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This paper gives a brief overview of some configurations in which high-frequency wave propagation
modelled by Helmholtz equation gives rise to solutions that vary rapidly across thin layers. The
configurations are grouped according to their mathematical structure and tractability and one of them
concerns a famous open problem of mathematical physics.
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1 Introduction

High-frequency asymptotics in the frequency domain has been studied intensively in
St Petersburg for many decades, and much of the early work is reviewed in [2]. Meanwhile,
the idea of applying systematic boundary layer theory in this area was pioneered in [5]. This
paper is a sequel to [16], upon which we will rely for much of the background and detailed
arguments.

Boundary layer approximations to the two-dimensional Helmholtz equation

∇2φ + k2φ = 0 (1.1)

arise when the complex potential φ represents modulated plane waves with large real wavenum-
ber k. The simplest ansatz is to write φ ∼ eikxA, where the complex amplitude A has an asymptotic
expansion in inverse powers of k, with x ∼ k−λ1 , y ∼ k−λ2 and 1 + λ1 = 2λ2. To lowest order, this
gives the so-called parabolic wave equation

2i
∂A

∂x
+ ∂2A

∂y2
= 0. (1.2)

This is a complexification of the convection/conduction equation for heat flow in a thermal
boundary layer. As we will see, (1.2) can be used to model a two-dimensional beam of light in
the same way that the real version of (1.2) can model a plume of heat. However, we caution that
solutions of (1.2) will hardly ever be uniform approximations to solutions of (1.1), especially if x
and/or y has infinite range. Moreover, there are many more intricate asymptotic representations
for thin layers, such as the Friedlander–Keller expansion

φ ∼ eikx+ik1/3u(x,y)A (x, y; k), (1.3)

https://doi.org/10.1017/S0956792520000364 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000364
mailto:ock@maths.ox.ac.uk
mailto:richard.tew@nottingham.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956792520000364&domain=pdf
https://doi.org/10.1017/S0956792520000364


770 J. R. Ockendon and R. H. Tew

where A no longer satisfies (1.2) to lowest order (see [24]), and we will see how such expansions
arise naturally in Section 3.

A simple fundamental solution of (1.2) takes the form

A = e−2i[λ( y−y0)+λ2(x−x0)], (1.4)

where λ, x0, y0 are constants with λ being a Fourier transform variable, and we will see that
superposition of such functions with weight f (λ) leads to many useful exact solutions of (1.2).
Another fundamental solution is the Green’s function or point source solution

A = (x − x0)
−1/2 ei( y−y0)2/2(x−x0), (1.5)

which can be obtained by taking f (λ) = 1 and integrating (1.4) along the real λ-axis with an
appropriate definition of (x − x0)

1/2. We note that when x0 = y0 = 0 in (1.4) and f (λ) is fairly
general, the resulting superposition is closely related to weighting (1.5) with g ( y0) and setting
x0 = 0; indeed, f and g are Fourier transforms of each other. Almost all the solutions we will list
in Sections 2–4 will involve superpositions of (1.4) and (1.5).

We remark that since (1.2) is invariant under effectively the same one-parameter groups as
the heat equation, we can refer to [17] to note, for example, that if A (x, y) satisfies (1.2), then so
does the function e−λy+iλ2x/2A (x, y + iλx).

We will begin in Section 2 by briefly reviewing some well-known solutions of (1.2) that are
localised away from any boundaries in the (x, y) plane. These have all been described in some
detail in [16], and we will only emphasise aspects that are relevant to Sections 3 and 4. Then,
in Section 3, we will consider thin layers that are adjacent to prescribed boundaries and hence
can be part of ‘modal solutions’ in closed domains. This section will build up to the ‘Fock–
Leontovich’ solution for (1.2) that models irradiation of a parabola which is locally tangent to
the x-axis by a plane wave propagating along this axis. This problem acts as a paradigm for the
one to be discussed in Section 4, namely the long-standing question of diffraction of a whispering
gallery wave at an inflection point of a boundary. This is the so-called ‘Popov’ problem that has
attracted the attention of many researchers since the pioneering paper [18]. We will also make
some conjectures about the solution in the light of recent numerical evidence.

2 Thin layers with no boundaries

2.1 Gaussian beams

No superposition is needed to model a Gaussian beam. All we need to do is set x0 = iX0 with
X0 real, large and positive in (1.5), so that A is a Gaussian beam with amplitude proportional to
exp

(−( y − y0)2/2X0
)
, at least for |x| � X0, |y − y0| ∼ X 1/2

0 . However, any such representation
fails to be a uniformly valid approximation to a solution of (1.1) when x → ∞. As described
in [16], such beams spread laterally and eventually match with a multiple of the outgoing wave

solution of (1.1) given by ∂
∂x H (1)

0

(
k
√

x2 + y2
)

, where H (1)
0 is the Hankel function of the first

kind, which decays like
(
x2 + y2

)−1/4
. Many of the thin layers to be described later suffer from

such nonuniformity.1

1We remark that Gaussian beams also describe the thin layers that are present near a flat plate lying
along the positive x-axis when it is irradiated by a field eikx, assuming the boundary conditions are other
than Neumann conditions. However, they are not uniformly valid near the origin.
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2.2 Shadow boundaries

We can either seek a similarity solution of (1.2) of the form A = A
(

y/
√

x
)

or weight (1.4) with a
function proportional to λ−1 and integrate with respect to λ over a suitable contour in the complex
λ-plane to deduce that

∫ y/
√

2x

−∞
eit2 dt = √

πeiπ/4

(
1 − 1√

π
e−iπ/4Fr

(
y/

√
2x
))

, (2.1)

where Fr is the Fresnel integral, also satisfies (1.2); it tends to
√

πeiπ/4 as y → +∞ (the illu-
minated region) and to zero as y → −∞ (the shadow) and its y-derivative is proportional to a
Gaussian beam for appropriate values of x. We will see in Section 3 that the birth of a shadow
boundary can be a complicated matter when it is initiated by a grazing ray.

2.3 Thin layers in regions bounded by an ellipse

We now describe two solutions of (1.2) that decay as |y| → ∞ as in a Gaussian beam but are both
components of a high-frequency eigensolution of the Helmholtz equation in an ellipse. Hence,
they are called modes, even though they do not comply with a boundary condition at the ellipse.
They arise from superimposing solutions of the form (1.5) rewritten as

(x + 2i)−1/2 exp
(−2i (λ + iy/2)2 / (x + 2i)

)
with a weighting λme−λ2/2, which gives the solution

A = (
x2 + 4

)−1/4
e

i
(

y2x/2
(

x2+4
)
−i(m+1/2) tan−1(x/2)

)
Dm

(
2y(

x2 + 4
)1/2

)
, (2.2)

where the parabolic cylinder function Dm(z) = 2−m/2e−y2/4Hm

(
y/

√
2
)

and Hm is the Hermite

polynomial of degree m. We note that as |y| → ∞,

|A| ∼
(

y(
x2 + 4

)1/4

)m

e
−y2/

(
x2+4

)
.

As described in [16] this solution can be ‘modalised’ by taking hints from the Mathieu functions
that arise when Helmholtz’ equation is solved by separating the variables in elliptic coordinates
to give

A =
√

c(
c2 − x2

)1/4

(
c + x

c − x

)m
2 + 1

4

exp
(−iy2x/2

(
c2 − x2

))
Dm

(
eiπ/4

√
2cy(

c2 − x2
)1/2

)
, (2.3)

where c is real and positive. This ‘focussing mode’ represents a thin-layer solution of (1.2) that
lies close to the major axis of an ellipse whose foci are at x = ±c. This phenomenon of a ‘termi-
nating beam’ is associated with the focusing of rays emanating from the ends of the major axis
of the ellipse, and it shows that small perturbations of perfect foci need not necessarily lead to
the caustics to be described shortly.
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If we replace c by ic in (2.3), we retrieve the solution

A =
√

c(
c2 + x2

)1/4
exp

(
−iy2x/2

(
c2 + x2

)− i (m + 1) tan−1
(x

c

))

× Dm

(
y
√

2c(
c2 + x2

)1/2

)
. (2.4)

This represents a thin layer that lies along and terminates at the ends of the minor axis and it
results from the concentration of rays that bounce repeatedly at the boundary, hence (2.4) is
called a ‘bouncing ball mode’. In fact there exist many more thin layer solutions of (1.2) that
arise at the boundaries of the regions within which the modes in an ellipse have real rays. These
boundaries are not straight, and this leads us to study thin layers with non-zero curvature.

2.4 Caustics

Caustics are familiar thin layers because of their observability in, say, coffee cups on a sunny
day. They model the smooth transition that occurs at the envelopes of the rays that underpin
geometrical optics and hence they are inevitably curved. Thus, it is convenient to rewrite (1.1) in
orthogonal curvilinear coordinates and, to do this, we assume for simplicity that the envelope y =
f (x) is smooth and has no vertical tangents. Then, we let s measure the distance from some fixed
point on the envelope to the point (X , f (X )) where X is such that f ′(X )( y − f (X )) + x − X = 0,
and n is a coordinate along the normal whose distance from the envelope is

(
( y − f (X ))2 +

(x − X )2
) 1

2 ; the sign of the square root is such that y increases when n increases and vice versa.
Elementary geometry gives that the metrics in (x, y) and (s, n) are related by

dx2 + dy2 = dn2 + (1 − κn)2ds2, (2.5)

where κ(s) is the curvature of the envelope, which is positive when the normal n > 0 passes
through the centre of curvature; we also assume n < κ−1. In these coordinates, Helmholtz
equation becomes

1

(1 − nκ)

(
∂

∂n

(
(1 − nκ)

∂φ

∂n

)
+ ∂

∂s

(
1

(1 − nκ)

∂φ

∂s

))
+ k2φ

=
(

1

(1 − nκ)2

∂2

∂s2
+ ∂2

∂n2
+ nκ ′

(1 − nκ)3

∂

∂s
− κ

(1 − nκ)

∂

∂n
+ k2

)
φ = 0, (2.6)

in contrast to the notation in [16, 25]. If there are no rapid variations in the s-direction and n is
small, φ is proportional to e±iks to lowest order.

However, there are much more interesting solutions in which φ ∼ eiksA (s, n) as k → ∞. In
this case, to lowest order

∂2A

∂n2
− 2k2nκA = 0,

so that, with n = k−2/3N , the physically realistic solution for A is a multiple, which may depend
on s, of the Airy function

Ai
(
(2κ)1/3 N

)= 1

2π i

∫ ∞

−∞
exp

(
i (2κ)1/3 Nλ + iλ3/3

)
dλ, (2.7)
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the shadow region being N → −∞ when κ > 0. This result was derived systematically in [12,
14]. Also it is shown in [16] that (2.7) can be written in local Cartesian coordinates (X .Y ) near
s = 0 as a superposition of plane waves given by (1.2). The result is proportional to

∫ ∞

−∞
exp(−iλY − iλ2X/2 − iκ(0)λ3/6)dλ, (2.8)

where Y − 1
2κ(0)X 2 = N = k

2
3 n, X = S = k1/3s. However, the change in metric introduces a pre-

factor in the relation between eiks and eikx.
We will now evaluate the multiple of the Airy function that determines the enhanced amplitude

at a caustic. To do this, we must match (2.7) with the ray expansion corresponding to a prescribed
remote source of illumination with s, n of O(1). The technical complications that arise have been
described in detail in [5], where a different coordinate system from ours is employed, and in [2];
hence, we will only summarise the basic ideas here. For definiteness we take κ > 0 so that the
real rays are in n < 0. Near the caustic where s ∼ s∗, |n| ∼ 1

2κ(s∗)(s∗ − s)2, ray theory reveals that
φ comprises fields of the form

I±
|s∗ − s| 1

2

exp

(
ik

(
s∗ ± 2

3

(
2κ
(
s∗) 1

2 (−n)
3
2

)))
, (2.9)

where I± are the amplitudes of the incoming and outgoing fields, respectively, the former being
prescribed. In order for a superposition of these fields to yield a function proportional to (2.7)

as N = k− 2
3 n → ∞, we recall that Ai(−z) ∼ π− 1

2 (−z)−
1
4 sin

(
2
3 (−z)

3
2 + π

4

)
as z → −∞. Hence,

we infer that

(i) I+ = −e
iπ
2 I−, which reflects the fact that there is a phase change of π

2 as a ray changes from
being incoming to outgoing and

(ii) the Airy function in (2.7) is multiplied by the factor

1

2
I+(s∗)k

1
6 π

1
2 (2κ(s∗))

1
3 eiks∗− iπ

4 ,

which reveals that the caustic amplifies the field by k
1
6 .

We emphasise that both these results are consequences of the fact that φ is exponentially small
inside the caustic.

2.5 Cusped caustics

The commonest singularity that can occur in a caustic is a cusp described locally by, say,
|y| = (

2
3 x
)3/2

, x > 0. Indeed, this cusp can arise when we consider the envelope of Gaussian
beams, as described in [16]. To analyse this situation and those in the following sections, we
therefore consider solutions of (2.6) that are localised near a curve

y + γ

m
xm = 0
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in Cartesian coordinates, with m greater than 1. Then, for small x, y, s and n we can write

s ∼ x + O (xm),

n ∼ y + γ

m
xm + o (xm), (2.10)

κ ∼ −γ (m − 1) xm−2 + o
(
xm−2

)
.

Hence, when we again write φ = eiksA (s, n), we find that the dominant terms in (2.6) for large k
are, after those of O

(
k2
)

have been removed, those arising from the first two terms.
If we assume n ∼ O (kα), s ∼ O

(
kβ
)

where α, β are negative and analogous to the parameters
λ1, λ2 introduced after (1.1), then κ ∼ k(m−2)β and the relevant terms balance when

k1−β ∼ kα+β(m−2)+2 ∼ k2α .

Thus, α = m/ (1 − 2m), β = 1/ (1 − 2m) and, to lowest order, (2.6) reduces to

∂2A

∂n2
+ 2i

∂A

∂s
+ 2 (m − 1) γ nsm−2A = 0, (2.11)

where, for the rest of this section, n, s are scaled variables. For our cusped caustics, m = 3/2,
γ = (

2
3

)1/2
and n and s scale with k−3/4 and k−1/2, respectively, as described in more detail in

[16]. Since A decays as |n| → ∞, we can take the Fourier transform Ã = ∫∞
−∞ Aeiλndn to give

−λ2Ã + 2i
∂Ã

∂s
+ iγ s−1/2 ∂Ã

∂λ
= 0. (2.12)

The characteristic equations are

ds

2
= dλ

γ s−1/2
= i

λ2

dÃ

Ã
,

so that the general solution for Ã is

Ã = f
(
λ − γ

4
s1/2

)
exp

[
i

6γ 2

(
λ4 + γ s1/2λ3

)]
, (2.13)

where the function f is arbitrary. In our case, it is determined by matching as s → ∞ with the
upper/lower branches of the cusped caustic, which is described by (2.7) (further details of this
matching are given in [16]). This means that f is a constant and A is thus proportional to∫ ∞

−∞
exp

[
i

6γ 2

(
λ4 + γ s1/2λ3

)− inλ

]
dλ.

We note that when we add a constant to λ and make use of (2.10), we retrieve the Pearcey
integral (2.89) of [16]. In the light of Section 3.1, we expect an increase in amplitude as the cusp
is approached and the analysis in [16] shows that this increase is of O(k

3
4 ).

As observed in [16], there is no noticeable thin layer near the negative x-axis, but there are
thin layers of exponentially small amplitude around the Stokes lines y = ± (− 2

3 x
)3/2

. This is not
surprising in view of the decay of the incoming Airy function (2.7).

In the next section, we will consider the dramatic effect that modality can have on these
solutions.
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3 Thin layers adjacent to boundaries

3.1 The birth of creeping waves

As explained in Section 2.4, the asymptotic behaviour of solution (2.7) as κN → −∞ comprises
two waves that can be matched to incoming and outgoing wave fields described by geometrical
optics. The latter can be used to model the birth of a creeping wave field at a convex boundary at
which A or ∂A

∂n vanishes, depending whether the boundary is hard or soft. However, this cannot
happen unless (2.7) is modified, and this can be done by seeking waves that are weakly modulated
in the s-direction in the form

φ ∼ e
i

(
ks+k

1
3 u(s)

)
A∗ (s) ; (3.1)

it is shown in [25] that the lowest order terms in the asymptotic expansion for large k preclude
the function u from depending on n. Then the leading order terms in (2.6) must be such that a
balance occurs in which

∂2A∗

∂n2
+ 2

(
−k4/3 du

ds
− k2nκ

)
A∗ = 0.

Hence, we can satisfy boundary conditions on N = 0 if we set du
ds = 2− 1

3 κ
2
3 σ , where again with

n = k− 2
3 N ,

∂2A∗

∂N2
+ 2

(
−κN − 2− 1

3 κ
2
3 σ
)

A∗ = 0 (3.2)

and σ is a positive zero of A∗ or ∂A∗
∂N .

As remarked earlier, (3.1) is an example of a Friedlander–Keller ansatz, which will often be
used throughout the rest of the paper. We remark that the creeping ray field for plane wave irra-
diation of a circular cylinder can be, with some effort, extracted from the explicit exact solution
for arbitrary k given in [15]. The amplitude of the creeping field turns out to be proportional to
the one-sixth power of the inverse of the radius of the circle, in contrast to the one third power
that arises for a caustic.

3.2 Whispering gallery waves

When κ > 0, the preceding approach applies to whispering gallery waves, for which the wave

field as N → +∞ is exponentially small, of O
(

e− 2
3 (2κ)1/2N3/2

)
. The implications of (3.2) for the

high-frequency spectrum for the Helmholtz equation in a closed region are discussed in [16]. We
remark that only a single infinite number of modes emerge at this lowest order of approximation
and the two-dimensionality of the spectrum needs to be revealed by tracking the field around the
boundary, assumed smooth and convex, and applying periodicity. The only reason we mention
these waves explicitly here is because of interest in the behaviour of such waves near an inflection
point where the boundary changes from being concave to convex, and this will be addressed in
the final section. A stepping stone in this direction is the problem of grazing diffraction.
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3.3 Grazing diffraction and Fock–Leontovich theory

The problem of solving (1.1) subject to zero Dirichlet or Neumann data on a convex scat-
terer under plane wave irradiation has been studied extensively (see for example [9, 15]). It
is convenient to subtract out the incident field eikx and write

φ = φsc + eikx,

and we will, for simplicity, only consider the case when

φsc = −eikx (3.3)

at the scatterer, whose local shape at the grazing point is parabolic. Our strategy is now to solve
(2.11), with m = 2, subject to eiksA = −eikx on y + 1

2γ x2 = 0, where x and y have been scaled
with k−1/3 and k−2/3, respectively. We also require A → 0 as ( y + 1

2γ x2) → +∞ and, crucially,
that A matches with the incoming specularly reflected field generated at the boundary for x < 0.
Thus, we require

eiksA = −e
i
(

ks−γ 2s3/6
)

i.e. A = −e−iγ 2s3/6 on y + 1

2
γ x2 = 0, (3.4)

and that eiksA must match with

−
(

−x +√
x2 + 3y/2γ

3
(
x2 + 3y/2γ

)1/2

)1/2

e

(
ik

(
x+ 4

27

(
−x3− 9xy

4γ
+
(

x2+ 3y
2γ

)3/2
)))

as x → −∞ with y + 1
2γ x2 = O(1); this formula comes from a ray theory calculation as described

in [16]. It shows that (3.4) applies as s → −∞ for y + 1
2γ x2 of O(1).

The way is now open to again convert to inner curvilinear coordinates S = k
1
3 s, N = k

2
3 n and

solve (2.11) by taking a Fourier transform in s to give that

Ã =
∫ ∞

−∞
Aeiλsds

satisfies

d2Ã

dN2
+ 2 (λ + γ N) Ã = 0 (3.5)

with

Ã =
∫ ∞

−∞
eiSλ−γ 2S3/3dS (3.6)

on N = 0.
In order to write Ã as an Airy function whose inverse transform can be taken along the real

λ-axis, we need to define the cube root of (−γ 2) in (3.6) such that A → 0 as N → +∞; for the
case of the caustic we needed A → 0 as |N | → ∞ which constrained A to be given by (2.7), but
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now the continuation of A into N < 0 will grow at infinity. The upshot is that Ã is proportional to

Ai(−21/3e
2iπ
3 (λ+γ N), the constant of proportionality being

−2π

(
2

γ 2

) 1
3

Ai

(
−
(

2
γ 2

) 1
3
λ

)

Ai
(
−2

1
3 e

2iπ
3 λ
) .

This leads to the famous Fock–Leontovich solution [13].
From our point of view, it is especially interesting that A can be written in Cartesian

coordinates as a plane wave superposition

A =
∫

�

p̂(λ)e
−i

(
yλ+ xλ2

2 − λ3
3

)
dλ, (3.7)

where γ = 1 for simplicity. This has been described most recently in [7]; here, � is no longer
the real axis but is a suitable contour in the complex λ-plane and p̂ is the Pekeris caret function
[7], which is known as a ‘Fock-type integral’ in the Russian literature, and can be most simply
written as

−e− 2iπ
3

2π

∫ ∞

−∞
eiλt Ai(t)

Ai
(

te
2iπ
3

)dt

where λ has negative imaginary part.
The existence of the explicit inversion of Ã allows us to obtain a comprehensive description

of the penumbral region that emerges as x → +∞. As described in [1] and, in terms of matched
asymptotic expansions in [7, 25, 2], this is achieved by taking suitable stationary-phase limits
and results in the birth of three thin-layer solutions of Helmholtz equation. These layers separate
the illuminated region y > 0 from the deep shadow region described above by a creeping wave
field to lowest order. The upper and lower of the three layers are not, however, modelled by (1.2)
but rather as the result of a Friedlander–Keller expansion. As shown in [25, 2], this results in
transition layers described by Pekeris functions of ( y/x), with an amplitude that decays as x− 1

2 ,

while y is of O(k− 1
3 ) rather than the k− 2

3 scaling in the Fock–Leontovich region. Between these
transition layers there is a classical shadow boundary in which y is of O(k− 1

2 ), as in Section 2.
With the next section in mind, we conclude by considering how much of the penumbral

structure and deep shadow could have been predicted from (2.11) without knowing the explicit
transform solution. Two observations can be made:

(a) As shown in [25], equation (2.46), a Friedlander–Keller expansion for the solution of (1.1)
in x > 0, y < 0 is

φ ∼ k− 1
6 F(ρ)

τ
1
2

e
i

(
k(ρ+τ)+k

1
3 v(ρ)

)
, (3.8)

where F, v are unknown functions, ρ is the arclength along the scatterer to the point at
which the creeping ray is shed and τ is the distance along that creeping ray. However, F
and v can only be found by matching with the transform solution.
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(b) While we can easily anticipate that there will be a shadow boundary as in Section 2.2 near
the x-axis, we could also rescale x and y with kα and k2α in (1.2) to give

∂2A

∂y2
+ 2ik3α ∂A

∂x
= 0, (3.9)

where 1
3 > α > 1

6 so as to be outside the deep shadow and the shadow boundary regions.
Then, a WKB expansion in which

A ∼ Âeik3αu (3.10)

gives that u = y2

2x and Â = x− 1
2 g
( y

x

)
in conformity with the prediction at the end of the

previous paragraph. Of course, we cannot guess that g is a Pekeris function, but we can see
that g(z) ∼ O

(
1
z

)
as z → 0 in order to match with a Fresnel integral.

We will now consider the problems of the diffraction of a caustic and a whispering gallery
wave at an inflection point in the light of the above discussion.

4 Thin layers with inflection points

The preceding sections have shown how much easier it is to analyse thin layers in the absence of
boundaries, so we will first consider a caustic whose curvature changes sign.

4.1 Caustics

Equation (2.7) shows how caustics with non-zero curvature can be simply modelled starting from
(2.6). When we generalise the derivation to a caustic near y + 1

3γ x3 = 0, for which κ ∼ −2γ x as

x → 0 we can, when s is not too small, scale n with k− 2
3 and retrieve (2.7). But as s → 0, we must

adopt the scalings that led to (2.11). We set s = k− 1
5 S, n = k− 3

5 N , where S, N are new scaled
variables distinct from those in Section 3; this gives, to lowest order,

∂2A

∂N2
+ 2i

∂A

∂S
+ 4γ NSA = 0 (4.1)

and we recall that N is in the positive y-direction for all S. This equation has appeared many
times in the literature, most recently in [11].

Since we are interested in incoming caustics in which, from Section 2.4 and in the light of the
comments made at the end of Section 3.1,

A ∼ (−S)
1
3 Ai

(
(−4γ S)

1
3 N

)
(4.2)

as S → −∞, the Fourier transform Ã = ∫∞
−∞ AeiλN dN satisfies

−λ2Ã + 2i
∂Ã

∂S
− 4iγ S

∂Ã

∂λ
= 0 (4.3)

with

Ã ∼ (4γ )−
1
3 exp

(
iλ3

12γ S

)
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as S → −∞; there is now no ambiguity over cube roots as there was after (3.6). The characteristic
equations for (4.3) are

dS

2i
= dλ

−4iγ S
= dÃ

λ2Ã
, (4.4)

so that the general solution is

Ã = exp

(
− i

2

(
γ 2S5

5
− 2γ (λ + γ S2)S3

3
+ (λ + γ S2)2S + F(λ + γ S2)

))
(4.5)

for some function F. However, (4.2), which holds for all sufficiently large negative values of S,
implies that

F(ζ ) = − 8

15γ
1
2

ζ
5
2 − 2i

3
ln(4γ ). (4.6)

When we make the choice that (λ + γ S2)
1
2 is positive when (λ + γ S2) > 0 and equal to

i|λ + γ S2| 1
2 when (λ + γ S2) < 0, the inversion integral for Ã converges as long as we take the

inversion contour � along the positive real axis and just above the negative real axis in the
λ-plane. Thus,

A = 1

2π i
e−iγ 2S5/5

∫
�

1

(λ + γ S2)
1
2

× exp

⎛
⎝−iNλ − i

2

⎛
⎝−8

(
λ + γ S2

) 5
2

15γ
1
2

+ S
(
λ + γ S2

)2 − 2γ S3

3

(
λ + γ S2

)⎞⎠
⎞
⎠ dλ (4.7)

is the solution of (4.1) subject to (4.2), assuming uniqueness.
We note that when S → +∞ with N = O(1), then, since (λ + γ S2)

5
2 ∼ γ

5
2 S5, A will be pro-

portional to Ai
(
(4γ S)

1
3 e

iπ
6 N
)
, and the amplitude decays exponentially in S. We will not analyse

(4.7) further here apart from remarking that, as |N | → ∞, A decays to be of O(|N |− 5
6 ) for

S ≤ O(|N |− 1
2 ).

4.2 Diffraction

We now consider the open question that largely motivated the writing of this paper. This is the
solution of (4.1) in N > 0 and with −∞ < s < ∞, together with, for simplicity,

A = 0 on N = 0 (4.8)

and, from combining (3.1), (3.2) and (4.2),

A ∼ (−S)
1
3 exp

(
−3iσM

5γ
2

1
3 (−γ S)

5
3

)
Ai
(

(−4γ S)
1
3 N + σM

)
(4.9)

as S → −∞, where σM is the M th zero of the Airy function.
This is the famous problem proposed by Popov [18], and it has subsequently been studied

by many researchers from around the world (see, for example, some of the bibliography in
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FIGURE 1. The M = 1 mode.

FIGURE 2. The M = 2 mode.

[8]). Much research has been focused on the search for explicit solutions using weighted super-
positions of elementary solutions such as (1.4), (1.5). In particular, Popov [20] has proposed
a superposition of elementary solutions of the form

1

(s − s0)
1
2

exp

(
(i

(n − n0)2

2(s − s0)

)

× exp

(
in

(
1

2
s0(s − s0) + 1

3
(s − s0)2

)
− in0

(
− s0

2
(s − s0) − 1

6
(s − s0)2

))

× exp

(
i

(
− s2

24
(s − s0)3 + s

24
(s − s0)4 − 1

90
(s − s0)5

))

in unscaled coordinates (s, n). Also the well posedness of the problem has been proved in [19]
and [4].

All this research has strongly suggested that the phase in any superposition of plane waves of
the form (1.4) should include a fifth power of λ, as discussed in detail in [10, 8]. For the caustic
described above, the phase contains a cubic power of λ but only asymptotically as S → −∞, and
it is possible that a fifth power would only emerge asymptotically in certain regions.2

The numerical investigations presented in [21] and [22] strongly suggest the generation of
localised beams near the tangent at the inflection point, the number of beams being the number
of zeros in the Airy function describing the incoming whispering gallery wave. Figures 1 and 2
are contour plots of the amplitude of the solution of (2.11), (4.8) and (4.9) with m = 3 and γ = 1

2
for the parameter values M = 1, 2 in (4.9). These previously unpublished results were obtained by
D. Hewett using a modern implementation of the finite-difference method used in [21] and [22]

2The birth of a caustic with an inflection point has been modelled in [16] using a phase involving fifth
powers, but only at the expense of a singularity in the initial phase as a function of y.
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As long as s is not too small, the basic problem (2.11) with m = 3 and A = 0 on n = 0 is, as
in the case of the caustic above, amenable to a Friedlander–Keller ansatz in which u(s) is pro-

portional to σM

∫
(−κ)

2
3 ds, as discussed in (2.29) of [25]. But when we write down the canonical

inner problem in which s = k− 1
5 S, n = k− 3

5 N , we retrieve (4.1) with N ≥ 0. Alas, no obvious
transform in either N or S leads to a tractable problem in this case.

We conclude with two remarks and a conjecture.

(i) The fact that energy can be localised near the tangent at the inflection point has been
demonstrated numerically in [21] and supported analytically in [23].

(ii) If we anticipate some kind of beam formation near the x-axis then, motivated by (3.10), we
scale the problem in (x, y) coordinates such that x ∼ O(kα), y ∼ O(k3α), the parabolic wave
equation (1.2) becomes

∂2A

∂y2
+ 2ik5α ∂A

∂x
= 0, (4.10)

where, instead of the scaling after (3.10), 3
5 > α > 1

10 . Now, a WKB expansion A ∼ A∗eik5αu

gives, as at the end of section. 3.3, u = y2

2x , A∗ = x− 1
2 G

( y
x

)
, where G for the Popov problem

is analogous to the Pekeris function for the Fock–Leontovich problem, and we expect G(z)
to be bounded as z → 0. It has been conjectured that this function may be related to the
function G0 in equation (4.3) of [3] and to the function A0 in equation (2.17) of [20], which
was computed numerically in [21].

(iii) Finally, based on all that has been written above, we make the speculative conjecture that
the solution of the Popov problem will involve a localisation near the x-axis, possibly of
the form of a sum of ‘Gaussian beams’

φ ∼
M∑

j=1

cj
e
− ( y−yj)

2

2(ix+X0)√
ix + X0

, (4.11)

where x << X0, |yj| << k− 1
2 , and M is the number of zeros in the amplitude of the

incoming creeping field.

5 Conclusion

This brief review has emphasised the diversity of high-frequency wave propagation problems
that can be modelled by the parabolic wave equation(1.2), and many of which are catalogued in
[2]. We have concentrated on the derivation of thin layer solutions of the Helmholtz equation
using asymptotic analysis, but we have not discussed the many important implications it may
have for numerical computations, and vice versa; a clear example of the latter is presented in [6],
while Figures 1 and 2 were an invaluable stimulus and motivation for much of the current work.

The main implications that have been discussed are

(i) the use of superpositions of elementary solutions of (1.2) in Cartesian coordinates,
(ii) the catalogue of phenomena that can be described when (1.2) is written in curvilinear coor-

dinates, for which pioneering work was done in [13] and [7] for regions with parabolic
boundaries,
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(iii) the need for further analytical and numerical investigation of the ‘Popov problem’, con-
cerning which the literature only allows us to make conjectures, albeit fairly confident
ones. Of particular practical interest is the amplitude of the outgoing creeping field.
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