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Abstract We define a theory of Goodwillie calculus for enriched functors from finite pointed simplicial

G-sets to symmetric G-spectra, where G is a finite group. We extend a notion of G-linearity suggested
by Blumberg to define stably excisive and ρ-analytic homotopy functors, as well as a G-differential, in

this equivariant context. A main result of the paper is that analytic functors with trivial derivatives

send highly connected G-maps to G-equivalences. It is analogous to the classical result of Goodwillie
that ‘functors with zero derivative are locally constant’. As the main example, we show that Hesselholt

and Madsen’s Real algebraic K -theory of a split square zero extension of Wall antistructures defines an

analytic functor in the Z/2-equivariant setting. We further show that the equivariant derivative of this
Real K -theory functor is Z/2-equivalent to Real MacLane homology.
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Introduction

The calculus of functors was developed in Goodwillie’s seminal papers [10–12], and it

found important applications in algebraic K -theory of rings [19], A-theory [11], and

stable mapping spaces [1]. In the current paper, we are interested in developing a theory

of equivariant calculus tailored to study the relationship between the Real algebraic

K -theory of rings with Wall antistructures and their Real topological Hochschild and

cyclic homology.

Hesselholt and Madsen define in [13] a functor KR that associates to a ring A
equipped with a Wall antistructure (in the sense of [27]) a symmetric Z/2-spectrum,

with underlying spectrum equivalent to the algebraic K -theory of A, and with fixed-point

spectrum the Hermitian K -theory of A. Given an A-bimodule M with a suitable involutive

structure, and a pointed finite simplicial Z/2-set X , we define a symmetric Z/2-spectrum

K̃R(AnM(X)) as the homotopy fiber of the projection map

K̃R(AnM(X)) = hof(KR(AnM(X)) −→ KR(A)).

Here M(X) is a simplicial A-bimodule defined by the Dold–Thom construction, and

n denotes the semi-direct product. This construction is functorial in X , defining a

functor from finite pointed simplicial Z/2-sets to symmetric Z/2-spectra. The analytic

properties, in the sense of Goodwillie calculus, of the corresponding functor K̃(AnM(−))
from pointed simplicial sets to spectra are studied extensively in [19], and they play a

crucial role in the fundamental relationship between algebraic K -theory and topological

cyclic homology. The present paper studies the analogous analytic properties of the Real

K -theory functor K̃R(AnM(−)), in the sense of a suitable theory of equivariant calculus.

In its original form, functor calculus was developed for functors between categories

of pointed spaces or spectra, but it was later extended to the generality of model

categories in [3] and [2], or to quasi-categories in [16]. This homotopy theoretical calculus

is however inadequate to study functors between categories of equivariant objects. As an

example, let G be a finite group, and let G-Top∗ be the category of pointed spaces with a

G-action, equipped with the fixed-point model structure. The first excisive approximation

of functor calculus of a reduced enriched functor F : G-Top∗→ G-Top∗ is equivalent to

the stabilization

P1 F(X) ' hocolim(F(X) −→ �F(ΣX) −→ �2 F(Σ2 X) −→ · · · ).
This stabilization produces a ‘näıve’ homology theory, instead of a ‘genuine’ one, as this

colimit does not take into account non-trivial representations of G. This phenomenon is

the consequence of a definition of excision that is not adequate for dealing with equivariant

homotopy theory. For enriched functors F : G-Top∗→ G-Top∗, a suitable definition of

G-excision was suggested by Blumberg in [4], where the author adds to excision an extra

compatibility condition with equivariant Spanier–Whitehead duality. A similar condition

was already present in [23, 1.4] in the context of 0G-spaces.
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We follow Blumberg’s idea, and we extend his definition of G-excision to homotopy

functors enriched in G-spaces F : G-S∗→ SpΣG from the category of finite pointed

simplicial G-sets to symmetric G-spectra, for a finite group G. We define F to be

G-excisive if it sends homotopy pushout squares to homotopy pullback squares, and

if for every finite G-set J the canonical map

F
(∨

J

X
)
−→

∏
J

F(X)

is an equivalence of G-spectra, for every pointed finite simplicial G-set X . Here G acts on

X and permutes the J -indexed components, both on the wedge and on the product. The

first analogy with classical excision is that a G-excisive functor F : G-S∗→ SpΣG that

sends the point to the point is G-equivalent to a functor of the form C ∧ (−), for some

genuine G-spectrum C (see Corollary 2.1.5).

The differential (at a point) of a reduced enriched functor F : G-S∗→ SpΣG is the

stabilization

D∗F(X) = hocolim
n∈N

�nρF(X ∧ Snρ),

where ρ is the regular representation of G. The fundamental property of the construction

D∗ is that it sends stably G-excisive functors (Definition 2.2.1) to G-excisive functors

(Proposition 2.2.5). Moreover, for a stably G-excisive functor F we have control on the

connectivity of the canonical map F → D∗F (see Proposition 2.2.7).

As an example of this construction, we identify the derivative of the Real K -theory

functor

K̃R(AnM(−)) : Z/2-S∗ −→ SpΣZ/2 .

We define the Real MacLane homology HR(C;M) of an exact category with duality

C with coefficients in a bimodule with duality M (Definition 3.2.7). Its construction is

analogous to the model of THH used in [6, 3.2]. In particular, a bimodule M over a ring

with Wall antistructure A induces a bimodule with duality on the category of finitely

generated projective A-modules PA, with associated MacLane homology HR(A;M). The

following is proved in §3.4.

Theorem A. Let A be a ring with Wall antistructure and M a bimodule over it (Definition

3.0.7). For every finite pointed simplicial Z/2-set X , there is a natural π∗-equivalence of

symmetric Z/2-spectra

D∗K̃R(AnM(X)) ' HR(A;M(S1,1))∧ |X |,
where M(S1,1) is the equivariant Dold–Thom construction of the sign-representation

sphere S1,1.

We mention for completeness that the author’s thesis [7] contains a theory of Real

topological Hochschild homology, and it identifies the Real MacLane homology HR(A;M)
with the Real topological Hochschild homology of A with coefficients in M , at least in

the case where 2 is invertible in A.

We further develop the theory of equivariant calculus by defining a notion of

G-ρ-analytic functors. We do this in analogy with [12, 4.2], by introducing connectivity
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ranges in the definition of G-excision. In equivariant homotopy, the connectivity of a map

is a function on the subgroups of G; hence the ρ above is a function ρ : {H 6 G} → Z.

There is a construction of the derivative which is relative to a pointed finite simplicial

G-set B. It gives rise to a functor DB F defined on the category of finite retractive

simplicial G-sets over B (see Definition 2.2.4). Theorem B below is proved in §2.3 and it

is analogous to Goodwillie’s result from [12, 5.4] that ‘functors with zero derivative are

locally constant’.

Theorem B. A suitable G-ρ-analytic functor F : G-S∗→ SpΣG whose derivatives

are weakly G-contractible sends ρ-connected split-surjective equivariant maps to

π∗-equivalences of symmetric G-spectra. In particular, if X is ρ-connected, F(X) is

G-contractible.

Our main example of a G-analytic functor is Hesselholt and Madsen’s Real algebraic

K -theory functor K̃R(AnM(−)), for the group G = Z/2. The following is proved in §3.4.

Theorem C. Let M be a bimodule over a ring A with Wall antistructure (Definition

3.0.7). The relative Real K -theory functor

K̃R(AnM(−)) : Z/2-S∗ −→ SpΣZ/2

is Z/2-ρ-analytic, where ρ is the function on the subgroups of Z/2 with values ρ(1) = −1
and ρ(Z/2) = 0.

In later work we will develop a theory of Real topological cyclic homology,

receiving a trace map from Real algebraic K -theory. Theorems A–C will be crucial

tools in establishing a relationship between the two theories, analogous to the

Dundas–Goodwillie–McCarthy Theorem of [19] and [5].

1. Preliminaries on enriched functors

1.1. Conventions about symmetric G-spectra

Let G be a finite group. By a G-space, we will always mean a compactly generated

Hausdorff space with a continuous action of the group G. We choose the category of

symmetric G-spectra SpΣG of [17] as a model for stable equivariant homotopy theory,

since Real algebraic K -theory fits naturally in this framework.

Definition 1.1.1 [17]. A symmetric G-spectrum consists of a well-pointed (Σn ×G)-space

En for every n in N, and pointed (Σn ×Σm ×G)-equivariant maps

σn,m : En ∧ Smρ −→ En+m

satisfying the classical compatibility conditions. Here Smρ is the one-point

compactification of the direct sum of m-copies of the regular representation ρ = R[G],
and G acts diagonally on the source of σn,m . A G-map of G-spectra E → W is a collection

of (Σn ×G)-equivariant maps En → Wn which respect the structure maps. The resulting

category of symmetric G-spectra and G-maps is denoted by SpΣG .
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Let us explain which kind of homotopical structure we consider on the category SpΣG .

We recall from [17, 5.1] that, for every subgroup H 6 G, the H -homotopy groups of a

G-spectrum E are defined as

πH
k E = π0 hocolim

n
(�nρ+k En)

H .

Here �nρ+k is the space of pointed maps from the sphere Snρ ∧ Sk for k > 0, and from the

sphere S−kρ ∧ S(n+k)ρ for k < 0, where the first smash factor is the representation sphere

of −k copies of the reduced regular representation ρ of G. The maps in the homotopy

colimit system are induced by the adjoints of the structure maps σn,m of E . In order to

carry out connectivity arguments, we will need to take as equivalences between G-spectra

the π∗-equivalences, which do not coincide with stable equivalences of the stable model

structure of SpΣG . Because of this discrepancy between stable and π∗-equivalences, we

avoid talking about model structures on SpΣG altogether. By the homotopy limit and

colimit of a diagram X : I → SpΣG we will mean the raw Bousfield–Kan formulas

holim
I

X = hom(N I/(−), X) hocolim
I

X = N ((−)/I )op ⊗ X

(see, e.g., [14, 18.1.2–18.1.8]). Here the cotensor and the tensor structures of SpΣG
over simplicial sets are levelwise, and therefore so are the homotopy limits and

colimits. In particular, homotopy pullbacks and homotopy pushouts are formed levelwise.

As level fibrations and level cofibrations induce long exact sequences in equivariant

homotopy groups (see [17, 5.7–5.8]), homotopy pullbacks and homotopy pushouts

preserve π∗-equivalences of symmetric G-spectra. This is all the homotopical information

we are going to need and use about π∗-equivalences in SpΣG . In a context where the maps

with arbitrarily high connectivity are the stable equivalences, for example the category of

orthogonal G-spectra of [18] or [21], all the results of the present paper can be interpreted

in model categorical terms.

A fiber sequence of symmetric G-spectra is a sequence of G-equivariant maps of

symmetric G-spectra F → E
f→ W together with a π∗-equivalence F → hof( f ) over E ,

where hof( f ) is the homotopy fiber of f . Similarly, a cofiber sequence is a sequence of

G-equivariant maps of symmetric G-spectra E
f→ W → C together with a π∗-equivalence

under W from the homotopy cofiber hoc( f ) of f to C .

Remark 1.1.2. The canonical map hof( f )→ � hoc( f ) induced by taking horizontal

homotopy fibers in the square

E
f //

��

W

��
∗ // hoc( f )

is a π∗-equivalence (see, e.g., [17, 5.7–5.8]). This shows that every fiber sequence is

canonically a cofiber sequence, and vice versa. This has the consequence that every

homotopy cocartesian square of G-maps in SpΣG is also homotopy Cartesian, and the

other way round.
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We define an enrichment of SpΣG in the category G-Top∗ of pointed G-spaces. Given two

symmetric G-spectra E and W , let SpΣ (E,W ) be the set of collections of Σn-equivariant

pointed maps { fn : En → Wn}n>0 that commute with the structure maps of E and W .

Endow SpΣ (E,W ) with the subspace topology of the product of the mapping spaces

Map∗(En,Wn). The space SpΣ (E,W ) inherits a G-action by conjugation, defining a

G-Top∗-enrichment on SpΣG . The G-fixed set SpΣ (E,W )G is the set of morphisms of

symmetric G-spectra from E to W . For a subgroup H 6 G, an element of SpΣ (E,W )H

is called an H -equivariant map of symmetric G-spectra.

Definition 1.1.3. Let E be a symmetric G-spectrum, and let ν : {H 6 G} → Z be a

function which is invariant on conjugacy classes. We say that E is ν-connected if πH
k E = 0

for every k 6 ν(H) and every subgroup H of G. Let Conn E be the largest of these

functions, and let us denote its value at a subgroup H by ConnH E . A G-spectrum E is

weakly H -contractible if πK∗ E = 0 for every subgroup K of H .

Definition 1.1.4. Let f : E → W be a G-equivariant map in SpΣG , and let ν : {H 6 G}
→ Z be a function which is invariant on conjugacy classes. We say that f is ν-connected

if its homotopy fiber is (ν− 1)-connected. We say that f is an H -equivalence if it induces

an isomorphism in πK∗ for every subgroup K of H . In particular, a G-equivalence is a

π∗-equivalence.

Categorical limits and colimits in SpΣG are also degreewise, in particular products and

coproducts. The inclusion of the coproduct into the product of symmetric G-spectra is a

G-equivalence, essentially by Remark 1.1.2 above. In our context of equivariant calculus

it is going to be a key point to consider coproducts and products which are indexed on

finite sets with a non-trivial G-action. Given a finite G-set J and a well-pointed G-space

X , define
∨

J X to be the coproduct of one copy of X for every element in J , with

G-action defined by g(x, j) = (gx, g j). Define similarly a G-action on the product
∏

J X ,

by sending a J -tuple x to the J -tuple with j-component

g(x) j = gxg−1 j .

The inclusion of wedges into products induces a G-equivariant map
∨

J X −→∏
J X . As

limits and colimits of G-spectra are levelwise, the analogous constructions for a symmetric

G-spectrum E gives a G-equivariant map of symmetric G-spectra∨
J

E −→
∏

J

E .

This map is a π∗-equivalence as a consequence of the Wirthmüller isomorphism theorem

(see, e.g., [21, §4]). We conclude the section by proving an analogous result for a relative

version of this map (Proposition 1.1.5 below), under some extra connectivity assumptions.

Let p : X → B be an equivariant map of well-pointed G-spaces, and suppose that it has

a G-equivariant section s : B → X . Define
∨J

B X and
∏̃J

B X respectively as the pushout
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and homotopy pullback squares

∨
J B

∨
J s //

fold
��

∨
J X

��
B // ∨

B

J X

and

∏̃
B

J
X // ∏

J X∏
J p

��
B

1
//

�� ∏
J B

The canonical inclusion of wedge into products induces a G-equivariant map∨
B

J
X −→

∏̃
B

J
X

which factors through the categorical pullback. The asymmetry between the homotopy

pullback on the right and the categorical pushout on the left becomes homotopically

irrelevant when either s : B → X is a cofibration or p : X → B is a fibration of

G-spaces (in particular when B is a point). This construction extends levelwise to

split maps of G-spectra p : E → B, resulting in a G-equivariant map of G-spectra∨
B

J E −→ ∏̃
B

J
E .

Proposition 1.1.5. Let p : E → B be a split G-map of symmetric G-spectra. Suppose that

for every positive integer n the spaces E H
n and B H

n are (n|G/H | − c)-connected for some

integer c independent of n. Then the inclusion of wedges into products∨
B

J
E −→

∏̃
B

J
E

is a G-equivalence. In particular, for B = ∗ the map
∨

J E →∏
J E is a G-equivalence.

Remark 1.1.6. An example of a G-spectrum which satisfies the connectivity hypothesis

above is the suspension spectrum (X ∧SG)n = X ∧ Snρ of a well-pointed G-space X .

Proposition 1.1.5 holds without any connectivity assumption, by a relative version of

the Wirthmüller isomorphism theorem. In the present paper, we will use this result only

in the presence of this strong connectivity hypothesis. Moreover, the connectivity range

of Lemma 1.1.7 below will be used throughout the paper, and it is the motivation for

‘the equivariant part’ of the definition of stably G-linear functors 2.2.1.

Proof of 1.1.5. In Lemma 1.1.7 below we show that the inclusion in spectrum degree n

ιn :
∨

B

J
En −→

∏̃
B

J
En

is νn-connected, for νn(H) = min{2 Conn pH
n − 1,minK�H Conn pK

n }. The homotopy fiber

of p satisfies the same connectivity hypothesis of E and B. Thus there is a constant c
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such that

νn(H) > min
{

2n|G/H |, min
K�H

n|G/K |
}
− c.

Then the connectivity of the map induced by ιn at the nth stage of the homotopy colimit

defining πH∗ is therefore

min
K6H

(νn(K )− dim(Snρ)K )

> min
K6H

(
min{2n|G/K |, min

L�K
n|G/L|} − c− n|G/K |

)
> min

K6H
min{n|G/K |, n}− c > n− c.

This goes to infinity with n, showing that the homotopy fiber of ι is weakly G-contractible.

Lemma 1.1.7. For every well-pointed G-space X , the canonical map
∨
B

J X → ∏̃
B

J
X is

ν-connected, for

ν(H) = min
{

2 Conn pH − 1, min
K�H

Conn pK
}
.

Proof of 1.1.7. Let us describe the map ι on H -fixed points

ιH :
(∨

B

J
X
)H

−→
(∏̃

B

J
X
)H

for every subgroup H of G. Homotopy limits (which are defined by the Bousfield–Kan

formula) and pushouts commute with fixed points. The source of ιH is then homeomorphic

to the space
∨
B H

J H
X H . The target of ιH is the homotopy pullback

(∏̃
B

J
X
)H

// (
∏

J X)H ∼= ∏
[ j]∈J/H

X H j ∼=
(∏

J H
X H

)
× ∏
[ j]∈J/H
|[ j]|>2

X H j

B H
1

//
��

(
∏

J B)H ∼= ∏
[ j]∈J/H

B H j ∼=
(∏

J H
B H

)
× ∏
[ j]∈J/H
|[ j]|>2

B H j

��

where H j = {h ∈ H |hj = j} is the stabilizer group of j in H . The products on the

right-hand side range over a set of representatives for the equivalence classes in the

quotient J/H . We choose the same set of representatives for the products of B and X .
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The map ιH factors as

∨
B H

J H

X H →
∏̃
B H

J H

X H = holim



B H

��∏
J H

B H

∏
J H

X H

OO


→ holim



B H

��(∏
J H

B H
)
× ∏
[ j]∈J/H
|[ j]|>2

B H j

(∏
J H

X H
)
× ∏
[ j]∈J/H
|[ j]|>2

X H j

OO


∼=
(∏̃

B

J
X
)H

.

The first map is the canonical inclusion. It is (2 Conn pH − 1)-connected by the

Blakers–Massey theorem (see, e.g., [12, 2.3]), applied inductively to the homotopy

pushout square of spaces (without any group action)

X H ∨B H X H //

��

X H

��
X H // B H

Notice that the pinch map X H ∨B H X H → X H is at least as connected as pH : X H → B H .

The second map is induced on homotopy limits by the inclusions in the first product

factors. Its homotopy fiber is equivalent to the homotopy limit

holim

∗ −→ ∏
[ j]∈J/H
|[ j]|>2

B H j ←−
∏
[ j]∈J/H
|[ j]|>2

X H j

 ∼= ∏
[ j]∈J/H
|[ j]|>2

hof pH j ,

which is (minK�H Conn pK − 1)-connected. Then ιH is ν-connected, where ν is the

minimum of the two connectivities ν(H) = min{2 Conn pH − 1,minK�H Conn pK }.

1.2. Enriched homotopy functors and assembly maps

Let G be a finite group, and let B be a pointed finite simplicial G-set. Consider the

category G-SB of finite retractive simplicial G-sets over B. An object of G-SB is a triple

(X, p, s) of a finite simplicial G-set X , an equivariant simplicial map p : X → B, and

an equivariant section s : B → X of p. We remark that s is in particular a cofibration

in the fixed-point model structure of pointed simplicial G-sets; see, e.g., [24, 1.2]. A

morphism of G-SB is an equivariant map that commutes with both the projections

and the sections. The category G-SB admits an enrichment in G-Top∗. The space of

morphisms MapB(X, Y ) from (X, pX , sX ) to (Y, pY , sY ) is the geometric realization of the

simplicial subset MapB(X, Y ) q of the simplicial mapping space Map(X, Y ) q of relative maps.
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Its p-simplices are the simplicial maps f : X ×1[p] → Y for which the squares

X ×1[p] f //

pX×id
��

Y

pY

��
B×1[p] // B

X ×1[p] f // Y

B×1[p]
sX×id

OO

// B

sY

OO

commute. Here the bottom horizontal maps are projections, and 1[p] is the simplicial

p-simplex. The group G acts simplicially on MapB(X, Y ) q by conjugation, inducing a

G-action on the geometric realization MapB(X, Y ). If G = {1} is the trivial group, we

write SB for the category {1}-SB .

We are interested in studying (G-Top∗)-enriched functors

8 : G-SB −→ SpΣG

which arise from Top∗-enriched functors 9 : SB → SpΣG via the following construction.

Given an object (X, p, s) of G-SB regard the action maps as endomorphisms g :
(X, p, s)→ (X, p, s) in SB . By functoriality, the G-spectrum 9(X) inherits an extra

G-action by the maps 9(g), and the diagonal actions

9(X)n
g−→ 9(X)n

9(g)−→ 9(X)n

define a new G-spectrum 9(X). This construction extends 9 to a functor 8 = 9 :
G-SB → SpΣG . The technical advantage of a functor 8 of this form is that it can be

evaluated at retractive spaces over B that have only an action of a subgroup H of G.

Compose 9 : SB → SpΣG with the restriction functor to H -spectra SpΣH , and extend it to a

functor H -SB → SpΣH in the above fashion. Since 9 is enriched, this sends H -equivariant

simplicial homotopy equivalences to H -equivariant homotopy equivalences of symmetric

H -spectra. An H -equivariant map in H -SB is an H -equivalence if the underlying map of

simplicial H -sets is a weak equivalence in the fixed-point model structure.

Definition 1.2.1. An enriched functor 8 : G-SB → SpΣG is a homotopy functor if

it is extended from a functor 9 : SB → SpΣG as explained above, such that the

corresponding extension H -SB → SpΣH of 9 sends weak equivalences of simplicial H -sets

to H -equivalences of symmetric H -spectra, for every subgroup H of G.

Example 1.2.2. The following are examples of homotopy functors G-S∗→ SpΣG .

• For a fixed G-spectrum E in SpΣG , the functor E ∧ |− | : G-S∗→ SpΣG that sends a

finite pointed simplicial set X to the spectrum E ∧ |X | with diagonal action, where |X |
is the geometric realization of X .

• For a fixed simplicial G-set K , the functor Map∗(K ,−)∧ SG : G-S∗→ SpΣG that

sends X to the suspension spectrum of the pointed mapping space Map∗(K , X) with

conjugation action.

An example of a functor G-S∗→ SpΣG that is not the extension of a functor S∗→ SpΣG
is the functor that sends a based simplicial G-set X to the suspension spectrum of the

orbit space of X with trivial G-action (X/G)∧SG .
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Example 1.2.3. Most of the enriched homotopy functors that we will encounter are

induced from functors Set f
∗ → SpΣG from the category Set f

∗ of finite pointed sets. Extend

a functor F : Set f
∗ → SpΣG to an enriched functor F : S∗→ SpΣG as follows. Given a finite

pointed simplicial set X , we denote by F(Xk)n the nth space of the symmetric G-spectrum

F(Xk). The simplicial structure on X induces a simplicial space structure on F(X q)n
by functoriality of F , which respects the (Σn ×G)-action. Denote by F(X)n its thick

geometric realization. The structure maps of the spectra F(Xk) induce the structure

maps of a G-spectrum F(X), defined by

F(X)n ∧ Smρ ∼= |F(X q)n ∧ Smρ |
|σn |−−−−−→ F(X)n+m .

The symmetric structure is defined in a similar way. This defines the functor S∗→ SpΣG
on objects. The components of the map F : |Map∗(X, Y ) q|→SpΣG

(
F(X), F(Y )

)
defining

F on morphism spaces are the composites

|Map∗(X, Y ) q|−→|G- Map∗(F(X)n, F(Y )n) q| |−|
−−−−−→ G- Top∗(F(X)n, F(Y )n),

where the second map takes a map of simplicial spaces to its geometric realization, and

the first map is the geometric realization of the map of simplicial spaces

Fn : Map∗(X, Y ) q−→ G- Map∗(F(X)n, F(Y )n) q
given in simplicial degree k by sending f q : X ×1[k] → Y to the simplicial G-map Fn( f q) :
F(X)n ×1[k] → F(Y )n defined in degree p by

Fn( f q)(z ∈ F(X p)n, σ ∈ 1[k]p) = F( f p(−, σ ))(z).
This defines a functor F : S∗→ SpΣG which is further extended to F : G-S∗→ SpΣG , as

explained before Definition 1.2.1.

We end the section by discussing the assembly map of an enriched homotopy functor.

The category G-SB has a symmetric monoidal structure defined by an internal smash

product. The smash product of two objects (X, pX , sX ) and (Y, pY , sY ) is the retractive

space (X ∧B Y, p, s) defined as the pushout of simplicial G-sets

X ∨B Y //

��

X ×B Y

��
B // X ∧B Y

with the obvious maps p and s to and from B. Notice that the coproduct X ∨B Y is defined

using the sections sX and sY . An enriched functor 8 : G-SB → SpΣG has an associated

assembly map

AX
K : 8(X)∧ |K | −→ 8(X ∧B (K × B)),

where (X, p, s) is an object of G-SB and K is a finite pointed simplicial G-set (the smash

product of a spectrum with a space is levelwise). It is adjoint to the composite

|K | −→ |MapB(X, X ∧B (K × B)) q| 8−→ SpΣ (8(X),8(X ∧B (K × B))),
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where the first map is the realization of the adjoint of the identity on X ∧B (K × B). It

sends a simplex k of K to the map that sends x to the element of the smash product

determined by (x, k, p(x)) ∈ X ×B K × B.

Remark 1.2.4. Consider the particular case where K = S1 = 1[1]/∂ is the simplicial circle

with trivial G-action, and suppose that 8(B) is a weakly contractible G-spectrum. The

adjoint of the assembly map is a map

ÃX
S1 : 8(X) −→ �8(X ∧B (S1× B)).

Let C p = X ∧B (B× I ) be the mapping cylinder of the projection p : X → B. The

universal map from 8(X) into the homotopy limit of the rest of the square

8(X)

��

// 8(C p)

��
8(C p) // 8(X ∧B (S1× B))

is the top horizontal map in the G-homotopy commutative diagram

8(X) //

ÃX
S1
��

holim(8(C p)→ 8(X ∧B(S1× B))← 8(C p))

�8(X ∧B (S1× B)) holim(∗ → 8(X ∧B(S1× B))← ∗)
'
OO

.

A G-homotopy between the two maps in induced by a G-contraction C p ' B. Therefore

the square above is homotopy Cartesian precisely when the adjoint assembly map for

the circle is a G-equivalence. Moreover, iterating this homotopy limit construction gives

a map corresponding to the assembly map AX
Sn : 8(X)∧ Sn → 8(X ∧B (Sn × B)) for the

n-sphere.

Remark 1.2.5. In his first calculus paper [10], Goodwillie works in the category S/B
of spaces (or simplicial sets) over B. The objects of S/B are maps p : X → B that do

not necessarily admit a section. The category S/B does not have a zero object, and

its suspension functor is not adjoint to an internal hom object. We find it technically

convenient to work with the category of retractive spaces SB (and its equivariant analog

G-SB) which enjoys these extra categorical properties. A disadvantage will emerge in

Theorem B, which will apply only to split-surjective maps. This restriction will however

not affect the applications, as we are ultimately interested in the map X → ∗ (see

Corollary 2.3.4).

2. Elements of equivariant calculus

Let G be a finite group, let G-SB be the category of finite retractive simplicial G-sets over

B from §1.2, and let SpΣG be the category of symmetric G-spectra introduced in §1.1. Both

categories are enriched over the category of pointed G-spaces G-Top∗. In this section we
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develop a theory of calculus for (G-Top∗)-enriched homotopy functors 8 : G-SB → SpΣG
(see Definition 1.2.1) based on Blumberg’s definition of equivariant linearity [4, 3.3]. The

main result is Theorem B proved in §2.3, analogous to Goodwillie’s Corollary [12, 5.4]

that ‘functors with zero derivative are locally constant’.

2.1. G-linear functors

The following definition of G-linearity for functors G-SB → SpΣG is analogous to

Blumberg’s definition of G-linearity for endofunctors of pointed G-spaces from [4, 3.3],

in the case when the group G is finite.

Definition 2.1.1. A homotopy functor 8 : G-SB → SpΣG is G-linear if:

(1) it is reduced, that is 8(B) is a weakly G-contractible spectrum;

(2) it sends homotopy cocartesian squares to homotopy Cartesian squares;

(3) for every finite G-set J and (X, p, s) in G-SB , the canonical map

8(X ∧B (J+× B)) −→
∏

J

8(X)

is a G-equivalence.

The above map is adjoint to the composite

J→
∣∣∣∣MapB

(∨
B

J
X, X

)
q
∣∣∣∣ ∼= |MapB(X ∧B (J+×B), X) q| 8−→SpΣ (8(X ∧B (J+×B)),8(X)),

where the first map sends j to the projection

pr j (x, i) =
{

x if i = j
sp(x) if i 6= j .

Example 2.1.2. For every symmetric G-spectrum E , the functor E ∧ |− | : G-S∗→ SpΣG
is G-linear. The condition on squares holds by Remark 1.1.2, and because the smash

product of well-pointed spaces preserves cofibrations and pushouts. The last condition is

a consequence of the Wirthmüller isomorphism theorem (see also 1.1.5).

Example 2.1.3. Given a topological Abelian group M with additive G-action and a finite

pointed set X , define a pointed G-space

M(X) =
(⊕

x∈X

(M · x)
)/

M ·∗,

where G acts diagonally on the M-components. This construction is functorial in X by

sending a map of sets f : X → Y to the map f∗ : M(X)→ M(Y ) defined by the formula

f∗({mx })y =
∑

x∈ f −1(y)

mx .
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It extends levelwise to a (G- Top∗)-enriched homotopy functor M(−) : G-S∗→ G- Top∗
by the construction of Example 1.2.3. The functor M(−) is the equivariant Dold–Thom

construction, and its equivariant homotopy groups are Bredon homology. Adapting the

definition of G-linearity to G-space valued functors, we say that a reduced homotopy

functor F : G-S∗→ G- Top∗ is G-linear if it sends homotopy cocartesian squares to

homotopy Cartesian squares, and if the canonical map

F
(∨

J

X
)
−→

∏
J

F(X)

is a weak equivalence of G-spaces (in the fixed-point model structure) for every finite

G-set J . We show in Appendix A.1.1 that M(−) : G-S∗→ G- Top∗ is a G-linear homotopy

functor.

Proposition 2.1.4. Let 8 : G-SB → SpΣG be a G-linear homotopy functor. The assembly

map

AX
K : 8(X)∧ |K | −→ 8(X ∧B (K × B))

is a G-equivalence for every object K of G-S∗. In particular, for X = S0× B there is a

G-equivalence

8(S0× B)∧ |K | '−→ 8(K × B).

Proof. The proof is by induction on the skeleton of K . The base inductive step is when

K = J+ is a finite pointed G-set. In this case there is a commutative diagram

8(X)∧ J+
AX

J+ // 8(X ∧B (J+× B))

'
��∨

J 8(X) ' // ∏
J 8(X)

,

where the bottom map is a G-equivalence by the Wirthmüller isomorphism theorem (see

also Proposition 1.1.5). Suppose inductively that the assembly map is an equivalence for

the (n− 1)-skeleton of K . The inclusion of the (n− 1)-skeleton into the n-skeleton gives

a cofiber sequence

K (n−1) −→ K (n) −→ Sn ∧ J+
for some finite G-set J , inducing a homotopy cocartesian square

K (n−1)× B

��

// K (n)× B

��
B // (Sn ∧ J+)× B

in G-SB (the horizontal maps are cofibrations with isomorphic cofibers). Since 8 is

G-linear, the image of this square defines a fiber sequence

8(X ∧B (K (n−1)× B)) −→ 8(X ∧B (K (n)× B)) −→ 8(X ∧B ((Sn ∧ J+)× B)).
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This sequence receives an assembly map from the (co)fiber sequence of symmetric

G-spectra

8(X)∧ |K (n−1)| −→ 8(X)∧ |K (n)| −→ 8(X)∧ |Sn ∧ J+|.
In view of the long exact sequence in homotopy groups induced by these fiber sequences,

it is enough by the inductive hypothesis to show that the assembly map for an indexed

wedge of spheres Sn ∧ J+ is an equivalence. This is the top horizontal map in the diagram

8(X)∧ |Sn ∧ J+| // 8(X ∧B ((Sn ∧ J+)× B))

∨
J (8(X)∧ |Sn|) //

'
��

8(X ∧B (Sn × B)∧B (J+× B))

'
��∏

J (8(X)∧ |Sn|) ∏
J A

// ∏
J 8(X ∧B (Sn × B))

.

The bottom map
∏

J A is the product of the assembly maps for Sn . It is an equivalence

as A fits in a commutative diagram

�n(8(X)∧ |Sn|) �n A // �n8(X ∧B (Sn × B))

8(X)

'
OO

'

44jjjjjjjjjjjjjjjjj

.

The diagonal map is adjoint to the assembly map, and it is a G-equivalence by linearity

of 8 (see Remark 1.2.4).

In particular, when B is the point, a G-linear functor 8 : G-S∗→ SpΣG is determined

by its value on the 0-sphere.

Corollary 2.1.5. A G-linear homotopy functor 8 : G-S∗→ SpΣG is naturally equivalent to

the functor 8(S0)∧ |− | : G-S∗→ SpΣG .

2.2. Stable G-excision and the G-differential

We generalize the definitions of stable excision and of the differential from Goodwillie

calculus [10, 12] to our equivariant setting. We prove that the differential of a

stably G-linear functor is G-linear, and we compute the connectivity of the G-linear

approximation map. Here G denotes as usual a finite group.

We remind the reader that an n-cube in a category C is a functor χ : P(n)→ C , where

n = {1, . . . , n} is the set with n-elements and P(n) is the poset category of subsets of n
ordered by inclusion. When C is the category G-SB , we say that χ is strongly homotopy

cocartesian if all of its two-dimensional faces are homotopy cocartesian squares. When C
is the category of G-spectra SpΣG , we say that χ is ν-homotopy Cartesian, with respect

to a function ν : {H 6 G} → Z, if the canonical map

χ∅ −→ holim
P(n)\∅

χ
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is ν-connected (see Definition 1.1.4). We denote by ei : χ∅→ χ{i} the initial maps of χ ,

for all i in n.

Given a finite G-set J and a G-map p : E → B of symmetric G-spectra, we recall from

§1.1 that
∏̃
B

J
E is defined as the homotopy pullback

∏̃
B

J
E //

��

∏
J E∏

J p
��

B
1
// ∏

J B

Definition 2.2.1. Let 8 : G-SB → SpΣG be a homotopy functor, and let κ, v : {H 6 G}
→ Z and c : {H 6 G} → Q be functions which are invariant on conjugacy classes.

(1) We say that 8 satisfies EG
n (c, κ) if it sends strongly homotopy cocartesian

(n+ 1)-cubes χ : P(n+ 1)→ SpΣG with κ(H) 6 Conn eH
i to ν-homotopy Cartesian

cubes, where ν is the function

ν(H) =
n+1∑
i=1

min
K6H

(
Conn eK

i − c(K )
)
.

(2) We say that 8 satisfies W (v, κ) if, for every finite G-set J and (X, p, s) in G-SB
with connectivity κ(H) 6 Conn pH , the canonical map

8(X ∧B (J+× B)) −→
∏̃
8(B)

J
8(X)

is ϑ-connected, where ϑ is the function

ϑ(H) = min
{

2 Conn pH , min
K�H

Conn pK
}
− v(H).

We say that 8 is stably G-excisive if it satisfies EG
1 (c, κ) and W (v, κ) for some functions

c, κ, v. We call v the additivity function of 8. We say that 8 is stably G-linear if it is

stably G-excisive and 8(B) is weakly G-contractible.

The conditions EG
n (c, κ) for n > 2 will play a role later in the paper, when we will

consider G-analytic functors.

Remark 2.2.2. (1) If G = {1} is the trivial group, condition E {1}n (c, κ) is equivalent to

the classical condition En((n+ 1)c, κ) of [10, 1.8]. The difference in the constants

comes form the fact that in Goodwillie’s definition c appears outside the sum. In

our context, it is going to be convenient to allow c to vary with the subgroup. This

is why c can take rational values.

(2) When G = {1} is the trivial group, the property W (v, κ) follows directly from

E {1}1 (c, κ) (with v = 2c). When J has two elements, it follows from E {1}1 (c, κ) for
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the homotopy cocartesian square

X ∨B X
id∨B p //

p∨B id
��

X

p
��

X p
// B

The condition for lager J can be proved inductively on the cardinality of J . This

shows that stable G-excision for the trivial group agrees with Goodwillie’s definition

of stable excision from [10] and [12].

(3) The connectivity range in the condition W (v, κ) is the same as the connectivity of

the inclusion ∨
B

J
X −→

∏̃
B

J
X

of spaces, in Lemma 1.1.7. Together with the Blakers–Massey theorem (see [12,

2.3]) applied on fixed points, this shows that the forgetful functor G-SB → G-S∗ is

stably G-excisive.

Given a homotopy functor 8 : G-SB → SpΣG , let 8̃ : G-SB → SpΣG be the associated

reduced homotopy functor

8̃(X) = hof
(
8(X)

8(p)−→ 8(B)
)
,

where p is seen as a morphism (X, p, s)→ (B, id, id) in G-SB . On morphisms 8̃ sends a

map f : (X, pX , sX )→ (Y, pY , sY ) to the map induced on homotopy fibers

8̃(X) //

8̃( f )
���
�
� 8(X)

8( f )
��

8(pX ) // 8(B)

8̃(Y ) // 8(Y )
8(pY )

// 8(B)

Lemma 2.2.3. If 8 is stably G-excisive, 8̃ is stably G-linear.

Proof. It is immediate to see that EG
1 (c, κ) for 8 implies that EG

1 (c, κ) for 8̃. The map

8̃(X ∧B (J+× B))→∏
J 8̃(X) is the map of vertical homotopy fibers in the diagram

8̃(X ∧B (J+× B))

��

// holim(∗
��

// ∗ ∏
J 8̃(X))oo

8(X ∧B (J+× B))

��

// holim(8(B)

��

1 // ∏
J 8(B)

∏
J 8(X))oo

8(B) ' // holim(8(B) 1 // ∏
J 8(B)

∏
J 8(B))

The middle map is ϑ-connected by condition W (v, κ) for 8, and therefore so is the map

on homotopy fibers.
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For a finite G-set I , let SR[I ] be the I -fold smash product of simplicial circles

SR[I ] = S1 ∧ S1 ∧ · · · ∧ S1,

where G acts by permuting the smash components. This is our simplicial model for the

one-point compactification of the permutation representation R[I ] spanned by I . We

denote its suspension in the category G-SB by

SR[I ]B X = X ∧B (SR[I ]× B).

Let nG be the disjoint union of n copies of G with diagonal action by left multiplication.

The corresponding suspension is denoted by

SR[nG] = Snρ .

Definition 2.2.4. The differential of a reduced enriched homotopy functor 8 : G-SB →
SpΣG is the functor D8 : G-SB → SpΣG defined by

D8(X) = hocolim
n∈N

�nρ8(Snρ
B X)

with structure maps adjoint to the assembly map

8(Snρ
B X)∧ |Sρ | −→ 8(Snρ

B X ∧B (Sρ × B)) ∼= 8(S(n+1)ρ
B X)

of §1.2. If 8 is not reduced, we define D8 = D8̃ : G-SB → SpΣG .

Proposition 2.2.5. The differential of a stably G-excisive functor is G-linear.

Proof. By Lemma 2.2.3, we can assume that 8 is reduced. Moreover, D8 is obviously a

reduced homotopy functor. Let χ be a homotopy cocartesian square in G-SB with initial

maps ei : χ∅→ χi for i = 0, 1. Notice that, if ei is ki -connected and H is a subgroup of

G, the connectivity of the relative suspension SR[I ]B ei on H -fixed points is

ki (H)+Conn(SR[I ])H + 1.

Moreover, the H -fixed-point space of the sphere SR[I ] is isomorphic to SR[I/H ], which is

(|I/H | − 1)-connected. In particular, (Snρ)H is (n|G/H | − 1)-connected. Thus by choosing

n sufficiently large the initial maps of Snρ
B χ become κn-connected, for

κn(H) = ki (H)+ n|G/H | > κ(H).

Condition EG
1 (c, κ) ensures that the square 8(Snρ

B χ) is νn-homotopy Cartesian for

νn(H) =
∑

i=0,1

min
K6H

(ki (K )+ n|G/K | − c(K ))

> 2n|G/H | +
∑

i=0,1

min
K6H

(ki (K )− c(K ))

> 2n|G/H | − 2(c(H)+ 1),
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where c(H) := maxK6H c(K ). The nth stage of the homotopy colimit defining D8(χ) is

then ν-homotopy Cartesian, for

ν(H) = min
K6H

(νn(K )− dim(Snρ)K )

> min
K6H

(2n|G/K | − 2(c(K )+ 1)− n|G/K |)
> n|G/H | − 2 min

K6H
((c(K )+ 1).

This becomes arbitrarily large with n, and D8(χ) is homotopy Cartesian.

By a similar argument, we can choose n sufficiently large so that the map

8(Snρ
B X ∧B (J+× B)) −→

∏
J

8(Snρ
B X)

is ϑn-connected, for

ϑn(H) = min
{

2(Conn pH + n|G/H |), min
K�H

(Conn pK + n|G/K |)
}
− v(H)

> min
{

2n|G/H |, min
K�H

n|G/K |
}
− v(H).

Let us denote v = maxK6H v(K ). The map �nρ8
(
Snρ

B X ∧B (J+× B)
)→∏

J �
nρ8(Snρ

B X)
is then νn-connected, for

νn(H) = min
L6H

(ϑn(L)− n|G/L|)

> min
L6H

(
min

{
2n|G/L|, min

K�L
n|G/K |

}
−v(L)− n|G/L|

)
> min

L6H

(
min

{
n|G/L|, min

K�L
n|G/K | − n|G/L|

})
− v

> min
L6H

(min{n|G/L|, n})− v > n− v.

Since homotopy colimits preserve connectivity, the map D8(X ∧B (J+× B))→∏
J D8(X) is (n− v)-connected, for every n.

There is a canonical map 8→ D8, as the functor 8 is the first term of the homotopy

colimit sequence defining D8. In order to estimate the connectivity of this ‘approximation

map’ 8→ D8 we need an extra connectivity assumption on 8.

Definition 2.2.6. Let 8 : G-SB → SpΣG be a homotopy functor. We say that 8 preserves

connectivity above a function κ : {H 6 G} → N if there is a function λ : {H 6 G} → Z
such that

ConnH 8(X) > min
K6H

(Conn pK )+ λ(H)

for every subgroup H of G and every (X, p, s) in G-SB with κ(H) 6 Conn pH . We say

that λ is the connectivity function of 8.
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Proposition 2.2.7. Let 8 : G-SB → SpΣG be a reduced homotopy functor that satisfies

EG
1 (c, κ) and that preserves connectivity. For every retractive space (X, p, s) in G-SB

with κ(H) 6 Conn pH , the canonical map 8(X)→ D8(X) is ν-connected, for

ν(H) = min
{

2 min
K6H

(Conn pK − c(K )), min
K�H

(Conn pK + λ(K ))
}
,

where λ is the connectivity function of 8.

Remark 2.2.8. (1) We are in fact going to prove that the map 8(X)→ D8(X) is

νn-connected for every sufficiently large n, where

νn(H) = min
{

2 min
K6H

(Conn pK − c(K )), min
K�H

(ConnK 8(S
nρ
B X)− n|G/K |)

}
.

The estimate of Proposition 2.2.7 is obtained by using once more that 8 preserves

connectivity, as

min
K�H

(ConnK 8(S
nρ
B X)− n|G/K |)

> min
K�H

((
min
L6K

Conn(Snρ
B p)L

)
+ λ(K )− n|G/K |

)
= min

K�H

(
min
L6K

(Conn pL + n(|G/L| − |G/K |))+ λ(K )
)

> min
K�H

(
min

{
Conn pK , min

L�K
(Conn pL + n)

}
+ λ(K )

)
= min

K�H
(Conn pK + λ(K )).

The last equality holds for n sufficiently large. In the proof of Theorem B below

this more refined estimate is going to be a key ingredient.

(2) If 8 is G-linear, the map 8→ D8 is an equivalence, even though the connectivity

range of Proposition 2.2.7 is finite. For every n, there is a commutative diagram

8(X)

'
''NNNNNNNNNNNN

// �nρ8(Snρ
B X)

�nρ(8(X)∧ Snρ)

' 2.1.4

OO

where the diagonal map is an equivalence as representation spheres are invertible

in G-spectra. Hence D8 is a homotopy colimit of equivalences, and the map from

the initial object of the sequence 8→ D8 is an equivalence. A similar statement

for G-linear functors to G-spaces instead of G-spectra is proved in [4, 3.5] and

[23, 1.4] using different methods (there is no analog of Proposition 2.1.4 if the

target is not the category of G-spectra).
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Proof of 2.2.7. We study the connectivity of 8(X)→ D8(X) in πH∗ , for a fixed subgroup

H 6 G. The map 8(X)→ �nρ8(Snρ
B X) fits into a commutative diagram

8(X) //

��

�nρ8(Snρ
B X)

res
��

�n|G/H |8(Sn|G/H |
B X)

ι
// �n|G/H |8(Snρ

B X)

where both ι and res are induced by the inclusion Sn|G/H | = (Snρ)H → Snρ of the

fixed-point sphere. The connectivity of the left vertical map in πH∗ is

2 min
K6H

(Conn pK − c(K ))

since 8 satisfies EG
1 (c, κ) and Sn|G/H | has trivial H -action. The right vertical map fits

into a fiber sequence

Map∗(Snρ/Sn|G/H |,8(Snρ
B X)) −→ �nρ8(Snρ

B X) −→ �n|G/H |8(Snρ
B X)

of symmetric G-spectra (mapping spaces are taken levelwise). The connectivity of the

mapping space in πH∗ , and hence of the restriction map, is at least

min
K∈cell(Snρ/Sn|G/H |)

(ConnK 8(S
nρ
B X)− dim Sn|G/K |/Sn|G/H |),

where the minimum is taken over the collection of subgroups K of H with the property

that the H -CW-complex Snρ/Sn|G/H | contains a K -equivariant cell (one of the form

H/K × Dk). Since Sn|G/H | is the H -fixed-point space of Snρ , the quotient cannot contain

an H -equivariant cell (this would be a cell with trivial H -action), and the minimum

above is greater than

min
K�H

(ConnK 8(S
nρ
B X)− dim Sn|G/K |/Sn|G/H |) = min

K�H
(ConnK 8(S

nρ
B X)− n|G/K |).

Let us finally compute the connectivity of ι. The cofiber of the inclusion Sn|G/H |→ Snρ

is G-equivalent to Snρ/Sn|G/H |. The homotopy cocartesian square

Sn|G/H |
B X

��

// Snρ
B X

��
B // X ∧B (Snρ/Sn|G/H |× B)

induces a sequence 8(Sn|G/H |
B X)→ 8(Snρ

B X)→ 8(X ∧B (Snρ/Sn|G/H |× B)). By stable

linearity, this induces a long exact sequence in πH∗ up to degree

ν′(H) = 2 min
K6H

(Conn pK − c(K ))+ 2n|G/H |.

Looped down by �n|G/H |, it induces a long exact sequence in πH∗ up to degree

ν(H) = 2 min
K6H

(Conn pK − c(K ))+ n|G/H |.
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This range can be made arbitrarily large with n. Therefore we can choose n sufficiently

large so that ι is as connected as �n|G/H |8
(
X ∧B (Snρ/Sn|G/H |× B)

)
in πH∗ . Since

8 preserves connectivity, this is at least
(

minK6H
(

Conn pK +Conn Sn|G/K |/Sn|G/H |)+
λ(H)− n|G/H |)-connected. The K = H term of the minimum is infinite, and the

connectivity becomes

min
K�H

(Conn pK + n|G/K | − 1)+ λ(H)− n|G/H |

> min
K�H

(Conn pK + n(|G/H | + 1)− 1)+ λ(H)− n|G/H |

= min
K6H

(Conn pK − 1)+ n+ λ(H).

This diverges with n, and therefore we can choose n sufficiently large so that ι does not

contribute to the connectivity of 8(X)→ D8(X).

We end the section by discussing differentials for non-relative functors. Let F : G-S∗→
SpΣG be a homotopy functor, and let B in G-S∗ be a pointed finite simplicial G-set. Define

a homotopy functor F̃B : G-SB → SpΣG by taking the homotopy fiber

F̃B(X) = hof
(
F(X)

F(p)−→ F(B)
)

on objects, and by sending a morphism f : (X, pX , sX )→ (Y, pY , sY ) to the map induced

on homotopy fibers

F̃B(X) //

F̃B ( f )
���
�
� F(X)

F( f )
��

F(pX ) // F(B)

F̃B(Y ) // F(Y )
F(pY )

// F(B)

Definition 2.2.9. Let F : G-S∗→ SpΣG be a homotopy functor. The differential of F at B
in G-S∗ is the differential of F̃B

DB F := DF̃B : G-SB −→ SpΣG .

Definition 2.2.10. We say that F : G-S∗→ SpΣG is relatively additive if for every B in

G-S∗ there are functions vB, κB : {H 6 G} → Z such that, for every (X, p, s) in G-SB
with connectivity Conn pH > κB(H), the canonical map

F(X ∧B (J+× B)) −→
∏̃J

F(B)

F(X)

is ϑB-connected, for ϑB(H) = min{2 Conn pH ,minK�H Conn pK }− vB(H).

Remark 2.2.11. A G-linear functor F : G-S∗→ SpΣG is automatically relatively additive.

Indeed, the cofiber sequence B → X ∧B (J+× B)→∨
J X/B induces a map of fiber
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sequences

F(B) // F(X ∧B (J+× B))

��

// F(
∨

J X/B)

'
��

F(B) // ∏̃J

F(B)
F(X) // ∏

J F(X/B)

where the right vertical map is a G-equivalence by G-linearity. The right bottom map is

holim

(
F(B)→

∏
J

F(B)←
∏

J

F(X)

)
−→ holim

(
∗ → ∗ ←

∏
J

F(X/B)

)
,

whose homotopy fiber is indeed holim(F(B)→∏
J F(B)←∏

J F(B)) ' F(B).

Proposition 2.2.12. Suppose that F : G-S∗→ SpΣG is a stably G-linear and relatively

additive homotopy functor. Then the functor F̃B : G-SB → SpΣG is stably G-linear. In

particular, DB F is a G-linear functor.

Proof. Consider the composite functor G-SB
U−→ G-S∗

F−→ SpΣG , where U is the forgetful

functor. As F̃B = F̃ ◦U , it is enough by Lemma 2.2.3 to show that F ◦U is stably

G-excisive. The condition on squares for F ◦U follows immediately from the condition on

square for F , as U preserves homotopy cocartesian squares and connectivity. It remains

to show that F ◦U satisfies W (vB, κB) for some functions vB, κB : {H 6 G} → Z, but this

is precisely the relative additivity condition for F .

Proposition 2.2.13. Let F : G-S∗→ SpΣG be a homotopy functor that satisfies EG
1 (c, κ)

and W (v, κ) for some functions c, v, κ : {H 6 G} → Q. If the reduced functor F̃∗ :
G-S∗→ SpΣG preserves connectivity above κ, so does F̃B : G-SB → SpΣG for every B in

G-S∗.

Proof. For every (X, p, s) in G-SB there is a natural G-equivalence F̃B(X) ' (˜̃F∗)B(X).
It is induced by the diagram

(˜̃F∗)B(X) //

��

F̃∗(X)

��

// F̃∗(B)

��
F̃B(X) //

��

F(X)

��

F(p) // F(B)

��
∗ // F(∗) F(∗)

All the rows and the columns are fiber sequences, and therefore the top left vertical map

is a G-equivalence. It is then enough to show that (˜̃F∗)B preserves connectivity above κ.

Given a retractive space (X, p, s) in G-SB with κ(H) 6 Conn pH , the sequence

F̃∗(X)
F̃∗(p)−→ F̃∗(B) −→ F̃∗(hoc(p))
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induces a long exact sequence in πH∗ up to degree

ν(H) = min
K6H

(Conn X K + 1− c(K ))+ min
K6H

(Conn pK − c(K ))

> min
K6H

Conn pK − 2 max
K6H

c(K )

by condition EG
1 (c, κ). Since F̃∗ preserves connectivity, there is a function λ such that

ConnH F̃∗(hoc(p)) > min
K6H

Conn hoc(p)K + λ(H) > min
K6H

Conn pK + λ(H).

By setting c(H) = maxK6H c(K ), we get

ConnH (
˜̃F∗)B(X) = ConnH (F̃∗(X) −→ F̃∗(B))− 1

> min
K6H

Conn pK − 1+min{λ(H),−2c(H)}.

2.3. G-analytic functors

We generalize Goodwillie’s notion of analytic functors from [12] to the G-equivariant

setting, for a finite group G. We prove Theorem B below, showing that G-analytic functors

with trivial differentials (in fact derivatives) send highly connected split-surjective maps

to G-equivalences. This is the equivariant analog of Corollary [12, 5.4]: ‘functors with

trivial derivative are locally constant’.

Definition 2.3.1. Let 8 : G-SB → SpΣG be a homotopy functor and ρ : {H 6 G} → Z a

function which is invariant on conjugacy classes. We say that8 is G-ρ-analytic if there are

functions q, v : {H 6 G} → Z such that for every n > 1 the functor 8 satisfies conditions

W (v, ρ+ 1) and EG
n (ρ− q

n+1 , ρ+ 1) of Definition 2.2.1.

Remark 2.3.2. Let us point out the difference between the choice of constants from

Goodwillie’s definition of ρ-analytic functors of [12, 4.2] and the present definition for

the trivial group G = {1}. Functors that are {1}-ρ-analytic in our sense are precisely

the classical ρ-analytic functors, but with a different constant q. The comparison with

Goodwillie’s En(c, κ) condition is

E {1}n

(
ρ− q

n+ 1
, ρ+ 1

)
= En((n+ 1)ρ− q, ρ+ 1) = En(nρ− (q − ρ), ρ+ 1).

Let us also recall that E {1}1 (ρ− q
2 , ρ+ 1) implies W (2ρ− q, ρ+ 1) for the trivial group

(see Remark 2.2.2).

Example 2.3.3. Let Z be a finite G-CW-complex, and suppose that the dimension of the

fixed points Z G is at least one. Then the functor

SG ∧Map(Z , | − |) : G-S∗ −→ SpΣG

is G-ρ-analytic, where ρ is the dimension function ρ(H) = dim Z H . An argument

completely analogous to the non-equivariant case of [12, 4.5] shows that our functor
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satisfies EG
n (ρ, 0). Let us show the property W (2ρ, 0). Given a finite pointed simplicial

G-set X , there is a commutative diagram

SG ∧Map(Z , |∨J X |) //

��

∏
J SG ∧Map(Z , |X |)

SG ∧Map(Z ,
∏

J |X |) ∼=
// SG ∧ (∏J Map(Z , |X |))

44iiiiiiiiiiiiiiii
SG ∧ (∨J Map(Z , |X |))oo

'
OO

We need to calculate the connectivity of the top horizontal map. Since smashing with SG

preserves connectivity, it is enough to calculate the connectivity of the maps∨
J

Map(Z , |X |)→
∏

J

Map(Z , |X |) and Map
(

Z ,
∨

J

|X |
)
→ Map

(
Z ,
∏

J

|X |
)
.

By Lemma 1.1.7, the first map is ν-connected, for

ν(H) = min
{

2 Conn Map(Z , |X |)H , min
K�H

Conn Map(Z , |X |)K
}

> min
{

2 min
K6H
{Conn X K − dim Z K }, min

K�H
min
L6K
{Conn X L − dim Z L}

}
= min

{
2(Conn X H − dim Z H ), min

K�H
Conn X K − dim Z K

}
> min

{
2 Conn X H , min

K�H
Conn X K

}
− 2 dim Z H .

The last inequality holds because dim Z K > dim Z H for K 6 H . Similarly, the second

map is ϑ-connected, for

ϑ(H) = min
K6H

Conn

(∨
J

X →
∏

J

X

)K

− dim Z K


> min

K6H

{
min

{
2 Conn X K , min

L�K
Conn X L

}}
− dim Z H

> min
{

2 Conn X H , min
K�H

Conn X K
}
− dim Z H .

The top horizontal map is then as connected as the minimum of these two quantities,

which is precisely the range of W (2ρ, 0).

Theorem B. Let G be a finite group, and let F : G-S∗→ SpΣG be an enriched homotopy

functor (see Definition 1.2.1) satisfying the following conditions.

(1) F is G-ρ-analytic for a function ρ : {H 6 G} → Z.

(2) F̃∗ preserves connectivity above ρ+ 1 (see Definition 2.2.6).

(3) F is relatively additive (see Definition 2.2.10).
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(4) The spectrum DB F(B ∨ S0) is weakly G-contractible for every B in G-S∗ (see 2.2.9).

Then, for every split-surjective map f : X → B of finite pointed simplicial G-sets

satisfying ρ(H)+ 1 6 Conn f H , the induced map

F( f ) : F(X) −→ F(B)

is a π∗-equivalence of symmetric G-spectra.

Theorem B for the projection map X → ∗ immediately gives the following.

Corollary 2.3.4. Suppose that F : G-S∗→ SpΣG satisfies the conditions of Theorem B,

and that it is reduced. Then it sends every finite pointed simplicial G-set X with ρ(H) 6
Conn X H to a weakly G-contractible spectrum.

The proof of Theorem B uses a lemma relating the differential of F and its derivative.

If F is stably G-linear and relatively additive, the functor DB F(B ∨ (−)) : G-S∗→ SpΣG
is G-linear for every B in G-S∗, and it is therefore determined by its value at S0

(see Corollary 2.1.5). The spectrum DB F(B ∨ S0) is called the derivative of F at B
in Goodwillie calculus (see [10]), and is sometimes denoted by ∂B F .

Lemma 2.3.5. Let F : G-S∗→ SpΣG be a relatively additive G-ρ-analytic homotopy

functor. If the spectrum DB F(B ∨ S0) is weakly G-contractible, then DB F(X) is weakly

G-contractible for every (X, p, s) in G-SB .

Proof. We recall that under these hypotheses DB F = DF̃B is G-linear (see Proposition

2.2.12). We start by proving the lemma for equivariant spheres. By hypothesis, DF̃B(B ∨
S0) is weakly G-contractible. By induction, DF̃B(B ∨ Sn) is also weakly G-contractible,

since by G-linearity of DF̃B the diagram

DF̃B(B ∨ Sn−1) //

��

DF̃B(B ∨ Dn) ' ∗

��
∗ ' DF̃B(B ∨ Dn) // DF̃B(B ∨ Sn)

is homotopy (co-)Cartesian. If X = B ∨ (Sn ∧ J+) for a finite G-set J , the map

DF̃B(B ∨ (Sn ∧ J+)) = DF̃B((B ∨ Sn)∧B (J+× B)) −→
∏

J

DF̃B(B ∨ Sn)

is a G-equivalence by G-linearity of DF̃B , with weakly G-contractible target. Therefore

DF̃B(B ∨ (Sn ∧ J+)) is also weakly G-contractible.

Now that the lemma is proved for spheres, we prove that DF̃B(X) is weakly

G-contractible by induction on the relative G-skeleton of the pair (X, B). The base

induction step is when X = B ∨ J+ for a finite G-set J , which is the n = 0 case already

proved above. Now suppose inductively that the image of the n-skeleton is weakly

G-contractible. By G-linearity of DF̃B , the sequence

DF̃B(X (n)) −→ DF̃B(X (n+1)) −→ DF̃B(B ∨ (S(n+1) ∧ J+))
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induced by the homotopy cocartesian square

X (n) //

��

X (n+1)

��
B // B ∨ (S(n+1) ∧ J+)

is a fiber sequence with first and last terms weakly G-contractible.

Remark 2.3.6. In the classical theory of calculus of functors one needs to require F to

satisfy the ‘limit axiom’, in order to carry out the induction argument of Lemma 2.3.5.

Proving this axiom for explicit examples can require a considerable amount of work;

see, e.g., [19, §2]. Here, we do not need to worry about this condition, since our theory

considers only finite simplicial sets. The analogous equivariant condition would be that

F commutes with filtered homotopy colimits of pointed simplicial G-sets.

Proof of Theorem B. We generalize Goodwillie’s proof of [12, 5.4] to our equivariant

setting. As F is G-ρ-analytic, it satisfies W (v, ρ+ 1) and EG
n (ρ− q

n+1 , ρ+ 1) for certain

functions q, v : {H 6 G} → Z and for every n > 1. We prove the following statement I(L)
by induction on the size of the subgroups L of G.

I(L): For every n > 1 the functor F satisfies EG
n (ρ− r

n+1 , ρ+ 1) for the

function

r(H) =
 q(H) for H 66 L

∞ for H 6 L .

Moreover, F( f ) is an L-equivalence for any split-surjective G-map f
satisfying ρ(H)+ 1 6 Conn f H for subgroups H 6 L.

The statement I(G) contains in particular our theorem.

The base induction step I({1}) is essentially the proof of Corollary [12, 5.4]. One needs

to make sure that all the constructions of [12] carry a G-action, but the final statement

is about a {1}-equivalence (the induction step below also goes through the proof of [12]

once more).

Now assume inductively that I(K ) holds for subgroups K of G of size |K | 6 l, and let

L be a subgroup of G with l + 1 elements. For proper subgroups K � L, the value r(K ) is

already infinite as I(K ) is satisfied. Hence we need to improve the value of r at the group

L itself. We do it inductively by proving that, if F satisfies EG
n (ρ− r

n+1 , ρ+ 1) for all n > 1

and a function r with r(H) = ∞ on groups H � L, then it satisfies EG
n (ρ− r ′

n+1 , ρ+ 1)
for all n > 1 with

r ′(H) =
 r(H) for H 6= L

r(H)+ 1 for H = L .

This will prove the first part of I(L). Let χ : P(n+ 1)→ G-S∗ be a strongly cocartesian

(n+ 1)-cube with initial maps ei satisfying ρ(H)+ 1 6 Conn eH
i . Since F is a homotopy
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functor, we can assume that all the ei are G-cofibrations. We need to show that the cube

F(χ) is at least

c(L) :=
n+1∑
i=1

min
K6L

(
Conn eK

i −
(
ρ(K )− r ′(K )

n+ 1

))
-Cartesian

in π L∗ . Since r ′(H) = r(H) = ∞ for subgroups H � L, this is

c(L) =
n+1∑
i=1

(
Conn eL

i −
(
ρ(L)− r ′(L)

n+ 1

))
= −(n+ 1)ρ(L)+ r ′(L)+

n+1∑
i=1

Conn eL
i .

Let Z :P(n+2)→ G-S∗ be the strongly cocartesian (n+ 2)-cube with initial maps

e1, e1, e2, . . . , en+1, defined by taking iterated pushouts along e1. The cube Z defines

a map of (n+ 1)-cubes Z : χ → χ in the direction of the repeated map e1. By [12, 1.6(i)],

the cube F(χ) is c-Cartesian if both F(Z) and F(χ) are. By assumption, F satisfies

EG
n+1(ρ− r

n+2 , ρ+ 1), and therefore F(Z) is ν-Cartesian, where the value of ν at L is

ν(L) = min
K6L

(
Conn eK

1 −
(
ρ(K )− r(K )

n+ 2

))
+

n+1∑
i=1

min
K6L

(
Conn eK

i −
(
ρ(K )− r(K )

n+ 2

))

= Conn eL
1 −

(
ρ(L)− r(L)

n+ 2

)
+

n+1∑
i=1

(
Conn eL

i −
(
ρ(L)− r(L)

n+ 2

))

=
n+1∑
i=1

(Conn eL
i )+Conn eL

1 − (n+ 2)ρ(L)+ r(L)

>
n+1∑
i=1

(Conn eL
i )− (n+ 1)ρ(L)+ r(L)+ 1 = c(L).

The inequality holds since Conn eL
1 > ρ(L)+ 1. Therefore it is enough to show that F(χ)

is c-Cartesian. Since χ is defined from χ by iterating pushouts, its initial maps ei are

G-cofibrations, and they satisfy

ρ(H)+ 1 6 Conn eH
i 6 Conn eH

i .

Moreover, e1 has a canonical G-equivariant retraction p(1) defined by the fold map, as

illustrated by the following diagram for the case n = 1:

χ



A // e1 //

e2

��

##
e1

##FFFFFF B %%

%%KKKKKKK

B //
e1

//

e2

��

��

BqA B

p(1)

zz

��

C

""FFFFFFF
// D

%%JJJJJJJ

D // DqC D
{{

χ
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The retraction is natural, and hence it defines a retraction for the map of n-cubes defined

by e1. Let Y(1) be the (n+ 1)-cube defined by the retractions:

B

e2

��

e1 // BqA B
p(1) //

��

B

��
D︸ ︷︷ ︸

χ

// DqC D︸ ︷︷ ︸
Y(1)

// D

The cube Y(1) is strongly cocartesian by [12, 1.8(iv)]. Moreover, F(χ) (and hence F(χ))
is c-Cartesian if we can prove that F(Y(1)) is (c+ 1)-Cartesian. This is because as maps

of n-cubes Y(1) ◦χ = id (see [12, 1.8(iii)]). What we gain by replacing F(χ) with F(Y(1))
is that the connectivity of its first initial map p(1) is

Conn(p(1))H = Conn eH
1 + 1 > Conn eH

1 + 1,

since p(1) is a retraction for e1. For the other indices i > 1, the connectivity of the ith
initial map of F(Y(1)) is greater than or equal to the connectivity of ei , and hence greater

than or equal to the connectivity of ei . Let us calculate how Cartesian F(Y(1)) is, by

exploiting that p(1) is more connected than e1. As a map of n-cubes, F(Y(1)) is pointwise

as connected as the map F(p(1)). Recall that if the map F(p(1)) is ν-connected, then

F(Y(1)) is (ν− n)-Cartesian. Hence we need to determine the connectivity of F(p(1)). For

every proper subgroup K � L the map F(p(1)) is a K -equivalence by the property I(K ),
which is satisfied by the inductive hypothesis (p(1) is split surjective). We use the linear

approximation to determine how connected F(p(1)) is at the group L. Let us denote by

A and B the source and the target of p(1) respectively, and we remark that (A, p(1), e1)

defines an object of G-SB . Remark 2.2.8 gives an estimate for the connectivity of the

map

hof F(p(1)) = F̃B(A) −→ DF̃B(A) = DB F(A),

and by Lemma 2.3.5 the target is weakly G-contractible. Hence the connectivity of the

map F(p(1)) in π L∗ is (by 2.2.8)

ν(1)(L) = min
{

2
(

Conn(p(1))L − (ρ− r)(L)
2

)
, min

K�H
ConnK F̃B(S

kρ
B p(1))− k|G/K |

}
for a sufficiently large choice of k. By the inductive hypothesis, the map F(Skρ

B p(1)) is

a K -equivalence for subgroups K � L. The second term of the minimum above is then

infinite, and F(p(1)) is

ν(1)(L) = 2 Conn(p(1))L − (ρ− r)(L) = 2
(
Conn eL

1 + 1
)− (ρ− r)(L)-connected

in π L∗ . This shows that F(Y(1)) is (ν(1)− n)-Cartesian, where we define ν(1)(K ) =
∞ on proper subgroups K � L. This is not necessarily larger than c+ 1, which is

what we were trying to show. However, one can repeat this whole construction by

replacing χ with Y(1). If we keep iterating this procedure we obtain a sequence of
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(n+ 1)-cubes Y(m) with the property that F(χ) is c-Cartesian if F(Y(m)) is (c+m)-
Cartesian, and with F(Y(m)) at least (ν(m)− n)-Cartesian for the function

ν(m)(K ) =
 2

(
Conn eK

1 +m
)− (ρ− r)(L) for K = L

∞ for K � L .

This quantity can be made bigger than c(K )+m by choosing m sufficiently large, and

therefore F(χ) is c-Cartesian. This proves the first part of the condition I(L).
It remains to show that F( f ) is an L-equivalence for a highly connected split-surjective

map f . By the first part of I(L), the functor F satisfies EG
1 (ρ− r

2 , ρ+ 1) with r infinite

on all subgroups H 6 L. Since DF̃B is weakly G-contractible, we find from Remark 2.2.8

that F( f ) is ν-connected, for

ν(H) = min
K�H

ConnK F̃B(S
kρ
B f )− k|G/K |

on subgroups H 6 L. By the condition I(K ), the map F̃B(S
kρ
B f ) is a K -equivalence, and

therefore ν(H) is infinite for every H 6 L. This shows that F( f ) is an L-equivalence,

ending the proof.

3. Z/2-equivariant calculus and Real algebraic K -theory

The goal of this section is to construct our main example of Z/2-analytic functor from

Real algebraic K -theory, and to calculate its Z/2-equivariant derivative. We recall from

[27] that a Wall antistructure is a triple (A, w, ε), where A is a ring, w : Aop → A is a

ring map, and ε ∈ A× is a unit, with the property that w2 is conjugation by ε. The Real

K -theory of (A, w, ε) is a symmetric Z/2-spectrum KR(A, w, ε) defined by Hesselholt and

Madsen in [13], with underlying spectrum equivalent to K(A). We recall its construction

in detail in §3.1 below.

Definition 3.0.7. A bimodule over a Wall antistructure (A, w, ε) is an A-bimodule M
together with an additive map h : M → M which satisfies the following conditions:

h(a ·m) = h(m) ·w(a)
h(m · a) = w(a) · h(m)

h2(m) = ε ·m · ε−1

for every a in A and every m in M .

From a bimodule (M, h) over (A, w, ε) we define a Wall antistructure
(

AnM, wn
h, (ε, 0)

)
, where the semi-direct product ring AnM has underlying Abelian group A⊕M

and multiplication

(a,m) · (b, n) = (a · b, a · n+m · b),
and the map wn h is the direct sum of w and h. Given a finite pointed set X ,

define a bimodule M(X) = (⊕x∈X M · x)/M ·∗ over (A, w, ε) with involution h(X) induced

https://doi.org/10.1017/S1474748015000067 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000067


Equivariant calculus of functors and Z/2-analyticity of Real algebraic K -theory 859

diagonally by h : M → M . This gives a new antistructure (AnM(X), wn h(X), (ε, 0)),
and by letting X vary a functor

K̃R(AnM(−)) := hof(KR(AnM(−), wn h(−), (ε, 0)) −→ KR(A, w, ε))

from pointed finite sets to SpΣZ/2. Extending this levelwise to pointed finite simplicial

Z/2-sets as in Example 1.2.3, we obtain a functor K̃R(AnM(−)) : Z/2-S∗→ SpΣZ/2. The

aim of this section is to prove the following theorems.

Theorem A. For every pointed finite Z/2-set X , the equivariant derivative D∗K̃R(An
M(X)) is equivalent to the Real MacLane homology of A with coefficients in the

Dold–Thom construction M(X ∧ S1,1), as defined in 3.2.7.

Here S1,1 = 1[1]/∂ is the simplicial circle with levelwise involutions (0 6 i0 6 · · · 6
i p 6 1) 7→ (0 6 1− i p 6 · · · 6 1− i0 6 1). The simplicial set M(S1,1) is isomorphic to the

nerve of M , and the levelwise involution sends (m1, . . . ,m p) to (h(m p), . . . , h(m1)). We

remark that this involution is not simplicial.

Theorem C. The functor K̃R(AnM(−)) : Z/2-S∗→ SpΣZ/2 is a Z/2-ρ-analytic (see

Definition 2.3.1) reduced enriched homotopy functor, where ρ is the function

ρ(H) =
−1 for H = {1}

0 for H = Z/2.
Moreover, it is relatively additive and it preserves connectivity, in the sense of Definitions

2.2.10 and 2.2.6 respectively.

The section is organized as follows. Section 3.1 is a recollection of constructions from

[13], containing in particular the definition of the Real algebraic K -theory spectrum of

(A, w, ε). In §3.2, we define Real algebraic K -theory with coefficients and Real MacLane

homology. In §3.3, we prove that Real K -theory with coefficients defines a Z/2-analytic

functor (3.3.1), whose derivative is Real MacLane homology (3.3.2). Finally, in §3.4, we

finish the proofs of Theorems A and C, by showing that K̃R(AnM) is equivalent to the

Real K -theory of A with coefficients in M(S1,1).

3.1. Hesselholt and Madsen’s Real algebraic K -theory functor

This section is a recollection of constructions from [13]. Let 1R be the smallest

subcategory of finite sets containing 1 and the maps ωp : [p] → [p] defined by

ωp(i) = p− i

for every p > 0. Here we denoted [p] = {0, . . . , p}. A pointed Real n-simplicial set is a

functor (1Rop)×n → Set∗. This is the same as a pointed n-simplicial set with levelwise

involutions wp that ‘reverse the order of the structure maps’. If Z is a Real simplicial

set, we let |Z | be the geometric realization of the underlying simplicial set, defined as the

quotient

|Z | =
∐

p>0

Z p ×1p

/∼,
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where ∼ is the standard equivalence relation (see, e.g., [9, I-§2]). The space |Z | inherits

a Z/2-action from the Real structure, defined by the involution |Z | → |Z |:
[z ∈ Z p; (t0, . . . , tp) ∈ 1p] 7−→ [wp(z); (tp, . . . , t0)].

Remark 3.1.1. The levelwise involution on a Real simplicial set Z induces a simplicial

involution on Segal’s edgewise subdivision sde Z of the underlying simplicial set (see

[22]). The realization |sde Z | inherits an involution, and the canonical homeomorphism

|Z | ∼= |sde Z | is Z/2-equivariant.

The realization of a Real n-simplicial set Z : (1Rop)×n → Set∗ is defined as the

realization of the diagonal Real simplicial set

δ(Z) : 1Rop δ−→ (1Rop)×n Z−→ Set∗
with the induced Z/2-action.

Example 3.1.2. Let D : Cop → C be a functor which satisfies D2 = idC . The nerve of C
equipped with the levelwise involutions Np D : NpC → NpC is a Real simplicial set.

The natural input of the Real K -theory functor is an exact category with duality, as

defined by Schlichting in [20].

Definition 3.1.3 [20]. Let C be an exact category. A duality on C is an exact functor

D : Cop → C , together with a natural isomorphism η : id⇒ D2 which satisfies D(ηc) ◦
ηDc = idc for every object c of C . If η is the identity natural transformation we say that

the duality is strict.

We are particularly interested in the dualities on the category of finitely generated

projective modules over a ring.

Example 3.1.4. Let (A, w, ε) be a Wall antistructure. We let As be the right A-module

with the same underlying Abelian group as A, and with right module structure b · a :=
w(a)ε · b. Given a right A-module P, the Abelian group of module maps homA(P, As)

has a right module structure defined by (λ · a)(p) = λ(p) · a. This defines a duality on the

category PA of finitely generated projective right A-modules

D = homA(−, As) : Pop
A −→ PA.

The natural transformation ηP : P → D2 P is defined by the formula (ηP (p))(
λ : P → As

) = w(λ(p)) · ε.
Let C be an exact category with duality, and let us assume for the moment that

the duality is strict. In [13], the authors define a simplicial category S2,1q C similar to

a two-fold Waldhausen S q-construction, in the following way. Let Cat ([2], [p]) be the

category of functors of posets [2] → [p]. In each simplicial degree p, the category S2,1
p C

is the full subcategory of the category of functors X : Cat ([2], [p])→ C which satisfy
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• X (σ ) = 0 if σ : [2] → [p] is not injective,

• for every ψ : [3] → [p] the sequence

0 −→ X (d3ψ) −→ X (d2ψ) −→ X (d1ψ) −→ X (d0ψ) −→ 0

is exact.

The category S2,1
p C is canonically an exact category (pointwise), and conjugation with the

canonical strict duality on Cat ([2], [p]) induces a strict duality D : (S2,1
p C)op → S2,1

p C .

The construction can therefore be iterated to define a Real n-simplicial set S(n)(C) with

p = (p1, . . . , pn)-simplices

S(n)(C)p := Ob(S2,1q )(n)p C = Ob S2,1
p1

S2,1
p2
. . . S2,1

pn
C.

Its geometric realization is the pointed Z/2-space |S(n)(C)| =: KR(C)n . There are natural

transformations χ∗ : S(n)(C)→ S(n)(C) ◦χ associated to a permutation χ in Σn defined

by permuting the entries of the functors (see [13]), and a canonical isomorphism S2,1
2 C =

C . These induce respectively aΣn-action on KR(C)n and structure maps KR(C)n ∧ Smρ →
KR(C)n+m , where ρ is the regular representation of Z/2. The definitions of the Σn-actions

and of the structure maps are analogous to the definitions for the Z/2-spectrum K̃R(S; N )
defined in detail in §3.2. This structure combines into a symmetric Z/2-spectrum KR(C).

Definition 3.1.5 [13]. The symmetric Z/2-spectrum KR(C) is called the Real K -theory of

the exact category with strict duality C .

In cases when the duality on C is not strict, there is a formal construction that replaces

C with an equivalent category DC which has a strict duality. The definition of DC first

appeared in Vogell’s thesis [25], and it was later generalized in by Weiss and Williams in

[28]. The objects of DC are the triples

ObDC = {ϕ = (c, d, φ) | c, d ∈ Ob C, φ : d ∼=−→ Dc
}
.

A morphism (c, d, φ)→ (c′, d ′, φ′) is a pair of morphisms (a : c→ c′, b : d ′→ d) of

C which satisfy φ ◦ b = D(a) ◦φ′. The functor (DC)op → DC that sends (c, d, φ) to

(d, c, D(φ) ◦ ηc), and (a, b) to (b, a), is a strict duality on DC . The projection functor

DC → C that projects onto the first component on both objects and morphisms is an

equivalence of categories. If C is an exact category, the category DC inherits an exact

structure through the equivalence DC → C . In particular, DPA is an exact category with

strict duality, equivalent to PA.

Definition 3.1.6 [13]. The Real K -theory of a Wall antistructure (A, ε, w) is the

Z/2-symmetric spectrum

KR(A, w, ε) = KR(DPA).

For completeness, we mention how KR(DC) relates to other constructions present in the

literature. We will not use any of these results in the present paper, and for the proofs we

refer to [13]. The underlying spectrum of KR(DC) is equivalent to Waldhausen’s algebraic
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K -theory K(C). The equivalence is induced by a simplicial functor S2,1q DC → S qS qDC
to the diagonal of the two-fold S q-construction. This gives an equivalence between the

underlying spectrum of KR(DC) and K(DC), and the latter is equivalent to K(C)
by the equivalence of categories DC → C . Moreover, the homotopy groups of the

fixed-point spectrum KR(DC)Z/2 are isomorphic to the Hermitian K -theory groups (or

Grothendieck–Witt groups) of the category with duality C , as defined in [20] and [15].

This is because the Grothendieck–Witt space GW(C) of [20] is weakly equivalent to the

space of pointed equivariant maps from the representation sphere Sρ to |Ob S2,1q DC |. A

key ingredient in establishing this equivalence is the homotopy equivalence between the

fixed points |iDC |Z/2 of the subcategory of isomorphisms of DC and the realization of

the category of symmetric spaces |i Sym C | from [20].

3.2. Real algebraic K -theory with coefficients and Real MacLane homology

In this section we define and compare the Real K -theory and the Real MacLane

homology of a coefficients system. These constructions will provide a rich supply of

Z/2-analytic functors. Their comparison is analogous to the relationship between K̃(A;M)
and THH(A;M) of [6].

We say that a Real n-simplicial set Z : (1Rop)×n → Set is 1-reduced if Z p = ∗ whenever

at least one of the components of p = (p1, . . . , pn) satisfies pi 6 1.

Definition 3.2.1. A Real S-construction is a collection of 1-reduced pointed Real

n-simplicial sets S(n) : (1Rop)×n → Set∗, one for every integer n > 0, together with the

following structure.

• An isomorphism of Real n-simplicial sets χ∗ : S(n)→ S(n) ◦χ for every permutation

χ in Σn , where χ : (1R)×n → (1R)×n denotes the automorphism that permutes the

product factors. For every χ and ξ in Σn , we require that the diagram

S(n)
χ∗ //

(ξ◦χ)∗ $$JJJJJJJJJJ S(n) ◦χ
ξ∗|χ
��

S(n) ◦ ξ ◦χ
commutes. Here ξ∗|χ is the natural transformation ξ∗ restricted along the functor χ .

• Maps of Real n-simplicial sets

κ : S(n) −→ S(n+1) ◦ ι,
where ι : (1Rop)×n → (1Rop)×(n+1) is the inclusion ι(p1, . . . , pn) = (p1, . . . , pn, 2). We

require that for every (χ, ξ) in Σn ×Σm the diagram

S(n)

χ∗
��

κm
// S(n+m) ◦ ιm

(χ×ξ)∗|ιm
��

S(n) ◦χ
κm |χ

// S(n+m) ◦ ιm ◦χ

commutes. Notice that ιm ◦χ = (χ × ξ) ◦ ιm for any ξ in Σm .
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The main example of a Real S-construction is defined from Hesselholt and Madsen’s

S2,1q -construction. The extra generality of the previous definition will simplify the notation

in later constructions.

Example 3.2.2. If C is an exact category with strict duality, the collection of Real

n-simplicial sets S(n)(C) = Ob(S2,1q )(n)C of §3.1 defines a Real S-construction S(C). In

cases when the duality on C is not strict, we replace C with the equivalent category with

strict duality DC of §3.1.

We recall that the simplex category of an n-simplicial set Z is the category Simp(Z)
with objects

Ob Simp(Z) =
∐

p∈Nn

Z p.

A morphism (z, p)→ (y, q) is a morphism σ : p→ q in 1×n such that σ ∗y = z. If Z is

a Real n-simplicial set, the simplex category Simp(Z) of the underlying n-simplicial set

inherits an involution Simp(w) that sends (z, p) to (w(z), p) and σ : (z, p)→ (y, q) to

σ : p
ω−→ p

σ−→ q
ω−→ q,

where ω is the involution on r = [r1]× · · · × [rn] defined as the product of the involutions

ω(i) = r j − i .
If S is a Real S-construction, a permutation χ in Σn induces an automorphism φχ of

Simp(S(n)):

φχ : Simp(S(n))
Simp(χ∗)−−−−−−→ Simp(S(n) ◦χ) ∼= Simp(S(n))

where Simp(χ∗) is the functor induced by functoriality of Simp on the natural

transformation χ∗ : S(n) ⇒ S(n) ◦χ , and the second map is the canonical isomorphism

Simp(S(n) ◦χ) ∼= Simp(S(n)) that reindexes the disjoint union summands.

Definition 3.2.3. A coefficients system for a Real S-construction is a family of Abelian

group valued functors N : Simp(S(n))op → Ab for every n > 0, sending the basepoint ∗ ∈
S(n)p to the trivial Abelian group, together with the following.

• Natural transformations w : N → N ◦Simp(w)op, where Simp(w) is the involution on

Simp(S(n)) above. These have to satisfy w2 = id : N → N ◦ (Simp(w)op)2 = N .

• Natural transformations χ∗ : N → N ◦φop
χ , such that for every χ and ξ in Σn the

diagram

N
χ∗ //

(ξ◦χ)∗
��

N ◦φop
χ

ξ∗|φop
χ

��
N ◦φop

ξ◦χ N ◦φop
ξ ◦φop

χ

commutes.
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•We require that the diagrams

Simp(S(n))op N //

Simp(κ)op

��

Ab

Simp(S(n) ◦ ι)op � � // Simp(S(n+1))op

N

OO N ◦ (Simp(κ)op)m

χ∗
��

(χ×ξ)∗// N ◦φχ×ξ ◦Simp((κ)op)m

N ◦ (Simp(κ)op)m ◦φχ Simp((χ × ξ) ◦ κm)op

commute for all (χ, ξ) inΣn ×Σm , where the bottom horizontal map of the left diagram

is the canonical inclusion.

Let us see how a bimodule over an exact category with duality C induces a coefficient

system for the Real S-construction S(C) of Example 3.2.2.

Definition 3.2.4. A bimodule with duality on an exact category with duality (C, D, η)
(see Definition 3.1.3) is an additive functor M : Cop ⊗C → Ab together with a natural

isomorphism J : M ⇒ M ◦ Dγ making the diagram

M(c, d)

(η−1
c ⊗ηd )∗ ''NNNNNNNNNN

J // M(Dd, Dc)

J
��

M(D2c, D2d)

commutative for every pair of objects c and d of C . If the duality on C is strict, the

natural transformation J automatically satisfies J 2 = id.

There is a strictification construction for the duality on M as well. A bimodule M with

duality J on an exact category with duality C induces a bimodule DM : (DC)op ⊗DC →
Ab with duality DJ on the category with strict duality DC of §3.1. The bimodule is

defined at a pair of objects ϕ = (c, d, φ) and ϕ′ = (c′, d ′, φ′) of DC by the Abelian group

DM(ϕ, ϕ′) = M(c, c′), and the duality is the natural transformation

DJ(ϕ,ϕ′) : DM(ϕ, ϕ′) = M(c, c′)
Jc,c′
−−−→ M(Dc′, Dc)

(ϕ′⊗ϕ−1)∗−−−−−−→ M(d ′, d) = DM(Dϕ′, Dϕ).

Example 3.2.5. Let M : Cop ⊗C → Ab be a bimodule with duality over an exact category

with duality C . Upon making the suitable strictifications we can assume that the

duality on C is strict. We define a coefficients system NM for the Real S-construction

S(n)(C) := Ob(S2,1q )(n)C of Example 3.2.2. The bimodule M extends canonically to a

simplicial bimodule

M q : (S2,1q C)op ⊗ S2,1q C −→ Ab

on the simplicial category S2,1q C , with a duality Jq : M q⇒ M q◦ Dγ . The Abelian group

Mp(X, Y ) for diagrams X and Y in S2,1q C is defined as the subgroup

Mp(X, Y ) 6
⊕

θ∈Cat ([2],[p])
M(Xθ , Yθ )
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of collections {mθ } with the property that for every natural transformation ψ : ρ → θ

the relation

X (ψ)∗(mθ ) = Y (ψ)∗(mρ)

holds in M(Xρ, Yθ ). The duality Jk : Mk ⇒ Mk ◦ Dγ is the restriction of
⊕

θ J . Iterations

of this construction give an n-simplicial bimodule

M (n)q : ((S2,1q )(n)C)op ⊗ (S2,1q )(n)C −→ Ab

for every n > 0. This is analogous to the extension for the S q-construction of [5, I-§3.3].

The functor NM : Simp(S(n)(C))op → Ab of the coefficients system is defined on objects

by NM (s, p) = M (n)
p (s, s), and by sending a morphism σ : q → p from σ ∗s to s in

Simp(S(n)(C)) to the natural transformation of the simplicial bimodule structure

NM (s, p) = M (n)
p (s, s)

σ−→ M (n)
q (σ ∗s, σ ∗s) = NM (σ

∗s, q).

The functor NM also inherits a natural transformation

w : NM (s, p) = M (n)
p (s, s)

Jp−→ M (n)
p (Ds, Ds) = NM (Ds, p)

from the duality J on M , and natural transformations χ∗ : NM → NM ◦φop
χ defined by

permuting the S2,1q factors in a similar way as we do for S(C). This makes NM into a

coefficients system for S(C).

We define a symmetric Z/2-spectrum K̃R(S; N ) from a coefficients system (S, N ), as

follows. There is a Real n-simplicial set K̃R(S; N )(n) defined in degree p by

K̃R(S; N )(n)p =
∨

s∈S(n)p

Ns .

The simplicial structure map associated to σ : p→ q is the wedge of the maps σ ∗ : Ns →
Nσ ∗s given by functoriality of N . The Real structure is given by the wedge of the maps w :
Ns → Nws . Define the nth space of the spectrum K̃R(S; N ) as the geometric realization

of the diagonal Real simplicial set d(K̃R(S; N )(n)). There is a canonical Z/2-equivariant

homeomorphism

K̃R(S; N )n =
∣∣d(K̃R(S; N )(n))

∣∣ ∼=
 ∐

p∈Nn

K̃R(S; N )(n)p ×1p1 × · · ·×1pn

/∼,

where the equivalence relation is the same as for the classical realization of an n-simplicial

set, and the Z/2-action on the right-hand side is diagonal, acting on 1p by reversing the

order of the simplex coordinates. The Σn-action on K̃R(S; N )n is defined at a permutation
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χ as the composite

K̃R(S; N )n

χ

��

∼= //
(∐

p∈Nn K̃R(S; N )(n)p ×1p1 × · · ·×1pn
)
/∼

∐
χ∗×χ

��(∐
p∈Nn K̃R(S; N )(n)χ(p)×1pχ(1) × · · ·×1pχ(n)

)
/∼

K̃R(S; N )n = |d(K̃R(S; N )(n))| |d(K̃R(S; N )(n) ◦χ)|
∼=
OO

where the map χ∗ : K̃R(S; N )(n)→ K̃R(S; N )(n) ◦χ is the wedge of the natural maps

χ∗ : Ns → Nφχ (s). Let us define the structure maps of the spectrum K̃R(S; N ). Let 12,1

be the topological 2-simplex 12 with the Z/2-action that reverses the order of the

coordinates. There is a canonical homeomorphism between S2,1 = 12,1/∂ and the regular

representation sphere Sρ of Z/2. The structure maps of the spectrum are induced by the

composite

K̃R(S; N )n × (12,1)×m ∼= //

��

|d(K̃R(S; N )(n)× (12,1)×m)|
∼=
��(∐

p∈Nn K̃R(S; N )(n)p ×1p1 × · · ·×1pn × (12,1)×m)/∼
κm

��(∐
p∈Nn K̃R(S; N )(n+m)

p,2,...,2×1p1 × · · ·×1pn × (12,1)×m)/∼
��

K̃R(S; N )n+m
(∐

q∈Nn+m K̃R(S; N )(n+m)
q ×1q1 × · · ·×1qn+m

)
/∼,

where the bottom right vertical map is the inclusion of the p-component into the q =
(p, 2 . . . , 2)-component. By assumption, K̃R(S; N )(n) is 1-reduced, and therefore this map

descends to a map

σn,m : K̃R(S; N )n ∧ Smρ −→ K̃R(S; N )n+m

on the quotient Smρ = (S2,1)∧m = (12,1/∂)∧m .

Definition 3.2.6. The (Σn ×Z/2)-spaces K̃R(S; N )n together with the maps σn,m define a

symmetric Z/2-spectrum K̃R(S; N ), called the Real K -theory spectrum of the coefficients

system (S, N ). The Real K -theory of an exact category with duality C with coefficients

in a bimodule with duality M : Cop ⊗C → Ab is the Real K -theory

K̃R(C;M) = K̃R(S(DC); NDM )

of the coefficients system (S(DC), NDM ) of Example 3.2.5.
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The construction of the spectrum K̃R(S; N ) can be repeated verbatim with wedges

replaced by direct sums of Abelian groups. This leads to our definition of Real MacLane

homology.

Definition 3.2.7. The Real MacLane homology of a coefficients system (S, N ) is the

symmetric Z/2-spectrum HR(S; N ) defined by the geometric realization of the Real

simplicial sets

HR(S; N )(n)p =
⊕

s∈S(n)p

Ns .

The Real MacLane homology HR(C;M) of an exact category with duality C with

coefficients in a bimodule with duality M : Cop ⊗C → Ab is the Real MacLane homology

of the coefficients system (S(DC), NDM ) of Example 3.2.5.

This definition is analogous to the model for THH used in [6, 3.1], which lies in between

the standard definitions of MacLane homology and of topological Hochschild homology.

These three theories are all equivalent (non-equivariantly), as proved in [8] and [6]. The

author’s thesis [7] contains a theory of Real topological Hochschild homology, which is

equivalent to the Real MacLane homology of Definition 3.2.7, at least when 2 is invertible

(see [7, 4.12.2]).

The inclusion of wedges into direct sums induces an equivariant map of symmetric

Z/2-spectra

K̃R(S; N ) −→ HR(S; N )

analogous to the trace map of [6]. Section 3.3 studies the Z/2-analytic properties of this

map.

3.3. Analytic properties of Real algebraic K -theory with coefficients

Given a coefficients system (S, N ) and a pointed set X , one can replace the coefficients

functor N : Simp(S(n))op → Ab with the functor N (X) : Simp(S(n))op → Ab that sends s
in S(n)p to the Abelian group

Ns(X) =
(⊕

x∈X

Ns · x
)/

Ns ·∗

of Example 2.1.3. This gives a new coefficients system (S, N (X)), with an associated Real

K -theory spectrum K̃R(S; N (X)). This construction is functorial in the set X , and we

extend it degreewise to an enriched functor

K̃R(S; N (−)) : Z/2-S∗ −→ SpΣZ/2
as explained in Example 1.2.3. As the group Z/2 has only two subgroups, we will denote

a function ν : {H 6 Z/2} → Q by listing its values, starting with the trivial subgroup:

ν = (ν(1), ν(Z/2)).

Theorem 3.3.1. The functor K̃R(S; N (−)) : Z/2-S∗→ SpΣZ/2 enjoys the following

properties.

https://doi.org/10.1017/S1474748015000067 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000067


868 E. Dotto

(1) It is a reduced homotopy functor.

(2) It is Z/2-ρ0-analytic (see Definition 2.3.1), where ρ0 is the zero function ρ0 = (0, 0).

(3) It is relatively additive (see Definition 2.2.10).

(4) It preserves connectivity (see Definition 2.2.6).

Proof of 3.3.1. The functor K̃R(S; N (−)) is clearly reduced. Since the Dold–Thom

construction Ns(−) : Z/2-S∗→ Z/2- Top∗ is a homotopy functor for every s in S(n)

(see Appendix A.1.1), it follows that K̃R(S; N (−)) sends Z/2-equivalences to levelwise

Z/2-equivalences of spectra, and it is therefore a homotopy functor.

Let us show that K̃R(S; N (−)) satisfies EZ/2k (0,−1). Let χ : P(k+ 1)→ Z/2-S∗
be a strongly cocartesian (k+ 1)-cube. We need to prove that K̃R(S; N (χ)) is ν =
(ν1, ν2)-Cartesian, for

ν =
 ∑

16 j6k+1

Conn e j ,
∑

16 j6k+1

min
{
Conn e j ,Conn eZ/2j

} .
We adapt McCarthy’s argument from [19]. For every fixed n there is a natural equivariant

homeomorphism

K̃R(S; N (χ))Z/2n ∼=
∣∣∣∣∣∣

∨
s∈(sde S(n))Z/2

Ns(χ)
Z/2

∣∣∣∣∣∣ ,
where sde is the edgewise subdivision functor (see 3.1.1). Notice that for s in (sde S(n))Z/2

the natural transformation map w : N → N ◦Simp(w)op defines indeed an involution on

Ns . By Appendix A.1.1, the squares Ns(χ)
Z/2 are strongly Cartesian, and its final maps

Ns( f j : χk+1\{ j}→ χk+1)
Z/2 have connectivity at least

Conn Ns( f j )
Z/2 > min

{
Conn f j ,Conn f Z/2j

}
> min

{
Conn e j ,Conn eZ/2j

}
.

The second inequality holds because χ is strongly cocartesian, and the first one because

Ns(−) preserves connectivity. By the dual Blakers–Massey theorem (for spaces), the cube

Ns(χ)
Z/2 is c2-cocartesian, for

c2 := k+
∑

16 j6k+1

min
{
Conn e j ,Conn eZ/2j

}
.

Since wedges commute with homotopy cofibers, the homotopy cofiber (C (n)
p )Z/2 of the

map

hocolim
P(k+1)\k+1

∨
s∈(sde S(n))Z/2p

Ns(χ)
Z/2 −→

∨
s∈(sde S(n))Z/2p

Ns(χk+1)
Z/2

is c2-connected for every p in Nn . Since S(n) is 1-reduced, the edgewise subdivision

(sde S(n))Z/2 is 0-reduced in each of its n simplicial directions. Therefore so is (C (n))Z/2,

and its geometric realization is (c2+ n)-connected. Since homotopy cofibers commute

with realizations, there is a cofiber sequence of spaces

hocolim
P(k+1)\k+1

K̃R(S; N (χ))Z/2n −→ K̃R(S; N (χk+1))
Z/2
n −→ |(C (n))Z/2|
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with (c2+ n)-connected cofiber. This shows that the cofiber C of the map of spectra

hocolim
P(k+1)\k+1

K̃R(S; N (χ)) −→ K̃R(S; N (χk+1))

is levelwise (c2+ n)-connected on fixed points. A similar argument (see [19, 3.2]) shows

that it is non-equivariantly levelwise (c1+ 2n)-connected, where

c1 := k+
∑

16 j6k+1

Conn e j .

Therefore the connectivity of the Z/2-spectrum C is

(c1+ 2n, c2+ n)− (dim Snρ, dim(Snρ)Z/2) = (ν1+ k, ν2+ k).

Since the homotopy fiber of a map of spectra is the loop of the cofiber, the map in the

cofiber sequence above is (ν1+ k, ν2+ k)-connected, that is the (k+ 1)-cube K R(S; N (χ))
is (ν1+ k, ν2+ k)-cocartesian. Therefore it is ν-Cartesian.

Let us show that K̃R(S; N (−)) is relatively additive. Given a finite based simplicial

Z/2-set B in Z/2-S∗, a retractive Z/2-space (X, p, j) in Z/2-SB , and a finite set J with

involution, we need to estimate the connectivity of

ι : K̃R(S; N (X ∧B (J+× B))) −→
∏̃J

K̃R(S;N (B))
K̃R(S; N (X)).

In spectrum level n and simplicial degree p, this map fits into the commutative diagram

∨
s∈S(n)p

Ns(X ∧B (J+× B)) // ∏̃J( ∨
t∈S(n)p

Nt (B)

) ( ∨
s∈S(n)p

Ns(X)
)

∨
s∈S(n)p

( ∏̃J

Ns (B)
Ns(X)

)��

'

∨
s∈S(n)p

( ∨
Ns (B)

J Ns(X)
)

oo ∼= //

aaCCCCCCCCCCCCCCCCCCCCC ∨(∨
t∈S(n)p

Nt (B)
)J
( ∨

s∈S(n)p

Ns(X)
)

'

OO

The left-hand vertical map is an equivalence, since Ns(−) is Z/2-linear for every s
in (S(n)p )Z/2 (see Remark 2.2.11 and Appendix A.1.1). The right-hand vertical map

defines a Z/2-equivalence of symmetric Z/2-spectra by Proposition 1.1.5. Therefore the

connectivity of the top horizontal map is determined by the left-hand bottom map. The

calculation of Lemma 1.1.7 expresses its connectivity in terms of the connectivity of the

maps Ns(p) : Ns(X)→ Ns(B). By linearity of Ns(−), its splitting Ns( j) fits into a fiber
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sequence Ns(B)→ Ns(X)→ Ns(X/B), and therefore

Conn Ns(p)H = Conn Ns( j)H + 1 = Conn Ns(X/B)H

> min
K6H

Conn X/B > min
K6H

Conn pK .

By Lemma 1.1.7, the connectivity of our map is

ν(H) = min
{

2 Conn pH , min
K�H

Conn pK
}
− 1

in πH∗ . Arguing like before, the fact that (S, N ) is 1-reduced shows that the connectivity of

our map in spectrum degree n is ν+ (2n, n), and therefore ν-connected on the homotopy

colimit.

It remains to show that K̃R(S; N (−)) preserves connectivity. The argument is similar

to the calculation of the connectivity of the cofiber C (n) above, using that N (−) preserves

connectivity.

We also extend MacLane homology to a functor HR(S; N (−)) : Z/2-S∗→ SpΣZ/2 in a

similar way. The inclusion of wedges into direct sums defines a natural transformation

K̃R(S; N (−))→ HR(S; N (−)).

Proposition 3.3.2. The functor HR(S; N (−)) : Z/2-S∗→ SpΣZ/2 is Z/2-linear, and the

inclusion of wedges into direct sums induces a natural π∗-equivalence of symmetric

Z/2-spectra,

D∗K̃R(S; N (X))
'−→ D∗ HR(S; N (X))

'←− HR(S; N (X))
'←− HR(S; N )∧ |X |

for every X in Z/2-S∗.
Proof. To show that HR(S; N (−)) sends homotopy cocartesian squares to homotopy

Cartesian squares, it is enough to show that the map

HR(S; N (X))n → �HR(S; N (X ∧ S1))n

is an equivalence of pointed Z/2-spaces for every X in Z/2-S∗ (e.g., by [11, 1.8]). Since

both HR(S; N (X))n and HR(S; N (X))Z/2n are geometric realizations of simplicial Abelian

groups, loop spaces and realizations commute, and the assembly map above factors as∣∣∣∣ ⊕
s∈sde S(n)

Ns(X)
∣∣∣∣ −→ ∣∣∣∣� ⊕

s∈sde S(n)

Ns(X ∧ S1)

∣∣∣∣ '−→ �

∣∣∣∣ ⊕
s∈sde S(n)

Ns(X ∧ S1)

∣∣∣∣.
Since loops commute with indexed direct sums, it is enough to show that⊕

s∈S(n)p

Ns(X) −→
⊕

s∈S(n)p

�Ns(X ∧ S1)

is an equivalence of simplicial Z/2-sets for every p. Non-equivariantly this is just

linearity of the Dold–Thom construction Ns(−). On Z/2-fixed points the map is, up

to isomorphism, the direct sum of the assembly maps⊕
s∈(S(n)p )Z/2

Ns(X)Z/2⊕
⊕

s∈F (n)p

Ns(X) −→
⊕

s∈(S(n)p )Z/2

�Ns(X ∧ S1)Z/2⊕
⊕

s∈F (n)p

�Ns(X ∧ S1).
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where F (n)p is a set of representatives for the free orbits of S(n)p . This is an equivalence by

linearity of Ns(−) on the second summands, and by Z/2-linearity of Ns(−), for s fixed in

S(n)p , on the first summands (see Appendix A.1.1). To see that HR(S; N (−)) sends indexed

wedges to indexed products, we show in Appendix A.1.1 that, for every finite Z/2-set J
and Abelian group with Z/2-action N , the canonical map from wedges to products is an

equivariant isomorphism N (
∨

J X) ∼=∏J N (X). Thus the canonical map for HR(S; N (−))
is also an isomorphism:∣∣∣∣ ⊕

s∈S(n)p

Ns

(∨
J

X
)∣∣∣∣ ∼= ∣∣∣∣ ⊕

s∈S(n)p

∏
J

Ns(X)
∣∣∣∣ ∼=∏

J

∣∣∣∣ ⊕
s∈S(n)p

Ns(X)
∣∣∣∣.

This shows that HR(S; N (−)) is Z/2-linear, and therefore that it is equivalent to its

differential (see 2.2.8 and 2.1.5).

It remains to show that D∗K̃R(S; N (−))→ D∗ HR(S; N (−)) is an equivalence. The

calculation of Lemma 1.1.7 shows that the equivariant connectivity of K̃R(S; N (X))→
HR(S; N (X)) is

(2 Conn X + 1,min{2 Conn XZ/2,Conn X}+ 1).

Therefore �nρK̃R(S; N (X ∧ Snρ))→ �nρ HR(S; N (X ∧ Snρ)) is non-equivariantly

ν1-connected, for

ν1 = 2(Conn X + 2n)+ 1− 2n = 2n+ 2 Conn X + 1

and ν2-connected on fixed points, for

ν2 = min{2(Conn X + 2n)+ 1− 2n,min{2(Conn XZ/2+ n),Conn X + 2n}+ 1− n}.

For n sufficiently large, the second term of the outer minimum in ν2 is smaller than the

first, and ν2 becomes

ν2 = min{2(Conn XZ/2+ n),Conn X + 2n}+ 1− n = n+min{2 Conn XZ/2,Conn X}+ 1.

The equivariant connectivity (ν1, ν2) diverges with n, and the map on differentials is an

equivalence.

3.4. Real K -theory of semi-direct products as Real K -theory with

coefficients

Let (A, w, ε) be a Wall antistructure and (M, h) a bimodule over (A, ε, w) as defined in

3.0.7. The goal of this section is to prove that the Real K -theory K̃R(AnM) of §3.1 is

equivalent to the Real K -theory of a certain coefficients system, in the sense of Definition

3.2.6. This is a Real analog of Theorem [6, 4.1]. We use this comparison to finish the proofs

of Theorems A and C, by means of Proposition 3.3.2 and Theorem 3.3.1 respectively.

The coefficients system whose K -theory compares to K̃R(AnM) is constructed from a

bimodule with duality on PA induced by M , via the construction of Example 3.2.5. Let

us define a bimodule H M : Pop
A ⊗PA → Ab by sending two A-modules P and Q to the
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Abelian group of module maps

H M (P, Q) = homA(P, Q⊗A M).

There is a duality J : H M ⇒ H M ◦ Dγ on H M (in the sense of Definition 3.2.4) defined as

JP,Q : homA(P, Q⊗A M)
ĴP,Q

−−−→ homA(DQ, homA(P,Mw))
∼=−→ homA(DQ, (D P)⊗A M).

Here Mw is the right A-module structure on M defined by m · a := w(a)ε ·m. The second

map is induced by the canonical isomorphism homA(P, As)⊗A M → homA(P,Mw). The

map Ĵ sends a module map f to

Ĵ ( f )(λ) : P
f // Q⊗A M

λ⊗id // As ⊗A M
(w(−)·ε)⊗h // A⊗A Mw

∼= Mw.

By strictifying the dualities, this construction induces a bimodule DH M over the exact

category with strict duality DPA, with associated coefficients system (S(DPA), NDH M ), as

in Example 3.2.5. Its associated Real K -theory and Real MacLane homology are denoted

respectively by K̃R(A;M) and HR(A;M).

Theorem 3.4.1. Let (M, h) be a bimodule over a Wall antistructure (A, ε, w). There is a

natural zig-zag of π∗-equivalences of symmetric Z/2-spectra

K̃R(AnM) ' K̃R(A;M(S1,1)),

where M(S1,1) is the Dold–Thom construction of the Real circle S1,1 = 11/∂, with

involution (m1, . . . ,m p) 7→ (h(m p), . . . , h(m1)).

The proof of Theorem 3.4.1 is technical, and it is given at the end of the section. We

first end the proofs of Theorems A and C assuming Theorem 3.4.1.

Proof of Theorem A. We need show that D∗K̃R(AnM(−)) is equivalent to

HR(A;M(S1,1)). This immediate by 3.4.1 and 3.3.2.

Proof of Theorem C. By Theorem 3.4.1, it is enough to show that the functor

K̃R(S(A), NM(S1,1)(−)) : Z/2-S∗ −→ SpΣZ/2

is Z/2-ρ-analytic, for the function ρ = (−1, 0). Here M(S1,1)(X) is the iterated

configuration bimodule. It is isomorphic to M(S1,1 ∧ X), where S1,1 ∧ X is the smash

product of the pointed Real simplicial set S1,1 and the pointed Z/2-simplicial set X . This

is the bisimplicial set obtained by taking the smash product levelwise. The Z/2-action is

simplicial in the X factor, and Real in the S1,1 factor. As usual, we realize all the simplicial

directions after taking Real K -theory, and we take the diagonal of the Z/2-actions coming

from each simplicial direction.

The functor K̃R(S(A); NM(S1,1∧(−))) is of the form K̃R(S; N (−)) precomposed with

the functor S1,1 ∧ (−). By Theorem 3.3.1, we know that, given a strongly cocartesian

(n+ 1)-cube in Z/2-S∗ with initial maps ei , its image under the composite functor is
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ν = (ν1, ν2)-Cartesian, for

ν1 =
n+1∑
i=1

Conn
(
ei ∧ S1,1)

=
n+1∑
i=1

(Conn ei + 1)

and

ν2 =
n+1∑
i=1

min
{
Conn

(
ei ∧ S1,1),Conn

(
ei ∧ S1,1)Z/2}

=
n+1∑
i=1

min
{
Conn ei + 1,Conn eZ/2i

}
.

This shows that our functor satisfies EZ/2n (ρ, 0), and it is therefore Z/2-ρ-analytic (with

function q = 0).

The rest of the paper is dedicated to proving Theorem 3.4.1. The equivalence of 3.4.1

is induced by a zig-zag of Real bisimplicial sets of the form∐
(S2,1q )DPA

DM(S1,1) q ' // Ni((S2,1q )DPA)n (D(H M ) q) ' // Ni(S2,1q )DPAnM Ob(S2,1q )DPAnM .
'oo

The symbol n denotes the semi-direct product of categories and bimodules, defined

in 3.4.2 below. We define these maps and we prove that they are Z/2-equivalences, in

Proposition 3.4.5 for the middle map, and in Proposition 3.4.7 for the left-hand and

right-hand maps.

Let C be an exact category and M : Cop ⊗C → Ab an additive functor. For a morphism

f : c→ d in C and an object b in C , we denote by

f∗ = M(idb⊗ f ) : M(b, c)→ M(b, d) and f ∗ = M( f ⊗ idb) : M(d, b)→ M(c, b)

the induced maps.

Definition 3.4.2. The semi-direct product C nM is the category with the same objects

of C , and with morphism sets (C nM)(c, d) = C(c, d)×M(c, d). Composition is defined

by

( f : c→ d,m ∈ M(c, d)) ◦ (g : b→ c, n ∈ M(b, c)) = ( f ◦ g, f∗n+ g∗m).
Strict dualities D on C and J on M induce a strict duality Dn J on C nM , defined by D
on objects and by D× J on morphisms. The projection onto the morphisms of C defines

a functor p : C nM −→ C , with a section s : C −→ C nM defined by the inclusion at

the zeros of M .

We show that this semi-direct product construction models split square zero extensions

of exact categories. Let p : B → C and s : C → B be exact functors, and U : p ◦ s ⇒ id
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a natural isomorphism. Define a bimodule ker p : Cop ⊗C → Ab by

(ker p)(c, d) = ker
(
B(s(c), s(d))

p−→ C(ps(c), ps(d))
)
.

Suppose additionally that for every f in (ker p)(c, d) and g in (ker p)(b, c) the composite

f ◦ g is zero in the Abelian group B(s(b), s(d)). Then there is a functor

F : C n (ker p) −→ B

that sends an object c to s(c), and a morphism
(

f : c→ c′,m ∈ (ker p)(c, c′)
)

to s( f )+m.

Lemma 3.4.3. Let (p, s,U ) be as above, and suppose additionally that the section s
is essentially surjective. Then the functor F : C n (ker p) −→ B is an equivalence of

categories over C.

Proof. The argument is analogous to the classification of split square zero extensions of

rings. The functor F is obviously essentially surjective, since s is by assumption. To see

that it is fully faithful, define an inverse for

F : C(c, d)× (ker p)(c, d) −→ B(s(c), s(d))

by sending f : s(c)→ s(d) to the pair (Ud ◦ p( f ) ◦U−1
c , f − s(Ud ◦ p( f ) ◦U−1

c )), where

Uc : ps(c)→ c is the natural isomorphism.

Example 3.4.4. Let M be a bimodule over a ring A, and p : AnM → A the projection

with zero section s : A→ AnM . These ring maps induce functors

p = (−)⊗AnM A : PAnM → PA and s = (−)⊗A (AnM) : PA → PAnM ,

and a natural isomorphism U : P ⊗A (AnM)⊗AnM A→ P. In [5, 1.2.5.1], the authors

show that the bimodule ker p : Pop
A ⊗PA → Ab is canonically isomorphic to the bimodule

H M = homA(−,−⊗A M), and that the section functor s is essentially surjective. Hence

the lemma above describes an equivalence of categories PAn H M '−→ PAnM .

The next proposition extends this equivalence to the S2,1q -construction.

Proposition 3.4.5. For every n > 0, the functor

F : i((S2,1q )(n)DPA)n (D(H M )(n)q ) −→ i(S2,1q )(n)DPAnM

induced by the split functor (S2,1q )(n) p : i(S2,1q )(n)DPAnM → i(S2,1q )(n)DPA commutes with

the dualities, and it is levelwise an equivalence of categories. In particular, it induces a

Z/2-equivalence on geometric realizations.

Proof. Generally, if B and C carry dualities and p and s commute with the dualities, so

does F : C n (ker p)→ B.

We prove that F is a levelwise equivalence of categories. The extension of the bimodule

H M to (S2,1q )(n)PA defined in 3.2.5 sends a pair of diagrams X and Y in (S2,1
p )(n)PA to

the Abelian group of natural transformations

(H M )(n)p = homA(X, Y ⊗A M),
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where the tensor product and the sum of maps of diagrams are taken objectwise.

The identification between ker p and M H of [5, 1.2.5.1] extends to an isomorphism

ker(S2,1q )(n) p ∼= D(H M )(n)q . By Lemma 3.4.3, it is enough to show that the section

i(S2,1q )(n)DPA → i(S2,1q )(n)DPAnM is essentially surjective. As DPA and PA are naturally

equivalent categories, it suffices to show that the section i(S2,1q )(n)PA → i(S2,1q )(n)PAnM
is essentially surjective. For n = 0, this is the section

s = (−)⊗A (AnM) : PA −→ PAnM

4 which is essentially surjective by [5, 1.2.5.4]. For n > 1, we show more generally that,

if s : C → B is an essentially surjective exact functor, and B is a split-exact category,

then S2,1q s : S2,1q C → S2,1q B is also essentially surjective. The result follows by induction

on n as (S2,1q )(n)PAnM is split-exact. Since B is split-exact, a diagram X in S2,1
p B is

(non-canonically) isomorphic to the diagram Y in S2,1
p B with vertices

Yθ =
⊕

ρ=(0i 1 j 2p−i− j+1)∈r(θ)

ker(X i−1<i+ j−1<i+ j −→ X i6i+ j−1<i+ j ).

Here r(θ) is the set of retractions for the map θ : [2] −→ [p], and the maps of the diagram

Y are inclusions and projections of the direct summands. This splitting is the S2,1
p -analog

of the result that the objects of a diagram in Sp B decompose as direct sums of the

diagonal objects. We refer to [13] for a proof. By the above splitting, it is enough to find

a diagram in S2,1
k C whose image by s is isomorphic to Y . We denote the kernel in the

above splitting corresponding to a retraction ρ by bρ . As s is essentially surjective, one

can choose isomorphisms ερ : bρ→s(cρ) for some objects cρ in C . Since the maps in the

diagram Y are all projections and inclusions, these arbitrary choices of isomorphisms fit

together into an isomorphism of diagrams Y ∼=⊕ρ∈r(θ) s(cρ). Define Z in S2,1
k C to have

vertices Zθ =⊕ρ∈r(θ) cρ and projections and inclusions as maps. Since s is exact, it is in

particular additive, and there are isomorphisms s(Z) ∼=⊕ρ∈r(θ) s(cρ) ∼= Y ∼= X .

We are left with showing that F induces a Z/2-equivalence on realizations. This is a

general property of equivalences of categories, proved in Lemma 3.4.6 below.

Lemma 3.4.6. Let A and B be categories with strict duality, and let F : A→ B be a fully

faithful and essentially surjective functor which commutes strictly with the dualities. Then

F induces a Z/2-equivalence on geometric realizations.

Proof. Let us denote by DA and DB the respective dualities on A and B. A choice of

objects ab in A and of isomorphisms εb : F(ab)→ b, for every object b in B, gives an

inverse functor F ′ : B → A. It is defined on objects by F ′(b) = ab, and on morphisms by

F ′
(
b

f−→ b′
) = F−1(F(ab)

εb−→ b
f−→ b′

ε−1
b′−→ F(a′b)

)
.

The functor F ′ commutes with the dualities up to a natural isomorphism ξ : F ′DB ⇒
DA F ′ defined by

ξb = F−1(F F ′DB(b) = F(aDB b)

εDB b

−−−→ DBb
DB (εb)−−−→ DB F(ab) = F DA(ab) = F DA F ′(b)

)
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The pair (F ′, ξ) induces an inverse D(F ′, ξ) for the functor DF : DA→ DB that

commutes strictly with the dualities. It sends an object
(
b, d, φ : d ∼=→ DB(b)

)
of DB

to (
F ′(b), F ′(d), F ′(d) F ′(φ)−→ F ′DB(b)

ξb−→ DA F ′(b)
)
,

and a morphism ( f, g) in DB to (F ′( f ), F ′(g)). This induces a Z/2-homotopy inverse for

DF on geometric realizations. There is a natural equivalence of categories A→ DA that

sends a to (DAa, a, idDAa), giving a commutative square of Z/2-spaces

|A|

��

F // |B|

��
|DA|

DF
' // |DB|

D(F ′,ξ)
oo

It remains to show that the vertical maps are Z/2-equivalences. We show this for A, and

we drop the subscript A from the strict duality D := DA. Since A→ DA is an equivalence

of categories, it induces a non-equivariant equivalence on realizations. Therefore we need

to show that |A|Z/2 → |DA|Z/2 is an equivalence. Taking the edgewise subdivision of the

nerve of A, one can see that the Z/2-fixed points of |A| are naturally equivalent to the

geometric realization of the category Sym A, with objects self-dual isomorphisms

Ob Sym A = {(a ∈ A, k : a k→ Da
) | D(k) = k

}
,

and morphisms (a, k)→ (a′, k′) maps f : a→ a′ in A which satisfy k = D( f )k′ f . It

remains to show that Sym A is equivalent to SymDA. There are mutually inverses

equivalences of categories p : SymDA→ Sym A and s : Sym A→ SymDA defined on

objects by

d
φ ∼=��

c

||y
y

y
∼= Dφ
��

koo

Dc Dd
D(k)
oo

p7−→ (c, φ ◦ k) and (a, k : a→ Da)
s7−→

Da akoo

Da DDa
D(k)
oo

and on morphisms by p( f : c→ c′, g : d ′→ d) = f and s( f ) = ( f, D( f )).

Given an exact category C and an additive functor M : Cop ⊗C → Ab, let
∐

C M be the

groupoid defined as the disjoint union of the groups M(c, c). Its objects are the objects

of C , and it has only endomorphisms, defined by(∐
C

M
)
(c, c) = M(c, c).

The composition of endomorphisms is the addition in the Abelian groups M(c, c). Strict

dualities D on C and J on M induce a strict duality on
∐

C M defined by D on objects

and by J : M(c, c)→ M(Dc, Dc) on morphisms. There is an embedding e :∐C M →
i(C nM) which is the identity on objects, and which sends a morphism m in M(c, c)
to the morphism (idc,m). Here i(C nM) denotes the subcategory of isomorphisms of

C nM .
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Proposition 3.4.7. For every integer n > 1, the embedding

e :
∐

(S2,1q )(n)DC

DM (n)q −→i
(
(S2,1q )(n)DC

)
nDM (n)q

induces a weak Z/2-equivalence on geometric realizations.

Remark 3.4.8. For the trivial bimodule M = 0, Proposition 3.4.7 states that the inclusion

Ob S2,1q DC → i S2,1q DC induces a Z/2-equivalence on geometric realizations. The proof of

Proposition 3.4.7 uses a swallowing argument completely analogous to the argument of

[26, 1.4-Cor(2)], which shows that the inclusion as a discrete simplicial category Ob S qC →
i S qC induces an equivalence of classifying spaces.

Proof of 3.4.7. By induction, it is enough to prove the proposition for n = 1. We are

going to show that for every fixed integer k the map

N2k+1e : N2k+1
∐

S2,1q DC

DM q→ N2k+1(i(S2,1q DC)nDM q)
admits a Z/2-equivariant homotopy inverse (which is not simplicial in k). This will show

that the edgewise subdivision of N qe is a levelwise Z/2-equivalence of Z/2-bisimplicial

sets, and hence it induces a Z/2-equivalence on geometric realizations.

Since
∐

S2,1q DC DM q is a disjoint union of groups, there is a natural isomorphism

N2k+1
∐

S2,1q DC

DM q∼= ∐
S2,1q DC

N2k+1DM q∼= ∐
S2,1q DC

DM⊕(2k+1)q ,

where the direct sums are taken objectwise. An element of N2k+1(i
(
S2,1

p DC
)
nDMp) is a

pair (φ,m) of a diagram of isomorphisms

φ =


Y0

φ0
��

Y1

φ1
��

b1oo · · ·b2oo Yk

φk

��

bkoo Yk+1

zzu u
u

u
u

bk+1oo

φk+1

��

· · ·bk+2oo Y2k+1
b2k+1oo

φ2k+1

��
D(X0) D(X1)Da1

oo · · ·
Da2

oo D(Xk)Dak

oo D(Xk+1)Dak+1

oo · · ·
Dak+2

oo D(X2k+1)Da2k+1

oo


in S2,1

p C , and a collection of elements mi in the Abelian groups Mp(X i−1, X i ). We define a

homotopy inverse r : N2p+1(i
(
S2,1q DC

)
nDM q)→∐

S2,1q DC DM⊕(2k+1)q by contracting the

bimodule components of (φ,m) onto the diagonal of the middle square in φ. Precisely, r
is defined by

r(φ,m) = (Yk+1
bk+1−→ Yk

φk−→ D(Xk), r(m) ∈ M q(Xk, Xk)
⊕(2k+1)),

where r(m) has i-component

r(m)i =
 (a

−1
k )∗ . . . (a−1

i )∗(ak)∗ . . . (ai+1)∗mi , 1 6 i 6 k

a∗k+1 . . . a
∗
i−1(a

−1
k+1)∗ . . . (a

−1
i )∗mi , k+ 1 6 i 6 2k+ 1.
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This defines a retraction of N2k+1e. Moreover, r commutes strictly with the dualities, since

we are contracting onto the middle square. We need to define a simplicial homotopy

H : N2k+1(i(S2,1q DC)nDM q)×1[1] −→ N2k+1(i(S2,1q DC)nDM q)
between (N2k+1e) ◦ r and the identity, which commutes with the dualities. Let us forget for

a moment the bimodule component. Consider N2k+1i S2,1
2 DC = N2k+1iDC as a category

with strict duality, with natural transformations of diagrams as morphisms. The DC
component of (N2k+1e2) ◦ r2 extends to a functor λ : N2k+1iDC → N2k+1iDC by sending

all the morphisms to identities. There is a natural isomorphism U : id⇒ λ defined at an

object φ by the diagram

Dc0 Dc1oo · · ·oo Dckoo Dck+1oo Dck+2oo · · ·oo Dc2k+1oo

d0

GG��������
d1

GG��������oo · · ·oo dk

GG��������oo dk+1

FF���������oo dk+2

FF���������oo · · ·oo d2k+1

DD








oo

Dck

D(ak ...a1)

OO

Dck

D(ak ...a2)

OO

· · · Dck Dck

D(a−1
k+1)

OO

Dck

D(ak+1ak+2)
−1

OO

· · ·oo Dck

D(ak+1...a2k+1)
−1

OO

dk+1

b1...bk+1

OO

φk bk+1����

GG����

dk+1

b2...bk+1

OO

φk bk+1����

GG����

· · · dk+1

bk+1

OO

φk bk+1����

GG����

dk+1

φk bk+1����

FF����

dk+1

b−1
k+2

OO

φk bk+1����

FF����

· · · dk+1

(bk+2...b2k+1)
−1

OO

φk bk+1				

DD				

This natural transformation respects the dualities, in the sense that DUφ ◦UDφ = idDφ .

Write this natural transformation as a functor U : N2k+1iDC ×[1] −→ N2k+1iDC . In

simplicial degree p, define a homotopy

K p : N2k+1i S2,1
p DC ×1[1]p −→ N2k+1i S2,1

p DC

by sending (φ, σ : [p] → [1]) to the composite

Cat ([2], [p]) (id,ev1)// Cat ([2], [p])×[p] φ×σ
// N2k+1iDC ×[1] U // N2k+1iDC.

Here we used the identification N2k+1i S2,1
p DC ∼= i S2,1

p N2k+1DC , and ev1 : Cat ([2], [p])→
[p] is the evaluation functor that sends θ : [2] → [p] to θ(1). The construction of this

homotopy is similar to the one defined in [5, 1.2.3.2]. The map K defines a simplicial

homotopy between the i S2,1q DC component of (N2k+1e) ◦ r and the identity. Now we

reintroduce the bimodule components. We label the objects and the maps in the diagram

K (φ, σ ) by

K (φ, σ ) =


σ(Y0)

σ(φ0)

��

σ(Y1)

σ(φ1)

��

σ(b1)oo · · ·σ(b2)oo σ(Y2k+1)
σ(b2k+1)oo

σ(φ2k+1)

��
D(σ (X0)) D(σ (X1))Dσ(a1)

oo · · ·
Dσ(a2)
oo D(σ (X2k+1))Dσ(a2k+1)

oo

 .
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In order to define the homotopy on the bimodule component, we need isomorphisms

σ(X i )→ X i to push forward and pull back the mi . By definition, σ(X i ) is the diagram

of S2,1
p C whose vertex at θ : [2] → [p] is

σ(X i )θ =
 (X i )θ , σθ(1) = 0

(Xk)θ , σθ(1) = 1.

Let f i
σ : σ(X i )→ X i be the isomorphism with components

( f i
σ )θ =


id(X i )θ , σθ(1) = 0

(ak . . . ai+1)
−1
θ , σθ(1) = 1, 1 6 i 6 k

(ai . . . ak+1)θ , σθ(1) = 1, k < i 6 2k+ 1.

We define the simplicial homotopy H : N2k+1(i(S2,1q DC)nDM q)×1[1] −→ N2k+1(i(S2,1q
DC)nDM q) by

(φ,m, σ : [p] → [1]) 7−→ (K (φ, σ ), K (φ, σ )∗m),

where K (φ, σ )∗m has i-component

(K (φ, σ )∗m)i = ( f i−1
σ )∗( f i

σ )
−1∗ mi ∈ M(σ (X i−1), σ (X i )).

Proof of 3.4.1. For every n > 0, there is a commutative diagram of Real (n+ 1)-simplicial

sets ∐
(S2,1q )(n)DPA

DM(S1,1)(n)q ∼= //

''PPPPPPPPP

N q ∐
(S2,1q )(n)DPA

DM (n)q F◦e //

��

N qi(S2,1q )(n)DPAnM

p

��

Ob(S2,1q )(n)DPAnM

p

��

'oo

Ob(S2,1q )(n)DPA
' // N qi(S2,1q )(n)DPA Ob(S2,1q )(n)DPA

'oo

The three inclusions of objects are equivalences by Remark 3.4.8. The collection of

geometric realizations

KRn(A;M(S1,1)) =
∣∣∣∣∣∣

∐
(S2,1q )(n)DPA

DM(S1,1)(n)q
∣∣∣∣∣∣

has the structure of a symmetric Z/2-spectrum analogous to the one for K̃R(A;M(S1,1)),

and the diagram above is a diagram of symmetric Z/2-spectra. Moreover, the composite

F ◦ e is an equivalence for n > 1 by Propositions 3.4.5 and 3.4.7 (see also Lemma 3.4.6),

and hence it induces a π∗-equivalence of Z/2-spectra.

As the Real K-theory spectrum K̃R(AnM, wn h, (ε, 0)) is defined as the homotopy

fiber of the right-hand vertical map, it is enough to show that the homotopy fiber of

the left-hand map KR(A;M(S1,1))→ KR(A) is π∗-equivalent to K̃R(A;M(S1,1)). This

is a consequence of the following general argument, which uses only that the map
KR(A;M(S1,1))→ KR(A) is split. Let p : E → W be a map of Z/2-spectra, with a
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section s : W → E . The sequence W → E → hoc(s) is a fiber sequence, and therefore

the horizontal homotopy fibers in the square

E //

p
��

hoc(s)

��
W // ∗

are equivalent, showing that the square is homotopy Cartesian. Thus the vertical fibers are

also equivalent; that is, the homotopy fiber of p is equivalent to the homotopy cofiber of

s. In our case, s : KR(A)→ KR(A;M(S1,1)) is a levelwise cofibration, and in particular

its homotopy cofiber is equivalent to the strict cofiber, which is K̃R(A;M(S1,1)), by

definition.

A. Appendix

A.1. Equivariant Dold–Thom construction and G-linearity

Let G be a finite group, and let M be a simplicial Z[G]-module. Define a functor

M(−) : G-S∗→ G- Top∗ by sending a based simplicial G-set to the realization of the

based bisimplicial G-set with horizontal n-simplices

M(X)n = M(Xn) =
(⊕

x∈Xn

(M · x)
)/

M ·∗ =
⊕

x∈Xn\∗
(M · x).

The simplicial maps are defined as in Example 2.1.3. The group G acts both on M and

X , by conjugation. We prove the following proposition, which we used extensively in §3.

Proposition A.1.1. The functor M(−) : G-S∗→ G- Top∗ is a G-linear reduced homotopy

functor (see 2.1.1 and 2.1.3). Moreover, it preserves connectivity, in the sense that

Conn M(X)H > min
K6H

Conn X K

for every subgroup H of G.

Lemma A.1.2. An inclusion of pointed G-simplicial sets X ⊂ Y in G-S∗ induces a fiber

sequence of G-spaces M(X)→ M(Y )→ M(Y/X).

Proof. The H -fixed points of the sequence in simplicial degree n is isomorphic to the

projection ⊕
[x]∈(Xn\∗)/H

M Hx x −→
⊕

[y]∈(Yn\∗)/H

M Hy y −→
⊕

[y]∈(Yn\Xn)/H

M Hy y,

where Hx is the stabilizer group of x in H . The projection of this sequence is a Kan

fibration of simplicial Abelian groups for every n. The bisimplicial Abelian groups M(X)H

and M(X/Y )H satisfy the conditions for the Bousfield–Friedlander theorem of [9, IV-4.9],

and therefore the realization is a fiber sequence as well.
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Proof of A.1.1. To prove that M(−) is a homotopy functor, suppose first that M is

discrete. We use a topological model for the functor M(−). Given a G-CW-complex

Y , define

M(Y ) =
∐

n>0

(Mn × Y n)/Σn

/ ∼,

where ∼ is the standard equivalence relation of the Dold–Thom construction, which

collapses the basepoint and identifies the zero labels. The space M(Y ) has the quotient

topology, and its G-action is induced by the diagonal action on Mn × Y n . Notice that

M(−) defines a continuous functor from G-CW-complexes to G-spaces, and therefore

it preserves H -homotopy equivalences. If X is a simplicial set, the canonical map

M(X)→ M(|X |) is a natural G-homeomorphism. If f : X → Y is a weak H -equivalence

of simplicial pointed G-sets, the induced map |X | → |Y | is a weak H -equivalence of

G-CW-complexes, and therefore an H -homotopy equivalence. By continuity of the functor

M , the map M(X) ∼= M(|X |)→ M(|Y |) ∼= M(Y ) is an H -homotopy equivalence. Now let

M be a simplicial Z[G]-module, and let f : X → Y be a weak H -equivalence of simplicial

pointed G-sets. The argument above shows that in every simplicial degree k the map of

simplicial G-sets

Mk(X) −→ Mk(Y )

is an H -homotopy equivalence. Therefore its realization M(X)→ M(Y ) is a weak

H -equivalence, and M(−) is a homotopy functor.

To see that the functor M(−) preserves connectivity, fix a subgroup H of G, and

define cH := minK6H Conn X K . Suppose first that X is cH -reduced. In this case, M(X)
is also cH -reduced, and therefore so is M(X)H . In particular, M(X)H is cH -connected.

For the general case, we claim that every pointed cH -connected simplicial G-set X
is H -equivalent to a cH -reduced pointed simplicial G-set. Non-equivariantly, one can

collapse the simplices of X up to the connectivity of X without changing the weak

homotopy type. Collapsing simplices up to simplicial degree cH gives a cH -reduced

pointed simplicial G-set that has the same H -homotopy type of X . Since M(−) is a

homotopy functor, M(X)H is cH -connected.

Now we prove G-linearity. Given a homotopy cocartesian square X : P(2)→ G-S∗ of

pointed simplicial G-sets, we can replace the horizontal maps by G-cofibrations since

M(−) is a homotopy functor. The rows of the diagram

M(X∅)
M( f1) //

M( f2)

��

N (X1)

M( f 2)

��

// M(hoc( f1))

c '
��

M(X2)
M( f 1)

// M(X12) // M
(

hoc( f 1)
)

are fiber sequences by the lemma above, and the map c induced by the map between

cofibers is a G-equivalence. Therefore the homotopy fibers of M( f2) and M( f 2) fit into

a fiber sequence

hof M( f2) −→ hof M( f 2) −→ hof(c) ' ∗,
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where hof(c) is a weakly G-contractible space. To finish the proof it remains to show that

M(−) sends indexed wedges to indexed products. Given a pointed simplicial G-set X and

a finite G-set J , the canonical map

M
(∨

J

X
)
−→

∏
J

M(X)

is a G-homeomorphism.
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