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The mystery of birefringent garnet: is the symmetry lower than cubic?
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The cause of birefringence in several garnet-group minerals with general chemical formula,
[8]X3

[6]Y2
[4]Z3

[4]O12, which was observed over 100 years ago, is unknown, although many different
reasons were proposed, including symmetry lower than cubic. In this study, electron microprobe ana-
lyses (EMPA) were obtained for a Ti-rich andradite, ideally Ca3(Fe2

3+)Si3O12, from Magnet Cove,
Arkansas, USA, and the results show that the sample is inhomogeneous with two distinct compo-
sitions. The crystal structure was refined by the Rietveld method, cubic space group Ia3d, and mono-
chromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, which shows a
mixture of three distinct cubic phases that are intergrown together and cause birefringence because
of strain arising from small structural mismatch. This mixture of three cubic phases was not observed
by any other experimental technique. These results have many implications, including garnet phase
transitions from cubic to lower symmetry in the mantle, which has important geophysical conse-
quences. © 2013 International Centre for Diffraction Data. [doi:10.1017/S0885715613000523]

Key words: andradite, birefringence, three-phase intergrowth, Rietveld refinements, synchrotron
high-resolution powder X-ray diffraction (HRPXRD), crystal structure

I. INTRODUCTION

Birefringence in garnet was reported over a century ago
(Brauns, 1891), but the origin has remained questionable.
Several members of the garnet-group minerals are birefringent
when viewed under cross-polarized light in a petrographic
microscope, hence optically they are not cubic. Many reasons
were given as the cause of the birefringence (Ingerson
and Barksdale, 1943; Chase and Lefever, 1960; Blanc and
Maisonneuve, 1973; Lessing and Standish, 1973; Foord and
Mills, 1978; Kitamura and Komatsu, 1978; Takéuchi et al.,
1982; Akizuki, 1984; Rossman and Aines, 1986; Allen and
Buseck, 1988; Kingma and Downs, 1989; Armbruster et al.,
1992; Griffen et al., 1992; Brown and Mason, 1994;
Akizuki et al., 1998; Hofmeister et al., 1998; Shtukenberg
et al., 2001, 2005; Wildner and Andrut, 2001;
Frank-Kamenetskaya et al., 2007), but none of these sugges-
tions provide a unique solution (Allen and Buseck, 1988).
This study shows that a mixture of three cubic phases with
slightly different structural and chemical parameters occurs
together and gives rise to strain arising from structural mis-
match and cause anisotropy in birefringent garnet samples.
This is in contrast to ABO3 synthetic garnet samples, such
as CaGeO3, CdGeO3 (Prewitt and Sleight, 1969), MnSiO3

(Fujino et al., 1986), and MgSiO3 (Angel et al., 1989;
Hatch and Ghose, 1989; Parise et al., 1996) that undergo a
cubic to tetragonal transition, where the tetragonal phase is
birefringent. However, the present results cast some doubt
on these observations.

Garnet-group minerals have important physical properties
because of dense packing of the constituent atoms (high hard-
ness, high density, high refractive index, etc.). Synthetic

rare-earth varieties can have any color in the visible spectrum,
and some possess good laser properties (Geusic et al., 1964).
In solid-state science, garnet-type materials are important
because of their ferrimagnetism and antiferromagnetism
(Bertaut and Forrat, 1956; Geller and Gilleo, 1957). Some gar-
net varieties spontaneously polarize in electric and magnetic
fields, hence they cannot be cubic (Geller, 1967). Although
the structure of many birefringent garnet samples were refined
in non-cubic space groups, this study shows that the structure
of a birefringent garnet is cubic and contains an intergrowth of
three different cubic phases.

Figure 1. (Color online) Projection of the cubic garnet structure down c
showing the ZO4 tetrahedra (gray), YO6 octahedra (yellow), and XO8

dodecahedra (blue) that occur as a distorted cubic shape. Dense packing of
the polyhedra are obvious from the four unit cells displayed, which shows
the prominent edge-sharing and zigzag arrangement of alternating octahedra
and dodecahedra.

a) Author to whom correspondence should be addressed. Electronic mail:
antao@ucalgary.ca
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The cubic crystal structure of garnet with general formula,
[8]X3

[6]Y2
[4]Z3

[4]O12, consists of alternating ZO4 tetrahedra and
YO6 octahedra with X atoms filling cavities to form XO8

dodecahedra. The eight O atoms in the XO8 polyhedra
occur at the corners of a distorted cube (Figure 1). The O
atom is bonded to two X, one Y, and one Z in a tetrahedral
configuration.

The flexibility of the garnet structure allows it to accom-
modate the most abundant divalent (X), trivalent (Y), and tet-
ravalent (Z) cations on Earth, and gives rise to the general
formula [8]X3

[6]Y2
[4]Z3

[4]O12, where the eight-coordinated dode-
cahedral X site, denoted [8], contains Mg, Ca, Mn2+, or Fe2+

cations, the six-coordinated octahedral Y site contains Al, Fe3
+, Ti4+, or Zr4+ cations, and the four-coordinated tetrahedral Z
site contains Si, Fe3+ or Al cations, or (F, O4H4) groups
(Novak and Gibbs, 1971; Smyth et al., 1990; Armbruster
et al., 1998).

Ti-rich andradite samples are referred to as “melanite”,
schorlomite, or morimotoite, depending on the Ti content.
The substitution mechanisms and their nomenclature were
addressed (Chakhmouradian and McCammon, 2005). Two
substitution mechanisms occur at the Z site. One type of
Si-deficient Ti-rich andradite can be interpreted as a solid sol-
ution between andradite, Ca3(Fe2

3+)Si3O12, and the theoretical
end-member morimotoite, Ca3(Ti

4+Fe2+)Si3O12, together with
minor hydroxy substitution (O4H4)↔ SiO4 (Lager et al.,
1989; Armbruster, 1995). The second type of substitution
on the Z site is (Fe3+, Al)↔ Si, and charge balance is achieved
with Ti4+ on the Y site (Armbruster et al., 1998; Locock,
2008), and gives rise to the theoretical end-member schorlo-
mite, Ca3Ti2

4+[Fe2
3+Si]O12 (Henmi et al., 1995). The exact sub-

stitution mechanism is the subject of several controversial
debates based mainly on spectroscopic studies (Armbruster
et al., 1998).

This study examines the chemical composition and
crystal structure of a Ti-rich birefringent andradite sample
from Magnet Cove using electron microprobe analysis
(EMPA) and synchrotron high-resolution powder X-ray
diffraction (HRPXRD) data. The latter technique uses a
short wavelength [0.41351(2) Å], superior resolution, and
high peak-to-background discrimination. Preliminary reports
were presented (Antao et al., 2013a, 2013b).

II. EXPERIMENTAL

A. Electron microprobe analysis (EMPA) and

synchrotron high-resolution powder X-ray diffraction

(HRPXRD)

The dark-brown Ti-rich andradite sample (MC9) from
Magnet Cove, Hot Spring County, Arkansas, USA appears
homogeneous in plane-polarized light and is weakly birefrin-
gent under cross-polarized light, where it appears as dark gray
instead of black. However, some striking examples of birefrin-
gent garnets that contain mottled or tweed-like texture, lamel-
lar, oscillatory, or concentric zoning are available in the recent
literature (e.g., Badar et al., 2010; Antao and Klincker, 2013;
Badar et al., 2013).

A fragment of the sample (≈0.2 mm in diameter) was ana-
lyzed with a JEOL JXA-8200 electron microprobe analyzer
(EMPA) using the wavelength-dispersive operating conditions
of 15 kV accelerating voltage, 20 nA beam current, a beam

diameter of 5 µm, and various mineral standards. The
EMPA data were obtained from eight spots from different
areas of the crystal and reduced to cations (Table I).

HRPXRD data were obtained at beamline 11-BM,
Advanced Photon Source (APS), Argonne National
Laboratory (ANL). A small (≈0.2 mm in diameter) fragment
of the sample was crushed to a fine powder using an agate
mortar and pestle, and loaded into a Kapton capillary
(0.8-mm internal diameter) and rotated at a rate of 90 rotations
per second. The data were collected at 23 °C to a maximum 2θ
of about 50° with a step size of 0.001° and a step time of 0.1 s
per step. The HRPXRD trace was collected with 12 silicon
(111) crystal analyzers. A silicon (NIST 640c) and alumina
(NIST 676a) standard (ratio of ⅓ Si : ⅔ Al2O3 by weight)
was used to calibrate the instrument and refine the monochro-
matic wavelength (Table II). Additional details of the exper-
imental set-up are given elsewhere (Antao et al., 2008; Lee
et al., 2008; Wang et al., 2008).

The HRPXRD data were analyzed by the Rietveld method
(Rietveld, 1969) using the GSAS program (Larson and Von
Dreele, 2000), EXPGUI interface (Toby, 2001), scattering
curves for neutral atoms, and a starting structural model
from Antao and Klincker (2013). A full-matrix least-squares
refinement was carried out by varying a scale factor, cell
parameter, atom coordinates, and isotropic displacement
parameters. The HRPXRD trace shows three separate cubic
phases with slightly different unit-cell parameters (Figure 2).
The three cubic phases were refined together with the site
occupancy factors (sofs) in terms of the dominant atom in
the X, Y, and Z sites. At the end of the refinement, all the par-
ameters were varied simultaneously until the refinement con-
verged. The unit-cell parameters and the Rietveld refinement
statistics for three cubic phases are listed in Table II. Atom
coordinates, isotropic displacement parameters, and sofs are
given in Table III. Bond distances are given in Table IV.

III. RESULTS AND DISCUSSION

The EMPA results show two phases with slightly different
compositions of {Ca2.96Mg0.01Mn2+0.03}Σ3[Fe

3+
1.61Ti

4+
0.30Mg0.08

Al3+0.01Fe
2+
0.01]Σ2(Si2.80Al0.21)Σ3O12 (phase-1, 46.5(1) wt% from

HRPXRD); and {Ca2.96Mg0.01Mn2+0.03}Σ3[Fe
3+
1.40Ti

4+
0.46Mg0.12

Fe2+0.02]Σ2(Si2.69Al0.20Fe
3+
0.11)Σ3O12 [phase-2, 23.9(1) wt%].

Phase-2 (average of four data points) contains more Ti4+ and
less Fe3+ than phase-1 (average of four data points). In the X
site, the amount of Ca is quite high (≈2.96 apfu instead of
three). In the Y site, Fe3+ is the dominant cation followed by
Ti4+. The Z site contains some Al and Fe3+ in phase-2.
Distinct compositions for individual phases are not always
observed by EMPA because the intergrowth of distinct cubic
phases may occur on a fine scale.

The HRPXRD results clearly show that the Ti-rich andra-
dite sample consists of a mixture of three cubic phases inter-
grown together, and is observed by splitting of diffraction
peaks (Figure 2). Some other samples from Magnet Cove
are single phase, cubic, optically isotropic, and contain no
split diffraction peaks (unpublished results). The unit-cell par-
ameters for each of the three cubic phases are slightly different
from each other and each phase occurs in significant quantity,
as shown by their weight percentages (wt%) in Table II.
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The structural models for the Ti-rich andradite sample
were refined quite well, as shown by the Rietveld statistics
(Table II). The EMPA analyses show that the Ca(X) site occu-
pancy factors (sofs) are very close to 1.0, and the refinement
values are about 0.94 (Table III). The EMPA sofs for the Fe
(Y) site are about 0.94, whereas the refinement values vary
from about 0.82 to 0.85. The EMPA sofs for the Si(Z) site

are close to 1.0, and the refinement values vary from about
0.96 to 1.04, so the hydroxyl substitution, (O4H4)↔ SiO4,
is negligible. The sofs are compared further in terms of differ-
ences between electrons and sofs obtained by Rietveld refine-
ment and EMPA (Table III).

Figure 3 was constructed using average 〈X–O〉, Y–O, and
Z–O distances that were obtained from single-crystal refine-
ments using cubic space group, Ia3d, for single-phase garnet
samples that may or may not be birefringent (Novak and
Meyer, 1970; Novak and Gibbs, 1971; Weber et al., 1975;
Munno et al., 1980; Basso et al., 1981, 1983, 1984a, 1984b;
Sacerdoti and Passaglia, 1985; Lager et al., 1987a, 1987b,
1989; Smyth et al., 1990; Armbruster et al., 1992, 1998;
Geiger et al., 1992; Armbruster and Geiger, 1993;
Armbruster, 1995; Peterson et al., 1995; Geiger and
Armbruster, 1997; Armbruster et al., 1998; Scordari et al.,
1999; Schingaro et al., 2001, 2004; Agrosì et al., 2002;
Gramaccioli et al., 2002; Ferro et al., 2003;
Chakhmouradian and McCammon, 2005; Adamo et al.,
2010). Data for non-cubic, single-phase, single-crystal refine-
ments for birefringent garnet samples are not included in
Figure 3 (Takéuchi et al., 1982; Allen and Buseck, 1988;
Angel et al., 1989; Kingma and Downs, 1989; Griffen
et al., 1992; Nakatsuka et al., 1999a, 1999b; Shtukenberg
et al., 2001, 2005; Wildner and Andrut, 2001;
Frank-Kamenetskaya et al., 2007). The mean 〈D–O〉 distance
was calculated using the formula 〈D–O〉 = {(Z–O) + (Y–O) +

TABLE I. Electron microprobe analysisa for a Ti-rich andradite (MC9).

Oxide (wt%) MC9a MC9b Cations (for 12 O atoms) MC9b MC9b

SiO2 33.37(15) 32.11(26) Mn2+ 0.026(3) 0.028(3)
TiO2 4.68(14) 7.22(37) Mg 0.010(5) 0.012(3)
Al2O3 2.15(3) 2.03(25) Ca 2.964(8) 2.960(5)
Cr2O3 0.01(1) 0.00(0) ∑X 3.000 3.000
FeOtot 23.05(23) 21.91(26) Ti4+ 0.295(9) 0.455(23)
MnOtot 0.37(3) 0.40(4) Al 0.007(9) 0.000(0)
MgO 0.74(1) 1.06(13) Cr3+ 0.001(1) 0.000(0)
CaO 33.03(7) 32.99(13) Fe2+ 0.006(11) 0.023(15)
∑ 97.40 97.71 Fe3+ 1.608(23) 1.401(28)

Mn3+ 0.000(3) 0.000(0)
Recalc. (wt%) Mg 0.083(5) 0.121(19)
Final FeO 0.09(16) 0.32(21) ∑Y 2.000 2.000
Final Fe2O3 25.52(36) 23.99(26) Si 2.795(10) 2.689(18)
Final MnO 0.37(4) 0.40(4) Al 0.205(8) 0.200(24)
Final Mn2O3 0.00(5) 0.00(0) Fe3+ 0.000(3) 0.111(33)
∑(calc.) 99.96 100.12 ∑Z 3.000 3.000
End-member mole %
Schorlomite (Slm) 0.00 5.55
Schorlomite-Al 10.25 10.00
Morimotoite (Mrm) 0.63 2.27
Morimotoite-Mg 8.33 12.13
Uvarovite (Uv) 0.03 0.01
Spessartine (Sps) 0.34 0.00
Andradite (Adr) 79.56 68.70
Calderite 0.53 0.95
Khoharite 0.32 0.38
Remainder 0.00 0.00
Total 99.99 99.99
Quality index Superior Superior

aElectron microprobe data were analyzed using the spreadsheet from Locock (2008), which was also used in calculating the Fe2+/Fe3+ and Mn2+/Mn3+ amounts
using the method of Droop (1987). Two phases were detected by EMPA. However, three phases were observed by HRPXRD (MC9a = phase 1, andMC9b = phase 2).
Numbers in bold indicate significant end-members.

TABLE II. HRPXRD data and Rietveld refinement statistics.

Phase 1 Phase 2 Phase 3

Wt% 46.5(1) 23.9(1) 29.6(1)
a (Å) 12.077 57(2) 12.094 35(2) 12.065 25(1)
Δa (Å)a −0.0168 0.0123
LYb 15.61 10.71 5.77
Reduced χ2 1.183
R (F2)c 0.0295
Nobs 2096
λ (Å) 0.413 51(2)
2θ range 2 to 50°
Data points 47991

aIn thin film theory (Kitamura and Komatsu, 1978), both the strain and
birefringence between the substrate and film are proportional to Δa
(asubstrate− afilm).
bLY is related to strain and these values are quite large compared to a single
phase andradite (MC7), where LY = 3.29 (unpublished result).
cR (F2) = overall R-structure factor based on observed and calculated structure
amplitudes =[∑(Fo

2− Fc
2)/∑(Fo

2)]1/2.
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(X–O) + (X′–O)}/4, and it is linear across the entire garnet
series (a varies from about 11.44 to 12.57 Å). The average
〈X–O〉 distance across the garnet series falls on two straight
lines that meet at grossular (Grs). The Z–O distance for the
anhydrous garnets falls on three straight lines that meet at
andradite (Adr) and Ti–Gt, which is a synthetic Ti-rich garnet
(Weber et al., 1975). The Y–O distance falls on four straight
lines that meet at Grs, Adr, and Ti–Gt. The Y–O variations
show the division of the garnet series into four sub-series, as
indicated by the dashed vertical lines. For the hydroxy garnets
(OH–Gt), the Y–O(OH–Gt) and Z–O(OH–Gt) distances behave
differently from other anhydrous garnets, although the behav-
ior of the average 〈X–O〉 distance is the same across the series.
Other end members of the garnet series shown in Figure 3 are

abbreviated using standard notations (Whitney and Evans,
2010). The three phases from this study are very close to the
end-member andradite, ideally Ca3(Fe2

3+)Si3O12.
All the bond distances obtained from this study are

reasonable and agree with previous results (Table IV;
Figure 3). This is not surprising as the single-crystal method
samples the dominant phase, but data from possible minor
phases are missing. The single-crystal method is an inadequate
technique to examine multi-phase samples. The bond dis-
tances also compared well with those obtained from the sum
of ionic radii (Table IV; Figure 3). The increase in Z–O dis-
tance compared to end-member andradite is not the result of
(O4H4)↔ SiO4 substitution, as in hydroxy garnet. Instead,
the increase in Z–O is the result of (Fe3+, Al)↔ Si substitution

Figure 2. HRPXRD trace for a Ti-rich andradite sample (MC9) fromMagnet Cove together with the calculated (continuous line) and observed (crosses) profiles.
The difference curve (Iobs− Icalc) is shown at the bottom. The short vertical lines indicate allowed reflection positions. (a) The intensities that are above 20 and 30°
2θ are scaled by factors of ×10 and ×30, respectively, for both the trace and difference curves. (b) The fitted HRPXRD trace showing the reflections (840) and
(842). Three cubic phases intergrown in the sample are evident, as indicated by the splitting of the diffraction peaks.
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in the Z site (Table I). Similarly, the decrease in Y–O distance
compared to end-member andradite, arises from the replace-
ment of Fe3+ (0.645 Å) by smaller Ti4+ (0.605 Å). Since the
mean 〈D–O〉 distance varies as a straight line and the average
〈X–O〉 distances by straight lines, for the Ti-andradite region,
when Z–O expands, then Y–O contracts (Figure 3).

The crystal structure of the individual phases in andradite
can also be rationalized using bond-valence sums (BVS) cal-
culated in valence units (v.u) (Wills and Brown, 1999). For
example, for dominant phase-1, the BVS for Ca atom at X
site is 2.30 v.u., whereas BVS for Mn and Mg atoms in this
site are low. This means that the Ca atom is a bit large for
the X site, whereas the Mg atom is too small, so it rattles
and gives rise to large displacement parameters, especially
in pyrope; these facts are well known. For Ti4+ at the Y site,
the BVS is 3.60 v.u., whereas for Fe3+, it is 2.89 v.u. The
BVS for Si at Z site is 3.75 v.u., which is reasonable because
there are some Al and Fe atoms in this site (Table I).

The formation of multi-phase cubic intergrowths may be
related to changes in oxygen fugacity ( fO2), activity of SiO2

(aSiO2), etc., as the crystals grow at low temperature that pre-
vents diffusion or homogenization of the cations. Such inter-
growths are similar to hetero-epitaxial or epitaxial growths
because of the similarity of the structural and chemical par-
ameters in individual cubic phases. Slight structural differ-
ences between the cubic phases give rise to structural
mismatch that result in strain and optical anisotropy. A
measure of strain can be obtained from the LY profile term
in GSAS refinement. For a single-phase cubic garnet, the
LY value is small compared to those for the multi-phase
andradite, which has larger LY values, indicating larger strain
(Table II).

Garnet-group minerals are important as they occur over a
range of pressures, temperatures, and chemical compositions.
They are common in metamorphic rocks and in xenoliths
derived from the Earth’s mantle. It is important to know the

TABLE IV. Selected distances (Å) in Ti-rich andradite (MC9).

Phase 1 Phase 2 Phase 3

Z–O (Å) x4 1.6639(9) 1.671(1) 1.6559(9)
Y–O x6 2.0043(9) 2.003(1) 2.0095(9)
X–O x4 2.3609(8) 2.373(1) 2.3575(8)
X–O′ x4 2.5085(9) 2.505(1) 2.5070(8)
〈X–O〉 [8] 2.4347 2.439 2.4323
〈D–O〉a 2.1344 2.138 2.1325
Radii ∑
Z–O (Å) 1.649 1.657 –

Y–O 2.022 2.022 –

〈X–O〉 2.439 2.438 –

〈D–O〉 2.137 2.139 –

These distances are shown in Figure 3 for comparison with published data. For the calculated radii sum distances, radii from Shannon (1976) were used (X site:
Mn2+ = 0.96, Mg = 0.89 Å; Y site: Ti4+ = 0.605, Al = 0.535, Cr3+ = 0.615, Fe2+ = 0.78, Fe3+ = 0.645, Mn3+ = 0.645, Mg = 0.72 Å; Z site: Si = 0.26, Al = 0.39,
Fe3+ = 0.49 Å; O = 1.38 Å). Ca = 1.06 Å instead of 1.12 Å from Shannon (1976); this gives more realistic 〈X–O〉 distances.
a〈D–O〉 = {(Z–O) + (Y–O) + (X–O) + (X′–O)}/4.

TABLE III. Atom coordinatesa, isotropic displacement parameters, U (Å2), and sofs.

Phase 1 Phase 2 Phase 3

Ca(X) U 0.0058(2) 0.0055(2) 0.0060(2)
Fe(Y) U 0.0037(1) 0.0029(1) 0.0028(1)
Si(Z) U 0.0045(2) 0.0042(3) 0.0037(2)
O x 0.038 46(7) 0.038 81(9) 0.038 69(7)

y 0.047 99(7) 0.048 53(8) 0.048 02(7)
z 0.654 14(7) 0.653 55(9) 0.654 71(7)
U 0.0115(3) 0.0099(3) 0.0109(3)

Ca(X) sof 0.948(3) 0.953(3) 0.928(3)
Fe(Y) sof 0.848(2) 0.837(2) 0.819(2)
Si(Z) sof 1.000(3) 1.037(3) 0.957(3)
Ca(X) EMPA sofs 1.001(0) 1.001(0) –

Fe(Y) EMPA sofs 0.953(4) 0.932(7) –

Si(Z) EMPA sofs 0.996(7) 1.027(10) –

Xb Δ(sof) −0.053 −0.048 –

Y Δ(sof) −0.105 −0.095 –

Z Δ(sof) 0.004 0.01 –

Xc Δe −1.06 −0.96 –

Y Δe −2.73 −2.47 –

Z Δe 0.056 0.14 –

aX at (0, ¼, ⅛) with Ca dominant, Y at (0, 0, 0) with Fe dominant, and Z at (⅜, 0, ¼) with Si dominant.
bΔ(sof) = sof (HRPXRD refinement)− sof (EMPA).
cΔe = electrons (HRPXRD refinement) − electrons (EMPA).
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structural effects that arise from cation substitutions so as to
interpret the complex (ideal or non-ideal) thermodynamic be-
havior observed in garnet solid solutions (Ganguly et al.,
1993), and their petrogenetic significances. Most geotherm-
ometers and geobarometers involve garnet as one of the
phases (Ganguly et al., 1993).

Majorite garnet, (Mg,Fe)SiO3, is considered to be a major
constituent of the Earth’s transition zone between the 400-
and 670-km discontinuities (Ringwood, 1967; Akaogi and
Akimoto, 1977; Liu, 1977). Anisotropic MgSiO3, that is,
{Mg3}(MgSi)[Si3O12], garnet accounts for a large fraction
of the Earth’s upper mantle above the 670-km discontinuity
(Ito and Takahashi, 1987), and was reported to be birefringent
with tetragonal symmetry (Kato and Kumazawa, 1985;
Sawamoto, 1987; Angel et al., 1989; Parise et al., 1996;
Nakatsuka et al., 1999a, 1999b). High-pressure synthesis
has produced ABO3 tetragonal phases such as CaGeO3,
CdGeO3 (Prewitt and Sleight, 1969; Nakatsuka et al., 2005),
and MnSiO3 (Fujino et al., 1986), in which equal numbers
of A and B atoms are ordered on the Y site. If cation order
and cubic symmetry reduction occur for birefringent ABO3

garnet, then the thermodynamic properties of MgSiO3 garnet
in the mantle will change significantly, and that has important
geophysical consequences. The configurational entropy of an
ordered tetragonal MgSiO3 garnet would be reduced relative
to a disordered cubic phase, and gives rise to a reduction in
enthalpy. Therefore, possible cubic to tetragonal phase tran-
sition in MgSiO3 garnet and the associated cation ordering
on the Y site are of considerable interest in terms of thermo-
dynamic effects and seismic velocities in the transition zone.
Contrary to the structural results obtained so far on

birefringent ABO3 garnet samples that undergo a cubic to
tetragonal transition, the results from this study suggest that
they may be cubic and may occur as a mixture of cubic phases,
hence further work remains to be done on ABO3 garnet
samples. Birefringence in natural samples disappears at
about 800 °C and may or may not reappear on cooling
(Prewitt and Sleight, 1969).

Natural garnet such as uvarovite, {Ca3}[Cr
3+
2 ](Si3)O12;

grossular, {Ca3}[Al2](Si3)O12; andradite, {Ca3}[Fe
3+
2 ](Si3)

O12; spessartine, {Mn2+3 }[Al2](Si3)O12; almandine, {Fe2+3 }
[Al2](Si3)O12; and hydrogarnets can be birefringent and consist
of a mixture of two or three cubic phases, whereas other garnets
such as pyrope, {Mg3}[Al2](Si3)O12, is isotropic, if they occur
as a single cubic phase (unpublished results). The hydrogarnet
series between grossular, {Ca3}[Al2](SiO4)3 − {Ca3}[Al2]
(O4H4)3, (Si-free katoite), is known as “hydrogrossular”, and
between andradite {Ca3}[Fe

3+
2 ](SiO4)3 − {Ca3}[Fe

3+
2 ]

(O4H4)3, is known as “hydroandradite”. Unusual and elongated
atomic displacement parameters along the “Si-O” bond for the
O atoms in hydrogarnets are usually modeled by split O-atom
positions (e.g., Lager et al., 1987b; Armbruster and Lager,
1989; Ferro et al., 2003), but they are the result of multiple
cubic phases (unpublished results). Similar unusual O-atom
features were also observed for the Ice River morimotoite
(Peterson et al., 1995), and are also the result of multiple phases
(unpublished results). The crystal structure of birefringent
andradite samples was recently discussed by Antao and
Klincker (2013) and Antao (2013); the crystal structure of
other birefringent garnets will be published elsewhere.
Birefringent garnet consists of a mixture of two or more
cubic phases. This mixture causes strain that arises from

Figure 3. (Color online) Structural variations across the silicate garnet series. The Y–O, Z–O, and average 〈X–O〉 distances vary linearly with the a unit-cell
parameter in different parts of the series. The mean 〈D–O〉 distance varies linearly with the a parameter across the entire series. The linear lines are based on
literature data (see text). Standard abbreviations are used for garnet end members, including slm = schorlomite and kmz = kimzeyite. Data from this study are
also shown.
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structural mismatch and makes the garnet birefringent. A long
standing problem on birefringent garnets now appears to be
solved.
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