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The breakup of an interface into a cascade of droplets and their subsequent coalescence
is a generic problem of central importance to a large number of industrial settings
such as mixing, separations and combustion. We study the breakup of a liquid jet
introduced through a cylindrical nozzle into a stagnant viscous phase via a hybrid
interface-tracking/level-set method to account for the surface tension forces in a
three-dimensional Cartesian domain. Numerical solutions are obtained for a range of
Reynolds (Re) and Weber (We) numbers. We find that the interplay between the azimuthal
and streamwise vorticity components leads to different interfacial features and flow
regimes in Re–We space. We show that the streamwise vorticity plays a critical role
in the development of the three-dimensional instabilities on the jet surface. In the
inertia-controlled regime at high Re and We, we expose the details of the spatio-temporal
development of the vortical structures affecting the interfacial dynamics. A mushroom-like
structure is formed at the leading edge of the jet inducing the generation of a liquid
sheet in its interior that undergoes rupture to form droplets. These droplets rotate inside
the mushroom structure due to their interaction with the prevailing vortical structures.
Additionally, Kelvin–Helmholtz vortices that form near the injection point deform in the
streamwise direction to form hairpin vortices, which, in turn, trigger the formation of
interfacial lobes in the jet core. The thinning of the lobes induces the creation of holes
which expand to form liquid threads that undergo capillary breakup to form droplets.
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1. Introduction

The breakup of a dispersed fluid in a stagnant phase is a classical problem in multiphase
flows, as it encompasses a multitude of interfacial singularities, which exemplify situations
wherein the interface undergoes topological transitions, e.g. liquid threads breakup into
drops, and merging of drops/bubbles due to coalescence. These transitions involve the
development of singularities where interfacial distances vanish and velocity fields diverge,
and the system is controlled by a combination of capillary, inertial and viscous forces. The
complex topological nature of the jet phenomenon has fascinated the scientific community
for decades which has led to numerous, comprehensive reviews; see, for example, Lin &
Reitz (1998), Eggers & Villermaux (2008) and Lasheras & Hopfinger (2000).

Jet breakup is influenced by a range of multi-scale physics; these include the
interaction of turbulence with interfaces (creating cascades of motion featuring a large
separation of scales), capillarity, potentially complex rheology, the presence of fields
(e.g. gravitational, electromagnetic), as well as heat transfer and phase change. Reitz &
Bracco (1986) proposed four jet breakup regimes depending on the appearance of the jet
far downstream from the injection point. In the ‘Rayleigh regime’ the onset of breakup
is the Rayleigh–Plateau instability, in which the growth of the linear modes on the jet
surface leads to the formation of large droplets with respect to the jet nozzle. In the
‘first/second wind-induced’ regime the resulting droplets have roughly the same scale or
smaller than the jet nozzle. Finally, in the ‘atomisation regime’ the generated turbulence
helps to create spatio-temporal chaos resulting in droplets which are up to four orders of
magnitude smaller than the size of the injection nozzle. The physics of droplet generation
in turbulent jets remains partially understood despite the significant scientific attention it
has received over the years (Dombrowski, Fraser & Newitt 1954; Hoyt & Taylor 1977;
Lasheras & Hopfinger 2000; Marmottant & Villermaux 2004; Villermaux, Marmottant &
Duplat 2004; Eggers & Villermaux 2008). The rest of this introduction aims to provide
an up-to-date summary of the experimental and numerical efforts to study the jet breakup
phenomenon.

The ground-breaking experiments of Hoyt & Taylor (1977) and Taylor & Hoyt (1983)
showed the complex topological features of the surface waves formed on the jet. They
revealed that these waves are responsible for the transition from laminar to turbulent
flow, and found underlying similarities of the occurring instabilities to inviscid linear
theory. Marmottant & Villermaux (2004) with their pioneering experiments scrutinised
the various stages of the jet dynamics: from the growth of linear modes (through
a Kelvin–Helmholtz instability) that characterises the early time dynamics, to the
development of nonlinearities leading to ‘primary’ and subsequent ‘secondary’ breakup
events (through long filament pinchoff modulated by a Rayleigh–Taylor instability), and
the formation of a cascade of droplet sizes. These authors found that mean droplet size
is proportional to the wavelength selected during the Rayleigh–Taylor instability (also
observed by Varga, Lasheras & Hoepfinger 2003). In the same premise, Kooij et al. (2018)
showed that the droplet size distribution is also a function of the nozzle geometry and the
surrounding pressure. More recently, Ibarra, Shaffer & Savaş (2020) presented the results
of an experimental study of the spatial evolution of turbulent immiscible liquid-liquid jets;
however, a detailed account of the spatio-temporal development, and critical mechanisms
leading to droplet generation remains outstanding.

The multi-scale nature of the flow, and the complex interfacial topology complicate
the experimental scrutiny of the different physical mechanisms occurring across the
scales. Thus, elucidating the fundamental physics of this problem has also relied on
high-fidelity simulations exemplified by the work of Bianchi et al. (2005, 2007), Ménard,
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DNS of turbulent jets

Tanguy & Berlemont (2007), Desjardins, Moureau & Pitsch (2008), Gorokhovski &
Herrmann (2008), Desjardins & Pitsch (2010), Shinjo & Umemura (2010), Herrmann
(2011), Chenadec (2012), Desjardins et al. (2013), Jarrahbashi et al. (2016), Ling et al.
(2017), Agbaglah, Chiodi & Desjardins (2017), Zandian, Sirignano & Hussain (2018), Ling
et al. (2019) and Zandian, Sirignano & Hussain (2019). The first step towards the use of
numerical simulations to understand the physical mechanisms at play was conducted by
Desjardins & Pitsch (2010), who were able to identify a sequence of essential steps during
the spatio/temporal interfacial development of a planar liquid jet segment: the formation
of initial corrugations on the surface, followed by the development of ligaments whose
capillary instability leads to droplet formation. They also showed that the early interfacial
corrugations are a consequence of the turbulent eddies which carry enough kinetic energy
to overcome capillary forces.

Using a similar approach to Desjardins & Pitsch (2010), but for a cylindrical liquid
jet segment surrounded by an outer gas phase, Jarrahbashi et al. (2016) provided a
comprehensive study of the flow structures in terms of the vortex-surface interaction. They
showed that ‘hole formation’ of a liquid sheet is an essential requirement to trigger the
formation of droplets, and the thinning of the liquid sheet is driven by the superposition of
hairpin vortices near the interface rather than by capillarity action. Similar findings have
been reported for a planar liquid jet segment surrounded by an outer gas phase (Zandian
et al. 2018), and for the transient dynamics of a cylindrical liquid jet surrounded by a
coaxial air phase (Zandian et al. 2019). Ling et al. (2017, 2019) performed simulations
of a two-phase mixing layer between parallel gas and liquid streams to investigate the
interfacial dynamics, and the statistics for the multiphase turbulence. They also observed
that the formation of ligaments, and subsequently formed droplets, are triggered by the
hole-induced perforation of the liquid sheets.

In the previous numerical studies, interface capturing capabilities were used to account
for the surface tension forces in the absence of intermolecular forces (i.e. disjoining
pressure). For static sheets, the disjoining pressure is neglected as the minimum
computational cell is larger than the film sheet thickness in which the intermolecular forces
will drive its perforation. Therefore, the hole formation is an outcome of the numerical
cut-off interfacial length scale, i.e. minimum mesh size (O(10−6) m). Nevertheless, recent
experiments (Marston et al. 2016; Kooij et al. 2018; Néel & Villermaux 2018) demonstrate
the existence of hole formation in dynamic sheets with a characteristic film thickness on
the order of microns.

In this study we aim to provide a comprehensive explanation of the physical mechanisms
governing the interfacial dynamics of turbulent jets focusing on the less well-studied
liquid-liquid systems. We will perform high-resolution three-dimensional direct numerical
simulations (DNS) using a hybrid interface-tracking/level-set approach to resolve the
interfacial dynamics. We will demonstrate how the interaction between the vortical
structures, which accompany the development of the flow, and the interface influence
the mechanisms underlying droplet generation over a wide range of Reynolds and Weber
numbers.

The rest of this paper is organised as follows. In § 2 we present the governing
equations along with the numerical technique used to carry out the simulations. In
§ 3 we begin with the presentation of a regime map in Re–We space, classifying jet
spatio-temporal development, followed by an in-depth discussion of the vortex-surface
interactions linked to the topological changes; in addition, we elucidate the role of hole
formation as a precursor to droplet generation. Finally, concluding remarks are provided
in § 4.
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2. Problem formulation and numerical techniques

Figure 1 shows a three-dimensional representation of the interface highlighting several
specific features that are discussed in detail in the present work: Kelvin–Helmholtz
(KH) waves close to the injection nozzle, outer lobes formed on the main body
of the jet, a leading edge mushroom-like structure and droplets resulting from the
atomisation process. The numerical framework is based on solving the two-phase
incompressible Navier–Stokes equations in a three-dimensional Cartesian domain x =
(x, y, z). The surface tension force in the momentum equation is treated by using a hybrid
front-tracking/level-set method presented by Shin & Juric (2002). The governing flow
equations in the ‘one-fluid’ formulation are described by

∇ · u = 0,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · μ(∇u + ∇uT) + F s,

⎫⎪⎬
⎪⎭ (2.1)

where t, u, p and F s stand for time, velocity, pressure and the surface tension force,
respectively. The density and viscosity are expressed using the formulation

ρ = ρso + (ρw − ρso)H (x, t),

μ = μso + (μw − μso)H (x, t).

}
(2.2)

wherein H(x, t) represents a smoothed Heaviside function, which is zero in the dispersed
phase (water) and unity in the stagnant phase (silicone oil), while the subscripts ‘w’ and
‘so’ refer to the individual phases. The surface tension force F s is defined by using the
hybrid formulation as in Shin & Juric (2009) and Shin, Chergui & Juric (2017),

F s = σκH∇H, (2.3)

where σ refers to surface tension, and κH is twice the mean interface curvature calculated
from the Eulerian grid by using

κH = F L · G
σG · G

, (2.4)

where

F L =
∫

Γ (t)
σκnδ(x − xf ) ds, G =

∫
Γ (t)

nδ(x − xf ), ds. (2.5a,b)

Here, xf is the parametrisation of the interface, Γ (t), and δ(x − xf ) is a Dirac delta
function which vanishes everywhere except at the interface; n is the outward-pointing
unit normal vector to the interface and ds is the length of the surface element.

The incompressible Navier–Stokes equations (2.1) are solved by using a second-order
finite-difference method on a staggered grid (Harlow & Welch 1965; Temam 1968). The
computational domain is then discretised by a fixed, regular, Eulerian grid, and the spatial
derivatives are approximated by standard centred difference discretisation, except for the
nonlinear term, which makes use of a second-order essentially non-oscillatory scheme
(Sussman, Smereka & Osher 1994). As for the viscous term, we use a second-order centred
difference scheme. We have used the projection method to handle the incompressibility
condition combined with a multigrid iterative method for solving the elliptic pressure
Poisson equation (Chorin 1968; Kwak, do, Lee 2004). The numerical method uses an
additional adaptive Lagrangian grid based on a hybrid front-tracking/level-set method
(Shin & Juric 2007; Shin et al. 2017) to track the interface location. The geometrical
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Silicone oil
Nozzle

KH waves
Outer lobes

Droplets

Mushroom structure
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X

Figure 1. Injection of a turbulent water jet into a stagnant silicone oil phase. Three-dimensional representation
of the interfacial shape for case 4 in table 2 (i.e. Re = 6530 and We = 303) at t = 28.97 with definitions of
particular regions and specific features discussed in this work.

information, pressure and velocity variables are exchanged between the adaptive
Lagrangian mesh and the fixed Eulerian grid following the immersed boundary method
of Peskin (1977). The physical elements that form the Lagrangian interface are advected
according to dxf/dt = V , where V is the interface velocity interpolated numerically from
the fixed Eulerian grid, using a second-order Runge–Kutta method. Finally, the numerical
method uses a domain-decomposition technique for its parallelisation and message passing
interface for exchanging information between adjacent subdomains. More information
regarding the full implementation of the numerical method can be found in Shin et al.
(2017, 2018).

2.1. Numerical configuration and physical parameters
Figure 1 shows the three-dimensional computational domain, which is a rectangular box
of size 20D × 4D × 4D, where D stands for the inner diameter of the nozzle (e.g. 4 mm).
The jet is produced when water leaves the cylindrical nozzle to enter progressively into the
stagnant silicone oil. The physical properties of the fluids are given in table 1. An inflow
boundary condition is applied to the nozzle on the left of the domain, i.e. at (x = 0), which
follows a simplified power-law turbulent velocity profile,

u (r, t) = 15
14

U

(
1 −

(
r

D/2

)28
)

(1 + A sin (2πft)) . (2.6)

Here, U, A and f stand for the average injection velocity, amplitude and frequency,
respectively, of the external pulsatile perturbation. The radial distance, r, within the
jet measured from its centreline ( y0, z0) is r =

√
( y − y0)2 + (z − z0)2. The values for

A and f are informed by the previous work of Ling, Zaleski & Scardovelli (2015) (e.g.
A = 0.05 m s−1 and f = 20 Hz), and the same values have been used throughout the
entire paper.

The numerical set-up closely follows other computational studies; for example, we
impose a free boundary condition on the walls of the computational domain to let the fluid
freely enter or leave the boundaries (Taub et al. 2013; Ling et al. 2015, 2019). A pressure
outflow boundary condition is applied on the right surface of the domain to allow the fluid
to exit the domain. The solid nozzle is treated as a no-slip surface (Asadi, Asgharzadeh &
Borazjani 2018).
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ρw ρso μw μso
(kg m−3) (kg m−3) (mPa s) (mPa s)

998 824 1.0 5.4

Table 1. Density and viscosity of the fluids used throughout this work (Ibarra 2017).

Case Re We

1 1000 7
2 1000 100
3 3260 75
4 6530 303

Table 2. The Reynolds-Weber number combinations for the four cases studied in detail with the M3 mesh
(see table 5 in Appendix A).

The distance x, velocity u, time t and pressure p in (2.1) are rendered dimensionless
using the following characteristic scales, D, U, D/U and ρwU2, respectively. Hence, the
dimensionless control parameters governing the phenomena we will study are given by

Re = ρwUD
μw

, We = ρwU2D
σ

, (2.7a,b)

where Re stands for the Reynolds number (i.e. the ratio of inertial to viscous forces), and
We represents the Weber number (i.e. the ratio of inertial to capillary forces). All the
variables appearing in the equations and boundary conditions are rendered dimensionless
using the aforementioned scalings, unless stated otherwise.

The first part of the results section corresponds to a discussion of a regime map of jet
dynamics in the Re–We space. In this instance, we have used the M2 mesh (see table 5
in Appendix A) to perform the fully three-dimensional simulations. The selection of
this mesh is dictated by the need to map out parameter space relatively rapidly before
focusing on elucidating the details of the dynamics using the M3 mesh, which provides
higher resolution, for four cases; the Re–We combinations for these cases are listed in
table 2. Information regarding the mesh-refinement study, resolution considerations and
the validation for this work are detailed in Appendix A.

3. Results

3.1. Interfacial dynamics: phase diagram in Re–We space
We start the discussion of the results by presenting a phenomenological picture of the
interfacial dynamics in a phase diagram in Re–We space. The Reynolds and Weber
numbers range between 103–104 and 7–900, respectively. Figure 2 shows the regime map
in terms of the interfacial dynamics predicted from our numerical simulations. Several
features emerge from this figure, which we have divided into four phenomenological
regions based on the appearance of the interfacial structures. We aim to quantify the
different jet behaviours by close inspection of the interplay between the vorticity field, ω =
∇ × u, and the interface. Such in-depth analysis is carried out following the introduction
of each region, utilising the higher resolution M3 mesh examples, as shown in table 2.
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0

0
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Case-2

Case-1

Case-3

Case-4

100 200 300 400 500
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600 700 800 900 1000

Figure 2. Regime map of the phenomenological interfacial dynamics in the Re–We space using the M2 mesh
(see table 5 in Appendix A for mesh details). Four different regimes and their boundaries are identified. A
snapshot of the flow corresponding to the three-dimensional representation of the interface for each simulated
point (i.e. black marker) is shown. The red squares refer to the cases presented in table 2.

Region ‘A’ in figure 2 is characterised by low Reynolds and Weber numbers and
defined by the dominance of the capillary over inertial forces, yielding an axisymmetric
behaviour of the jet. For small We, the dominance of the surface tension forces results
in the entrapment of the initial vortex head inside the discharged liquid edge. Then, the
formation of an interfacial leading mushroom-like structure is not observed. Figure 3
shows the interplay between the azimuthal and streamwise vorticity components, ωθ and
ωx, respectively, for case 1 (see table 2). We observe that ωθ exceeds ωx by two orders of
magnitude for the entirety of the jet, which explains the lack of deformation of the jet core,
and its axisymmetric shape.

Region ‘B’ is defined by low Reynolds and high Weber numbers. As shown in figure 2,
the snapshots of the interface in this region of parameter space reveal the development of
interfacial waves as well as the formation of a mushroom-like structure at the jet leading
edge. This is due to the rolling of the boundary layer at the edge of the solid nozzle as a
result of the initial vortex ring (more details in § 3.2). Figure 4 shows that although the
magnitude of ωθ exceeds that of ωx by almost two orders of magnitude for case 2, the
relative significance of ωx has increased in comparison with case 1. This is correlated
with the corrugations which are observed on the main body of the jet in case 2 that
appear to be largely absent in case 1. These corrugations are related to the development
of KH instabilities that arise from the velocity difference between the injected jet and the
surrounding, initially stagnant phase. As shown in figure 4, the mushroom structure is
also accompanied by the formation of droplets within it. More information regarding the
mechanisms which induce droplet formation is provided in § 3.3.

Region ‘C’ is characterised by low Weber and high Reynolds numbers. To elucidate the
mechanisms at play in this region, we refer to case 3 (see table 2), as shown in figure 5.
It is seen clearly that the magnitude of ωθ is an order of magnitude larger than that of ωx.
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10–10
ωθ

0.1–0.1
ωx

(a)

(b)

Figure 3. Two-dimensional representation of the interfacial location together with ωθ (a) and ωx (b) in the x–z
plane (y = 2) for case 1 in table 2 (Re = 1000 and We = 7) at t = 24.38. The colour represents the respective
vorticity field, where appropriate scales are shown in each panel.

10–10
ωθ

0.5–0.5
ωx

KH vortices

Droplets

Mushroom structure

(a)

(b)

Figure 4. Two-dimensional representation of the interfacial location together with ωθ (a) and ωx (b) in the x–z
plane (y = 2) for case 2 in table 2 (Re = 1000 and We = 100) at t = 26.87. The colour represents the respective
vorticity fields, where appropriate scales are shown in each panel.

The higher levels of inertia in case 3, in comparison to case 2, leads to formation of
pronounced KH instabilities with vortical rings close to the interface, yielding spanwise
interfacial deformations. Close inspection of figure 5 reveals that the mushroom structure,
which is also present in case 3, undergoes significant deformation leading to the formation
of a toroidal sheet, which envelopes that main body of the jet.

In region ‘D’ the flow is characterised by both high Reynolds and Weber numbers.
Here, it is seen from the snapshots of the interface in figure 2 that the interfacial dynamics
in this region of Re–We space are the most complex. The mushroom structures suffer
severe deformation as does the main body of the jet which also features the formation of
lobes arising from the KH-induced corrugations. It is also evident that flow in region D is
also accompanied by droplet generation. In § 3.2 below we focus on case 4 in figure 2
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DNS of turbulent jets

KH vortices

Thick film sheet

Mushroom structure

ωx becomes important

10–10
ωθ

1–1
ωx

(a)

(b)

Figure 5. Two-dimensional representation of the interfacial location together with ωθ (a) and ωx (b) in the x–z
plane (y = 2) for case 3 in table 2 (Re = 3260 and We = 75) at t = 24.65. The colour represents the respective
vorticity fields, where appropriate scales are shown in each panel.

and provide an extensive explanation of the mechanisms linking droplet formation to
vortex-interface interaction.

With the purpose of providing a better understanding of the vortex-surface interaction
for the development of the three-dimensional instabilities, we have analysed the rate of
change of the vorticity production by taking the curl of the momentum equation (i.e. (2.1)),
which can be written as

Dω

Dx
= (ω · ∇) u + ∇ ×

(∇ · τ

ρ

)
+ 1

ρ2 ∇ρ × ∇P + ∇ ×
(

F s

ρ

)
, (3.1)

where ω stands for the vorticity and τ represents the viscous stress tensor. The right-hand
side represents the vortex stretching, the vorticity generation as a result of the viscous
diffusion, the effect of density variation (‘baroclinic torque’) and the surface tension
forces, respectively. Jarrahbashi et al. (2016) have shown that the baroclinic term is
responsible for the three-dimensional instabilities for large density ratios O(10−2),
meanwhile, at lower density ratios O(10−1), the streamwise vorticity generation is
dominated by the azimuthal tilting and radial tilting of the vortex rings. For our study, the
contribution of the baroclinic term to the vorticity generation is negligible as the density
ratio is of the same order of magnitude (i.e. ∼O(100)).

Table 3 collects the results of a simple dimensional analysis to study the dominant terms
of the vorticity generation equation for the selected cases shown in table 2. On this basis,
the viscous diffusion term scales as μwU/ρΔx3, and the surface tension term scales as
σκ/ρΔx2 (similar to what was presented by Jarrahbashi et al. 2016; Zandian et al. 2019).
Finally, the vorticity stretching term (ω · ∇)u has been computed numerically. For regions
A–C, the vortex stretching term is negligible in comparison to the other terms, which
explains the non-development of the three-dimensional interfacial instabilities on the
surface of the jet core. Those regions are characterised by a balance/competition between
the surface tension and viscous terms giving rise to the different interfacial instabilities
explained above. Finally, in the inertia-dominated region the three terms on the right-hand
side of the vortex generation equation are balanced, and their competition determines the
interfacial topology. Thus, the vortex stretching term from the vorticity equation plays
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Cases Vortex stretching Viscous Surface tension
(ω · ∇)u ∇ × (∇ · τ/ρ) ∇ × (F s/ρ)

1 ∼O(100) ∼O(105) ∼O(105)

2 ∼O(101) ∼O(105) ∼O(104)

3 ∼O(103) ∼O(105) ∼O(105)

4 ∼O(105) ∼O(106) ∼O(105)

Table 3. Scalings for the terms of the vorticity transport equation (non-dimensional values).

the major role in the development of the three-dimensional interfacial destabilisation for
turbulent jets with density ratios of the same order of magnitude. Similar conclusions were
drawn by Jarrahbashi et al. (2016).

3.2. Interfacial dynamics explained through vortex-surface interaction
This section focuses on the inertia-controlled region D and case 4 as a principal example
of the flow in this region. In figure 6 we examine the spatio-temporal interfacial dynamics
overlaid with the magnitude of ωθ and ωx in the x–z plane. During the early stages of the
injection, a vortex ring is initially formed by the rolling of the boundary layer at the edge
of the solid surface. The physical mechanism which results in the formation of the leading
vortex ring is in agreement with previous work, such as Gharib, Rambod & Shariff (1998),
Marugán-Cruz, Rodríguez-Rodríguez & Martínez-Bazán (2013) and Asadi et al. (2018).
Once the jet enters the domain, the rotation of the head vortex drives the entrainment of
the stagnant phase as it is transported radially outwards. The initial vortex has a profound
effect on the interfacial dynamics with the formation of a mushroom-like structure. As
time evolves, the entrainment and formation of a toroidal liquid sheet of stagnant phase
are observed inside the mushroom structure (see, for example, figure 6a,b). Upstream of
the mushroom, it is seen that the KH instability develops (see figure 6c) amplified by the
pulsatile injection into waves which cause a local adverse pressure gradient by virtue of the
local interfacial curvature (see figure 6d). With increasing time, we observe the formation
of outer lobes as a result of the entrainment of the stagnant phase in the jet core (see
figure 6e).

Figure 6 also highlights the spatio-temporal development of the azimuthal and
streamwise components of the vorticity. At early times, vorticity generation coincides
with the velocity boundary layer attached to the interface, which corresponds to strong
tangential flow near the interface. The roll-up of the shear layers, and subsequently, the
vortex roll-up gives rise to the formation of KH vortex rings close to the interface (see
figure 6c). As time increases, the vorticity boundary layer is convected towards the jet core
(see figure 6e). Additionally, vorticity dissipates strongly in the stagnant phase due to the
damping effect of the viscosity.

Attention is now turned towards the competition between ωθ and ωx. In the region
adjacent to the injection point, the azimuthal vorticity component dominates over its
streamwise counterpart by two orders of magnitude; this dominance is reflected by the fact
that the KH vortex rings shown in figure 6(c) are essentially quasi-axisymmetric. As the
flow develops downstream (see figure 6d,e), ωx becomes comparable in magnitude to ωθ

leading to streamwise stretching of the KH vortex rings to form hairpin-shaped vortices.
Hairpin vortical or ‘horseshoe’ structures were proposed by Theodorsen (1952) to describe
the features of turbulence dynamics related to the existence of a shear or boundary layer
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t = 2.04 t = 4.07 t = 6.03
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Sheet thinning by vortex interaction

Streamwise vortex alignment

Vortex induction
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Figure 6. Two-dimensional representation of the spatio-temporal evolution of the interface for case 4 in table 2
(Re = 6530 and We = 303) together with ωθ (top panel of each subfigure) and ωx (bottom panel of each
subfigure) in the x–z plane (y = 2) for the dimensionless times shown in each panel. The colour represents the
respective vorticity fields, where appropriate scales are shown in each panel.
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near a wall. A hairpin vortex is made from a ‘vortex head’ which is the arched region
farther away from the boundary layer. The head is connected to the free surface or wall
by its ‘vortex legs’. The hairpin-head orientation results from a balance between the effect
of shear flow and the local velocity. Interestingly, the streamwise alignment of hairpin
vortices near the surface (see figure 6e, f ) has been reported previously by Jarrahbashi
et al. (2016) and Zandian et al. (2018) for coaxial round and planar jets, respectively. In
spite of the absence of a coaxial phase in our case, we observe the same phenomenon.
Additionally, we observe the successive alignment of opposite-signed vortices, where the
angle between each vortex pair is determined by the induction effect of the opposite-signed
‘neighbour’ vortex. A similar arrangement of vortices has been reported previously by
Jeong et al. (1997) for boundary layer turbulence, and Davoust, Jacquin & Leclaire (2012)
for compressible homogeneous jets. Further details about the specific alignment of the
vortical structure is provided below.

Figure 7(a) presents a three-dimensional representation of the jet at t = 28.97 alongside
five spatial locations which will be used to show the evolution of vorticity and
velocity across the jet core. The specific locations were chosen as follows: panel ‘A’ is
representative of the dynamics near the injection point, where there is little disturbance
to the interface; panel ‘B’ displays the cross-section of the jet in a jet ring (i.e. the part
of the interface where we observe the KH-waves crest), whereas panel ‘C’ depicts a jet
braid (i.e. the KH-waves trough); panels ‘D’ and ‘E’ portray the jet core dynamics where
lobe formation is present. Figure 7(b) shows the velocity and vorticity line profiles at the
y = 2 plane alongside the streamwise vorticity in the y–z plane for each of those locations.
Near the injection point (location ‘A’), ωθ >> ωx, which is in agreement with the lack of
deformation of the vortical structures in the streamwise direction (see also figure 6f ). The
tangential motion of the fluid close to the surface results in the emergence of the velocity
boundary layer. In turn, this causes the formation of two large peaks of opposite signs for
ωθ . As the flow evolves downstream, ωθ still dominates the physics, although, its value
has been reduced in favour of an increase in ωx, and consequently, the local formation of
corrugations on the jet core (location ‘B’). Additionally, the ωθ peaks have widened in
their base due to the growth of the velocity boundary layer as the jet moves downstream
(Liepmann & Gharib 1992). Further downstream (location ‘D’ and ‘E’), the interface has
lost its cylindrical shape due to the entrainment of the stagnant phase as ωx becomes
comparable in magnitude to ωθ . Several peaks can be seen in the vorticity profiles as the
probe line passes through several lobes. By inspecting the instantaneous velocity fields
in locations ‘D’ and ‘E’, we observe that the main component of velocity is associated
with the direction of injection, where there is a decay of its mean centreline value as flow
evolves downstream, which is in agreement with Pope (2000) for single-phase jets. The
velocity decay leads to a reduction in the velocity difference between the injected and
stagnant phases, which attenuates the interfacial shearing, supporting the development of
the vortical rings close to the surface of the jet. Notice that the y and z velocity components
are positive or negative close to the surface, showing the entrainment of injected fluid
towards the stagnant viscous phase or vice versa.

Next our attention is turned towards the physical mechanisms which lead to the
alignment of the hairpin-like vortical structures along the free surface. Figure 7(c) shows
cross-section panels with ωx of the jet at the streamwise locations shown in figure 7(a). As
depicted in panel ‘A’, ωx is mainly confined inside of the injected stream, where hairpin
vortex legs are observed (see first panel of figure 7c). In panel ‘B’ the outer layer of
vorticity comes from the braid located immediately downstream, which starts to roll-up
around the ring. Further analysis of panel ‘B’ shows the existence of additional pairs of
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Figure 7. Three-dimensional representation of the interface for case 4 (Re = 6530 and We = 303) at t =
28.97, showing the spatial locations ‘A’–‘E’, (a). The streamwise location of the ‘A’–‘E’ probe lines
correspond to x = (1.50, 2.50, 2.75, 4.25, 5.25), respectively. (b) Velocity (a) and vorticity profiles (b) in the
y = 2 plane for each probe location. (c) Streamwise vorticity in the y–z plane for each sampling location. The
arrows show examples of identified hairpin vortex legs. Solid and dashed arrows correspond to inner and outer
hairpin vortex legs, respectively. The colour represents the streamwise vorticity field, ωx.

vortex legs which are 180◦ out-of-phase with respect to the inner layer, and subsequently,
they correspond to a second hairpin vortex layer with opposite direction (e.g. upstream
direction). Similarly, in panel ‘C’ we observe that the inner layer of the vorticity comes
from the ring located upstream, whereas the outer layer comes from the ring located
immediately downstream. Therefore, we can conclude that the alignment of the hairpin
vortices is a result of the existence of a vortex-induction mechanism which causes the
reorientation of vortical structure within the ring and braid skeleton. This phenomenon is
in agreement with Brancher, Chomaz & Huerre (1994) for homogeneous jets, Jarrahbashi
et al. (2016) for the coaxial atomisation of a round liquid jet, Zandian et al. (2018) for
coaxial atomisation of planar jets and Bernal & Roshko (1986) for plane mixing layers.
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Zone 1

Zone 2

Zone 3

KH

vortices

–5 5

ωx

Hairpin

vortices

Head

vortex

Figure 8. Illustration of the coherent vortical structures close to the interface for case 4 (Re = 6530 and We =
303) at t = 28.97. The coherent vortical structures are visualised by the Q-criterion with a value of Q = 0.1,
where the colour represents the streamwise vorticity field, ωw. Magnified views of the KH vortex rings near
the injection point, and the hairpin vortical structures in the jet core are also shown.

The analysis between panels ‘B’ and ‘C’ can be extended to other locations of the jet
where the core has undergone further interfacial development. For example, in panels ‘D’
and ‘E’ we observe the same distribution of inner and outer layer of hairpin vortex legs.
The alignment of vortical structures has a detrimental effect on the interfacial dynamics,
which will be shown in § 3.3.

Additionally, we have used the Q-criterion to present a three-dimensional visualisation
of the vortices in the present study. The Q-criterion was described by Hunt, Wray &
Moin (1988) as a quantity which measures the dominance of vorticity ω over strain s,
Q = 1/2(‖ω‖2 − ‖s‖2). Figure 8 shows the spatial development of the coherent structures
for Q = 0.1. Near the injection point, quasi-axisymmetric KH vortex rings are located
close to the surface (a magnified view is shown). As explained previously, when ωx
and ωθ are of comparable magnitude, the KH vortices are stretched downstream or
upstream. The topological shape of these vortical structures resembles the instantaneous
hairpin-like vortical structures reported in experiments and numerical simulations by
Head & Bandyopadhyay (1981), Zhou et al. (1999) and Zandian et al. (2018). Outer
hairpin vortices (a magnified view is also shown) are observed clearly and the inner
hairpin vortices not as clearly as they are localised underneath the interface. Further
downstream, we observe the ‘head vortex’ covering the mushroom-like structure. Inside
of this structure, the vortices are unstable and break down.

To conclude, we have identified three different zones in the transient flow field which are
associated with different vortical dynamics. We present the different regions at t = 28.97
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–5 5
ωx

Outer lobe formation: Change of ωx direction

Hole

expansion

Figure 9. Three-dimensional representation of the surface of the jet for case 4 (Re = 6530 and We = 303) at
t = 28.97 showing the spatial formation of outer lobes. The colour represents the streamwise vorticity field,
ωx.

(see figure 8). Zone 1 starts from the injection point and extends up to the deformation
of the free surface (x ∼ 1.8). This zone is characterised by the dominance of ωθ . Zone
2 extends from x ∼ 1.8 up to x ∼ 11.5 (e.g. behind the mushroom-like structure). This
region is characterised by the interfacial deformation of the jet core by KH vortex rings
and their posterior deformation by the competition between ωx and ωθ . As the flow moves
downstream, ωx becomes responsible for the entrainment of the stagnant phase to form
interfacial lobes (this agrees with Liepmann & Gharib (1992) for homogeneous jets). In
this region vortex rings pair up and merge together. Additionally, the ending of the visible
potential core of the jet and the beginning of the mixing region is also observed. Zone 3
expands from the end of zone 2 up to the leading edge of the mushroom-like structure. A
large vortex ring dominates the dynamics in this region (so-called ‘cap vortex’, Zandian
et al. 2019), wherein its interaction with upstream vortex structures via means of velocity
induction leads to the formation of the neck, connecting the mushroom-like structure with
the cylindrical body of the jet. The narrowing of the neck as a result of the streamwise
convection of vortical structures is in agreement with the work of Asadi et al. (2018).

3.3. Cascade mechanism for droplet formation: hole formation genesis
In the previous section we discussed the vortex dynamics of the transient jet. This section
focuses on the effect of vortices on the formation of inner/outer lobes, the thinning of
which leads to genesis of droplets. Figure 9 shows a close view of the interfacial jet
dynamics where outer lobes are present. The formation of lobes is observed along the
spanwise direction of the jet. Close inspection of the interface shows it has assumed
the shape of the surrounding hairpin vortical structures, where a change of the vorticity
direction is observed for subsequent lobes (similar observations have been made by
Jarrahbashi et al. 2016; Zandian et al. 2018). Consequently, the alignment of the hairpin
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Lobe stretching
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(c) (d )
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Figure 10. Three-dimensional representation of the interface showing the spatio-temporal evolution of the
formation of injected water droplets via the stretching of the outer lobe for case 4 (Re = 6530 and We = 303).
Dimensionless times are shown in each panel.

vortices induces the thinning of the outer lobes, leading to the formation of holes, which
expand and eventually give rise to injected water droplets.

Figure 10 shows the temporal stretching of an outer lobe to form a ligament, and
eventually droplets. The ligament orientation is linked to the vortical structures, as
suggested above. A bulbous tip is formed at the edge of the ligament driven by capillarity.
The ligament detaches from the jet core; then it retracts driven by capillarity to form
droplets from both ends according to the so-called ‘end-pinching mechanism’ (Notz &
Basaran 2004). When the stagnant phase has enough momentum, the ligament is dragged
into the stagnant phase, setting its characteristic radial length (similarly to what has been
reported by Lasheras, Villermaux & Hopfinger 1998). The ligament is characterised by
having a small thickness prior to its detachment from the base. However, the droplets
formed after the breakup process have a larger length scale (in agreement with Villermaux
2007).

Figure 11 shows the formation of droplets inside the jet core, and the mushroom
structure. Specifically, figure 11(b–k) depicts the formation and elongation of the inner
lobe in the streamwise direction. As before, the stretching of the interface gives rise to a
thin sheet as a result of the mutual induction of neighbouring hairpin vortices. The hairpin
vortex located above the liquid sheet induces flow downwards, whereas the vortex located
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Figure 11. (a) Three-dimensional representation of the interface for case 4 (Re = 6530 and We = 303)
at t = 7.33 showing a selected region in the jet core where inner lobes will form, together with two
probe locations in the leading-edge structure, where the arrows indicate the direction of the view.
(b–k) Cascade mechanism for the formation of entrapped oil droplets within the jet core at t =
(8.84, 9.96, 10.10, 10.92, 11.36, 11.41, 12.06, 13.61, 16.38), respectively. (l) Illustration of the entrapped oil
droplets inside of the mushroom-like structure at t = 7.33 from the back (probe ‘A’) and front (probe ‘B’)
of the structure, respectively. A magnified region of the structure is also shown to illustrate the hole formation
behind the rim edge.
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Droplet-droplet coalescence

t = 7.78 t = 7.98

t = 8.06 t = 8.39

Droplet

rotation

Figure 12. Three-dimensional representation of the interface for case 4 (Re = 6530 and We = 303) at
dimensionless times shown in each panel. A magnified region of the structure is also shown to illustrate
droplet-droplet coalescence and the droplet rotation inside of the leading-edge structure.

under the sheet induces flow upwards. Under the joint action of the vortical structures,
the liquid sheet thins until it is perforated (see figure 11e). Following the formation of the
hole, retraction of the liquid sheet is radially driven by capillarity (see figures 11( f ) and
11(g)), and as shown in figure 11(i), it subsequently gives rise to the formation of a curved
liquid thread or ligament. Once more, ligament retraction is driven by capillarity where
bulbous ends that form initially undergo ‘end pinching’ to form smaller droplets, as shown
in figure 11(j,k). The inertia-induced mechanism for the sheet thinning presented here has
been previously reported by Jarrahbashi et al. (2016).

The analysis will now focus on the dynamics underneath the mushroom-like structure.
Figure 11 shows entrapped oil droplets inside of the leading-edge structure. The formation
of these droplets is also linked to the interfacial rupture of the toroidal liquid sheet. The
liquid sheet retracts driven by surface tension to accumulate liquid in a rim at its edge.
The rim experiences a spanwise destabilisation (i.e. Rayleigh–Plateau type), which leads
to a non-uniform rim radius. The film retraction is also accompanied by the formation
of interfacial capillary waves that precede the rim. The capillary waves vary the film
thickness, and consequently, induce the perforation of the film adjacent to the rim in
regions where the film thickness is sufficiently small (in agreement with Mirjalili, Chan &
Mani 2018). The radial expansion of multiple holes yields the formation of liquid threads
which experience a capillary instability to produce droplets. Following their formation,
the entrapped oil droplets rotate inside the leading structure due to their interaction with
the vorticity field (not shown here). The rotation leads to complex interfacial phenomena
such as coalescence or collision (similar to that reported by Desjardins & Pitsch 2010).
The coalescence has been observed not only between droplets, but also between droplets
and ligaments or droplets and the jet core (see figure 12).

Next, we aim to explain the validity of the hole formation mechanism as a result of liquid
film thinning. Our numerical method does not consider the destabilising effect brought
about by the van der Waals attractive forces as the film thickness tends to zero. Churaev,
Derjaguin & Muller (1987) reported that while the thinning takes place, the dynamics
of the film enters into an asymptotic behaviour leading to its rupture, depending only
on a balance between viscous, van der Waals and surface tension forces. After the film
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Figure 13. Probability density function for the entrapped oil droplets and injected water droplets for case 4
(Re = 6530 and We = 303) at t = 9.37, 20.37 and 28.52 shown in (a,b), respectively. The distributions are
normalised by the calculated mean diameter for each time, dm.

puncture, the circular hole expansion is driven by capillarity, and fluid is accumulated in a
circular rim which grows in size as it moves away from the puncture point. The retraction
speed VTC can be estimated by the classical ‘Taylor–Culick’ theory, VTC = (2σ/ρoh)1/2,
where h is the film thickness. Prior to the puncture h ∼ 26 μm, giving an estimate of the
retraction velocity as VTC ∼ 1.8 m s−1. The measured retraction speed of the holes in our
simulations ranges from 0.75 to 1.8 m s−1. This ensures that although our simulations
cannot predict the exact location of the puncture, and their formation is mesh dependent,
its expansion is well predicted, ensuring that the physics is fully resolved following the
formation of the hole. Additionally, the film thickness of the sheet prior to its rupture
agrees with the findings of Marston et al. (2016), Lhuissier & Villermaux (2009) and Ling
et al. (2017) who observed the formation of holes in dynamics sheets of the same order of
magnitude (e.g. Marston et al. (2016) and Ling et al. (2017) reported film rupture in the
range of 9–16 μm and about 22 μm, respectively).

3.3.1. Droplet size distribution
This section draws attention to the size distribution of the droplets, formed as a result
of the ruptures of the liquid threads. Attention is focused on case 4, which is in the
inertia-dominated regime characterised by high Re and We; as discussed above, the flow
in this case is accompanied by significant drop creation. During the early stages, the
formation of droplets is only observed inside the leading-edge structure owing to film
rupture via hole formation. At later times, both entrapped oil droplets and injected water
droplets coexist in the computational domain. We have identified all the droplets inside the
entire domain, and each droplet diameter is calculated through knowledge of its volume,
and the assumption of a spherical shape.

Figure 13 shows the probability density function (p.d.f.) of the entrapped oil droplets
and injected water droplets normalised by the mean droplet diameter at different temporal
stages: t = 9.37, 20.37 and 28.52. The shape of the distribution for the entrapped
droplets (see figure 13a) remains largely unchanged with increasing time except for the
development of a tail; this represents the creation of larger numbers of smaller droplets
due to ligament breakup as explained previously. It is possible to obtain information
regarding the characteristics of the droplets in the domain; for instance, the average
mean diameters of the entrapped and injected droplets are 338 and 291 μm, respectively.
Figure 13(b) shows that the p.d.f. for the injected droplets has a similar shape to that of the

922 A6-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.519


C.R. Constante-Amores and others

entrapped ones depicted in figure 13(a), and the distribution remains essentially unaltered
for t = 20.37 and 28.52.

4. Conclusions

Three-dimensional numerical simulations using a hybrid interface-tracking/level-set
approach were carried out for turbulent water jets entering a stagnant and more viscous
silicon oil phase. Particular attention has been paid to the temporal interfacial dynamics
that arise as a result of the vortex-surface interaction. Using less computationally
expensive simulations, we explored the Re–We space, identifying four distinct regions
based on the appearance of the interfacial structures. On this basis, we carried out
high-fidelity simulations representative of each region which showed that the streamwise
vorticity plays a major role in the development of the three-dimensional instabilities on
the jet surface.

At low Re and We numbers (i.e. in the capillary-controlled regime), the jet interface
remains axisymmetric and no surface corrugations are observed due to strong capillarity.
Moreover, this region is also characterised by the fact that the streamwise vorticity, ωx,
never becomes comparable to the azimuthal vorticity, ωθ : the azimuthal vorticity always
remains two orders of magnitude larger than the streamwise vorticity. At low Re and
high We numbers, the reduction of capillarity enhances the formation of a mushroom-like
structure at the leading edge of the jet, and the formation of corrugations in the jet core;
however, ωx is still almost two orders of magnitude smaller than ωθ . At high Re and low
We numbers, streamwise vorticity gains in importance resulting in further deformation of
the jet core.

In the inertia-controlled regime (i.e. for high Re and We numbers), the streamwise
vorticity becomes comparable to the azimuthal vorticity triggering the streamwise
deformation of KH vortices. We show the formation of hairpin vortices near the interface,
which are aligned in the streamwise direction forming layers of inner and outer hairpin
vortices. The formation of inner and outer lobes in the jet core are closely linked to their
neighbouring hairpin vortices. The alignment of vortices enhances the perforation of the
lobes to form holes which expand radially by capillarity, and ultimately give rise to the
formation of droplets. Another main feature of the inertia-controlled regime is the creation
of a thin toroidal sheet inside of the leading-edge structure. The thinning of this sheet leads
to its perforation to form droplets. The droplets rotate as a result of their interaction with
the vorticity field, and further topological transitions occur (e.g. coalescence).

While in the present study we have focused on the spatial and temporal development of
the interfacial dynamics as a result of the vortex-surface interaction, further investigations
should be carried out on the statistical response of the turbulent multiphase flow, similar
to the work presented by Ling et al. (2019) for a mixing layer between parallel gas and
liquid streams. Additionally, our study assumes a constant value of surface tension, but
it is known that streams are usually contaminated with deliberately placed or naturally
occurring surfactants, which reduce the surface tension and give rise to surface tension
gradients and Marangoni stresses. As shown recently by Constante-Amores et al. (2020),
surfactants are capable of inhibiting capillary singularities and rigidifying the interface,
subsequently changing the fate of the atomisation. Hence, the presence of surfactants may
change the present results, providing us with an exciting avenue of future research.
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Appendix A

A.1. Mesh study and resolution considerations
Solving the small scales of the atomisation phenomenon is a challenging process,
and in order to ensure the physical validity of the results, we have assessed the grid
dependence nature of our results by performing a mesh study for case 4 (see table 5). The
appropriate choice for the minimum grid length scale will depend on either the vanishing
interfacial singularity or the smallest turbulence length scale (i.e. Kolmogorov length
scale).

For single-phase jets, Pope (2000) suggested that the Kolmogorov length scale η is
resolved if Δx/η ≤ 2.1, where Δx represents the minimum computational cell size, and η

is estimated by η = Re−3/4l, where l is the length scale. Previous computational studies
of temporal and spatial multiphase jets are presented in table 4, showing the current
state-of-the-art in terms of Pope’s criterion. It is evident that Pope’s criterion is difficult
to meet due to the high computational costs of the simulations. In their recent work, Ling
et al. (2017, 2019) performed simulations of a two-phase mixing layer between parallel
gas and liquid streams to investigate the interfacial dynamics and the statistics of the
multiphase turbulence, estimating the Kolmogorov length scale to be η ∼ 0.945 μm,
which leads to Δx/η ∼ 3. However, through their numerical simulations, they estimated
that η is larger in size (e.g. η = 3–4.5 μm), and they also showed that their lower resolution
mesh, i.e. Δx/η ∼ 6 (see their figure 19d), was capable of predicting similar results in
terms of turbulence dissipation.

For our highest Reynolds number, our simulation does not meet Pope’s criterion. But
as shown by Ling et al. (2019), the actual η could be larger. Additionally, the atomisation
of the injected phase in a stagnant viscous phase alleviates the range of relevant physical
scales.

The second biggest challenge of computational atomisation is ‘numerical breakup’ of
liquid threads. A coarse grid would trigger the formation of thicker numerical threads,
and consequently, the formation of larger droplets (this problem has been previously
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Study Configuration Type of study Re Δx/l Δx/η

Desjardins & Pitsch (2010) Planar Temporal 2000–3000 0.015 ∼5–6
Herrmann (2011) Round Spatial 5000 0.031/0.0078 ∼5–19
Jarrahbashi et al. (2016) Round Temporal 1600–16 000 0.0125 ∼3–18
Zandian et al. (2016, 2018) Planar Temporal 2500–5000 0.025 ∼9–15
Zandian et al. (2019) Round Spatial 2000–3200 0.01 ∼3–4
Ling et al. (2019) Planar Temporal 8000 0.0039 ∼3
Current study Round Spatial 1000–6530 0.0065 ∼1–4.5

Table 4. List of computational studies of atomisation showing compliance with the Pope criterion (Pope
2000).

Run
Global mesh size
(number of cells)

Number of parallel
process threads

Minimum mesh size
(μm)

Total Comput. hours
per CPU

M1 768 × 192 × 192 12 × 3 × 6 = 72 104.1 ∼180
M2 1536 × 192 × 192 24 × 6 × 6 = 864 58.5 ∼100
M3 3072 × 384 × 384 48 × 6 × 6 = 1728 26.1 ∼500

Table 5. Characteristics of different mesh sizes used to study the jet dynamics in this study.

reported by Shinjo & Umemura (2010), Herrmann (2011), Gorokhovski & Herrmann
(2008) and Jarrahbashi & Sirignano (2014)). Shinjo & Umemura (2010) stated that
the mesh should be refined up to the point where the dynamics of the thread are
solely governed by surface tension forces. These forces would trigger the formation of
capillary waves during the retraction of these ligaments, giving rise to the onset of the
Rayleigh–Plateau instability (i.e. the ‘end-pinching’ mechanism). After those mechanisms
are initialised, the thread dynamics enter in an asymptotic behaviour towards the interfacial
singularity (i.e. a refined mesh would not affect the size of the resulting droplets). On
this basis, the numerical resolution regarding the interfacial length scales will be assessed
following the methodology proposed by Ménard et al. (2007) and Desjardins & Pitsch
(2010), who used a ‘grid-based Weber number’, defined by WeΔxmin = ρwU2Δxmin/σ .
This equation provides us with the smallest interfacial length scale that the simulation
is capable of resolving by assuming that the smallest interfacial structure is equal to the
minimum mesh size of the computational domain. Ménard et al. (2007) suggested that no
further breakup is observed for values under 10. For a Reynolds number corresponding
to Re ∼ 104 and the M3 type mesh, the grid-based Weber number is WeΔxmin ∼ 4.12,
which meets the above criterion, suggesting that all capillary singularities would be
resolved.

Therefore, we have proved that the M3 mesh is capable of resolving turbulent scales
and interfacial singularities, and consequently, detailed analysis of interfacial and vortical
structures is performed using a M3 mesh type (unless stated otherwise). Figure 14 shows
the temporal evolution of the kinetic energy, Ek = ∫

V(ρu2)/2 dV, the interfacial area
and the maximum axial location of the jet tip (i.e. leading edge) for different meshes.
Additionally, the vorticity profiles were checked between the M2 and M3 mesh, and no
significant differences were found.
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Figure 14. Mesh study for case 4 (Re = 6530 and We = 303). The panels highlight the temporal evolution of
the kinetic energy Ek (a), the interfacial area (b) and the maximum axial location of the jet tip (c).

A.2. Linear stability analysis
Following Plateau (1873) and Rayleigh (1879), we will show that our numerical method
is capable of predicting the growth rates in relation to the capillary breakup of jets (i.e.
Rayleigh–Plateau instability). On this basis, we have considered an inviscid cylindrical jet
of radius Ro and density ρ, surrounded by a dynamically passive gas. We consider the
evolution of infinitesimal perturbations to linearise the equations. Thus, the perturbed jet
is represented by

R(ω, ε) = Ro (1 + ε cos (ωx)) = Ro

(
1 + ε cos

(
2π

λ
x
))

, (A1)

where ε, λ, ω stand for the amplitude of infinitesimal perturbation, wavelength and the
growth rate, respectively. After the linearisation of the governing equations and retaining
terms only to order of ε results in a dispersion relation, which indicates the dependence of
the growth rate on the wavenumber (i.e. k = 2π/λ) of the inviscid jet, expressed as

ω2 = σ (kRo)

ρR3
o

I1(kR0)

I0(kR0)
(1 − k2R2

o) = ω2
ox

I1(x)
I0(x)

(1 − x2), (A2)

where x = kRo stands for a reduced wavenumber and ω2
o = σ/(ρR3

o). When x > 1, the
initial perturbation presents stable oscillatory solutions; whereas in the other case (i.e.
x < 1), the initial perturbation grows exponentially with a growth rate given by (A2).

Figure 15 shows the growth rates obtained through the numerical simulations in
comparison to the theoretical dispersion relation. The growth rates from DNS shows a
discrepancy under 2 % in all cases in comparison to the theoretical values. Based on
this, we can conclude the capability of our numerical method for capturing accurately
the dynamics of capillary jets.

A.3. Scalings laws for the capillary breakup of liquid threads
As we have presented in the introduction, DNS must be capable of predicting the
developing two-phase fluid interfacial dynamics featuring interface breakup, and droplet
coalescence. In light of this, we aim to show the capabilities of our numerical framework in
the prediction of the scaling laws for the capillary singularity of liquid threads. As the point
of singularity approaches, the system is driven locally by the large interfacial curvature,
and its interfacial dynamics depends solely upon the physical properties of the liquid.
Lister & Stone (1998) have suggested that the pinchoff of a viscous thread (of radius r(z, t),
density ρ, viscosity μ and surface tension σ ) surrounded by another viscous fluid transits
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Figure 15. Comparison of non-dimensional growth rates between numerical simulations (black markers) and
linear theory (solid line).

between different dynamical regimes as r(t) → 0 towards the breakup time τ (see figure
1 of Lister & Stone 1998). The thinning of a water thread, surrounded by air, transitions
from an inertial-capillary regime (r ∼ τ 2/3 and u ∼ τ−1/3) to an inertial-viscous regime
(r ∼ τ and u ∼ τ−1/2), more details can be found in Day, Hinch & Lister (1998), Eggers
(1993) and Lister & Stone (1998).

Therefore, we consider the capillary singularity of a water thread (of initial radius R)
surrounded by air in absence of gravity as the interfacial dynamics is locally driven by a
balance of viscous capillary and inertial forces, which can be expressed by the Ohnesorge
number Oh = μ/(ρσR). As Oh < 1, at early thinning stages there is a competition
between the fluid inertia and the opposing capillary pressure, and the predicted thread
radius towards the singularity agrees with the theoretical scalings (see figure 16) as the
thread transits between different regimes (in agreement with Castrejón-Pita et al. 2015).
After the singularity point, the formation of a satellite ligament is observed which has an
initially cylindrical shape (with Oh = 2.62 × 10−3 and Lo = 11.55); however, it undergoes
retraction driven by capillarity to form more spherical droplets. This process known as ‘end
pinching’ has been previously well described by Notz & Basaran (2004). By performing
this analysis we have proved the capability of our numerical technique to predict the
dynamics of the capillary singularity of a liquid thread and its post-breakup events (table 6
shows a summary of the different meshes evaluated for this study).

Additionally, the accuracy and validation of the numerical method has been previously
addressed to other complex interfacial phenomena. These phenomena include breakup
and recoiling of liquid threads (Constante-Amores et al. 2020), falling film flows
(Batchvarov et al. 2020a), propagation of elongated bubbles in channels (Batchvarov et al.
2020b), bubbles undergoing bursting (Constante-Amores et al. 2021) and drops coalescing
partially or completely with deformable interfaces.

A.4. Time step
Finally, the temporal integration scheme is based on a second-order Gear method, with
implicit solution of the viscous terms of the velocity components. The time step Δt is
adaptive to ensure stability, and it is defined through the criterion

Δt = min
{
Δtcap, Δtvis, ΔtCFL, Δtint

}
, (A3)

where Δtcap, Δtvis, ΔtCFL, Δtint stand for the capillary time step, the viscous time step,
the Courant–Friedrichs–Lewy (CFL) time step and interfacial CFL time step, respectively.
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Figure 16. Scaling laws for the capillary singularity of a water thread surrounded by air for different numerical
resolutions (see table 6). Here, the Ohnesorge number is 1.178 × 10−3. The minimum thread radius, (a), and
the maximum streamwise velocity, (b), vs the remaining time to breakup τ agree with the inertial-capillary and
inertial-viscous regimes presented by Eggers (1993) and Day et al. (1998). Additionally, a three-dimensional
representation of the interface is shown to depict the retraction of the satellite ligament to produce daughter
droplets via the ‘end-pinching’ mechanism (in agreement with Notz & Basaran 2004).

Run
Global mesh size
(number of cells)

Number of parallel
process threads Pinch-off time (s)

Total Comput. hours
per CPU

V1 64 × 64 × 256 16 0.375 ∼2
V2 96 × 96 × 384 54 0.372 ∼20
V3 192 × 192 × 768 432 0.369 ∼48

Table 6. Characteristics of different mesh sizes used to study the capillary breakup of a water thread.

These terms are defined by

Δtvis = min
(

ρw

μw
,

ρso

μso

)
Δx2

min
6

, Δtcap = 1
2

(
(ρw + ρso)Δxmin

3

πσ

)1/2

,

ΔtCFL = min
j

(
min

domain

(
Δxj

uj

))
, Δtint = min

j

(
min
Γ (t)

(
Δxj

‖V‖
))

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A4)

where Δxmin = minj(Δxj). In our simulations the adaptive time step is controlled by Δtint

which is O(10−5)s.
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