–Fokker–Planck operator KV (2)

j
.

Observe that using the parallelogram law 2(‖x‖2+‖y‖2)−‖x + y‖2 = ‖x − y‖2 > 0,∑
j∈N
‖KV u j‖

2
L2(R2d )

=

∑
j∈N
‖KV (2)

j
u j + (KV − KV (2)

j
)u j‖

2
L2(R2d )

>
∑
j∈N

(1
2

∥∥∥KV (2)
j

u j‖
2
L2(R2d )

−

∥∥∥(∇V (q)−∇V (2)
j (q))∂pu j‖

2
L2(R2d )

)
. (3.2)

On the other hand, by (2.5) in Lemma 2.3,∑
j∈N
‖(∇V (q)−∇V (2)

j (q))∂pu j‖
2
L2(R2d )

6 c1,d,r
∑
j∈N

R
>3

V (q ′j )
2
‖∂pu j‖

2
L2(R2d )

. (3.3)

Combining (3.1)–(3.3), we get immediately

‖KV u‖2L2(R2d )
>
∑
j∈N

(1
2
‖KV (2)

j
u j‖

2
L2(R2d )

− c1,d,r R
>3

V (q ′j )
2
‖∂pu j‖

2
L2(R2d )

− cd,r R
>3

V (q j )
2
‖pu j‖

2
L2(R2d )

)
.

Therefore, making use of equivalence (A 5), it follows

‖KV u‖2L2(R2d )
>
∑
j∈N

(1
2
‖KV (2)

j
u j‖

2
L2(R2d )

− c′d,r R
>3

V (q ′j )
2
〈u j , Opu j 〉L2(R2d )

)
, (3.4)

where c′d,r = 2(c2
1,d,r + cd,r C2).

Using the Cauchy–Schwarz inequality and then the Cauchy inequality with epsilon (for

any real numbers a, b and all ε > 0, ab 6 εa2
+

1
4ε b2),

c′d,r R
>3

V (q ′j )
2
〈u j , Opu j 〉 = c′d,r R

>3

V (q ′j )
2Re〈u j , KV (2)

j
u j 〉

6 c′d,r R
>3

V (q ′j )
2
‖u j‖ · ‖KV (2)

j
u j‖

6
(

c′d,r R
>3

V (q ′j )
2
)2
‖u j‖

2
+

1
4
‖KV (2)

j
u j‖

2.

Putting the above estimate and (3.4) together, we obtain

‖KV u‖2 >
∑
j∈N

(1
4
‖KV (2)

j
u j‖

2
− (c′d,r )

2 R
>3

V (q ′j )
4
‖u j‖

2
)
. (3.5)

From now on, assume κ > κ1, where κ1 > κ0 is introduced in Lemma 2.3. Remember as

well that the constants C1,C2(κ) are given respectively in Assumption 1 (see (1.8)) and
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Lemma 2.3 (see (2.7)). By introducing C(κ) > max(C1,C2(κ)), which will be fixed later,

we set for each κ,

I (κ) = { j ∈ N, such that supp χ j ⊂ {q ∈ Rd , |q| > C(κ)}}.

The rest of the proof is divided into three steps. The first one is devoted to the control

of the terms on the left-hand side of (3.5) for which j ∈ I (κ) for some large κ > κ0 to be

chosen. At the end of the first step, the constants κ > κ1 and C(κ) > max(C1,C2(κ)) will

be fixed. The second step is concerned with the remaining terms for which the support

of the cutoff functions χ j is included in some closed ball B(0,C ′(κ)). We finally sum up

all the terms in Step 3 and refer to Lemma 2.5 after some elementary optimization trick

in the last step.

Step 1, j ∈ I(κ), κ > κ1 to be fixed: As proved in [2], there is a constant c > 0 such that

for all j ∈ I (κ),

‖KV (2)
j

u j‖
2
+ AV (2)

j
‖u j‖

2 > c
(
‖Opu j‖

2
+‖〈∂q V (2)

j (q)〉2/3u j‖
2
+‖〈Dq〉

2/3u j‖
2
)
, (3.6)

where

AV (2)
j
= max{(1+Tr

+,V (2)
j
)2/3, 1+Tr

−,V (2)
j
}

= max{(1+Tr+,V (q ′j ))
2/3, 1+Tr−,V (q ′j )}.

Hence there is a constant C0 > 0 so that

‖KV (2)
j

u j‖
2
+ (1+ 10C0)t4

j ‖u j‖
2 > C0

(
‖Opu j‖

2
+‖〈∂q V (2)

j (q)〉2/3u j‖
2

+‖〈Dq〉
2/3u j‖

2
+ 10t4

j ‖u j‖
2
)
, (3.7)

where we use the notation t j = 2〈Hess V (q ′j )〉
1/4 throughout the proof.

Recall that as mentioned in [2], the constant c in (3.6) does not depend on the

polynomial V (2)
j and then so is the constant C0 in (3.7).

Now for all indices j ∈ I (κ), we distinguish two cases: either j ∈ J (κ) or j 6∈ J (κ).

Case 1. Assume j ∈ J (κ). Then taking into account inequality (2.6) in Lemma 2.3 and

using estimate (3.7), we obtain

‖KV (2)
j

u j‖
2
+ (1+ 10C)t4

j ‖u j‖
2 > C

(
‖Opu j‖

2
+‖〈∂q V (q)〉2/3u j‖

2

+‖〈Dq〉
2/3u j‖

2
+ 10t4

j ‖u j‖
2
)
. (3.8)

Furthermore, since for all indices j ∈ N the quantity R
>2

V (q ′j )
2 is always greater than

|Hess V (q ′j )|, there exists a constant cd > 0 so that for every j ∈ J (κ),

t4
j = 16〈Hess V (q ′j )〉 6 cd〈R

>2

V (q ′j )
2
〉.

Using the fact that the metric R
>2

V (q) dq2 is R
>3

V (q) dq2-slow (see Definition (A 2) and

Lemma A.5), it follows

t4
j 6 cd〈R

>2

V (q)2〉
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for every q ∈ supp χ j . Hence there is a constant c′d > 0 (depending on the dimension d)

such that

t4
j 6 cd

〈( ∑
|α|=2

|∂αq V (q)|
1
|α| + R

>3

V (q)
)2〉

6 3cd

〈( ∑
|α|=2

|∂αq V (q)|
1
|α|

)2
+ R

>3

V (q)2
〉

6 c′d〈|Hess V (q)| + R
>3

V (q)2〉

holds for any q ∈ supp χ j . Now, since for every q ∈ Rd , one has R
>3

V (q) > R=r
V (0), we

derive from the previous estimate that for any q ∈ supp χ j ,

t4
j 6 c′d

〈
|Hess V (q)| +

R
>3

V (q)4

R=r
V (0)2

〉

6
c′′d
κ

max(1, R=r
V (0)−2)〈∂q V (q)〉

4
3 . (3.9)

Collecting estimates (3.8) and (3.9), we get for κ > κ1

‖KV (2)
j

u j‖
2
+ (1+ 10C)

c′′d
κ

max(1, R=r
V (0)−2)‖〈∂q V (q)〉

2
3 u j‖

2

> C
(
‖Opu j‖

2
+‖〈∂q V (q)〉2/3u j‖

2
+‖〈Dq〉

2/3u j‖
2
+ 10t4

j ‖u j‖
2
)
.

Choosing κ2 > κ1 so that

C
2

> (1+ 10C)
c′′d
κ2

max(1, R=r
V (0)−2),

the following inequality

‖KV (2)
j

u j‖
2 > C

(
‖Opu j‖

2
+

1
2‖〈∂q V (q)〉2/3u j‖

2
+‖〈Dq〉

2/3u j‖
2
+ 10t4

j ‖u j‖
2) (3.10)

holds for all j ∈ J (κ) with κ > κ2.

Since j ∈ J (κ), there is a constant c1 > 0 so that

1
8 〈∂q V (q)〉

4
3 > c1〈Hess V (q)〉 (3.11)

holds for all q ∈ supp χ j . In addition, using equivalence (A 5), it follows

1
8 〈∂q V (q)〉

4
3 > c2|∂q V (q)|

4
3 > c2κ R

>3

V (q)4 > c′2κ R
>3

V (q ′j )
4 (3.12)

for any q ∈ supp χ j .

Putting (3.10)–(3.12) together,

‖KV (2)
j

u j‖
2 > C

(
‖Opu j‖

2
+

1
4‖〈∂q V (q)〉2/3u j‖

2
+‖〈Dq〉

2/3u j‖
2

+ c1‖〈Hess V (q)〉1/2u j‖
2
+ c′2κ R

>3

V (q ′j )
4
‖u j‖

2
+ 10‖t2

j u j‖
2
)

(3.13)

holds for all κ > κ2.
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Case 2. Assume j /∈ J (κ), with κ > κ2 > κ1 > κ0. Hence by Assumption 1 (see (1.8)), one

has

Tr−,V (q) 6= 0 for all q ∈ (supp χ j )∩ (Rd
\Σ(κ)) such that |q| > C1.

In particular, since |q ′j | > C(κ) > C1,

Tr
−,V (2)

j
= Tr−,V (q ′j ) 6= 0.

Referring again to [2],

‖KV (2)
j

u j‖
2 > c BV (2)

j
‖u j‖

2,

where

BV (2)
j
= max

(
min
q∈Rd
|∇V (2)

j (q)|4/3,
1+Tr

−,V (2)
j

(log(2+Tr
−,V 2

j
))2

)
= max

(
min
q∈Rd
|∇V (2)

j (q)|4/3,
1+Tr−,V (q ′j )

(log(2+Tr−,V (q ′j )))
2

)
6= 0.

Hence we get in particular,

‖KV (2)
j

u j‖
2 > c

1+Tr−,V (q ′j )

(log(2+Tr−,V (q ′j )))
2 ‖u j‖

2. (3.14)

Using again condition (1.8) in Assumption 1, there is a constant C1 > 1 so that

1
2

Tr−,V (q ′j ) >
1

2C1
Tr+,V (q ′j )

holds, which in turn implies

Tr−,V (q ′j ) >
1
2

Tr−,V (q ′j )+
1

2C1
Tr+,V (q ′j ) >

1
2C1

(Tr−,V (q ′j )+Tr+,V (q ′j )). (3.15)

Then it follows from (3.14) and (3.15)

‖KV (2)
j

u j‖
2 > c′

∥∥∥∥∥∥
√

1+ |Hess V (q ′j )|

log(2+ |Hess V (q ′j )|)
u j

∥∥∥∥∥∥
2

. (3.16)

By Assumption 1 (see condition (1.9)) and (3.16), applying Lemma B.6, there are δ ∈

(0, 1) and a positive nondecreasing function 3Σ(κ) on (0,+∞) such that 3Σ(κ)(%)→+∞

as %→+∞, and such that

1+ |Hess V (q ′j )|

(log(2+ |Hess V (q ′j )|))
2 >

1
2δ
(1+ |Hess V (q ′j )|)

1−δ

>
1
2
|Hess V (q ′j )|

1−δ

>
3Σ(κ)(|q ′j |)

2
R

>3

V (q ′j )
4 >

3Σ(κ)(C(κ))
2

R
>3

V (q ′j )
4.
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Here, Lemma B.6 relying on the Tarski–Seidenberg theorem is crucial as shown by the

following argument:

R4(q)
|q|→+∞
∼

H(q)
log(H(q))

and lim
|q|→+∞

H(q) = +∞,

where R(q) is a function that plays the same role as R
>3

V (q) and still satisfies

lim|q|→+∞
R4(q)
H(q) = 0. For a nonpolynomial function V , we may think of a function R(q)

that satisfies

1
C

R(q) 6 max
q ′∈B(q, b

R(q) ), |α|=3
|∂αq V (q)|

1
3 6 C R(q) ,

with C > 1 and b > 0 independent of q for |q| large enough.1

Alternatively, the asymptotic behaviour (1.9) of Assumption 1 should be replaced by

something like R(q)4 = O(H(q)1−ν) with ν > 0 as |q| → +∞, q ∈ Rd
\Σ(κ) or R(q)4 =

O
((

H(q)
(log H(q))2

))
(with |Hess V (q)| → +∞ as |q| → +∞, q ∈ Rd

\Σ(κ)).

Therefore we get from the above inequality and (3.16)

‖KV (2)
j

u j‖
2 > c′

3Σ(κ)(C(κ))
2

R
>3

V (q ′j )
4
‖u j‖

2. (3.17)

Next, recall that t j = 2〈Hess V (q ′j )〉
1/4. By (2.7) in Lemma 2.3, the equivalence

t j � 2〈Hess V (q)〉1/4 (3.18)

holds for any q ∈ supp χ j with |q| > C(κ) > C2(κ). From (3.7) and (3.18), we see that

‖KV (2)
j

u j‖
2
+ (1+ 10C)t4

j ‖u j‖
2 > C

(
‖Opu j‖

2
+‖〈∂q V (2)

j (q)〉2/3u j‖
2

+‖〈Hess V (q)〉1/2u j‖
2
+‖〈Dq〉

2/3u j‖
2
+ 9t4

j ‖u j‖
2
)
. (3.19)

One has by (2.6) in Lemma 2.3,

〈∂q V (2)
j (q)〉 > 1

2 〈∂q V (q)〉 (3.20)

for all q ∈ (supp χ j )∩Σ(κ). On the other hand, for every q ∈ (supp χ j )∩
(
Rd
\Σ(κ)

)
,

|Hess V (q)| + R
>3

V (q)4+ 1 >
1
κ
|∂q V (q)|

4
3 . (3.21)

Furthermore, it results from Assumption 1, in particular (1.9), that for all q ∈ (supp χ j )∩(
Rd
\Σ(κ)

)
,

2|Hess V (q)| +C4 R
>3

V (q)4+ 1 6 5
2 |Hess V (q)|. (3.22)

1As an example, we may take the function V on R2 equal to r6

(log r)3
(1+ cos(θ)) in polar coordinates for

r > 1.
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From (3.21) and (3.22), we get for every q ∈ (supp χ j )∩
(
Rd
\Σ(κ)

)
,

|Hess V (q)| >
2

5κ
|∇V (q)|

4
3 , |Hess V (q)| >

2
5
>

2
5κ
.

Hence there exists a constant c′′ > 0 such that

〈Hess V (q)〉 >
c′′

κ
〈∂q V (q)〉4/3 (3.23)

for any q ∈ (supp χ j )∩
(
Rd
\Σ(κ)

)
with |q| > C(κ) > C2(κ).

The above inequality combined with (3.19) and (3.20) leads to

‖KV (2)
j

u j‖
2
+ (1+ 10C)t4

j ‖u j‖
2 > C

(
‖Opu j‖

2
+‖〈Dq〉

2/3u j‖
2
+ 9t4

j ‖u j‖
2

+ min
(

1
24/3 ,

c′′

2κ

)
‖〈∂q V (q)〉2/3u j‖

2
+

1
2
‖〈Hess V (q)〉1/2u j‖

2) (3.24)

for all κ > κ2.

Collecting estimates (3.16) and (3.24), we get

(log(t4
j ))

2
‖KV (2)

j
u j‖

2

> C”
(
‖Opu j‖

2
+‖〈Dq〉

2/3u j‖
2
+ 9t4

j ‖u j‖
2

+ min
( 1

24/3 ,
c′′

2κ

)
‖〈∂q V (q)〉2/3u j‖

2
+

1
2
‖〈Hess V (q)〉1/2u j‖

2
)
. (3.25)

In order to reduce the written expressions, we denote

31, j =
Op

log(t4
j )
, 32, j =

〈Hess V (q)〉1/2

log(t4
j )

, 33, j =
〈∂q V (q)〉2/3

log(t4
j )

, 34, j =
t2

j

log(t4
j )
.

Estimate (3.25) can be rewritten as follows:

‖KV (2)
j

u j‖
2

> C”
(
‖31, j u j‖

2
+

1
2
‖32, j u j‖

2
+min

( 1
24/3 ,

c′′

2κ

)
‖33, j u j‖

2

+ 9‖34, j u j‖
2
+

∥∥∥ 〈Dq〉
2/3

log(t4
j )

u j

∥∥∥2)
. (3.26)

Using (3.17) and (3.26), we obtain

(1+C”)‖KV (2)
j

u j‖
2

> C”
(
‖31, j u j‖

2
+

1
2
‖32, j u j‖

2
+min

( 1
24/3 ,

c′′

2κ

)
‖33, j u j‖

2
+ 9‖34, j u j‖

2

+

∥∥∥ 〈Dq〉
2/3

log(t4
j )

u j

∥∥∥2
+

c′

2
3Σ(κ)(C(κ))R

>3

V (q ′j )
4
‖u j‖

2
)
.
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Therefore in both cases, that is, for all j ∈ I (κ), where κ > κ2,

‖KV (2)
j

u j‖
2 > C (3)

(
‖31, j u j‖

2
+‖32, j u j‖

2
+

1
κ
‖33, j u j‖

2
+‖34, j u j‖

2

+‖
〈Dq〉

2/3

log(t4
j )

u j‖
2
+min

(
κ,3Σ(κ)(C(κ))

)
R

>3

V (q ′j )
4
‖u j‖

2
)
.

(3.27)

Due to the elementary inequality u4/3
+ v4 > 1

c0
(u2
+ v4)2/3 satisfied for all u, v > 1, we

obtain for all κ > κ2∥∥∥ 〈Dq〉
2/3

log(t4
j )

u j

∥∥∥2
+

1
2

min
(
κ,3Σ(κ)(C(κ))

)
R

>3

V (q ′j )
4
‖u j‖

2 >
1
c0
‖35, j u j‖

2, (3.28)

where

35, j =
(1+ D2

q + R
>3

V (q ′j )
4)

1
3

log(t4
j )

.

In conclusion, we get by (3.27) and (3.28) for every j ∈ I (κ) with κ > κ2

‖KV (2)
j

u j‖
2 > C (3)

(
‖31, j u j‖

2
+‖32, j u j‖

2
+

1
κ
‖33, j u j‖

2
+‖34, j u j‖

2

+
1
c0
‖35, j u j‖

2
+

1
2

min
(
κ,3Σ(κ)(C(κ))

)
R

>3

V (q ′j )
4
‖u j‖

2
)
.

We now fix the choice first of C(κ) and second of κ. Because lim%→+∞3Σ(κ)(%) = +∞,

we can choose for any κ > κ2, C(κ) > max(C1,C2(κ)) such that 3Σ(κ)(C(κ)) > κ. We

then choose κ = κ3 > κ2 such that

C (3)

8
min

(
κ3,3Σ(κ3)(C(κ3))

)
=

C (3)κ3

8
> (c′d,r )

2,

where c′d,r is the constant in (3.5),

∑
j∈I (κ3)

(1
4
‖KV (2)

j
u‖2− (c′d,r )

2 R
>3

V (q ′j )
4
‖u j‖

2
)
>

C (3)

8

∑
j∈I (κ3)

(
‖31, j u j‖

2
+‖32, j u j‖

2

+
1
κ3
‖33, j u j‖

2
+‖34, j u j‖

2
+

1
c0
‖35, j u j‖

2
)
. (3.29)

Step 2, j 6∈ I (κ3): The set N \ I (κ3) is now a fixed finite set and we can define

C (4)
= max

j∈N\I (κ3)

[
AV (2)

j
+ sup

q∈suppχ j

(
〈Hess V (q)〉+ 〈∂q V (q)〉4/3

)
+

t4
j

(log(t4
j ))

2
+ (1+ (c′d,r )

2)(1+ R>3
V (q ′j ))

4

]
.
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From the lower bound (1.5), we deduce

1
4
‖KV (2)

j
u j‖+C (4)

‖u j‖
2
− (c′d,r )

2 R
>3

V (q ′j )
4
‖u j‖

2

>
c
4

[
‖Opu j‖

2
+‖〈Dq〉

2/3u j‖
2
]
+ (1+ R

>3

V (q ′j ))
4
‖u j‖

2

+‖〈∂q V (q)〉2/3u j‖
2
+‖〈Hess V (q)〉1/2u j‖

2
+

∥∥∥ t2
j

log(t4
j )

u j

∥∥∥2
.

With the quantities

31, j =
Op

log(t4
j )
, 32, j =

〈Hess V (q)〉1/2

log(t4
j )

, 33, j =
〈∂q V (q)〉

2
3

log(t4
j )

,

34, j =
t2

j

log(t4
j )
, 35, j =

(1+ D2
q + R

>3

V (q ′j )
4)

1
3

log(t4
j )

,

where t j > 2, we deduce∑
j 6∈I (κ3)

(1
4
‖KV (2)

j
u j‖

2
− (c′d,r )

2 R
>3

V (q ′j )
4
‖u j‖

2
+C (4)

‖u j‖
2
)

> C (5)
∑

j 6∈I (κ3)

(
‖31, j u j‖

2
+‖32, j u j‖

2
+

1
κ3
‖33, j u j‖

2
+‖34, j u j‖

2
+

1
c0
‖35, j u j‖

2
)
.

(3.30)

Collecting (3.5), (3.29) and (3.30), there exists a positive constant C (6) > 1 depending

on V such that

‖KV u‖2L2 +C (6)
‖u‖2L2 >

1
C (6)

∑
j∈N

(
‖31, j u j‖

2
+‖32, j u j‖

2
+‖33, j u j‖

2

+ ‖34, j u j‖
2
+‖35, j u j‖

2
)
. (3.31)

Step 3. In this final step, set L(s) = s+1
log(s+1) for all s > 1. Note that there exists a constant

c > 0 such that for all x > 1,

inf
t>2

x
log(t)

+ t >
1
c

L(x).

In view of the above estimate,

‖31, j u j‖
2
+

1
4
‖34, j u j‖

2 >
1
4

∫ (
λ2

(log(t4
j ))

2
+ t2

j

)
dµu j (λ)

>
1
8

∫ (
λ

log(t j )
+ t j

)2

dµu j (λ)

>
1
c3
‖L(Op)u j‖

2.

Here we recall that dµu j (λ) = d〈E(λ)u j , u j 〉, where E(λ) is the spectral family.
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Summing over j , we obtain the first term in the desired estimation (1.10). Likewise,

for the second term

‖33, j u j‖
2
+

1
4
‖34, j u j‖

2 >
1
c4
‖L(〈∂q V (q)〉2/3)u j‖

2,

with ∑
j∈N
‖L(〈∂q V (q)〉2/3)u j‖

2
= ‖L(〈∂q V (q)〉2/3)u‖2.

To obtain the third term in (1.10), write similarly

‖32, j u j‖
2
+

1
4
‖34, j u j‖

2 >
1
c5
‖L(〈Hess V (q)〉1/2)u j‖

2,

with ∑
j∈N
‖L(〈Hess V (q)〉1/2)u j‖

2
= ‖L(〈Hess V (q)〉1/2)u‖2.

In the same way,

‖35, j u j‖
2
+

1
4
‖34, j u j‖

2 >
1
c6
‖L((1+ D2

q + R
>3

V (q ′j )
4)

1
3 )u j‖

2.

By Lemma 2.5, we get∑
j∈N
‖L((1+ D2

q + R
>3

V (q ′j )
4)

1
3 )u j‖

2 >
1
c6
‖L((1+ D2

q + R
>3

V (q)4)
1
3 )u‖2.

To conclude, just remark that

〈u, (1+ D2
q + R

>3

V (q)4)u〉 > 〈u, (1+ D2
q)u〉 > 〈u, 〈D

2
q〉u〉 > ‖u‖

2

holds for all u ∈ C∞0 (R
2d). Then applying (2.15) in Lemma 2.4 with A = (1+ D2

q +

R
>3

V (q)4), B = 〈D2
q〉, α0 =

2
3 and k = 2, we obtain

‖L((1+ D2
q + R

>3

V (q)4)
1
3 )u‖2 > ‖L(〈D2

q〉
1
3 )u‖2 >

1
c7
‖L(〈Dq〉

2/3)u‖2

for all u ∈ C∞0 (R
2d).

Finally collecting all terms, we have found CV > 1 such that

‖KV u‖2L2 +CV ‖u‖2L2 >
1

CV

(
‖L(Op)u‖2L2 +‖L(〈∇V (q)〉

2
3 )u‖2L2

+‖L(〈Hess V (q)〉
1
2 )u‖2L2 +‖L(〈Dq〉

2
3 )u‖2L2

)
(3.32)

holds for all u ∈ C∞0 (R
2d). Because C∞0 (R

2d) is dense in D(KV ) endowed with the graph

norm, the result extends to any u ∈ D(KV ).
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4. Applications

This section is devoted to some applications of Theorem 1.1. In each of the following

examples, we examine that Assumption 1 is well fulfilled. We recall here that one knows

that for a potential V satisfying Assumption 1, the resolvent of the Witten Laplacian 1
(0)
V

is compact (see [4, Theorem 10.16]). In the case of the Witten Laplacian, the following

examples were in particular considered in [4] (cf. Propositions 10.19 and 10.21).

Example 1: Let us consider as a first example of application the case

V (q1, q2) = −q2
1 q2

2 , with q = (q1, q2) ∈ R2.

By direct computation,

∂q V (q) =

(
−2q1q2

2

−2q2q2
1

)
, |∂q V (q)| = 2|q1q2||q|,

Hess V (q) =

(
−2q2

2 −4q1q2

−4q1q2 −2q2
1

)
, |Hess V (q)| = 2

√
|q|4+ 6q2

1 q2
2 � |q|

2,

R
>3

V (q) = |4q2|
1/3
+ |4q1|

1/3
+ 2× 41/4.

It is clear that the trace of Hess V (q) given by −2|q|2 is negative for all q ∈ R2
\ {0} .

Hence

Tr−,V (q) > Tr+,V (q) for all q ∈ R2, |q| > 1.

Moreover, for all κ > 0, the algebraic set R2
\Σ(κ) is not bounded since (0, q2) ∈ R2

\

Σ(κ) for all q2 ∈ R. Furthermore, for κ > 1 chosen as we wish,

lim
|q|→+∞

q∈R2
\Σ(κ)

R
>3

V (q)4

|Hess V (q)|
= lim
|q|→+∞

q∈R2
\Σ(κ)

|q|4/3

|q|2
= 0

since R
>3

V (q)4 6 |q|4/3 when |q| > 23
× 43/4. In Figure 1 we sketch as an example Σ(800)

in blue.

The compactness of the resolvent of KV in this case follows from Corollary 1.2.

Example 2: Let n ∈ N. The polynomial V (q) = −q2
1 (q

2
1 + q2

2 )
n verifies Assumption 1 only

for n = 1.
A straightforward computation shows that

∂q V (q) = −

(
2q1(|q|2n

+ nq2
1 |q|

2(n−1))

2nq2q2
1 |q|

2(n−1)

)
,

Hess V (q) = −2|q|2(n−2)

(
|q|4+ 5nq2

1 |q|
2
+ 2n(n− 1)q4

1 2nq1q2|q|2+ 2n(n− 1)q3
1 q2

2nq1q2|q|2+ 2n(n− 1)q3
1 q2 nq2

1 |q|
2
+ 2n(n− 1)q2

1 q2
2

)
.
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Figure 1. Contour lines of V (q1, q2) = −q2
1 q2

2 .

Note that the trace of Hess V (q) equals

−2|q|2(n−2)
(
|q|4+ 5nq2

1 |q|
2
+ 2n(n− 1)q4

1 + nq2
1 |q|

2
+ 2n(n− 1)q2

1 q2
2

)
< 0

for all q ∈ R2, |q| > 1. Hence

−Tr−,V (q)+Tr+,V (q) < 0, for any q ∈ R2, |q| > 1.

In addition, for all κ > 0, the set R2
\Σ(κ) is not bounded since (0, q2) ∈ R2

\Σ(κ) for

all q2 ∈ R.
For q large enough, |Hess V (q)| � |q|2n and |D3V (q)| � |q|2n−1; then

R
>3

V (q)4

|Hess V (q)|
�
(|q|2n−1)4/3

|q|2n .

Hence

lim
|q|→+∞

q∈R2
\Σ(κ)

R
>3

V (q)4

|Hess V (q)|
= 0 if and only if n < 2.

Taking as an example κ = 800, we get the shape of Σ(800) coloured blue as in Figure 2.

In this example, the hypothesis of Theorem 1.1 is satisfied only for n = 1. By

Corollary 1.2, we deduce that the Kramers–Fokker–Planck operator KV with potential

V (q) = −q2
1 (q

2
1 + q2

2 ) has a compact resolvent.

Example 3: For ε ∈ R \ {0,−1}, we consider V (q1, q2) = (q2
1 − q2)

2
+ εq2

2 . For all q ∈ R2,

one has

∂q V (q) =

(
4q1(q2

1 − q2)

−2(q2
1 − q2)+ 2εq2

)
, |∂q V (q)| = 4|q1(q2

1 − q2)| + |− 2(q2
1 − q2)+ 2εq2|,

Hess V (q) =
(

12q2
1 − 4q2 −4q1
−4q1 2(1+ ε)

)
, |Hess V (q)| = |12q2

1 − 4q2| + 8|q1| + 4|1+ ε|,

R
>3

V (q) = (24|q1|)
1/3
+ 3× 41/3

+ 241/4.
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Figure 2. Contour lines of V (q1, q2) = −q2
1 (q

2
1 + q2

2 ).

In this case, we are going to show that for all κ > 0, the algebraic set R2
\Σ(κ) is

bounded. Let (q1, q2) ∈ R2
\Σ(κ); then(

|Hess V (q)| + R
>3

V (q)4+ 1
)
>

1
κ
|∇V (q)|

4
3 .

Up to a change of coordinates X1 = q1, X2 = q2
1 − q2, the above inequality is equivalent

to (
4|2X2

1 + X2| + 8|X1| + 4|1+ ε| +
(
(24|X1|)

1/3
+ 3× 41/3

+ 241/4
)4
+ 1

)
>

1
κ

(
4|X1 X2| + |− 2(1+ ε)X2+ 2εX2

1|
) 4

3
.

Using the triangle inequality on the right-hand side and the reverse triangle inequality

with the elementary inequality (u+ v)
4
3 > u

4
3 + v

4
3 satisfied for all u, v > 0, it follows that

|X1|
2
+ |X2| + |X1| +

(
|X1|

1
3 + c

)4
>

c′

κ

(∣∣∣|2(1+ ε)X2| − |2εX2
1|

∣∣∣ 4
3
+ |X1 X2|

4
3

)
. (4.1)

Suppose first that |X1| 6 1. Inequality (4.1) implies

|X2| + c1 >
c′

κ

∣∣∣|2(1+ ε)X2| − |2εX2
1|

∣∣∣ 4
3
. (4.2)

The right-hand part in the above inequality is bounded from above by |X2| + c1, where

c1 is some positive constant. Now we distinguish two cases.
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Case 1: If 1
2 |2(1+ ε)X2| 6 |2εX2

1| or equivalently |X2| 6 |
2ε

1+ε ||X
2
1|, then |X2| 6 |

2ε
1+ε |.

Case 2: Otherwise, if 1
2 |2(1+ ε)X2| > |2εX2

1| , then we get

|X2| + c1 >
c′

κ
|1+ ε||X2|

4/3.

Using the fact that ε 6= −1, we deduce that X2 must be also bounded.

Now if |X1| > 1, we derive from (4.1) the estimates

|X1|
2
+ |X2| + c3 >

c4

κ

∣∣∣|2(1+ ε)X2| − |2εX2
1|

∣∣∣ 4
3
, (4.3)

|X1|
2
+ |X2| + c3 >

c4

κ
|X1 X2|

4
3 . (4.4)

Here we study three cases.

• First, if 1
2 |2(1+ ε)X2| > |2εX2

1| or equivalently |X1| 6 |
1+ε
2ε ||X2|, then (4.3) gives(

1+ |
1+ ε
ε
|

)
|X2| + c3 >

c4

κ
|(1+ ε)X2|

4
3 .

Since ε 6= −1, it follows that X2 is bounded and so is X1.

• Now if 2|2(1+ ε)X2| 6 |2εX2
1| or equivalently |X2| 6 |

ε
2(1+ε) ||X

2
1|, estimate (4.3) leads

to (
1+

∣∣∣∣ ε

2(1+ ε)

∣∣∣∣) |X1|
2
+ c3 >

c4

κ
|εX1|

8
3 .

Since ε 6= 0, it follows that X1 is bounded and so is X2.

• Finally, if 1
2 |2(1+ ε)X2| 6 |2εX2

1| 6 2|2(1+ ε)X2|, then by (4.4),(
1+

∣∣∣∣ 2ε
1+ ε

∣∣∣∣) |X1|
2
+ c3 >

c4

κ

(
|X1||

ε

2(1+ ε)
|X2

1|

) 4
3
.

Hence, since ε 6= 0, X1 is bounded and then X2 is so.
In Figure 3 we sketch as an example Σ(2) in blue.

We conclude that for ε ∈ R \ {0,−1}, Assumption 1 is satisfied, and therefore by

Corollary 1.2, KV has a compact resolvent.

For ε = 0, thanks to [4] (see Proposition 10.21, p. 111), we know that the Witten

Laplacian defined by

1
(0)
V = −1q + |∇V (q)|2−1V (q), q = (x1, x2) ∈ R2

has no compact resolvent and then the Kramers–Fokker–Planck operator KV has no

compact resolvent.

This example was studied in the case of the Witten Laplacian operator by Helffer and

Nier in their book [4]. A small mistake was made in [4] in Proposition 10.21. In fact,

the equations l11 = l12 = l111 = 0 should be replaced by (1+ ε)l11 = l12 = l111 = 0. When

ε = −1, we can eventually construct a Weyl sequence for the Witten Laplacian operator
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Figure 3. Contour lines of V (q1, q2) = (q2
1 − q2)

2
+ 0.5q2

2 .

in the following way. In this case, the potential V (q1, q2) = (q2
1 − q2)

2
− q2

2 is equal to

−2q2q2
1 + q4

1 .

In order to construct a Weyl sequence for 1
(0)
V , it is sufficient to take χ( (q2+n2)

n ), where

χ is a cutoff function supported in [−1, 1], and then consider the sequence

un(q1, q2) = χ

(
(q2+ n2)

n

)
exp(−V (q1, q2)).

The support of un is then included in −n2
− n 6 q2 6 −n2

+ n. Hence the un ’s have

disjoint supports for large n.
Therefore we have

−2n2 6 q2 6 −
n2

2
and − 4n2q2

1 − q4
1 6 −V (q1, q2) 6 −n2q2

1 − q4
1 6 −n2q2

1 .

As a result, we get for n large

〈un,1
(0)
V un〉

‖un‖2
=
‖(∂q + ∂q V (q))(un)‖

2

‖un‖2

=
‖(∂qχ)e−V

‖
2

‖un‖2
= O

(
1
n2

)
.

Here, to get the lower bound of the above quantity, we restrict the integral in q1 = O( 1
n ).

Hence, for ε = −1, the Witten Laplacian attached to V (q1, q2) = (q2
1 − q2)

2
+ εq2

2 has no
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compact resolvent and then the Kramers–Fokker–Planck operator KV has no compact

resolvent.

As a conclusion, for ε = −1 and also for ε = 0, the Kramers–Fokker–Planck operator

KV has no compact resolvent.

Acknowledgements. I express my sincere gratitude to Professor Francis Nier. As a

PhD advisor, Professor Nier supported me in this work.

A. Slow metric and partition of unity

The purpose of this appendix is to state with references or proofs the facts concerning

metrics, which are needed in the article. We first remind the following definitions.

Definitions A.1. A metric g on Rm is called a slowly varying metric if there exists a
constant C > 1 such that for all x, y ∈ Rm satisfying gx (x − y, x − y) 6 C−1, it follows

that

C−1gx (z, z) 6 gy(z, z) 6 Cgx (z, z) (A 1)

holds for all z ∈ Rm .

Let g1 and g2 be two metrics. We say that g1 is g2-slow if there is a constant c > 1
such that for all x, y ∈ Rm ,

g2
x (x − y, x − y) 6 c−1

⇒ c−1g1
x (z, z) 6 g1

y(z, z) 6 cg1
x (z, z) (A 2)

holds for all z ∈ Rm .

Remark A.2. The second statement in the above definitions is a typical application of the

notion of the second microlocalization developed by Bony–Lerner (see [3]).

Remark A.3. Property A 1 will be satisfied if we ask only that

∃C > 1,∀x, y, z ∈ Rm, gx (x − y, x − y) 6 C−1
H⇒ gy(z, z) 6 Cgx (z, z). (A 3)

Indeed, assuming (A 3) gives that wherever gx (x − y, x − y) 6 C−1 (which is less than or

equal to one since C > 1 from (A 3) with x = y), this implies gy(y− x, y− x) 6 C−1 and

then gx (z, z) 6 Cgy(z, z) so that (A 1) is fulfilled.

Notations A.4. For r ∈ N, let Er denote the set of polynomials with degree not greater

than r :

Er =
{

P ∈ R[X1, . . . , Xd ], d◦P 6 r
}
.

For a polynomial P ∈ Er of degree r ∈ N∗ and for n ∈ {1, . . . , r}, the function R
>n

P :

Rd
→ R is defined by

R
>n

P (q) =
∑

n6|α|6r

|∂αq P(q)|
1
|α| . (A 4)
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In the present article, we are mainly concerned with the metric gn
= R

>n

P (q)2 dq2, where

n ∈ {1, . . . , r}, which satisfies the following properties.

Lemma A.5. Let P ∈ Er , where r ∈ N∗ is the degree of P, and let n be a natural number

in {1, . . . , r} .
(1) The metric gn is slow: There exists a uniform C = C(n, r, d) > 1 such that

R
>n

P (q)|q − q ′| 6 C−1
H⇒

( R
>n

P (q)

R>n

P (q ′)

)±1
6 C. (A 5)

(2) The metric gn−1 is gn-slow: There is a constant C ′ = C ′(n, r, d) > 1 so that

R
>n

P (q)|q − q ′| 6 C ′−1
H⇒

( R
>n−1

P (q)

R>n−1

P (q ′)

)±1
6 C ′. (A 6)

Proof. The dimension d is fixed. Assume n, r ∈ N∗ with n 6 r. The set

Kn,r :=
{

P ∈ Er/En−1, R
>n

P
(0) = R

>n

P (0) = 1
}

is a compact set of Er/En−1, where P ∈ Er/En−1 can be identified with the polynomial

P(q) =
∑

n6|α|6r
∂αq P(0)
α!

qα. For any % > 0, the mapping

Kn,r × B(0, %) → [0,+∞)

(P, t) 7→ R
>n

P
(t) =

∑
|α|>n |∂

α
x P(t)|

1
|α|

is continuous because s 7→ sν is continuous on [0,+∞) for any ν > 0. On the compact

set Kn,r × B(0, %), it admits a maximum Mn,r,% and a minimum mn,r,%, which cannot be

0. Actually, R
>n

P
(t0) = 0 means ∂αx P(t0) = 0 for all α ∈ Nd , |α| > n, and by the Taylor

expansion ∂αx P(t) = 0 for all t ∈ Rd , α ∈ Nd , |α| > n, which contradicts R
>n

P
(0) = 1.

Now for a general V ∈ Er with d◦V > n, we know that for all q ∈ Rd , R
>n

V (q) 6= 0. We

thus consider for any q ∈ Rd , the class Pq of V (q + R
>n

V (q)−1t) in Er/En−1. It satisfies

R
>n

Pq
(t) =

∑
n6|α|6r

|∂αt Pq(t)|
1
|α| = R

>n

V (q)−1 R
>n

V (q + R
>n

V (q)−1t) ,

and in particular,

R
>n

Pq
(0) = 1, Pq ∈ Kn,r .

Therefore we obtain for % = 1

(|t | 6 1)⇒

(
mn,r,1 6

(
R

>n

V (q + R
>n

V (q)−1t)

R>n

V (q)

)
6 Mn,r,1

)
,

which implies, with q ′ = q + t
R
>n
V (q)

,

(
R

>n

V (q)|q − q ′| 6 1
)
⇒

(
R

>n

V (q)

R>n

V (q ′)

)±1

6 max
{

Mn,r,1,
1

mn,r,1

}
.
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We conclude the proof of (1) by choosing C(n, r, d) = max{Mn,r,1,
1

mn,r,1
, 1} and by

applying the more general result to P ∈ Er such that d◦P = r .

Let us prove (2). We still work in Kn,r = {P ∈ Er/En−1, R
>n

P
(0) = R

>n

P (0) = 1} and now

with a given % ∈]0, 1]. From the proof of (1), we know that there exists Mn,r,1,mn,r,1 > 0
such that

mn,r,1 6 R
>n

P
(t) 6 Mn,r,1

for all t , |t | 6 % 6 1 and all P ∈ Kn,r .

In particular, there exists a constant C̃n,r such that

∀P ∈ Kn,r ,∀t ∈ B(0, %) ⊂ B(0, 1), max
n6|α|6r

∣∣∣∂αq P(t)
∣∣∣ 6 C̃n,r . (A 7)

For any P ∈ Er in the class P ∈ Er/En−1, we decompose R
>n−1

P (t) into

R
>n−1

P (t) =
∑
|β|=n−1

∣∣∣∂βq P(t)
∣∣∣ 1

n−1
+ R

>n

P
(t).

By the Taylor expansion,

∂βq P(t)− ∂βq P(0) =
∑

16|α′|6r−n+1

∂
β+α′

q P(0)
α′!

tα
′

, |β| = n− 1,

and owing to (A 7), there exists a constant Cn,r > 0 such that the inequality∣∣∣|∂βq P(t)| − |∂βq P(0)|
∣∣∣ 6 Cn,r%

holds for all β ∈ Nd , |β| = n− 1, and all t ∈ Rd , |t | 6 % 6 1.

The uniform continuity of s 7→ s
1

n−1 on [0,+∞[ now implies∣∣∣∣∣∣
∑
|β|=n−1

∣∣∣∂βq P(t)
∣∣∣ 1

n−1
−

∑
|β|=n−1

∣∣∣∂βq P(0)
∣∣∣ 1

n−1

∣∣∣∣∣∣ 6 εn,r (%)

with lim%→0 εn,r (%) = 0 uniformly with respect to P ∈ P, P ∈ Kn,r and t ∈ B(0, %) ⊂
B(0, 1).
On one side, we write

R
>n−1

P (t) 6
∑
|β|=n−1

∣∣∣∂βq P(t)
∣∣∣ 1

n−1
+Mn,r,1

6
∑
|β|=n−1

∣∣∣∂βq P(0)
∣∣∣ 1

n−1
+ εn,r (%)+Mn,r,1

6 max(1, εn,r (%)+Mn,r,1)R
>n−1

P (0).

On the other side, we have

R
>n−1

P (0) 6
∑
|β|=n−1

∣∣∣∂βq P(0)
∣∣∣ 1

n−1
+Mn,r,1
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6
∑
|β|=n−1

∣∣∣∂βq P(t)
∣∣∣ 1

n−1
+ εn,r (%)+Mn,r,1

6 max
(

1,
εn,r (%)+Mn,r,1

mn,r,1

)
R

>n−1

P (t).

For %n,r ∈]0, 1] chosen small enough such that εn,r (%n,r ) 6 Mn,r,1, we deduce

∀P ∈ Kn,r , ∀P ∈ P, ∀t ∈ B(0, %n,r ),

(
R

>n−1

P (t)

R>n−1

P (0)

)±1

6 max
(

2Mn,r,1,
2Mn,r,1

mn,r,1

)
.

For V ∈ Er such that d◦V > n, we apply the previous estimate to Pq(t) = V (q +
R>n

V (q)−1t), with Pq ∈ Kn,r , which leads to

(
R

>n

V (q)|q − q ′| 6 %n,r

)
⇒

( R
>n−1

V (q)

R>n−1

V (q ′)

)±1

6 max
(

2Mn,r,1,
2Mn,r,1

mn,r,1

) .
We conclude the proof by choosing C ′(n, r, d) = max(2Mn,r,1,

2Mn,r,1
mn,r,1

, 1
%n,r
) and by applying

the more general result to P ∈ Er such that d◦P = r .

Remark A.6. The proof of (1) gives a more general result than the slowness, namely when

n, r, d are fixed: For any λ > 0, there exists Cλ > 1 such that

(R
>n

P (q)|q − q ′| 6 λ)⇒

( R
>n

P (q)

R>n

P (q ′)

)±1

6 Cλ

 ,
without assuming that λ > 0 is small. Actually, it is even possible to estimate Cλ in

terms of λ→∞ by applying lemma A.5 to the polynomial t P, t ∈ [0, 1], with t
1
n R

>n

P (q) 6

R>n
t P (q) 6 t

1
r R

>n

P (q).

The main feature of a slow varying metric is that it is possible to introduce some

partitions of unity related to the metric in a way made precise in the following theorem.

For more details and proof, see [9] (Section 1.4, p. 25).

Theorem A.7 [9]. For any slowly varying metric g in Rm , one can choose a sequence

xν ∈ Rm such that the balls

Bν =
{

x;
√

gxν (x − xν, x − xν) < 1
}

form a covering of Rm for which the intersection of more than N = (4C3
+ 1)m balls Bν

is always empty (C is the constant in (A 1)). In addition, for any decreasing sequence di
with

∑
j d j = 1, one can choose nonnegative φν ∈ C∞0 (Bν) with

∑
φν = 1 in Rm so that

for all k,

|φ(k)ν (x; y1, . . . , yk)| 6 (NCC1)
k
√

gx (y1, y1) · · ·
√

gx (yk, yk)/d1 · · · dk,

where C is the constant in (A 1) and C1 is a constant that depends only on m.
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Regarding the above theorem, we have the following result.

Lemma A.8. Let P ∈ Er , where r ∈ N∗ is the degree of P and n ∈ {1, . . . , r}. Then there

exists a partition of unity
∑

j∈N9 j (q)2 ≡ 1 in Rd such that we have the following:

(1) For all q ∈ Rd , the cardinality of the set { j, 9 j (q) 6= 0} is uniformly bounded.

(2) For any natural number j ∈ N,

supp 9 j ⊂ B(q j , a R
>n

P (q j )
−1) and 9 j ≡ 1 in B(q j , bR

>n

P (q j )
−1)

for some q j ∈ Rd with 0 < b < a independent of j ∈ N.
(3) For all α ∈ Nd

\ {0}, there exists cα > 0 such that∑
j∈N
|∂αq9 j |

2 6 cαR
>n

P (q)2|α|.

Moreover, the constants a, b and cα can be chosen uniformly with respect to P ∈ Er ,

once the degree r ∈ N and the dimension d ∈ N are fixed.

B. Around Tarski–Seidenberg theorem

In this appendix, we give an application of the Tarski–Seidenberg theorem [10], which

we state in the following geometric form. We first introduce a few basic concepts needed

for the statement.

Definition B.1. A subset of Rn is called semialgebraic if it is a finite union of intersections

of finitely many sets defined by polynomial equations or inequalities.

Definition B.2. Let A ⊂ Rn and B ⊂ Rm be two subalgebraic sets. The function f : A→ B
is said to be semialgebraic if its graph 0 f = {(x, y) ∈ A× B; y = f (x)} is a semialgebraic

set of Rn
×Rm .

Theorem B.3 [10] (Tarski–Seidenberg). If A is a semialgebraic subset of Rn+m
= Rn

⊕

Rm , then the projection A′ of A in Rm is also semialgebraic.

Proposition B.4 [10]. If E is a semialgebraic set on R2+n, and

f (x) = inf
{

y ∈ R; ∃z ∈ Rn, (x, y, z) ∈ E
}

is defined and finite for large positive x, then f is identically 0 for large x or else

f (x) = Axa(1+ o(1)), x →+∞,

where A 6= 0 and a is a rational number.

We refer to [10] (see Theorems A.2.2 and A.2.5) for detailed proofs of Theorem B.3

and Proposition B.4.

In the final part of this section, we list and recall the following notations.
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Notation B.5. Let P be a real-valued polynomial on Rd with d◦P = r. For all natural

numbers n ∈ {0, . . . , r} and every q ∈ Rd ,

R
>n

P (q) =
∑

n6|α|6r

|∂αq P(q)|
1
|α| , (B 1)

R=n
P (q) =

∑
|α|=n

|∂αq P(q)|
1
|α| . (B 2)

Lemma B.6. Let Σ̃ be an unbounded semialgebraic set and V a polynomial in
R[q1, . . . , qd ] of degree r ∈ N∗ satisfying the assumption

lim
|q|→+∞

q∈Σ̃

R
>n

V (q)α

R=m
V (q)2

= 0, (B 3)

where α ∈ Q, n,m ∈ {0, 1, . . . , r − 1}, n > m, are fixed numbers.

Then there exist δ ∈ (0, 1) and a positive nondecreasing function 3Σ̃ : (0,+∞)→
[0,+∞) so that

∀q ∈ Σ̃, ∀% > 0, |q| > %, 3Σ̃ (%)R
>n

V (q)α 6 R=m
V (q)2(1−δ)

and lim
%→+∞

3Σ̃ (%) = +∞.

Proof. Let V be a real-valued polynomial on Rd with degree r ∈ N∗. Suppose that there
are α ∈ Q, n,m ∈ {0, 1, . . . , r − 1} such that

lim
|q|→+∞

q∈Σ̃

R
>n

V (q)α

R=m
V (q)2

= 0, (B 4)

where Σ̃ is a given unbounded semialgebraic set.

After setting τ = 2 LCM
(
|β|, min(n,m) 6 |β| 6 r

)
, where the abbreviation LCM

stands for least common multiple, define the functions R̃
>n

V and R̃=m
V for all q ∈ Rd

by

R̃
>n

V (q) =
∑

n6|α|6r

|∂αq V (q)|
τ
|α|

and

R̃=m
V (q) =

∑
|α|=m

|∂αq V (q)|
τ
|α| .

Note that one has the equivalences R
>n

V (q) �
(
R̃

>n

V (q)
) 1
τ and R=m

V (q) �
(
R̃=m

V (q)
) 1
τ for all

q ∈ Rd , where the functions R
>n

V and R=m
V are defined respectively as in (B 1) and (B 2).

Clearly, Assumption (B 4) is equivalent to

lim
|q|→+∞

q∈Σ̃

R̃
>n

V (q)α

R̃=m
V (q)2

= 0. (B 5)
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Remark here that R̃
>n

V (q) and R̃=m
V (q) are polynomials in q ∈ Rd variable. Furthermore,

Assumption (B 5) can be written as

R̃
>n

V (q)α 6 ε(q)R̃=m
V (q)2

for all q ∈ Σ̃ , where

ε(q) = inf
{
ε > 0, ε R̃=m

V (q)2− R̃
>n

V (q)α > 0
}
, lim
|q|→+∞

q∈Σ̃

ε(q) = 0. (B 6)

Now, following the notations of Proposition B.4, we introduce the set

E =
{
(q, %, ε) ∈ Rd+2 such that ε R̃=m

V (q)2− R̃
>n

V (q)α > 0 and |q|2 > %2
}
,

and the function f defined in R+ by

f (%) = inf
{
ε > 0 : ∃q ∈ Rd , (q, %, ε) ∈ E

}
. (B 7)

By the Tarski–Seidenberg theorem (see Theorem B.3), the function f is semialgebraic in

%. Moreover, f is defined, finite and not identically zero. Then by Proposition B.4, there

exist a constant A > 0 and a rational number γ such that

f (%) = A%γ + o%→+∞(%γ ).

By definitions (B 6) and (B 7), lim%→+∞ f (%) = 0 and then γ < 0. Hence for % � 1, we

know f (%) 6 2A
%|γ |

. We deduce for |q| � 1,

R̃
>n

V (q)α 6 f (|q|)R̃=m
V (q)2 6

2A
|q||γ |

R̃=m
V (q)2 (B 8)

and
|q||γ |/2

2A
R̃>n

V (q)α 6
1

|q|
|γ |
2

R̃=m
V (q)2. (B 9)

In particular, since R̃
>n

V (q) > R̃=r
V (0) > 0, R̃=m

V (q) does not vanish for q ∈ Σ̃ with |q| > 1.
On the other hand, note

∀q ∈ Σ̃, |q| > 1, R̃=m
V (q) 6 c|q|τr . (B 10)

Inequalities (B 8) and (B 10) lead to

R̃
>n

V (q)α 6 C |q|2τr−|γ |

for every q ∈ Σ̃ with |q| > ρ � 1. Therefore, since R̃
>n

V (q) > R̃=r
V (0) > 0, we deduce |γ | 6

2τr.
Using again (B 10), we get

1

|q|
|γ |
2

6
c
|γ |
2τr

R̃=m
V (q)

|γ |
2τr

(B 11)

for any q ∈ Σ̃ with |q| > 1.
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From (B 9) and (B 11), we deduce the existence of %0 � 1 such that

∀q ∈ Σ̃, |q| > % > %0 � 1,
%|γ |/2

2A
R̃

>n

V (q)α 6
|q||γ |/2

2A
R̃

>n

V (q)α 6 c
|γ |
2τr R̃=m

V (q)2(1−
|γ |
4τr ).

(B 12)

We now take δ = |γ |4τr ∈ (0, 1) and

3̃Σ̃ (%) =


%|γ |/2

2Ac
|γ |
2τr

if % > %0

0 otherwise.

The function 3̃Σ̃ : (0,+∞)→ [0,+∞) is clearly positive, and due to (B 12), it satisfies

∀q ∈ Σ̃, ∀% > 0, |q| > %, 3̃Σ̃ (%)R
>n

V (q)α 6 R=m
V (q)2(1−δ)

and lim
%→+∞

3̃Σ̃ (%) = +∞.

To conclude, it is sufficient to take 3Σ̃ : (0,+∞)→ [0,+∞) defined by

3Σ̃ (%) = inf
|q|>%

R=m
V (q)2(1−δ)

R>n

V (q)α
,

which is nondecreasing and larger than 3̃Σ̃ .
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