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In the present work we investigate the dynamics of electrons under the action of wave
packets of high-frequency electromagnetic carrier waves. When the group velocities of
the packets are subluminal, electrons can be efficiently accelerated. We show that the
whole process can be described by an accurate ponderomotive canonical formalism that
includes relevant extensions of the original ponderomotive approach applied to carriers
moving at the speed of light. Single-particle simulations validate our analytical approach
and show that extended canonical methods provide better agreement with numerics than
previous investigations. In particular, we obtain a precise relationship between the wave
amplitude and group velocity for optimum acceleration of initially stationary targets.
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1. Introduction

Moving packets of high-frequency electromagnetic carrier waves have been proposed
in the past as efficient structures for acceleration and deceleration of charged particles in
cases of both luminal (Startsev & McKinstrie 1997) and subluminal pulses (Liu & Tripathi
2005; Sazegari, Mirzaie & Shokri 2006).

If dissipative effects such as radiation reaction (RR) (Landau & Lifschitz 1965) are
ignored, there can be no net acceleration in the luminal case, unless particles are created
inside the pulse. Externally created particles caught up by the pulse are simply overtaken
with no net acceleration.

In the subluminal case, the interesting central idea is to use the compact high-intensity
pulse as a moving wall impinging on a target charged particle. Here, we note that
acceleration in the conservative case is possible because particles can actually outrun the
wave pulse after the interaction in accelerating regimes, or outrun the wave pulse before
the interaction in decelerating regimes. If the pulse amplitude and the relative velocity
between pulse and particle are properly chosen, particles are kicked (or scattered) by the
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pulse and either accelerated to high speeds, or decelerated to minimum velocities. On
the other hand, if scattering conditions are not met and dissipative effects such as RR
dissipation are ignored, particles are again engulfed by the pulse and ejected at its far end
with no net acceleration, similarly to the luminal case.

In many cases slightly subluminal pulses require carrier phase velocities just above
the speed of light c, as for instance in wave-guiding systems (Elmore & Heald 1985).
This introduces two different time dependencies in the wave–particle dynamics: the one
associated with the pulse motion, and the one associated with the carrier’s high-frequency
behaviour. The pulse width is in general much larger than the carrier’s wavelength, so the
pulse dynamics in those cases can be viewed as a slow modulation superimposed on the
amplitude of the high-frequency carrier.

Average ponderomotive approximations (Shukla et al. 1986; Mendonça 2001; Sazegari
et al. 2006; Mulser & Bauer 2010; Smorenburg et al. 2010; Burton et al. 2017; Peng et al.
2020; Terzani et al. 2021) furnish the appropriate tool to deal with these two-time-scale
dynamics and have been used in the investigation of pulses formed either with linearly or
circularly polarized transverse carriers. The classic ponderomotive approach, based on fast
time averaging of the dynamical equations, enables us to identify how the relevant control
parameters correlate with the various wave–particle dynamical regimes. In particular,
the explicit relationship between pulse amplitude and speed can be found to locate the
transition from the accelerating, or reflective, regime, where particles are actually kicked
by the pulse, and the passing regime, where particles simply traverse the pulse, ending
up with the very same speed they had prior to the interaction, as outlined above. We
point out that, although the passing regime is neutral in terms of overall acceleration in
conservative approximations, it can be turned into an effective dumping or accelerating
tool when dissipative effects are incorporated into the formalism. Estimates of the time
interval during which the particle remains under the influence of the pulse, so crucial for
these purposes (Di Piazza 2008; Harvey, Heinzl & Marklund 2011; Vranic et al. 2014), can
be obtained from an accurate ponderomotive approach.

The ponderomotive approach can be written in terms of a proper canonical formalism.
In the electromagnetic case of high-frequency waves moving at the speed of light, the
one-dimensional ponderomotive Hamiltonian is simply the original Hamiltonian with the
momentum and the field-dependent terms both replaced with their fast time averages
(Macchi 1992; Terzani et al. 2021), as we will re-examine later. In our present case,
however, neither the group velocity nor the phase velocity coincide with c; the former
is smaller (hence, subluminal) and the latter is greater. Therefore, one needs to extend the
original formalism, an extension that will bring some new terms and observable effects
into the corresponding ponderomotive Hamiltonian formalism.

In the following sections we first introduce the full model to be investigated and
develop the steps leading to a new set of variables where the high-frequency terms are
absent. With our ponderomotive formalism thus obtained we then make comparisons
with previous results from the literature, pointing out where the conventional and the
canonical ponderomotive formalisms agree and where they disagree. Our results on the
accurate canonical formalism are supported by the exact integration of the equations of
motion.

2. General formalism

We now start the investigation by introducing the physical model we plan to study and
the appropriate Hamiltonian formalism.

In the model we consider the effective one-dimensional (1-D) dynamics of a single
particle moving along the x axis under the action of transversely polarized electromagnetic
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(EM) waves with vector potentials given in the forms

Acirc = A0 exp
(

−(x − vgt)2

σ 2

)
(ŷ sin θ + ẑ cos θ), (2.1)

and

Alin =
√

2 A0 exp
(

−(x − vg t)2

σ 2

)
ŷ sin θ, (2.2)

respectively for the cases of circular (circ) and linear (lin) polarization. Transverse
conserved canonical momenta along the fields are taken to be zero and the 1-D fast
phase is introduced as θ ≡ kx − ωt, with k denoting the wave vector of the carrier and
ω its frequency. As for the 1-D modulational profile, σ is the width of the packet with
kσ � 1, and vg the group velocity; we ignore packet dispersion. To implement the idea of
superluminal carriers, we also consider a dispersion relation of the type ω =

√
c2k2 + ω2

0,
where ω2

0 incorporates the effects of the finite transverse dimensions of a wave guide, a
possible diffractive geometry related to focused laser beams in vacuum (Esarey et al. 1995;
Steinhauer & Kimura 2003; Ralph et al. 2009; Lemos et al. 2018; Fedorov & Tzortzakis
2020) or the effects of a plasma medium (Elmore & Heald 1985). We note that TE01 and
TE10 EM modes in a wave guide with rectangular cross-section produce a null in the axial
magnetic field right at the cross-sectional midpoint. A thin electron beam injected in this
region would therefore experience the effects of an approximate transversal plane wave. In
both cases the phase velocity vφ = ω/k is superluminal and the group velocity ∂ω/∂k is
subluminal with vg = c2/vφ . For future convenience when the time comes for comparison
of the two cases of polarization, we introduce the

√
2 in expression (2.2) such that the fast

time intensity averages in both situations are the same; Acirc · Acirc=Alin · Alin, with the bar
denoting the fast time (or fast phase) average defined as ḡ ≡ (2π)−1

∮
g(θ) dθ for a generic

function g = g(θ).
Given the fields and the assumed geometry, the exact relativistic Hamiltonians for the

circular and linear cases respectively read

Hcirc =
√

1 + p2 + A2
0 exp

(
−2(x − vgt)2

σ 2

)
, (2.3)

and

Hlin =
√

1 + p2 + A2
0 exp

(
−2(x − vgt)2

σ 2

)
(1 − cos 2θ). (2.4)

Variable p denotes the canonical momentum along the canonical conjugate x axis, and
from now on we work with the dimensionless rescaled variables kx → x, kσ → σ , kct →
t, p/mc → p, Hcirc,lin/mc2 → Hcirc,lin, vg/c → vg and qA0/mc2 → A0. The phase variable
θ simply preserves its adimensional and periodic nature and is now written in terms of the
new dimensionless variables as θ = x − vφt with vφ ≡ ω/(kc) as the dimensionless phase
velocity of the carrier.

As we examine expressions (2.3) and (2.4) we promptly realize that (2.3) is ready for use.
It is an exact expression already free of the fast phase θ , so we have an exactly integrable
Hamiltonian (time can be canonically absorbed into coordinate x) that coincides with its
ponderomotive averaged form (Sazegari et al. 2006).

Expression (2.4), on the other hand, is not free of θ . One thus cannot remove the time
dependence from the Hamiltonian with one single canonical transform, as in the case of
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circular polarization, unless vg = vφ = 1 (Startsev & McKinstrie 1997), which is not the
case of interest here, as commented before. One has therefore a non-integrable system in
the case of linearly polarized wave pulses.

The first attempt towards an analytic solution then would be to ignore the fast phase
term, in which case one would recover the traditional ponderomotive Hamiltonian – let us
call it H̄0 – given in terms of a slowly varying momentum driven by the average squared
potential

H̄0 =
√

1 + p̄2 + A2, (2.5)

with

A2 = A2
0 exp

(
−2(x̄ − vgt)2

σ 2

)
. (2.6)

Under this approximation, the Hamiltonians for both circular and linear polarization cases
would coincide. Note that in expression (2.6) we replace the coordinate x with its average
form x̄, which is allowed by the smooth space–time dependence of the slowly modulated
pulse profile.

We will, however, see that, although the attempt embodied by expression (2.5) works
fine for linearly polarized carriers travelling at the speed of light (Macchi 1992), it yields
incorrect results when the carrier becomes superluminal.

To summarize, we shall study the cases of circular and linear polarization separately,
developing the theoretical model alongside the proper numerical work.

Let us then start with the case of circularly polarized waves as described by Hamiltonian
(2.3).

3. Analysis of the wave–particle dynamics
3.1. Circular polarization

Given the Hamilton equations dp/dt = −∂Hcirc/∂x and dHcirc/dt = ∂Hcirc/∂t, the 1-D
Hamiltonian (2.3) generates one conserved quantity that can be written in the form

−vgp + Hcirc ≡ Kcirc [const.]. (3.1)

One can evaluate the constant value of Kcirc by examining the dynamics long before
the interaction when the charged particle and the moving pulse are far from one another;
it reads Kcirc = −vgp0 +

√
1 + p2

0 with p0 = p(t = 0). Long after the interaction, when
particles and pulse are again far from each other, Kcirc takes a similar form −vgpf +√

1 + p2
f . Now the initial momentum is replaced with the final particle momentum pf =

p(t = tf ), with tf as an instant of time far beyond the one where the interaction took place.
Equating both forms of Kcirc and adequately manipulating the resulting quadratic

equation for pf , two generic roots can be obtained

pf = p0, (3.2)

pf = 2γ0vg − (1 + v2
g)p0

1 − v2
g

. (3.3)

As said, both results are generic and must be examined in each particular context of the
interaction. Under this perspective, (3.2) applies either to situations where the wave and
particle do not catch up with each other, or to those cases where particles go through the
wave packet emerging with the very same kinetic energy.
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FIGURE 1. Velocity vs time. Two curves representing passing (A0 = 2.064, dash-dotted brown
curve) and reflected/accelerating (A0 = 2.065, solid cyan curve) particles, for vg = 0.9. The
transition between the regimes is accurately expressed by the value obtained from (3.4).

On the other hand, (3.3) applies to cases where wave and particle catch up with
each other and the wave amplitude is large enough to effectively scatter particles with
subsequent changes in the latter’s kinetic energy.

A useful test of the formalism is to find out the energy gain for an initially stationary
particle as it is hit and accelerated by a packet of group velocity vg and a given amplitude
A0. In this case, one needs the particle to be effectively scattered forward along the wave’s
moving direction. The critical condition guaranteeing that the particle will be continuously
pushed forward, not going through the entire wave packet, is that ẋ = vg when the particle
reaches the envelope peak at x − vgt = 0 where the acceleration also vanishes: dp/dt =
−∂Hcirc/∂x = 0.

This critical condition combined with the assumption of an initially stationary particle
with p0 = 0, imposes a minimum amplitude A0,min for scattering, which is therefore tied to
the group velocity in the form

A0,min = vg√
1 − v2

g

. (3.4)

Any amplitude larger than that will kick the particle into the forward direction, but smaller
amplitudes will allow the particle to cross the entire packet, ending up with a null energy
gain. The minimum amplitude can also be seen as a threshold between passing and
reflective regimes for the particle dynamics, so we will occasionally refer to A0,min as the
threshold or critical amplitude as well.

We briefly illustrate the critical case just analysed with numerical integration of the
equations of motion derived from the Hamiltonian (2.3), as presented in figure 1. There,
we consider σ = 100 and vg = 0.9, with A0 = 2.065 for the solid cyan curve, A0 = 2.064
for the dash-dotted brown curve and with initial conditions defined as x0 = 6σ and p0 = 0.
The choice σ = 100 satisfies the slow amplitude-modulation condition and is consistent
with the value observed in the high-end laser pulses, (Papadopoulos et al. 2016). We will
also show that the choice of different σ values implies qualitatively similar results, in the
sense our theory still precisely describes the full 1-D particle simulations.

The critical amplitude is calculated from expression (3.4) as A0min = 2.06474(. . . ), so
the cyan (brown) curve represents the dynamics just above (below) the critical amplitude.
We see that both curves behave as expected; particles are accelerated for the larger value
of A0, but end up with null speed for the smaller value.
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6 F. Russman, S. Marini and F.B. Rizzato

In addition, the final asymptotic velocity associated with the blue curve reads vnumerical =
0.994475(. . . ), which coincides with the theoretical value predicted by expression (3.3),

when adequately expressed in terms of the velocity given as vf ≡ v(tf ) = pf /

√
1 + p2

f .
One sees that, in the integrable case associated with circularly polarized EM pulses,

the canonical formulation accurately describes the criticality features in a simple and
straightforward way. We recall that, in this particular instance, the canonical approach
coincides with that based on ponderomotive force arguments, as commented earlier.

As electrons are scattered, fully accelerated and pushed forward in the plasma,
space-charge fields due to the ions left behind tend to pull the electrons back as a result
of this snowplough effect (Robinson 2021). Although the accelerating regime must be
reviewed in this case, the passing regime up to the transition point to acceleration may
still be described by the pure ponderomotive theory. In a wave-guided environment,
space-charge effects can be neglected.

Let us then proceed to the case of linear polarization where the canonical approach plays
a crucial role, predicting observable deviations from the usual ponderomotive approach.

3.2. Linear polarization
As mentioned earlier, the full Hamiltonian (2.4) for the case of linear polarization contains
an additional fast time dependence through the phase factor θ . This fast phase has space
and time combined in a different way than in the slowly modulated amplitude. Under this
circumstance, we are thus formally facing a non-integrable Hamiltonian system that cannot
generate constants of motion along the lines discussed in § 3.1.

To obtain an integrable approximation of Hlin we use the canonical ponderomotive
averaging approximation over the fast phase, which has been shown to describe
the dynamics of the likewise averaged particle momentum and position in the
centre-of-oscillation phase space (Mulser & Bauer 2010; Ruiz & Dodin 2017; Almansa
et al. 2019). We recall that, since we are dealing with superluminal carrier waves, the final
form of the averaged (or effective) Hamiltonian is expected to differ from the one arising
in the case of carriers moving at the speed of light.

To proceed with the calculation, let us first consider the difference Hlin − vφp, apply the
full time derivative on it and take into account the appropriate canonical equations

dHlin/dt − vφ dp/dt = ∂Hlin/∂t + vφ∂Hlin/∂x. (3.5)

Expression (3.5) contains fast and slow derivatives, the former coming from the fast
phase and the latter coming from the slow amplitude modulations. By construction, the
fast contribution cancels out, which leaves us only with the slow part. The quantity Hlin −
vφp is therefore a slowly varying entity for which its fast phase average approximately
coincides with its un-averaged value; if we call Hlin − vφp ≡ Kslow (slowly varying), one
thus has, approximately, K̄slow = Kslow.

Now let us write Hlin = vφp + Kslow, take its average and square the resulting expression.
One has

H̄2
lin = v2

φ p̄2 + K̄2
slow + 2vφK̄slowp̄. (3.6)

Let us then take the same expression Hlin = vφp + K̄slow, first squaring it and then taking
its average. Using the canonical form (2.4), one has

1 + p2 + A2 = v2
φp2 + K̄2

slow + vφ2K̄slowp̄, (3.7)
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which allows us to write expression (3.6) in the approximate form

H̄lin =
√

1 + p̄2 + A2 + (1 − v2
φ) (δp)2, (3.8)

with A2 given by our early expression (2.6) and δp ≡ p − p̄.
We now see that unless vφ = 1, the ponderomotive version of (2.4) can no longer be

simply written as an effective Hamiltonian describing a particle of momentum p̄ driven
by the average squared EM potential as previously assumed in expression (2.5). A new
fluctuational-type term (δp)2 (meaning the average of the squared fluctuation) is present
and we need to unveil its role in the canonical dynamics.

The fluctuation δp arises from the action of the fast phase on the particle dynamics. One
can estimate its time evolution from the canonical rules applied to Hlin in expression (2.4)

δ̇p = −(∂Hlin/∂x)fast = −∂Hlin/∂θ. (3.9)

If we approximate the phase factor as θ(t) = (v̄ − vφ)t, where v̄ is the slowly varying
particle’s velocity along x, one obtains

δp =
A2

0 exp
(

−2(x̄ − vgt)2

σ 2

)
2 (v̄ − vφ)Γ

cos 2θ, (3.10)

and finally arrive at

δp2 =
A4

0 exp
(

−4(x̄ − vgt)2

σ 2

)
8 (p̄/Γ − vφ)2Γ 2

, (3.11)

where Γ and v̄ are both calculated as their zeroth harmonic form Γ =√
1 + p̄2 + A2

0 e−2(x̄−vgt)2/σ 2 , and v̄ = p̄/Γ . Under these conditions an effective Hamiltonian
depending only on slow variables can be obtained in the form

H̄lin =

√√√√√√Γ 2 − 1
8

(
1 − 1

v2
φ

) A4
0 exp

(
−4(x̄ − vgt)2

σ 2

)
(Γ − p̄/vφ)2

, (3.12)

where the slowly varying variables x̄, p̄ are the new phase-space coordinates.
The effective Hamiltonian (3.12) was thus obtained from expression (3.8), with the new

term (δp)2 calculated from (3.9), (3.10) and (3.11). The Hamiltonian can also be derived
through a substantially more formal technique of canonical transformations (Goldstein
1980), much along the lines used in Ruiz & Dodin (2017) and Almansa et al. (2019), for
instance. In this point of view, one seeks for a new canonical set of dynamical variables
which are free from the θ -jitter induced by the high-frequency carrier. The corresponding
calculations are described in appendix A and the final product of the appropriate canonical
transformations is a Hamiltonian identical to (3.12).

To sum our results up to the present point, we have obtained an explicit form for the
Hamiltonian H̄lin augmented by the new (δp)2 term. The final form for the Hamiltonian
is given by expression (3.12), and the new term is the one preceded by the 1/8 factor in
that expression. This term is absent both in the case of circular polarization and in the
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(a) (b) (c)

FIGURE 2. Evolution of the agreement between analytics and numerics represented by curves
of velocity vs time for the initially stationary particle. We considered vg = 0.9 in all cases, along
with A0 = 1.0 in panel (a), A0 = 1.9 in panel (b) and A0 = 2.064 in panel (c). Full simulations
are depicted by the solid black line, the corrected model developed here by the dashed red
line and the original uncorrected model by the dotted blue line. Even at larger values of A0
neighbouring the transition from passing to reflected particles, the improved model keeps its
nice agreement with simulations.

case of linearly polarized carriers moving with the speed of light, in which case vφ = 1.
In the limit the phase velocity becomes luminal (vφ = 1), the driving wave no longer
accelerate the electron, and both our model and the standard without correction fit well
the 1-D particle simulations. Under this condition where the corrective term is absent, the
ponderomotive Hamiltonian coincides with the form provided by Terzani et al. (2021) in
their analysis focused on luminal waves with a large number of cycles within the pulse.

However, the new term is also omitted in cases where vφ > 1 as a lowest-order
approximation, so we now set out to investigate its effects.

We first observe that, since we consider vφ > 1, the new term lowers the ‘potential’
associated with the sum of field dependent terms in Hamiltonian (3.12). Therefore, even
though the new contribution to the potential function carries an additional complicated
velocity dependence whose role cannot be predicted before integration, we expect to
find higher field thresholds for the transition between the passing and reflective regimes
discussed earlier. In particular, near the transition we expect the new term to affect the long
stretches of time the particle spends under the influence of the pulse as it reaches for the
unstable dynamical point at the peak of the potential. This will be information of particular
relevance when RR effects due to acceleration (Smorenburg et al. 2010; Russman et al.
2020) are opportunely included in future works.

Let us then illustrate the role of the (δp)2 term in figure 2. Curves for velocity vs time
obtained from full simulations (solid black line), the ponderomotive approximation with
the (δp)2 corrective term (dashed red line) and the ponderomotive approximation without
the corrective term (dotted blue line) are seen for three choices of field amplitudes A0,
all panels again with vg = 0.9, σ = 100 and the same conditions of the previous case
pictured in figure 1. Here, the full simulation case is given by the numerical integration
of the equations from the Hamiltonian (2.4) while the cases with/without the correction
term are given by the Hamiltonian (3.8), including/not including the term (δp)2 given
by (3.11).

When fields are sufficiently low, as in the case A0 = 1.0 of panel (a), all regimes
are passing regimes, and both ponderomotive versions agree fairly well with the fully
simulated curve. As the amplitude A0 increases, one sees from panel (b) that, while
the extended ponderomotive approximation still provides an accurate description for the
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FIGURE 3. Transit times vs A0 for simulations (black dots), the corrected ponderomotive model
(dashed red line) and the uncorrected model (dotted blue line); vg = 0.9. As already suggested
from figure 2, the improved model maintains better agreement with particle simulations.

FIGURE 4. The amplitude threshold values as a function of vg for the simulations (black dots),
the corrected model (dashed red line) and the uncorrected model (dotted blue line). Once again
the figure expresses the better accuracy of the improved theoretical calculations.

exact theory, the conventional approximation without the (δp)2 correction begins to reveal
its limitations. If one keeps pushing A0 up to larger values, as in panel (c), it is seen
that the usual ponderomotive approximation reaches for the edge of the transition to
reflective regimes much earlier (i.e. for noticeably smaller values of A0) than the extended
ponderomotive model. This is seen as the blue curve tends to remain for longer stretches
of time nearest the peak of the potential, before crossing over and going back to the initial
zero speed at the far side of the potential bump. However, even in these circumstances,
the ponderomotive dynamics with the (δp)2 extension still agrees well with results of full
simulations.

We thus see that the transit time the particle spends under the action of the pulse is
highly dependent on the model as well as on the peak amplitude of the packet, both features
related to the neighbouring presence of the unstable dynamical equilibrium at the envelope
peak,

Given the relevance of the transit time, and with a basis on figure 2, we now try to
quantify the amount of time the particles spend under the action of the wave pulses.
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(a) (b) (c)

FIGURE 5. Transit times vs A0 for simulations (black dots), the corrected ponderomotive model
(dashed red line) and the uncorrected model (dotted blue line) assuming (a) vg = 0.9, v0 = 0.6,
(b) vg = 0.99, v0 = 0, (c) vg = 0.99, v0 = 0.6 and σ = 100. The results suggest our model fits
better the simulations independently of the wave phase velocity and the initial particle velocity.

(a) (b)

FIGURE 6. Evolution of the agreement between analytics and numerics represented by curves of
velocity vs time for the initially stationary particle. We considered vg = 0.9 and A0 = 2.064 (see
figure 2c) in all cases, along with σ = 4 in panel (a) and σ = 1000 in panel (b). Full simulations
are depicted by the solid black line, the corrected model developed here by the dashed red
line and the original uncorrected model by the dotted blue line. For different σ scales a nice
agreement of our model with full simulations is observed.

The corresponding analysis is represented in figure 3, where curves are obtained from
the proposed expression for the transit time 〈t〉

〈t〉 = 2√
π

∫ ∞

0
exp

(
−(x(t) − vgt)2

σ 2

)
dt. (3.13)

Expression (3.13) is a pulse profile weighted time counter. The infinity symbol here
actually represents a sufficiently long time allowing particles to attain constant velocity
after the interaction, and x(t) is respectively obtained from full simulations, from the
model without the (δp)2 correction and from the model with the (δp)2 correction. In
the artificial case of a stationary particle with a constant x � σ , one would obtain the
reasonable and expected value 〈t〉 = σ/vg; in the general case 〈t〉 is a measure of the time
width of the plateaus or bumps of the previous figure 2.

Once again we see that the present extended model has better agreement with the full
1-D particle simulations.
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Given the sensitivity of the threshold amplitude (where 〈t〉 diverges to infinity) on the
model, as seen in figures 2 and 3, we finally add a plot of the field threshold A0,min vs
vg in figure 4. In the figure we depict the corresponding behaviours of both models and
the simulations. The analytical full lines of the plot are obtained under the very same
conditions used to derive expression (3.4): v(x − vgt = 0) = vg; and H̄lin − vgp̄ = const.,
which is still true for our extended Hamiltonian depending only on the combination x −
vgt. The only difference now is that we solve the system numerically due to its involved
algebraic structure resulting from the non-trivial form of Hamiltonian (3.12).

Again, the corrected model fits much more accurately the simulation points than its
uncorrected counterpart.

We finally provide a brief discussion on the role of the initial velocity in the accelerating
particle process. In figure 5, all cases are of accelerating particles and σ = 100. We see
from figure 5(a) that the present theory keeps its accuracy, even at higher initial speeds
(i.e. v0 = 0.6, and vg = 0.9). Interestingly, now increasing the group velocity would
suggest that our correction should be of less significance due to the prefactor 1 − 1/v2

φ .
However, in such a scenario the wave amplitude needed to keep the reflective/accelerating
regime must be higher, which ultimately implies that our corrections remain quite
appreciable if, again, one remains in accelerating regimes. This is indicated in figures 5(b)
and 5(c), where vg = 0.99 and σ = 100, with v0 = 0 in (b) and v0 = 0.6 in (c). Moreover,
the presented theory still holds even in the counter-directional scenario, where the electron
moves towards the carrier (Vranic et al. 2014).

Finally, in figure 6 curves are displayed for velocity vs time obtained from full
simulations (solid black line), from the ponderomotive approximation with the (δp)2

corrective term (dashed red line) and from the ponderomotive approximation without the
corrective term (dotted blue line). A short laser pulse with σ = 4 is shown in panel (a),
and a long pulse with σ = 1000 is shown in panel (b). The correction investigated in
the present work indicates that our theoretical model, although formally constructed for
high-frequency carriers, is in practice good for a wide range of the normalized envelope
lengths σ .

4. Conclusions

In the present paper we studied the collisional dynamics of radiation pulses impinging
on electrons, from a canonically oriented point of view. In addition to the appropriate full
particle simulations, we developed an extended Hamiltonian ponderomotive treatment that
takes into account the subluminal character of the pulse. The Hamiltonian developed here
agrees with its original counterpart valid for pulses travelling at the speed of light, but,
importantly, includes new relevant terms that become active for subluminal wave packets.
With the inclusion of the new terms, the extended, or corrected, Hamiltonian provides
significantly better agreement with full simulations.

The present model is purely conservative. However, since the analytical approach
developed here describes much more accurately the time interval during which the particle
remains under the action of the radiation packet, we expect to have a better understanding
of RR dissipative effects, which depend on the extension of the wave packet and the
corresponding time interval. As mentioned earlier, our model needs a thin beam injected at
the centre of rectangular wave guides transporting the lowest-order modes. This is the way
the beam sees a local planar wave with transverse polarization, for which case the theory
applies. Otherwise, one would need to consider off-axis effects like transverse particle
dynamics, and transverse dependence of the field amplitudes with the resulting generation
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of longitudinal fields. Dissipative as well as higher-dimensionality effects are therefore
under current investigation.

Also, as commented on earlier in the present work, reduction of the group velocity of
waves can alternatively be accomplished in a plasma medium. In that case, pump depletion
due to snowplough effects adds itself as a factor to be considered in the description of the
acceleration process. We note, however, that the passing regime up to the transition point
to the accelerating regime may still be described by our proposed corrections.

In the case of tightly guided or focused laser beams with inhomogeneous transversal
profiles, some of the accelerating particles not sufficiently aligned with the laser axis will
experience transverse forces and be expelled from the central region. For particles aligned
with the axis, our theory applies, and for off-axis particles the corresponding dynamics
will be hopefully described by an extension of the ponderomotive Hamiltonian described
here, an early form of which is under construction.

Acknowledgements

Editor Luís O. Silva thanks the referees for their advice in evaluating this article.

Funding

We acknowledge support from CNPq, Brasil. S.M. thanks the financial support from
Grant No. ANR-11-IDEX-0004-02 Plas@Par.

Declaration of interests

The author reports no conflict of interest.

Appendix A

As mentioned, the effective Hamiltonian (3.12) depending only on slow variables can
be derived from an appropriate canonical transformation. To perform the transformation,
a generating function of the form F(x, p̄, t) = x p̄ + f (x, p̄, t) is used, where f comprises a
θ dependence such that f = 0.

The relevant variables transform as

p = p̄ + ∂f /∂x, (A1)

x̄ = x + ∂f /∂ p̄, (A2)

and

H̄lin = Hlin + ∂f /∂t. (A3)

As in Almansa et al. (2019), we demand that the low-frequency canonical Hamiltonian has
the form seen in (2.5), but with an added correction term to give an account of the average
effects coming from the high-frequency fluctuations

H̄lin =
√

1 + p̄2 + A2
0 exp

(
−2(x − vgt)2

σ 2

)
+ h(x, p̄). (A4)

Note that we express H̄lin in terms of the independent variables x, p̄ of the generating
function, deferring the transformation x → x̄ to our last step.

https://doi.org/10.1017/S0022377822000162 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000162


A canonical view on particle acceleration by EM pulses 13

Function h(x, p̄) shall play an important role when vφ > 1, and can be calculated
combining (A1), (A3) and (A4) to obtain√

1 +
(

p̄ + ∂f
∂x

)2

+ A2
0 exp

(
−2(x − vgt)2

σ 2

)
(1 − cos 2θ)

+ ∂f
∂t

=
√

1 + p̄2 + A2
0 exp

(
−2(x − vgt)2

σ 2

)
+ h(x, p̄), (A5)

with θ = x − vφt. By transposing the term ∂f /∂t to the right-hand side of (A5) and
squaring both sides, one gets

2H̄lin
∂f
∂t

+ 2 p̄
∂f
∂x

=
(

∂f
∂t

)2

−
(

∂f
∂x

)2

+ A2
0 exp

(
−2(x − vgt)2

σ 2

)
cos 2θ + h(x, p̄). (A6)

Equation (A6) is a nonlinear equation for the high-frequency variable f which requires
that

h(x, p̄) = −
〈(

∂f
∂t

)2

−
(

∂f
∂x

)2
〉

θ

, (A7)

to prevent the generation of secular terms in f .
Function h can be calculated if one uses the lowest-order approximation for f , neglecting

h and the quadratic terms in (A6) One has

2Γ
∂f
∂t

+ 2p̄
∂f
∂x

= A2
0 exp((−2(x − vgt)2/σ 2)) cos 2θ. (A8)

In (A8) we have used 2H̄lin∂f /∂t ≈ 2Γ̄ ∂f /∂t, with H̄lin(h = 0) ≡ Γ . Recalling that
f = f (θ), it follows that ∂f /∂t = −vφ∂f /∂x, and that (A8) can be rewritten as

∂f
∂t

=
A2

0 exp
(−2(x − vgt)2

σ 2

)
2
(
Γ − p̄/vφ

) cos 2θ. (A9)

From (A9) and (A7) one finally arrives at

h(x̄, p̄) = −1
8

(
1 − 1

v2
φ

) A4
0 exp

(−4(x̄ − vgt)2

σ 2

)
(
Γ − p̄/vφ

)2 , (A10)

where x can now be replaced with x̄ since it appears only in the slowly modulated
amplitude. Therefore, (A10) represents the correction term to be considered in the
ponderomotive Hamiltonian when considering a laser pulse with linear polarization. As
anticipated, inserting (A10) in (A4) results in the same Hamiltonian shown in (3.12).
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