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Abstract We define a theory of Goodwillie calculus for enriched functors from finite pointed simplicial
G-sets to symmetric G-spectra, where G is a finite group. We extend a notion of G-linearity suggested
by Blumberg to define stably excisive and p-analytic homotopy functors, as well as a G-differential, in
this equivariant context. A main result of the paper is that analytic functors with trivial derivatives
send highly connected G-maps to G-equivalences. It is analogous to the classical result of Goodwillie
that ‘functors with zero derivative are locally constant’. As the main example, we show that Hesselholt
and Madsen’s Real algebraic K-theory of a split square zero extension of Wall antistructures defines an
analytic functor in the Z/2-equivariant setting. We further show that the equivariant derivative of this
Real K-theory functor is Z/2-equivalent to Real MacLane homology.
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Introduction

The calculus of functors was developed in Goodwillie’s seminal papers [10-12], and it
found important applications in algebraic K-theory of rings [19], A-theory [11], and
stable mapping spaces [1]. In the current paper, we are interested in developing a theory
of equivariant calculus tailored to study the relationship between the Real algebraic
K-theory of rings with Wall antistructures and their Real topological Hochschild and
cyclic homology.

Hesselholt and Madsen define in [13] a functor KR that associates to a ring A
equipped with a Wall antistructure (in the sense of [27]) a symmetric Z/2-spectrum,
with underlying spectrum equivalent to the algebraic K-theory of A, and with fixed-point
spectrum the Hermitian K-theory of A. Given an A-bimodule M with a suitable involutive
structure, and a pointed finite simplicial Z/2-set X, we define a symmetric Z/2-spectrum
@(A X M (X)) as the homotopy fiber of the projection map

KR(A x M(X)) = hof(KR(A x M(X)) —> KR(A)).

Here M(X) is a simplicial A-bimodule defined by the Dold—Thom construction, and
X denotes the semi-direct product. This construction is functorial in X, defining a
functor from finite pointed simplicial Z/2-sets to symmetric Z/2-spectra. The analytic
properties, in the sense of Goodwillie calculus, of the corresponding functor IN((A X M(—))
from pointed simplicial sets to spectra are studied extensively in [19], and they play a
crucial role in the fundamental relationship between algebraic K-theory and topological
cyclic homology. The present paper studies the analogous analytic properties of the Real
K-theory functor IZR(A X M(—)), in the sense of a suitable theory of equivariant calculus.

In its original form, functor calculus was developed for functors between categories
of pointed spaces or spectra, but it was later extended to the generality of model
categories in [3] and [2], or to quasi-categories in [16]. This homotopy theoretical calculus
is however inadequate to study functors between categories of equivariant objects. As an
example, let G be a finite group, and let G-Top,, be the category of pointed spaces with a
G-action, equipped with the fixed-point model structure. The first excisive approximation
of functor calculus of a reduced enriched functor F : G-Top, — G-Top, is equivalent to
the stabilization

PF(X) ~ hocolim(F (X) — QF(XX) — Q*F(Z%X) — ---).

This stabilization produces a ‘naive’ homology theory, instead of a ‘genuine’ one, as this
colimit does not take into account non-trivial representations of G. This phenomenon is
the consequence of a definition of excision that is not adequate for dealing with equivariant
homotopy theory. For enriched functors F : G-Top, — G-Top,, a suitable definition of
G-excision was suggested by Blumberg in [4], where the author adds to excision an extra
compatibility condition with equivariant Spanier—Whitehead duality. A similar condition
was already present in [23, 1.4] in the context of I'g-spaces.
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We follow Blumberg’s idea, and we extend his definition of G-excision to homotopy
functors enriched in G-spaces F :G-S; — Spg from the category of finite pointed
simplicial G-sets to symmetric G-spectra, for a finite group G. We define F to be
G-excisive if it sends homotopy pushout squares to homotopy pullback squares, and
if for every finite G-set J the canonical map

F(\/ X) — ]_[ F(X)
J J
is an equivalence of G-spectra, for every pointed finite simplicial G-set X. Here G acts on
X and permutes the J-indexed components, both on the wedge and on the product. The
first analogy with classical excision is that a G-excisive functor F : G-S, — Spg that
sends the point to the point is G-equivalent to a functor of the form C A (=), for some
genuine G-spectrum C (see Corollary 2.1.5).

The differential (at a point) of a reduced enriched functor F : G-S, — Spg is the
stabilization

D.F(X) = hocoli]im Q" F(X AS™),
ne

where p is the regular representation of G. The fundamental property of the construction
D, is that it sends stably G-excisive functors (Definition 2.2.1) to G-excisive functors
(Proposition 2.2.5). Moreover, for a stably G-excisive functor F we have control on the
connectivity of the canonical map F — D, F (see Proposition 2.2.7).
As an example of this construction, we identify the derivative of the Real K-theory
functor
KR(A x M(=)) : Z)2-Sx —> Sp7)s -

We define the Real MacLane homology HR(C; M) of an exact category with duality
C with coefficients in a bimodule with duality M (Definition 3.2.7). Its construction is
analogous to the model of THH used in [6, 3.2]. In particular, a bimodule M over a ring
with Wall antistructure A induces a bimodule with duality on the category of finitely
generated projective A-modules Py, with associated MacLane homology HR(A; M). The
following is proved in §3.4.

Theorem A. Let A be a ring with Wall antistructure and M a bimodule over it (Definition
3.0.7). For every finite pointed simplicial Z/2-set X, there is a natural wy-equivalence of
symmetric Z/2-spectra

D,KR(A x M(X)) ~ HR(A; M(S"H) A 1X],

where M(S"1) is the equivariant Dold-Thom construction of the sign-representation
sphere S©1.

We mention for completeness that the author’s thesis [7] contains a theory of Real
topological Hochschild homology, and it identifies the Real MacLane homology HR(A; M)
with the Real topological Hochschild homology of A with coefficients in M, at least in
the case where 2 is invertible in A.

We further develop the theory of equivariant calculus by defining a notion of
G-p-analytic functors. We do this in analogy with [12, 4.2], by introducing connectivity
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ranges in the definition of G-excision. In equivariant homotopy, the connectivity of a map
is a function on the subgroups of G; hence the p above is a function p : {H < G} — Z.
There is a construction of the derivative which is relative to a pointed finite simplicial
G-set B. It gives rise to a functor DpF defined on the category of finite retractive
simplicial G-sets over B (see Definition 2.2.4). Theorem B below is proved in §2.3 and it
is analogous to Goodwillie’s result from [12, 5.4] that ‘functors with zero derivative are
locally constant’.

Theorem B. A suitable G-p-analytic functor F:G-S*—>Spg whose derivatives
are weakly G-contractible sends p-connected split-surjective equivariant maps to
wy-equivalences of symmetric G-spectra. In particular, if X is p-connected, F(X) is
G -contractible.

Our main example of a G-analytic functor is Hesselholt and Madsen’s Real algebraic
K-theory functor KR(A x M (—)), for the group G = Z/2. The following is proved in §3.4.

Theorem C. Let M be a bimodule over a ring A with Wall antistructure (Definition
3.0.7). The relative Real K -theory functor

KR(A x M (=) : Z/2-S, —> Sp7

is Z./2-p-analytic, where p is the function on the subgroups of Z./2 with values p(1) = —1
and p(Z/2) = 0.

In later work we will develop a theory of Real topological cyclic homology,
receiving a trace map from Real algebraic K-theory. Theorems A-C will be crucial
tools in establishing a relationship between the two theories, analogous to the
Dundas-Goodwillie-McCarthy Theorem of [19] and [5].

1. Preliminaries on enriched functors

1.1. Conventions about symmetric G-spectra

Let G be a finite group. By a G-space, we will always mean a compactly generated
Hausdorff space with a continuous action of the group G. We choose the category of
symmetric G-spectra Spg of [17] as a model for stable equivariant homotopy theory,
since Real algebraic K-theory fits naturally in this framework.

Definition 1.1.1 [17]. A symmetric G-spectrum consists of a well-pointed (X, x G)-space
E, for every n in N, and pointed (X, x X, X G)-equivariant maps

Onm 2 En AS™ —> Eyim

satisfying the classical compatibility conditions. Here S§™” is the one-point
compactification of the direct sum of m-copies of the regular representation p = R[G],
and G acts diagonally on the source of oy, . A G-map of G-spectra E — W is a collection
of (X, x G)-equivariant maps E, — W, which respect the structure maps. The resulting
category of symmetric G-spectra and G-maps is denoted by Sp(x; .
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Let us explain which kind of homotopical structure we consider on the category Spg.
We recall from [17, 5.1] that, for every subgroup H < G, the H-homotopy groups of a
G-spectrum E are defined as

nkHE =m0 hocr(l)lim(Q"pH‘ E).

Here Q" is the space of pointed maps from the sphere $" A S for k > 0, and from the
sphere S7KP A SUF0P for k < 0, where the first smash factor is the representation sphere
of —k copies of the reduced regular representation p of G. The maps in the homotopy
colimit system are induced by the adjoints of the structure maps o, , of E. In order to
carry out connectivity arguments, we will need to take as equivalences between G-spectra
the m.-equivalences, which do not coincide with stable equivalences of the stable model
structure of Spg. Because of this discrepancy between stable and m.-equivalences, we
avoid talking about model structures on Spg altogether. By the homotopy limit and
colimit of a diagram X : I — Spg we will mean the raw Bousfield-Kan formulas

holim X = hom(NI/—y, X) hocolimX = N((=)/D’ @ X
i I

(see, e.g., [14, 18.1.2-18.1.8]). Here the cotensor and the tensor structures of SpZ
over simplicial sets are levelwise, and therefore so are the homotopy limits and
colimits. In particular, homotopy pullbacks and homotopy pushouts are formed levelwise.
As level fibrations and level cofibrations induce long exact sequences in equivariant
homotopy groups (see [17, 5.7-5.8]), homotopy pullbacks and homotopy pushouts
preserve my-equivalences of symmetric G-spectra. This is all the homotopical information
we are going to need and use about m.-equivalences in Spg . In a context where the maps
with arbitrarily high connectivity are the stable equivalences, for example the category of
orthogonal G-spectra of [18] or [21], all the results of the present paper can be interpreted
in model categorical terms.

A fiber sequence of symmetric G-spectra is a sequence of G-equivariant maps of

symmetric G-spectra F — E —f> W together with a m-equivalence F — hof(f) over E,
where hof(f) is the homotopy fiber of f. Similarly, a cofiber sequence is a sequence of

G-equivariant maps of symmetric G-spectra E —f> W — C together with a m.-equivalence
under W from the homotopy cofiber hoc(f) of f to C.

Remark 1.1.2. The canonical map hof(f) — Qhoc(f) induced by taking horizontal
homotopy fibers in the square

—— hoc(f)

is a me-equivalence (see, e.g., [17, 5.7-5.8]). This shows that every fiber sequence is
canonically a cofiber sequence, and vice versa. This has the consequence that every
homotopy cocartesian square of G-maps in Spg is also homotopy Cartesian, and the
other way round.
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We define an enrichment of Spg in the category G-Top, of pointed G-spaces. Given two
symmetric G-spectra E and W, let Sp* (E, W) be the set of collections of X,-equivariant
pointed maps {f, : E, — Wy},>0 that commute with the structure maps of E and W.
Endow Sp* (E, W) with the subspace topology of the product of the mapping spaces
Map, (E,, W,). The space Sp¥(E, W) inherits a G-action by conjugation, defining a
G-Top,-enrichment on Spg. The G-fixed set Sp* (E, W)Y is the set of morphisms of
symmetric G-spectra from E to W. For a subgroup H < G, an element of Sp* (E, W)
is called an H-equivariant map of symmetric G-spectra.

Definition 1.1.3. Let E be a symmetric G-spectrum, and let v:{H < G} — Z be a
function which is invariant on conjugacy classes. We say that E is v-connected if TL’kH E=0
for every k < v(H) and every subgroup H of G. Let Conn E be the largest of these
functions, and let us denote its value at a subgroup H by Conng E. A G-spectrum E is
weakly H-contractible if nf E = 0 for every subgroup K of H.

Definition 1.1.4. Let f : E — W be a G-equivariant map in Spé, and let v:{H < G}
— Z be a function which is invariant on conjugacy classes. We say that f is v-connected
if its homotopy fiber is (v — 1)-connected. We say that f is an H-equivalence if it induces
an isomorphism in X for every subgroup K of H. In particular, a G-equivalence is a
Te-equivalence.

Categorical limits and colimits in Spg are also degreewise, in particular products and
coproducts. The inclusion of the coproduct into the product of symmetric G-spectra is a
G-equivalence, essentially by Remark 1.1.2 above. In our context of equivariant calculus
it is going to be a key point to consider coproducts and products which are indexed on
finite sets with a non-trivial G-action. Given a finite G-set J and a well-pointed G-space
X, define \/; X to be the coproduct of one copy of X for every element in J, with
G-action defined by g(x, j) = (gx, gj). Define similarly a G-action on the product []; X,
by sending a J-tuple x to the J-tuple with j-component

8(X)j = gxg-1;.

The inclusion of wedges into products induces a G-equivariant map \/; X — [], X. As
limits and colimits of G-spectra are levelwise, the analogous constructions for a symmetric
G-spectrum E gives a G-equivariant map of symmetric G-spectra

This map is a m-equivalence as a consequence of the Wirthmiiller isomorphism theorem
(see, e.g., [21, §4]). We conclude the section by proving an analogous result for a relative
version of this map (Proposition 1.1.5 below), under some extra connectivity assumptions.
Let p: X — B be an equivariant map of well-pointed G-spaces, and suppose that it has

~
a G-equivariant section s : B — X. Define \/Ijg X and [[pX respectively as the pushout
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and homotopy pullback squares

Vys ~ ]
\, B>\, X ];[X%HJX
foldi l and J{ iﬂjp
J
B—>\I{X BT)HJB

The canonical inclusion of wedge into products induces a G-equivariant map
7 ~J
Vx—][x
B B

which factors through the categorical pullback. The asymmetry between the homotopy
pullback on the right and the categorical pushout on the left becomes homotopically
irrelevant when either s: B — X is a cofibration or p: X — B is a fibration of
G-spaces (in particular when B is a point). This construction extends levelwise to
split maps of G-spectra p: E — B, resulting in a G-equivariant map of G-spectra

V'E—TTE.
B B

Proposition 1.1.5. Let p : E — B be a split G-map of symmetric G-spectra. Suppose that
for every positive integer n the spaces E,Il'l and B,fl are (n|G/H| — c)-connected for some
integer ¢ independent of n. Then the inclusion of wedges into products

J ~J
V' E—]]E
B B
is a G-equivalence. In particular, for B = % the map \/ ; E — []; E is a G-equivalence.

Remark 1.1.6. An example of a G-spectrum which satisfies the connectivity hypothesis
above is the suspension spectrum (X ASY), = X A S of a well-pointed G-space X.
Proposition 1.1.5 holds without any connectivity assumption, by a relative version of
the Wirthmiiller isomorphism theorem. In the present paper, we will use this result only
in the presence of this strong connectivity hypothesis. Moreover, the connectivity range
of Lemma 1.1.7 below will be used throughout the paper, and it is the motivation for
‘the equivariant part’ of the definition of stably G-linear functors 2.2.1.

Proof of 1.1.5. In Lemma 1.1.7 below we show that the inclusion in spectrum degree n
J ~J
[P \/ E, — l—[ E,
B B

is vy-connected, for v, (H) = min{2 Conn pf -1, mianH Conn pf}. The homotopy fiber
of p satisfies the same connectivity hypothesis of £ and B. Thus there is a constant ¢
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such that

va(H) > min{2n|G/H|, min n|G/K|} —c.
KSH

Then the connectivity of the map induced by ¢, at the nth stage of the homotopy colimit
defining 7/ is therefore

min (v, (K) — dim(5")K)
K<H

X

> I£n<irf11<min{2n|G/K|, inéirlén|G/L|} —c—n|G/K|)

> min min{n|G/K|,n}—c >n—c.
K<H

X

This goes to infinity with n, showing that the homotopy fiber of ¢ is weakly G-contractible.
O
. . ~J .
Lemma 1.1.7. For every well-pointed G-space X, the canonical map \/JX -] X is
B B

v-connected, for
v(H) = min{ZConn p" —1, min Conn pk}.
KSH

Proof of 1.1.7. Let us describe the map ¢ on H-fixed points

M (\B/JX>H — (]:[Jx>H

B

for every subgroup H of G. Homotopy limits (which are defined by the Bousfield-Kan
formula) and pushouts commute with fixed points. The source of ¢! is then homeomorphic

to the space \/JHX H The target of ( is the homotopy pullback
BH

@ =, o= (g2 g

[jleJ/H [jleJ/H

l J/ L1122

BHT>(]_[JB)H§ 1 BHJ'E<]_[BH>><']_[ BH;
[jleJ/H JH [jleJ/H
Ij11=>2

where Hj = {h € H|hj = j} is the stabilizer group of j in H. The products on the
right-hand side range over a set of representatives for the equivalence classes in the
quotient J/H. We choose the same set of representatives for the products of B and X.
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The map (¥ factors as

BH
BH i
l’ BH X 1_[ BHj
" =" | 118" . <1_1[1 )[']JH (5 N\
\/ X7 1_[ X = holim St — holim | T{[/ﬁléz ~ (H X) )
BH BH ¢ B
EXH (I—I[{XH) X_H XHj
J [jleJ/H
ILj11=2

The first map is the canonmical inclusion. It is (2Conn p” — 1)-connected by the
Blakers—-Massey theorem (see, e.g., [12, 2.3]), applied inductively to the homotopy
pushout square of spaces (without any group action)

XHvgn X1 —— x4

I

xH > pH

Notice that the pinch map X# v gu XH — X is at least as connected as pf : X — B,
The second map is induced on homotopy limits by the inclusions in the first product
factors. Its homotopy fiber is equivalent to the homotopy limit

holim | * — H B «— l_[ x| = 1_[ hof pfi,
jleJ/H ljleJ/H ljleJ/H
IL11>2 ILi11>2 IL11>2

H

which is (ming <z Conn pX — )-connected. Then (! is v-connected, where v is the

minimum of the two connectivities v(H) = min{2 Conn p — 1, mianH Conn pX}. U

1.2. Enriched homotopy functors and assembly maps

Let G be a finite group, and let B be a pointed finite simplicial G-set. Consider the
category G-Sp of finite retractive simplicial G-sets over B. An object of G-Sp is a triple
(X, p,s) of a finite simplicial G-set X, an equivariant simplicial map p : X — B, and
an equivariant section s : B — X of p. We remark that s is in particular a cofibration
in the fixed-point model structure of pointed simplicial G-sets; see, e.g., [24, 1.2]. A
morphism of G-Sp is an equivariant map that commutes with both the projections
and the sections. The category G-Sp admits an enrichment in G-Top,. The space of
morphisms Mapg (X, Y) from (X, px, sx) to (¥, py, sy) is the geometric realization of the
simplicial subset Mapg (X, Y), of the simplicial mapping space Map(X, Y), of relative maps.
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Its p-simplices are the simplicial maps f : X x A[p] — Y for which the squares

X x Alp] —L= ¥ X x Alp] —L= v
pxxidl l[’y sxxidT Tw
B x Alp] — B B x Alp] — B

commute. Here the bottom horizontal maps are projections, and A[p] is the simplicial
p-simplex. The group G acts simplicially on Mapg (X, Y), by conjugation, inducing a
G-action on the geometric realization Mapg (X, Y). If G = {1} is the trivial group, we
write Sp for the category {1}-Sp.

We are interested in studying (G-Top, )-enriched functors

o :G-Sp — Spg

which arise from Top,-enriched functors W : Sp — Spg via the following construction.
Given an object (X, p,s) of G-Sp regard the action maps as endomorphisms g :
(X, p,s) = (X, p,s) in Sp. By functoriality, the G-spectrum W(X) inherits an extra
G-action by the maps W(g), and the diagonal actions

v, -5 w0, 8w,

define a new G-spectrum W(X). This construction extends W to a functor & = W :
G-Sp — Spg . The technical advantage of a functor & of this form is that it can be
evaluated at retractive spaces over B that have only an action of a subgroup H of G.
Compose ¥ : Sp — Sp(“; with the restriction functor to H-spectra SpE7 and extend it to a
functor H-Sp — Spg in the above fashion. Since W is enriched, this sends H-equivariant
simplicial homotopy equivalences to H-equivariant homotopy equivalences of symmetric
H-spectra. An H-equivariant map in H-Sp is an H-equivalence if the underlying map of
simplicial H-sets is a weak equivalence in the fixed-point model structure.

Definition 1.2.1. An enriched functor @ :G-Sp — Spg is a homotopy functor if
it is extended from a functor W :Sp — Spg as explained above, such that the
corresponding extension H-Sp — Spf, of W sends weak equivalences of simplicial H-sets
to H-equivalences of symmetric H-spectra, for every subgroup H of G.

Example 1.2.2. The following are examples of homotopy functors G-S, — Spé .

e For a fixed G-spectrum E in Spg, the functor EA|—|: G-Sx — Spé that sends a
finite pointed simplicial set X to the spectrum E A |X| with diagonal action, where |X|
is the geometric realization of X.

e For a fixed simplicial G-set K, the functor Map, (K, —) ASY : G-Sy — Spg that
sends X to the suspension spectrum of the pointed mapping space Map, (K, X) with
conjugation action.

An example of a functor G-S, — Spg that is not the extension of a functor S, — Spg

is the functor that sends a based simplicial G-set X to the suspension spectrum of the
orbit space of X with trivial G-action (X/G) AS©.
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Example 1.2.3. Most of the enriched homotopy functors that we will encounter are
induced from functors Set*f — Spg from the category Setf of finite pointed sets. Extend
a functor F : Setf — Spg to an enriched functor F : S, — Spg as follows. Given a finite
pointed simplicial set X, we denote by F(Xy), the nth space of the symmetric G-spectrum
F(X}). The simplicial structure on X induces a simplicial space structure on F(X,),
by functoriality of F, which respects the (X, x G)-action. Denote by F(X), its thick
geometric realization. The structure maps of the spectra F(Xy) induce the structure
maps of a G-spectrum F(X), defined by

|on |
F(X)p AS™ Z|F(X)n AS™| ——— F(X)n+4m-

The symmetric structure is defined in a similar way. This defines the functor S, — Spg
on objects. The components of the map F : |Map, (X, Y).|= SpZ (F(X), F(Y)) defining
F on morphism spaces are the composites

[—=I
IMap, (X, Y),|[—>|G-Map, (F(X)n, F(Y)n).| ——— G-Top,(F(X)n, F(Y)n),

where the second map takes a map of simplicial spaces to its geometric realization, and
the first map is the geometric realization of the map of simplicial spaces

Fy : Map, (X, Y), — G-Map, (F(X),, F(Y)n).

given in simplicial degree k by sending f, : X x A[k] — Y to the simplicial G-map F, (f) :
F(X), x Alk] = F(Y), defined in degree p by

Fo(f)(z € F(Xp)n, 0 € Alklp) = F(fp(=,0))(2).

This defines a functor F : S, — Spg which is further extended to F : G-S, — Spg7 as
explained before Definition 1.2.1.

We end the section by discussing the assembly map of an enriched homotopy functor.
The category G-Sp has a symmetric monoidal structure defined by an internal smash
product. The smash product of two objects (X, px, sx) and (Y, py, sy) is the retractive
space (X AgY, p,s) defined as the pushout of simplicial G-sets

XVvpY —= X xpY
B— XApY

with the obvious maps p and s to and from B. Notice that the coproduct X Vg Y is defined
using the sections sy and sy. An enriched functor ® : G-Sg — Spg has an associated
assembly map

A D(X)A K| — O(X Ap (K x B)),

where (X, p, s) is an object of G-Sp and K is a finite pointed simplicial G-set (the smash
product of a spectrum with a space is levelwise). It is adjoint to the composite

K| — | Mapg(X. X Ag (K x B)).| —> Sp% (®(X), ®(X A (K x B))),
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where the first map is the realization of the adjoint of the identity on X Ap (K x B). It
sends a simplex k of K to the map that sends x to the element of the smash product
determined by (x, k, p(x)) € X xp K x B.

Remark 1.2.4. Consider the particular case where K = S! = A[1]/d is the simplicial circle
with trivial G-action, and suppose that ®(B) is a weakly contractible G-spectrum. The
adjoint of the assembly map is a map

AL @(X) — QB(X Ap (S' x B)).

Let C, = X Ap (B xI) be the mapping cylinder of the projection p: X — B. The
universal map from ®(X) into the homotopy limit of the rest of the square

(X)) ——— P(C)p)

| |

®(Cp) —= D(X Ap (S! x B))
is the top horizontal map in the G-homotopy commutative diagram

®(X) ———> holim(®(C,) — ®(X Ap(S! x B)) « ®(C))) .

| 3

Q& (X Ag (S! x B)) =——— holim(x — ®(X A(S! x B)) < %)

A G-homotopy between the two maps in induced by a G-contraction C, >~ B. Therefore
the square above is homotopy Cartesian precisely when the adjoint assembly map for
the circle is a G-equivalence. Moreover, iterating this homotopy limit construction gives
a map corresponding to the assembly map Aifn T D(X)A ST - O(X Ap (8" x B)) for the
n-sphere.

Remark 1.2.5. In his first calculus paper [10], Goodwillie works in the category S/p
of spaces (or simplicial sets) over B. The objects of §/p are maps p : X — B that do
not necessarily admit a section. The category S/p does not have a zero object, and
its suspension functor is not adjoint to an internal hom object. We find it technically
convenient to work with the category of retractive spaces Sp (and its equivariant analog
G-Sp) which enjoys these extra categorical properties. A disadvantage will emerge in
Theorem B, which will apply only to split-surjective maps. This restriction will however
not affect the applications, as we are ultimately interested in the map X — * (see
Corollary 2.3.4).

2. Elements of equivariant calculus

Let G be a finite group, let G-Sp be the category of finite retractive simplicial G-sets over
B from §1.2, and let Spg be the category of symmetric G-spectra introduced in §1.1. Both
categories are enriched over the category of pointed G-spaces G-Top,. In this section we
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develop a theory of calculus for (G-Top, )-enriched homotopy functors ® : G-Sp — Spg
(see Definition 1.2.1) based on Blumberg’s definition of equivariant linearity [4, 3.3]. The
main result is Theorem B proved in §2.3, analogous to Goodwillie’s Corollary [12, 5.4]
that ‘functors with zero derivative are locally constant’.

2.1. G-linear functors

The following definition of G-linearity for functors G-Sp — Spg is analogous to
Blumberg’s definition of G-linearity for endofunctors of pointed G-spaces from [4, 3.3,
in the case when the group G is finite.

Definition 2.1.1. A homotopy functor ® : G-Sg — Spg is G-linear if:
(1) it is reduced, that is ®(B) is a weakly G-contractible spectrum;
(2) it sends homotopy cocartesian squares to homotopy Cartesian squares;
(3) for every finite G-set J and (X, p,s) in G-Sp, the canonical map
®(X Ag (Jy X B)) —> HCID(X)
J

is a G-equivalence.
The above map is adjoint to the composite

J— ’MaPB (\/Jx, X) ’ = | Mapy(X A (J+ xB), X).| —>Sp (®(X Ag (J+ xB)), D(X)),
B .

where the first map sends j to the projection

X ifi=j

prj (x. 1) = {sp(x) ifi .

Example 2.1.2. For every symmetric G-spectrum E, the functor EA|—|: G-S; — Spg
is G-linear. The condition on squares holds by Remark 1.1.2, and because the smash
product of well-pointed spaces preserves cofibrations and pushouts. The last condition is
a consequence of the Wirthmtiller isomorphism theorem (see also 1.1.5).

Example 2.1.3. Given a topological Abelian group M with additive G-action and a finite
pointed set X, define a pointed G-space

M(X) = <EB<M-x>> / Mo
xeX

where G acts diagonally on the M-components. This construction is functorial in X by
sending a map of sets f : X — Y to the map fi : M(X) - M(Y) defined by the formula

f*({mx})y = Z my.
xef~1(y)
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It extends levelwise to a (G- Top,)-enriched homotopy functor M(—) : G-Sx — G- Top,
by the construction of Example 1.2.3. The functor M(—) is the equivariant Dold—Thom
construction, and its equivariant homotopy groups are Bredon homology. Adapting the
definition of G-linearity to G-space valued functors, we say that a reduced homotopy
functor F : G-Sx — G-Top, is G-linear if it sends homotopy cocartesian squares to
homotopy Cartesian squares, and if the canonical map

F<\/ X) — ]_[ F(X)
J J

is a weak equivalence of G-spaces (in the fixed-point model structure) for every finite
G-set J. We show in Appendix A.1.1 that M(—) : G-S, — G-Top, is a G-linear homotopy
functor.

Proposition 2.1.4. Let ® : G-Sp — Spg be a G-linear homotopy functor. The assembly
map
A§ T P(X)A K| — P(X A (K X B))
is a G-equivalence for every object K of G-Sy. In particular, for X = S x B there is a
G -equivalence
d(S" x B) A |K| — ®(K x B).

Proof. The proof is by induction on the skeleton of K. The base inductive step is when
K = J; is a finite pointed G-set. In this case there is a commutative diagram

AX
PX)A Ty — > O(X Ag (Jy X B))

3

V; @(X) = [T, 2(X)

where the bottom map is a G-equivalence by the Wirthmiiller isomorphism theorem (see
also Proposition 1.1.5). Suppose inductively that the assembly map is an equivalence for
the (n — 1)-skeleton of K. The inclusion of the (n — 1)-skeleton into the n-skeleton gives
a cofiber sequence

KD kMW 5 gn A g,

for some finite G-set J, inducing a homotopy cocartesian square

K DxB— > KM®WxB

| |

B——— > (S"AJ)xB

in G-Sp (the horizontal maps are cofibrations with isomorphic cofibers). Since @ is
G-linear, the image of this square defines a fiber sequence

DX Ap (K" x B)) — ®(X Ap (K™ x B)) —> ®(X Ap ((S" AJL) X B)).
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This sequence receives an assembly map from the (co)fiber sequence of symmetric
G-spectra
PX)AKT V| — dX)A KD | — D(X)A|S" A J4].

In view of the long exact sequence in homotopy groups induced by these fiber sequences,
it is enough by the inductive hypothesis to show that the assembly map for an indexed
wedge of spheres S” A J; is an equivalence. This is the top horizontal map in the diagram

DX)AIS" A Jr] ——= ®(X Ap ((S" A J4) x B))

V(@X) AIS") ——= @(X Ap (8" x B) Ag (J4 x B))

l: i:

[1,(@CO AIS"D [1; @(X Ap (8" x B))

[1,4

The bottom map []; A is the product of the assembly maps for $". It is an equivalence
as A fits in a commutative diagram

QUDX)AS"]) —EA QD (X Ap (5" x B)) .

]

d(X)

1

The diagonal map is adjoint to the assembly map, and it is a G-equivalence by linearity
of ® (see Remark 1.2.4). O

In particular, when B is the point, a G-linear functor ® : G-S; — Spg is determined
by its value on the 0-sphere.

Corollary 2.1.5. A G-linear homotopy functor ® : G-S, — Spg 18 naturally equivalent to
the functor ®(SHA|—|: G-Sy — Spg.

2.2. Stable G-excision and the G-differential

We generalize the definitions of stable excision and of the differential from Goodwillie
calculus [10, 12] to our equivariant setting. We prove that the differential of a
stably G-linear functor is G-linear, and we compute the connectivity of the G-linear
approximation map. Here G denotes as usual a finite group.

We remind the reader that an n-cube in a category C is a functor x : P(n) — C, where
n={l,...,n} is the set with n-elements and P(n) is the poset category of subsets of n
ordered by inclusion. When C is the category G-Sp, we say that x is strongly homotopy
cocartesian if all of its two-dimensional faces are homotopy cocartesian squares. When C
is the category of G-spectra Spg, we say that x is v-homotopy Cartesian, with respect
to a function v : {H < G} — Z, if the canonical map

Xg —> holim yx
Pm)\?
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is v-connected (see Definition 1.1.4). We denote by e; : xg — x(i) the initial maps of yx,
for all i in n.
Given a finite G-set J and a G-map p : E — B of symmetric G-spectra, we recall from

§1.1 that ]:[JE is defined as the homotopy pullback
B

ﬁjE%-HJE
B

i il_[‘/ p

BTHJB

Definition 2.2.1. Let ® : G-Sp — Spg be a homotopy functor, and let «,v: {H < G}
— Z and c : {H < G} - Q be functions which are invariant on conjugacy classes.

(1) We say that & satisfies E,(f (c, k) if it sends strongly homotopy cocartesian
(n+1)-cubes x : P(n+1) — Spg with «(H) < Conn el.H to v-homotopy Cartesian
cubes, where v is the function

n+l1
H) = in (C K _c(K)y).
v(H) 21?21111( onne; —c(K))
=

(2) We say that @ satisfies W (v, k) if, for every finite G-set J and (X, p, s) in G-Sp

with connectivity « (H) < Conn pf, the canonical map

-~ J
®(X Ap (J4 X B)) —> ]_[ @ (X)
®(B)

is ¥-connected, where ¥ is the function

Y (H) = min{ZConn pH, min Conn pK} —v(H).
KSH
We say that @ is stably G-excisive if it satisfies E lG(c, «) and W (v, k) for some functions
¢, k,v. We call v the additivity function of ®. We say that & is stably G-linear if it is
stably G-excisive and ®(B) is weakly G-contractible.

The conditions EnG (c,k) for n > 2 will play a role later in the paper, when we will
consider G-analytic functors.

Remark 2.2.2. (1) If G = {1} is the trivial group, condition E,{,l}(c, k) is equivalent to
the classical condition E,((n+ 1)c, k) of [10, 1.8]. The difference in the constants
comes form the fact that in Goodwillie’s definition ¢ appears outside the sum. In
our context, it is going to be convenient to allow ¢ to vary with the subgroup. This
is why ¢ can take rational values.

(2) When G = {1} is the trivial group, the property W (v,«) follows directly from
Eil}(c, k) (with v =2¢). When J has two elements, it follows from E{l}(c, k) for
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the homotopy cocartesian square

idvpp
XVvpX ———

—X
p\/Bid\L i
B

X—>

The condition for lager J can be proved inductively on the cardinality of J. This
shows that stable G-excision for the trivial group agrees with Goodwillie’s definition
of stable excision from [10] and [12].

(3) The connectivity range in the condition W (v, k) is the same as the connectivity of
the inclusion
J ~J
Vx—]]x
B B

of spaces, in Lemma 1.1.7. Together with the Blakers—Massey theorem (see [12,
2.3]) applied on fixed points, this shows that the forgetful functor G-Sp — G-S; is
stably G-excisive.

Given a homotopy functor @ : G-Sp — Spg, let & : G-Sp — Spg be the associated
reduced homotopy functor

d(X) = hof (@ (X) @) ®(B)),

where p is seen as a morphism (X, p,s) — (B, id, id) in G-Sg. On morphisms ® sends a
map f : (X, px,sx) = (Y, py, sy) to the map induced on homotopy fibers

X)) — = ox) 2" o)
|
5| ld%f)
Y
(1) —= DY) 5= B(B)

Lemma 2.2.3. If ® is stably G-excisive, d is stably G-linear.

Proof. It is immediate to see that EG(c k) for @ implies that EG(c «) for ®. The map
<I>(X A (Jy x B) = [, @(X) is the map of vertical homotopy fibers in the diagram

®(X A (J4 x B)) — holim(x * 1, X))

\

®(X Ap (J4 x B)) — holim(®(B) —2>[], ®(B) < [], ®(X))

|

®(B) ———— holim(®(B) —>> [, ®(B) =——[], ®(B))

The middle map is ¥-connected by condition W (v, k) for ®, and therefore so is the map
on homotopy fibers. O
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For a finite G-set I, let S®U1 be the I-fold smash product of simplicial circles
SRUT = §TA ST A A ST,

where G acts by permuting the smash components. This is our simplicial model for the
one-point compactification of the permutation representation R[/] spanned by I. We
denote its suspension in the category G-Sp by

SEX = X Ap (SR x B).

Let nG be the disjoint union of n copies of G with diagonal action by left multiplication.
The corresponding suspension is denoted by

SR[nG] — §"P.

Definition 2.2.4. The differential of a reduced enriched homotopy functor ® : G-Sp —
Spg is the functor D® : G-Sp — Sp(“; defined by

DP(X) = hocoli]im QO (SE X)
ne

with structure maps adjoint to the assembly map
CD(SZPX)/\ |S/O| — q)(SZpX AB (SP x B)) = q)(SgH-l)pX)

of §1.2. If @ is not reduced, we define D® = D : G-Sp — Spg.

Proposition 2.2.5. The differential of a stably G-excisive functor is G-linear.

Proof. By Lemma 2.2.3, we can assume that & is reduced. Moreover, D® is obviously a
reduced homotopy functor. Let x be a homotopy cocartesian square in G-Sp with initial
maps ¢; : xg — x; for i =0, 1. Notice that, if ¢; is k;-connected and H is a subgroup of
G, the connectivity of the relative suspension SE[”ei on H-fixed points is

ki (H) + Conn(SRUNH 4 1.

Moreover, the H-fixed-point space of the sphere SR is isomorphic to SRU/H1 which is
(/I/H| — 1)-connected. In particular, (") is (n|G/H| — 1)-connected. Thus by choosing
n sufficiently large the initial maps of Sgp X become ky-connected, for

kn(H) = ki(H) +n|G/H| = k(H).

Condition ElG(c, k) ensures that the square CID(Sgp)() is v,-homotopy Cartesian for
H) = in (k; (K G/K|—c(K
v (H) '20:11?221( i(K)+nlG/K| = c(K))
i=0,

> 2n|G/H| + ,»:Xo,:l min (ki (K) = c(K))
> 2n|G/H| —2(E(H) + 1),
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where ¢(H) := maxg <y c(K). The nth stage of the homotopy colimit defining D®(x) is
then v-homotopy Cartesian, for

v(H) = min (v,(K) — dim(S5")%)
K<H

\%

Igngir}l{(ZMG/Kl —2(c(K)+1) —n|G/K])

> n|G/H|—2 min ((¢(K) + 1).
K<H

This becomes arbitrarily large with n, and D®(x) is homotopy Cartesian.
By a similar argument, we can choose n sufficiently large so that the map

O(SYX Ap (J1 x B)) — []2(SF X)
J

is ©¥,-connected, for
%, (H) = min{Z(Conan+n|G/H|), m<in (ConnpK +n|G/K|)} —v(H)
KSH
> min{2n|G/H|, min n|G/K|} —v(H).
KSH

Let us denote v = maxg <y v(K). The map Q"pd>(SZpX Ap (J+ X B)) - TI1; SZ"'OCD(S?)X)
is then v,-connected, for

v (H) = {ngi%(ﬁ"(m —n|G/L]|)

> min <min{2n|G/L|, min n|G/K|}—v(L) —n|G/L|>
L<H KSL

WV

min <min{n|G/L|, min n|G/K| —n|G/L|}> -
L<H KSL
> min (min{n|G/L|,n}) —v > n—".

L<H

Since homotopy colimits preserve connectivity, the map D®(X Ap (J+ X B)) —
[1; D®(X) is (n —v)-connected, for every n. O

There is a canonical map ® — D®, as the functor ® is the first term of the homotopy
colimit sequence defining D®. In order to estimate the connectivity of this ‘approximation
map’ ® - D® we need an extra connectivity assumption on ®.

Definition 2.2.6. Let ® : G-Sp — Spg be a homotopy functor. We say that & preserves
connectivity above a function « : {H < G} — N if there is a function A : {H < G} > Z
such that
Conng ®(X) > min (Conn pX) + A(H)
K<H

for every subgroup H of G and every (X, p,s) in G-Sg with «(H) < Conn pfl. We say
that A is the connectivity function of ®.
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Proposition 2.2.7. Let ®: G-Sp — Spg be a reduced homotopy functor that satisfies
E?(c,lc) and that preserves connectivity. For every retractive space (X, p,s) in G-Sp
with k(H) < Conn pf | the canonical map ®(X) — D®(X) is v-connected, for

X

v(H) = min{Z min (Conn pK —c¢(K)), min (Conn pK +A(K))},
K<H KSH
where A is the connectivity function of ®.

Remark 2.2.8. (1) We are in fact going to prove that the map ®(X) - DP(X) is
v-connected for every sufficiently large n, where

v, (H) = min{Z min (Conn pK —¢(K)), min (Conng @(S%pX) —n|G/K|)}.
K<H KSH
The estimate of Proposition 2.2.7 is obtained by using once more that & preserves

connectivity, as

min (Conng <I>(Sg’0X) —n|G/K])
KSH

> min ((min cOnn(sgf“p)L> +A(K) —n|G/K|>
KSH\\LSK

= min <min(C0nan +n(|G/L|— |G/K|))+A(K))
KéH LK

X

WV

min <min{C0nn pK, min (Conn pL + n)} + k(K))
KSH LSK
= min (Conn pX + A(K)).

KSH
The last equality holds for n sufficiently large. In the proof of Theorem B below
this more refined estimate is going to be a key ingredient.

(2) If ® is G-linear, the map ® — D® is an equivalence, even though the connectivity
range of Proposition 2.2.7 is finite. For every n, there is a commutative diagram

O(X) ———= QP P(SFX)

S

QP (D(X)AS"™P)

where the diagonal map is an equivalence as representation spheres are invertible
in G-spectra. Hence D® is a homotopy colimit of equivalences, and the map from
the initial object of the sequence ® — D® is an equivalence. A similar statement
for G-linear functors to G-spaces instead of G-spectra is proved in [4, 3.5] and
[23, 1.4] using different methods (there is no analog of Proposition 2.1.4 if the
target is not the category of G-spectra).
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Proof of 2.2.7. We study the connectivity of ®(X) - D®(X) in 7'[ , for a fixed subgroup
H < G. The map ®(X) — Q""’d)(S"pX) fits into a commutative dlagram

OX) ———————= QP P(SFX)

| -

Q"lG/qu)(S?G/H\X) 5 QnIG/qu)(SZ,OX)
L

where both ¢ and res are induced by the inclusion S™C6/H| = (§7°)H . g of the
fixed-point sphere. The connectivity of the left vertical map in 7/ is

2 min (C K_c(k
1?221( onn p* — ¢(K))

X

since @ satisfies ElG(c, k) and S$"9/H| has trivial H-action. The right vertical map fits
into a fiber sequence

Map, (5™ /S"ISTHI & (ST X)) — Q7 d(SFX) — QI/H (S X)

of symmetric G-spectra (mapping spaces are taken levelwise). The connectivity of the
mapping space in 72, and hence of the restriction map, is at least

(Conng @ (S}’ X) — dim §"I6/K1/§nIG/HI)
Kecell(S"p/S”\G/Hl)

where the minimum is taken over the collection of subgroups K of H with the property
that the H-CW-complex §™/S"CG/H| contains a K-equivariant cell (one of the form
H/K x D*). Since §"19/H! is the H-fixed-point space of §"°, the quotient cannot contain
an H-equivariant cell (this would be a cell with trivial H-action), and the minimum
above is greater than

min (Conng ® (S} X) — dim §"1¢/K1/§7I6/H]y — min (Conng @ (S X) —n|G/K)).
KSH KSH

Let us finally compute the connectivity of . The cofiber of the inclusion §"¢/HI — gre
is G-equivalent to $™ /S"G/H| The homotopy cocartesian square
sietly gy

B ——— X Ap (S /SMG/HI B

induces a sequence ®(Sh 71Xy - oS X) > <I>(X Ap (S"/SMG/H] 5 B)). By stable
linearity, this induces a long exact sequence in 77 up to degree

H) =2 min (C —c(K)) +2n|G/H|.
V'(H) 1?2?1( onn p* —¢(K)) +2n|G/H]|

Looped down by Q*C¢/Hl it induces a long exact sequence in 7l up to degree

H) =2 min (C —c(K G/H|.
v(H) 1?221( onn pX —¢(K)) +n|G/H|
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This range can be made arbitrarily large with n. Therefore we can choose n sufficiently
large so that ¢ is as connected as Q”'G/H‘CD(X A (8™ SMG/THI B)) in ﬂf. Since
@ preserves connectivity, this is at least (ming<y (Conn pX + Conn §"16/K1/gnIG/HI) 4
AH) — n|G/H|)—connected. The K = H term of the minimum is infinite, and the
connectivity becomes

min (Conn pX +n|G/K|—1)+A(H) —n|G/H|
KSH

> min (Conn pX +n(|G/H|+1)— 1)+ A(H) —n|G/H|
KSH

— i K _

= ng[l{(Connp D+n+Xr(H).

This diverges with n, and therefore we can choose n sufficiently large so that ¢ does not
contribute to the connectivity of ®(X) - DO (X). O

We end the section by discussing differentials for non-relative functors. Let F : G-Sy —
SpG be a homotopy functor and let B in G-S; be a pointed finite simplicial G-set. Define
a homotopy functor Fp:G-Sp — SpG by taking the homotopy fiber

Fg(X) = hot(F(x) 22 F(B))

on objects, and by sending a morphism f : (X, px, sx) — (¥, py, sy) to the map induced
on homotopy fibers

Fpx) —— Fx) 2L p(B)

|
Fg(f)! J{F<f)
- Y
Fg(Y) —— F(Y) — F(B)
F(py)

Definition 2.2.9. Let F : G-S, — Spg be a homotopy functor. The differential of F at B

in G-S, is the differential of I::B

DgF := DFg : G-Sp —> Sp .

Definition 2.2.10. We say that F : G-Sx — Spg is relatively additive if for every B in
G-S; there are functions v, kp : {H < G} — Z such that, for every (X, p,s) in G-Sp
with connectivity Conn pf > kp(H), the canonical map

~J
F(X Ag (J4 x B)) — ]_[ F(X)
F(B)

is ¥ g-connected, for ¥z(H) = min{2 Conn p¥ mianH Conn pX} —vp(H).

Remark 2.2.11. A G-linear functor F : G-S; — Spg is automatically relatively additive.
Indeed, the cofiber sequence B — X Ap (J4+ x B) = \/; X/B induces a map of fiber
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sequences
F(B) — F(X Ag (J4 x B)) — F(\/; X/B)

| -

F(B) i1’ Fexo [T, F(X/B)
F(B)

where the right vertical map is a G-equivalence by G-linearity. The right bottom map is

holim <F(B) — ]_[ F(B) < ]_[ F(X)) —> holim <* — % < ]_[ F(X/B)) ,

J J J

whose homotopy fiber is indeed holim(F(B) — [[; F(B) < [[; F(B)) = F(B).

Proposition 2.2.12. Suppose that F : G-Sy — Spg is a stably G-linear and relatively
additive homotopy functor. Then the functor Fp:G-Sp — Sp(“; is stably G-linear. In
particular, DgF is a G-linear functor.

Proof. Consider the composite functor G-Sp LR G-S. £ Spg , where U is the forgetful

functor. As Fg = Fﬁ, it is enough by Lemma 2.2.3 to show that FoU is stably
G-excisive. The condition on squares for F o U follows immediately from the condition on
square for F, as U preserves homotopy cocartesian squares and connectivity. It remains
to show that F o U satisfies W(vp, k) for some functions vg, kg : {H < G} — Z, but this
is precisely the relative additivity condition for F. O

Proposition 2.2.13. Let F : G-S, — Sp(“; be a homotopy functor that satisfies ElG(c, K)
and W(v, k) for some functions c,v,k :{H < G} —> Q. If the reduced functor Fy :

G-S; — Spg preserves connectivity above k, so does Fp: G-Sgp — Spg for every B in
G-S..

Proof. For every (X, p,s) in G-Sp there is a natural G-equivalence Fg(X) ~ (F)p(X).
It is induced by the diagram

(Fp(X) —= Fu(X) —= Fu(B)

]

Fg(X) —= F(X) ——> F(B)

Voo

) —— F (%) =——= F (%)

All the rows and the columns are fiber sequences, and therefore the top left vertical map
is a G-equivalence. It is then enough to show that (Fy)p preserves connectivity above k.
Given a retractive space (X, p,s) in G-Sp with x(H) < Conn pH7 the sequence

Fo0) 2% F.(B) — Fy(hoc(p))
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induces a long exact sequence in 77 up to degree
v(H) = min (Conn XX 41— ¢(K)) + min (Conn pX — ¢(K))
K<H K<H

> min Conn pK —2 max c(K)
K<H K<H

by condition E lG(c, k). Since F, preserves connectivity, there is a function A such that

Conng F*(hoc(p)) > min Connhoc(p)K + A(H) > min Conn pK + A(H).
K<H K<H

By setting ¢(H) = maxg <y c(K), we get

Conny (F) 5(X) = Conng (Fy(X) —> F(B)) — 1
> mirll{ Conn pK — 1 +min{A(H), —2c(H)}. O

X

2.3. G-analytic functors

We generalize Goodwillie’s notion of analytic functors from [12] to the G-equivariant
setting, for a finite group G. We prove Theorem B below, showing that G-analytic functors
with trivial differentials (in fact derivatives) send highly connected split-surjective maps
to G-equivalences. This is the equivariant analog of Corollary [12, 5.4]: ‘functors with
trivial derivative are locally constant’.

Definition 2.3.1. Let ® : G-Sp — Spg be a homotopy functor and p: {H < G} > Z a
function which is invariant on conjugacy classes. We say that @ is G-p-analytic if there are
functions ¢, v : {H < G} — Z such that for every n > 1 the functor ® satisfies conditions
W(v, p+1) and ES (p — nqﬂ, o+ 1) of Definition 2.2.1.

Remark 2.3.2. Let us point out the difference between the choice of constants from
Goodwillie’s definition of p-analytic functors of [12, 4.2] and the present definition for
the trivial group G = {1}. Functors that are {l}-p-analytic in our sense are precisely
the classical p-analytic functors, but with a different constant ¢. The comparison with
Goodwillie’s E, (c, k) condition is

Ei”(ﬂ—nq?,wrl) =E,((m+Dp—q,p+1)=E(no—(q—p),p+1).

Let us also recall that Eil}(p — %, p+1) implies W(2p —¢q, p+ 1) for the trivial group
(see Remark 2.2.2).

Example 2.3.3. Let Z be a finite G-CW-complex, and suppose that the dimension of the
fixed points Z¢ is at least one. Then the functor

SY AMap(Z, | - |) : G-Sx —> SpZ

is G-p-analytic, where p is the dimension function p(H) =dimZ9. An argument
completely analogous to the non-equivariant case of [12, 4.5] shows that our functor
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satisfies EnG (p,0). Let us show the property W(2p, 0). Given a finite pointed simplicial
G-set X, there is a commutative diagram

S% AMap(Z, |\ X]) [1,S% AMap(Z, |X|)

l / TN

S¢ AMap(Z, 1, 1XD) —= S A([1, Map(Z. X)) <— S A (V/, Map(Z, |X)))

We need to calculate the connectivity of the top horizontal map. Since smashing with S¢
preserves connectivity, it is enough to calculate the connectivity of the maps

\/Map(Z, X)) — HMap(Z, |X|) and Map<z, \/ |X|> — Map(Z, ]_[ |X|).
J J

J J

By Lemma 1.1.7, the first map is v-connected, for

v(H) = min{2 ConnMap(Z, | X", min ConnMap(Z, |X|)K}

KSH
> min{2 min {Conn XX — dim ZX}, min min{Conn X* —dimZL}}
K< KSHLSK

= min{2(Conn X — dim Z%), m<in Conn XX —dimZK}
KSH

> min 2C0nnXH, min ConnXK} —2dimZ*H .
KSH

The last inequality holds because dim ZX > dim Z# for K < H. Similarly, the second
map is ¥-connected, for

K
O (H) Igngilgl cOnn<\j/X—>1:[X> —dim zX

> min {min{ZConnXK, min ConnXL” —dimz"
K<H LSK
> min{2ConnXH, min ConnXK} —dim zH.
KSH

The top horizontal map is then as connected as the minimum of these two quantities,
which is precisely the range of W(2p, 0).

Theorem B. Let G be a finite group, and let F : G-S, — Spg be an enriched homotopy
functor (see Definition 1.2.1) satisfying the following conditions.

(1) F is G-p-analytic for a function p : {H < G} — Z.

(2) Fy preserves connectivity above p+1 (see Definition 2.2.6).
(3) F is relatively additive (see Definition 2.2.10).
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(4) The spectrum DgF(B v S°) is weakly G-contractible for every B in G-S, (see 2.2.9).

Then, for every split-surjective map f :X — B of finite pointed simplicial G-sets
satisfying p(H) +1 < Conn f | the induced map

F(f): F(X) — F(B)
18 a Tx-equivalence of symmetric G-spectra.

Theorem B for the projection map X — * immediately gives the following.

Corollary 2.3.4. Suppose that F : G-S, — Spg satisfies the conditions of Theorem B,
and that it is reduced. Then it sends every finite pointed simplicial G-set X with p(H) <
Conn X to a weakly G-contractible spectrum.

The proof of Theorem B uses a lemma relating the differential of F and its derivative.
If F is stably G-linear and relatively additive, the functor DgF(BV (-)) : G-Sx — Spg
is G-linear for every B in G-S,, and it is therefore determined by its value at S°
(see Corollary 2.1.5). The spectrum DpF(BV 8% is called the derivative of F at B
in Goodwillie calculus (see [10]), and is sometimes denoted by 95 F.

Lemma 2.3.5. Let F:G-S; — Spg be a relatively additive G-p-analytic homotopy
functor. If the spectrum DgF (B vV SY) is weakly G-contractible, then DgF(X) is weakly
G -contractible for every (X, p,s) in G-Sp.

Proof. We recall that under these hypotheses DgF = DFp is G-linear (see Proposition
2.2.12). We start by proving the lemma for equivariant spheres. By hypothesis, DFB(B \Y
59 is weakly G-contractible. By induction, DF, B(B Vv S§") is also weakly G-contractible,
since by G-linearity of DFp the diagram

DFg(Bv Sy — = DFp(BV D") ~ %

| l

%~ DFg(BV D") ——= DFg(B Vv S")
is homotopy (co-)Cartesian. If X = B Vv (8" A J4) for a finite G-set J, the map

DFg(BV (S"AJy)) = DFg((BV S™) Ap (J+ X B)) —> ]_[ DFp(BV S
J

is a G-equivalence by G-linearity of DFg, with weakly G-contractible target. Therefore
DFB (BV (8" A Jy)) is also weakly G-contractible.

Now that the lemma is proved for spheres, we prove that DFpg (X) is weakly
G-contractible by induction on the relative G-skeleton of the pair (X, B). The base
induction step is when X = BV J4 for a finite G-set J, which is the n = 0 case already
proved above. Now suppose inductively that the image of the n-skeleton is weakly
G-contractible. By G-linearity of DF B, the sequence

DFg(X™) — DFp(X"*V)y — DFg(Bv (S"D A J,))
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induced by the homotopy cocartesian square

xm o x&+D

| |

B——— BV (S"tD A J))

is a fiber sequence with first and last terms weakly G-contractible. O

Remark 2.3.6. In the classical theory of calculus of functors one needs to require F to
satisfy the ‘limit axiom’, in order to carry out the induction argument of Lemma 2.3.5.
Proving this axiom for explicit examples can require a considerable amount of work;
see, e.g., [19, §2]. Here, we do not need to worry about this condition, since our theory
considers only finite simplicial sets. The analogous equivariant condition would be that
F commutes with filtered homotopy colimits of pointed simplicial G-sets.

Proof of Theorem B. We generalize Goodwillie’s proof of [12, 5.4] to our equivariant
setting. As F is G-p-analytic, it satisfies W (v, p + 1) and E,?(,o - nLH, p + 1) for certain
functions g, v : {H < G} — Z and for every n > 1. We prove the following statement Z(L)
by induction on the size of the subgroups L of G.

Z(L): For every n > 1 the functor F satisfies E,?(,o—
function

p+1) for the

g(H) for HLL

r(H) =
o) for H < L.

Moreover, F(f) is an L-equivalence for any split-surjective G-map f
satisfying p(H) +1 < Conn f# for subgroups H < L.

The statement Z(G) contains in particular our theorem.

The base induction step Z({1}) is essentially the proof of Corollary [12, 5.4]. One needs
to make sure that all the constructions of [12] carry a G-action, but the final statement
is about a {1}-equivalence (the induction step below also goes through the proof of [12]
once more).

Now assume inductively that Z(K) holds for subgroups K of G of size |K| <, and let
L be a subgroup of G with [ + 1 elements. For proper subgroups K < L, the value r(K) is
already infinite as Z(K) is satisfied. Hence we need to improve the value of r at the group

L itself. We do it inductively by proving that, if F satisfies E,? (p— n_rH ,p+Dforalln > 1

and a function r with r(H) = oo on groups H S L, then it satisfies E,?(,O — #, p+1)
for all n > 1 with

H for H # L
v | e e H
r(Hy+1 for H=1L.

This will prove the first part of Z(L). Let x : P(n+ 1) — G-S, be a strongly cocartesian
(n 4+ 1)-cube with initial maps e; satisfying p(H)+ 1 < Conn elH. Since F is a homotopy
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functor, we can assume that all the e; are G-cofibrations. We need to show that the cube
F(x) is at least
n+1

c(L) = Z Ir<n<1ri (Conne (p(K) L ff))—(]artesian

i=1

n 7k Since r'(H) = r(H) = oo for subgroups H < L, this is

n+1 r’(L) n+1
c(L) = ;(Conne <,0(L) - 1)) =—(n+ 1)p(L)+r’(L)+zljanne,.L.
1= 1=

Let Z:Pm+2) — G-S, be the strongly cocartesian (n+2)-cube with initial maps
e, e1,e,...,e,11, defined by taking iterated pushouts along e;. The cube Z defines
a map of (n+ 1)-cubes Z : x — ¥ in the direction of the repeated map e;. By [12, 1.6(i)],
the cube F(x) is c-Cartesian if both F(Z) and F()x) are. By assumption, F satisfies
E,?H(p - n’ﬁ p+ 1), and therefore F(Z) is v-Cartesian, where the value of v at L is

W(L) = mig(Connef( _ (,o(K) — rUQ))

< n+2
n+1
. K _ . r(K)
+ ;;&%(Comei (,o([() n+2>>
n+1
= ConnelL - (,o(L) — —) +Z<Conne <p(L) . r(f)z))
n+1

= Z(ConneL) +Connel — (n42)p(L) +r(L)
i=1
n+1
> Y (Comnef) — (n+ Dp(L) +r(L)+1 = c(L).
i=1
The inequality holds since Conn elL > p(L) + 1. Therefore it is enough to show that F(}x)
is c-Cartesian. Since y is defined from x by iterating pushouts, its initial maps e; are
G-cofibrations, and they satisfy

po(H)+1 < Conn e < Conn eH

Moreover, g; has a canonical G-equivariant retraction p" defined by the fold map, as
illustrated by the following diagram for the case n = 1:
el

A >——>B

p e B>————>Bl,B

3
e l/ _
X

— D

NN

D~ DlUcD

C
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The retraction is natural, and hence it defines a retraction for the map of n-cubes defined
by e1. Let YU be the (n + 1)-cube defined by the retractions:

21 p(l)
B——BlsB——B

| ]

D——DUcD—D

x y

The cube Y is strongly cocartesian by [12, 1.8(iv)]. Moreover, F(¥) (and hence F(x))
is c-Cartesian if we can prove that F(Y1) is (¢ + 1)-Cartesian. This is because as maps
of n-cubes YV oy = id (see [12, 1.8(iii)]). What we gain by replacing F(x) with F(Q1)
is that the connectivity of its first initial map p» is

Conn(p(l))H = ConnEfI +12> Connef{ +1,

since p(1 is a retraction for e;. For the other indices i > 1, the connectivity of the ith
initial map of F(Y() is greater than or equal to the connectivity of g;, and hence greater
than or equal to the connectivity of e;. Let us calculate how Cartesian F(J(V) is, by
exploiting that p( is more connected than ej. As a map of n-cubes, F(YV) is pointwise
as connected as the map F(p"). Recall that if the map F(p") is v-connected, then
F(YWM) is (v —n)-Cartesian. Hence we need to determine the connectivity of F(p). For
every proper subgroup K < L the map F( p) is a K-equivalence by the property Z(K),
which is satisfied by the inductive hypothesis (p! is split surjective). We use the linear
approximation to determine how connected F(p") is at the group L. Let us denote by
A and B the source and the target of p(!) respectively, and we remark that (A, p(V, &)
defines an object of G-Sp. Remark 2.2.8 gives an estimate for the connectivity of the
map
hof F(p') = F(A) — DFp(A) = DpF(A),

and by Lemma 2.3.5 the target is weakly G-contractible. Hence the connectivity of the
map F(p") in 7L is (by 2.2.8)

U(l)(L) = min{Z(COnn(p(l))L _ w)’

5 min Conng Fp(s¥ pD) —le/Kl}

Z

for a sufficiently large choice of k. By the inductive hypothesis, the map F (Sgp p)y is
a K-equivalence for subgroups K < L. The second term of the minimum above is then
infinite, and F(p) is

vI(L) = 2Conn(p(1))L —(p—r)(L) = 2(C0nnE{‘ + 1) — (p — r)(L)-connected

in L. This shows that F(YW") is (v —n)-Cartesian, where we define v(V(K) =
oo on proper subgroups K < L. This is not necessarily larger than ¢+ 1, which is
what we were trying to show. However, one can repeat this whole construction by

replacing x with Y. If we keep iterating this procedure we obtain a sequence of

https://doi.org/10.1017/51474748015000067 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000067

858 E. Dotto

(n+1)-cubes Y™ with the property that F(x) is c-Cartesian if F(Q™) is (c+m)-
Cartesian, and with F(Y™) at least (v — n)-Cartesian for the function

_K .
V(K = 2(Connef +m) — (o —r)(L) for K =L
o0 for K S L.

This quantity can be made bigger than ¢(K)+m by choosing m sufficiently large, and
therefore F(yx) is c-Cartesian. This proves the first part of the condition Z(L).

It remains to show that F(f) is an L-equivalence for a highly connected split-surjective
map f. By the first part of I(L),Nthe functor F satisfies EIG(p — 5, p+1) with r infinite
on all subgroups H < L. Since D Fp is weakly G-contractible, we find from Remark 2.2.8
that F(f) is v-connected, for

v(H) = min Conng Fg(S ) —k|G/K]|
KSH

on subgroups H < L. By the condition Z(K), the map Fg (Sgo f) is a K-equivalence, and
therefore v(H) is infinite for every H < L. This shows that F(f) is an L-equivalence,
ending the proof.

3. Z/2-equivariant calculus and Real algebraic K-theory

The goal of this section is to construct our main example of Z/2-analytic functor from
Real algebraic K-theory, and to calculate its Z/2-equivariant derivative. We recall from
[27] that a Wall antistructure is a triple (A, w, €), where A is a ring, w: A” - A is a
ring map, and € € A% is a unit, with the property that w? is conjugation by €. The Real
K-theory of (A, w, €) is a symmetric Z/2-spectrum KR(A, w, €) defined by Hesselholt and
Madsen in [13], with underlying spectrum equivalent to K(A). We recall its construction
in detail in §3.1 below.

Definition 3.0.7. A bimodule over a Wall antistructure (A, w, €) is an A-bimodule M
together with an additive map h : M — M which satisfies the following conditions:

h(a-m) = h(m) - w(a)
h(m-a) = w(a) - h(m)

hz(m) =e-m-e!

for every a in A and every m in M.
From a bimodule (M, h) over (A, w,€) we define a Wall antistructure (A X M, w X
h, (e, 0))7 where the semi-direct product ring A x M has underlying Abelian group A & M

and multiplication
(a,m)-(b,n)=(a-b,a-n+m-b),

and the map w X h is the direct sum of w and h. Given a finite pointed set X,
define a bimodule M (X) = (@xex M. x)/M.* over (A, w, €) with involution A (X) induced
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diagonally by h : M — M. This gives a new antistructure (A X M(X), w X h(X), (¢, 0)),
and by letting X vary a functor

KR(A x M(—)) := hof(KR(A x M(—), w x h(—), (€, 0)) —> KR(A, w, €))
from pointed finite sets to Sp%/z. Extending this levelwise to pointed finite simplicial

7Z./2-sets as in Example 1.2.3, we obtain a functor IER(A X M(—)):Z/2-S; — Sp%z. The
aim of this section is to prove the following theorems.

Theorem A. For every pointed finite Z/2-set X, the equivariant derivative D*IaQ(A X
M (X)) is equivalent to the Real MacLane homology of A with coefficients in the
Dold-Thom construction M(X A S"Y), as defined in 3.2.7.

Here SU! = A[1]/0 is the simplicial circle with levelwise involutions (0 <ip < --- <
ip <) (0< 1—ip << 1—ig < 1). The simplicial set M (S"!) is isomorphic to the
nerve of M, and the levelwise involution sends (m1,...,mp) to (h(mp), ..., h(my)). We
remark that this involution is not simplicial.

Theorem C. The functor IZIQ(A X M(=)):Z/2-Sy — Sp%/2 is a Z]2-p-analytic (see
Definition 2.3.1) reduced enriched homotopy functor, where p is the function

—1 for H={1}
p(H) =
0 for H=17/2.
Moreover, it is relatively additive and it preserves connectivity, in the sense of Definitions
2.2.10 and 2.2.6 respectively.

The section is organized as follows. Section 3.1 is a recollection of constructions from
[13], containing in particular the definition of the Real algebraic K-theory spectrum of
(A, w, €). In §3.2, we define Real algebraic K-theory with coefficients and Real MacLane
homology. In §3.3, we prove that Real K-theory with coefficients defines a Z/2-analytic
functor (3.3.1), whose derivative is Real MacLane homology (3.3.2). Finally, in §3.4, we
finish the proofs of Theorems A and C, by showing that Ia{(A X M) is equivalent to the
Real K-theory of A with coefficients in M (S'1).

3.1. Hesselholt and Madsen’s Real algebraic K-theory functor

This section is a recollection of constructions from [13]. Let AR be the smallest

subcategory of finite sets containing A and the maps w, : [p] — [p] defined by
wp(i)=p—i

for every p > 0. Here we denoted [p] = {0, ..., p}. A pointed Real n-simplicial set is a

functor (AR°P)*" — Set,. This is the same as a pointed n-simplicial set with levelwise

involutions w, that ‘reverse the order of the structure maps’. If Z is a Real simplicial

set, we let |Z| be the geometric realization of the underlying simplicial set, defined as the

quotient

1z = | [ [ 2, xar /N,

p=0
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where ~ is the standard equivalence relation (see, e.g., [9, I-§2]). The space |Z| inherits
a Z/2-action from the Real structure, defined by the involution |Z| — |Z|:

[z € Zp; (to,....1p) € APT—> [w,(2); (tp, ..., 10)].

Remark 3.1.1. The levelwise involution on a Real simplicial set Z induces a simplicial
involution on Segal’s edgewise subdivision sd,Z of the underlying simplicial set (see
[22]). The realization |sd,Z| inherits an involution, and the canonical homeomorphism
|Z| = |sd.Z| is Z/2-equivariant.

The realization of a Real n-simplicial set Z : (ARP)*" — Set, is defined as the
realization of the diagonal Real simplicial set

8(Z) 1 AR =5 (ARPY*™ 2 Ser,
with the induced Z/2-action.

Example 3.1.2. Let D : C°? — C be a functor which satisfies D> = id¢. The nerve of C
equipped with the levelwise involutions N,D : N,C — N,C is a Real simplicial set.

The natural input of the Real K-theory functor is an exact category with duality, as
defined by Schlichting in [20].

Definition 3.1.3 [20]. Let C be an exact category. A duality on C is an exact functor
D : C% — C, together with a natural isomorphism 7 : id = D? which satisfies D(5.) o
npe = id. for every object ¢ of C. If 5 is the identity natural transformation we say that
the duality is strict.

We are particularly interested in the dualities on the category of finitely generated
projective modules over a ring.

Example 3.1.4. Let (A, w, €) be a Wall antistructure. We let Ag be the right A-module
with the same underlying Abelian group as A, and with right module structure b-a :=
w(a)e -b. Given a right A-module P, the Abelian group of module maps homg (P, Ay)
has a right module structure defined by (A -a)(p) = A(p) -a. This defines a duality on the
category Py of finitely generated projective right A-modules

D =homy(—, A;) : Py —> Pa.

The natural transformation np:P — D?P is defined by the formula (np(p))
(A: P = Ay) = w(p)) -e.

Let C be an exact category with duality, and let us assume for the moment that
the duality is strict. In [13], the authors define a simplicial category S>!C similar to
a two-fold Waldhausen S,-construction, in the following way. Let Car([2], [p]) be the
category of functors of posets [2] — [p]. In each simplicial degree p, the category Sg’IC
is the full subcategory of the category of functors X : Cat([2], [p]) — C which satisfy
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e X(0) =0if o : [2] = [p] is not injective,
o for every ¥ : [3] — [p] the sequence

0 — X(d3y) — X(d2y) — X(d1yy) — X(doy) — 0

is exact.
The category SIZ,’IC is canonically an exact category (pointwise), and conjugation with the
canonical strict duality on Cat([2], [p]) induces a strict duality D : (Sf,’lC)"’7 — Slz,’lC.
The construction can therefore be iterated to define a Real n-simplicial set S™(C) with
p= (p1, ..., pn)-simplices

S™(C)p 1= 0b(s2N'C = 0b s3!Syl .. splC.

Its geometric realization is the pointed Z/2-space |S™ (C)| =: KR(C),,. There are natural
transformations x, : S™(C) — S (C) o x associated to a permutation x in ¥, defined
by permuting the entries of the functors (see [13]), and a canonical isomorphism S%‘IC =
C. These induce respectively a X,,-action on KR(C),, and structure maps KR(C),, A S —
KR(C)+m, where p is the regular representation of Z/2. The definitions of the X,-actions
and of the structure maps are analogous to the definitions for the Z/2-spectrum Ia{(S i N)
defined in detail in §3.2. This structure combines into a symmetric Z/2-spectrum KR(C).

Definition 3.1.5 [13]. The symmetric Z/2-spectrum KR(C) is called the Real K-theory of
the exact category with strict duality C.

In cases when the duality on C is not strict, there is a formal construction that replaces
C with an equivalent category DC which has a strict duality. The definition of DC first
appeared in Vogell’s thesis [25], and it was later generalized in by Weiss and Williams in
[28]. The objects of DC are the triples

ObDC = {p = (c,d,$) | c,d € ObC, ¢ : d —> Dc}.

A morphism (c,d,¢) — (c’,d’,¢') is a pair of morphisms (a@:c— c’,b:d — d) of
C which satisfy ¢ ob = D(a)o¢’. The functor (DC)?? — DC that sends (c,d, ¢) to
(d, c, D(¢p)on.), and (a, b) to (b, a), is a strict duality on DC. The projection functor
DC — C that projects onto the first component on both objects and morphisms is an
equivalence of categories. If C is an exact category, the category DC inherits an exact
structure through the equivalence DC — C. In particular, DP,4 is an exact category with
strict duality, equivalent to Pa.

Definition 3.1.6 [13]. The Real K-theory of a Wall antistructure (A, e, w) is the
Z./2-symmetric spectrum
KR(A, w, €) = KR(DP,).

For completeness, we mention how KR(DC) relates to other constructions present in the

literature. We will not use any of these results in the present paper, and for the proofs we
refer to [13]. The underlying spectrum of KR(DC) is equivalent to Waldhausen’s algebraic
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K-theory K(C). The equivalence is induced by a simplicial functor S?*]DC — 8.8.DC
to the diagonal of the two-fold S,-construction. This gives an equivalence between the
underlying spectrum of KR(DC) and K(DC), and the latter is equivalent to K(C)
by the equivalence of categories DC — C. Moreover, the homotopy groups of the
fixed-point spectrum KR(DC)%/? are isomorphic to the Hermitian K-theory groups (or
Grothendieck-Witt groups) of the category with duality C, as defined in [20] and [15].
This is because the Grothendieck—Witt space GW(C) of [20] is weakly equivalent to the
space of pointed equivariant maps from the representation sphere S” to |Ob S.Z’IDC [. A
key ingredient in establishing this equivalence is the homotopy equivalence between the
fixed points |iDC|%/? of the subcategory of isomorphisms of DC and the realization of
the category of symmetric spaces |i Sym C| from [20].

3.2. Real algebraic K-theory with coefficients and Real MacLane homology

In this section we define and compare the Real K-theory and the Real MacLane
homology of a coefficients system. These constructions will provide a rich supply of
Z./2-analytic functors. Their comparison is analogous to the relationship between K(A; M)
and THH(A; M) of [6].

We say that a Real n-simplicial set Z : (AR?)*" — Set is 1-reduced if Z,, = * whenever
at least one of the components of p = (p1, ..., pn) satisfies p; < 1. B

Definition 3.2.1. A Real S-construction is a collection of 1-reduced pointed Real
n-simplicial sets S® : (AR?)*" — Set,, one for every integer n > 0, together with the
following structure.

e An isomorphism of Real n-simplicial sets xx : S — S™ o x for every permutation
x in X" where x : (AR)*" — (AR)*" denotes the automorphism that permutes the
product factors. For every x and & in X, we require that the diagram

s T gy

&l

SMWogoy
commutes. Here &|, is the natural transformation &, restricted along the functor x.
e Maps of Real n-simplicial sets
K 8§W 5 gnth o,

where ¢ : (ARP)*" — (ARP)*+D ig the inclusion t(pts..-spn) =(P1y-.., Pn,2). We
require that for every (x, &) in X, x X, the diagram

g K" gtm) o ym

X*i i(XXg)*hm

§M oy T Sotm) o m o

commutes. Notice that " o x = (x x &) o™ for any & in X,,.
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The main example of a Real S-construction is defined from Hesselholt and Madsen’s
§21_construction. The extra generality of the previous definition will simplify the notation
in later constructions.

Example 3.2.2. If C is an exact category with strict duality, the collection of Real
n-simplicial sets S (C) = Ob(S_Z’l)(")C of §3.1 defines a Real S-construction S(C). In
cases when the duality on C is not strict, we replace C with the equivalent category with
strict duality DC of §3.1.

We recall that the simplex category of an n-simplicial set Z is the category Simp(Z)
with objects

ObSimp(Z) = ]_[ Zp.
peN”

A morphism (z, p) = (y,¢) is a morphism o : p — ¢ in A™" such that o*y =z. If Z is
a Real n-simplicial set, the simplex category Simp(Z) of the underlying n-simplicial set
inherits an involution Simp(w) that sends (z, p) to (w(z), p) and o : (z, p) —> (¥,9) to

— w o w
o:p—>p—>q—q,

where w is the involution on r = [r1] X - - - X [r,;] defined as the product of the involutions
w()=r;—1.

If S is a Real S-construction, a permutation x in %, induces an automorphism ¢, of
Simp(S™):

Simp(x+)
by : Simp(§™) ———— Simp(S™ o x) = Simp($™)

where Simp(x,) is the functor induced by functoriality of Simp on the natural
transformation xy : S = S$™ oy, and the second map is the canonical isomorphism
Simp(S™ o x) = Simp(S(")) that reindexes the disjoint union summands.

Definition 3.2.3. A coefficients system for a Real S-construction is a family of Abelian
group valued functors N : Simp(S™)° — Ab for every n > 0, sending the basepoint * €
S;,”) to the trivial Abelian group, together with the following.

e Natural transformations w : N — N o Simp(w)°?, where Simp(w) is the involution on
Simp(S®™) above. These have to satisfy w? =id : N — N o (Simp(w)??)?> = N

e Natural transformations x.: N — N o¢;p , such that for every x and & in X, the

diagram
N—" > Nog?
(on)*l lgwj’("
Nogll == Nog¢' og)’
commutes.
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e We require that the diagrams

Simp(S®)r — N ap N o Simp()?)" “82 N o b & 0 Simp((1)P)™

Simp(x )P \L TN X*l

Simp(S™ o 1)?? C Simp(S®+D)oP N o (Simp(k)??)™ o ¢, == Simp((x x &) ok™)?P

commute for all (x, &) in X, x X, where the bottom horizontal map of the left diagram
is the canonical inclusion.

Let us see how a bimodule over an exact category with duality C induces a coefficient
system for the Real S-construction S(C) of Example 3.2.2.

Definition 3.2.4. A bimodule with duality on an exact category with duality (C, D, n)
(see Definition 3.1.3) is an additive functor M : C°? @ C — Ab together with a natural
isomorphism J : M = M o D, making the diagram

M(c,d) —'> M(Dd, De)

J
(m l

M(D?c, D?d)

commutative for every pair of objects ¢ and d of C. If the duality on C is strict, the
natural transformation J automatically satisfies J? = id.

There is a strictification construction for the duality on M as well. A bimodule M with
duality J on an exact category with duality C induces a bimodule DM : (DC)??  DC —
Ab with duality DJ on the category with strict duality DC of §3.1. The bimodule is
defined at a pair of objects ¢ = (c,d, ¢) and ¢’ = (¢’, d’, ¢') of DC by the Abelian group
DM (g, ¢') = M(c, '), and the duality is the natural transformation

‘]c.(:/ (‘ﬂ’@(ﬂil)

Dliy.yy : DM(g.¢') = M(c.c) —— M(Dc', De) —— M(d'.d) = DM(Dg', Dg).

Example 3.2.5. Let M : C°? @ C — Ab be a bimodule with duality over an exact category
with duality C. Upon making the suitable strictifications we can assume that the
duality on C is strict. We define a coefficients system Ny for the Real S-construction
sM(C) = Ob(S.Z’l)m)C of Example 3.2.2. The bimodule M extends canonically to a
simplicial bimodule

M, : (S*10)? @ S21C — Ab

on the simplicial category S.Z’lC , with a duality J, : M, = M,o D,. The Abelian group
M,(X,Y) for diagrams X and Y in S.Z’IC is defined as the subgroup

M,X.")< @ MXo, Yo)
OeCat(21,[pD)
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of collections {mg} with the property that for every natural transformation ¢ : p — 6
the relation

X ()" (mg) =Y ()« (mp)

holds in M (X, Yp). The duality Jx : My = My o D,, is the restriction of @, J. Iterations
of this construction give an n-simplicial bimodule

M (SEHM e @ (SPH™WC — Ab

for every n > 0. This is analogous to the extension for the S,-construction of [5, I-§3.3].
The functor Ny : Simp(S™ (C))°P — Ab of the coefficients system is defined on objects
by Ny (s, p) = M‘,(,") (s,s), and by sending a morphism o : q—>p from o*s to s in

Simp(S M (C)) to the natural transformation of the simplicial bimodule structure
Nu(s, p) = MI(,")(S, 5) —> M;")(o*s, o%s) = Nu(o’s, q).

The functor Nj; also inherits a natural transformation
‘]P
w: Ny(s, p) = M[(,")(s, s) — M[(,")(Ds, Ds) = Nu(Ds, p)

from the duality J on M, and natural transformations . : Ny — Ny qu;p defined by
permuting the S>! factors in a similar way as we do for S(C). This makes Ny into a
coefficients system for S(C).

We define a symmetric Z/2-spectrum IZR(S; N) from a coefficients system (S, N), as
follows. There is a Real n-simplicial set KR(S; N)™ defined in degree p by

KR(S; N)fg") = \/ M.

SESE,")

The simplicial structure map associated to o : p — ¢ is the wedge of the maps * : Ny —
N+ given by functoriality of N. The Real structure is given by the wedge of the maps w :
Ny — Nys. Define the nth space of the spectrum @(S; N) as the geometric realization
of the diagonal Real simplicial set d (IZIQ(S : N)™). There is a canonical Z/2-equivariant
homeomorphism

KR(S: N)p = |[d(KR(S; M)™)| = | [] KR(S: NP x APV - x AP /N,
peN” n
where the equivalence relation is the same as for the classical realization of an n-simplicial

set, and the Z/2-action on the right-hand side is diagonal, acting on A” by reversing the
order of the simplex coordinates. The X,-action on KR(S; N), is defined at a permutation
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x as the composite

KR(S: N), = (LLper KR(S; M) x APY 35 APn) /.
i]_lx*xx
X (Ll pen KR(S; N);"()E) X APXD X - X APx) [
KR(S; N), = |d(KR(S; N)™)| =———— |d(KR(S; N)™ o x)|

where the map yx, : @(S; N)® — KVR(S; N)™ oy is the wedge of the natural maps
Xx : Ny = Ny (s)- Let us define the structure maps of the spectrum KR(S; N). Let A1
be the topological 2-simplex A2 with the Z/2-action that reverses the order of the

coordinates. There is a canonical homeomorphism between §>! = A%!/3 and the regular
representation sphere S* of Z/2. The structure maps of the spectrum are induced by the
composite

IR

KR(S; N), x (AZ1yxm

Id(KR(S; N)™ x (AZ1yxm))|
(]—[[?eNn @(S, N)g) X APl x .o x APn x (A2,1)><m)/N

Km

(]—[peN” I&(S, N);n-;m)z X APl x ... x APn x (AZ,I)Xm)/N

Ia{(S7 N)n+m _ (]_[qurHrm I&(S’ N)[(]ner) X Aql X oo X A%H»m)/’v’

where the bottom right vertical map is the inclusion of the p-component into the g =
(p,2...,2)-component. By assumption, 121’1(5; N)™ is 1-reduced, and therefore this map
descends to a map

Onm : KR(S; N)y A S™ — KR(S: N)ym

on the quotient $”° = (§21)"m = (AZ1 /) m.
Definition 3.2.6. The (X, x Z/2)-spaces I’(\R(S; N), together with the maps o, ,, define a
symmetric Z/2-spectrum KR(S; N), called the Real K-theory spectrum of the coeflicients

system (S, N). The Real K-theory of an exact category with duality C with coefficients
in a bimodule with duality M : C?  C — Ab is the Real K-theory

KR(C; M) = KR(S(DC); Npy)
of the coeflicients system (S(DC), Npy) of Example 3.2.5.
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The construction of the spectrum I&(S; N) can be repeated verbatim with wedges
replaced by direct sums of Abelian groups. This leads to our definition of Real MacLane
homology.

Definition 3.2.7. The Real MacLane homology of a coefficients system (S, N) is the
symmetric Z/2-spectrum HR(S; N) defined by the geometric realization of the Real
simplicial sets

HR(S; N) = €D N;.

SGS;,n)

The Real MacLane homology HR(C; M) of an exact category with duality C with
coefficients in a bimodule with duality M : C°? @ C — Ab is the Real MacLane homology
of the coefficients system (S(DC), Npys) of Example 3.2.5.

This definition is analogous to the model for THH used in [6, 3.1], which lies in between
the standard definitions of MacLane homology and of topological Hochschild homology.
These three theories are all equivalent (non-equivariantly), as proved in [8] and [6]. The
author’s thesis [7] contains a theory of Real topological Hochschild homology, which is
equivalent to the Real MacLane homology of Definition 3.2.7, at least when 2 is invertible
(see [7, 4.12.2]).

The inclusion of wedges into direct sums induces an equivariant map of symmetric
Z/2-spectra

KR(S; N) —> HR(S; N)

analogous to the trace map of [6]. Section 3.3 studies the Z/2-analytic properties of this
map.

3.3. Analytic properties of Real algebraic K-theory with coefficients

Given a coefficients system (S, N) and a pointed set X, one can replace the coefficients
functor N : Simp(S™)% — Ab with the functor N(X) : Simp(S™)° — Ab that sends s

in S(En) to the Abelian group
Ns(X) = <@ Ny 'x)/Nx-*
xeX

of Example 2.1.3. This gives a new coefficients system (S, N(X)), with an associated Real
K-theory spectrum KR(S; N(X)). This construction is functorial in the set X, and we
extend it degreewise to an enriched functor

KR(S; N(-)) : Z/2-S, —> Sp7 ),

as explained in Example 1.2.3. As the group Z/2 has only two subgroups, we will denote
a function v : {H < Z/2} — Q by listing its values, starting with the trivial subgroup:
v = (v(l), v(Z/2)).

Theorem 3.3.1. The functor IZI/{(S;N(—)):Z/Z—S*—)szz/2 enjoys the following
properties.
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(1) It is a reduced homotopy functor.

(2) It is Z/2-po-analytic (see Definition 2.3.1), where pg is the zero function pg = (0, 0).
(3) It is relatively additive (see Definition 2.2.10).

(4) It preserves connectivity (see Definition 2.2.6).

Proof of 3.3.1. The functor IZR(S; N(—)) is clearly reduced. Since the Dold-Thom
construction Ny(—) : Z/2-Sx — Z/2-Top, is a homotopy functor for every s in S
(see Appendix A.1.1), it follows that KR(S; N(—)) sends Z./2-equivalences to levelwise
Z/2-equivalences of spectra, and it is therefore a homotopy functor.

Let us show that KR(S;N(-)) satisfies E./*(0,—1). Let x:P(k+1) — Z/2-S,
be a strongly cocartesian (k+ 1)-cube. We need to prove that KR(S; N(x)) is v =
(v1, vp)-Cartesian, for

. z)2
v = Z Connej, Z mm{Connej,Connej/}
1< <k+1 1<) <k+1

We adapt McCarthy’s argument from [19]. For every fixed n there is a natural equivariant
homeomorphism

=4 Z/2 ~
KRGS:NGOW? =\ NP,
s€(sd, SMHYZ/2

where sd, is the edgewise subdivision functor (see 3.1.1). Notice that for s in (sd, S™)%/2
the natural transformation map w : N — N o Simp(w)°? defines indeed an involution on
N;. By Appendix A.1.1, the squares N, (x)%/? are strongly Cartesian, and its final maps
Ns(fj @ Xer\(j} — )(ﬂ)z/2 have connectivity at least

Conn NS(fj)Z/2 = min{Conn fj, Conn ij/z} = min{Conn ej, Conn ejZ./z}.

The second inequality holds because yx is strongly cocartesian, and the first one because
N (—) preserves connectivity. By the dual Blakers—Massey theorem (for spaces), the cube
N ()()Z/2 is ¢p-cocartesian, for

. . _ 72
ci=k+ Z min{Conne;, Conn ¢ ).
1<j<k+1

Since wedges commute with homotopy cofibers, the homotopy cofiber (C;,"))Z/ 2 of the
map

hocolim N, Z/z N, 1 Z/2
Aoeolim \/ N $(X) \/ N s (Xt 1)
SE€(sdeS™)}! se(sd S™)y/

is cp-connected for every p in N". Since §™ i 1-reduced, the edgewise subdivision
(sdeS"™)%/2 is O-reduced in each of its n simplicial directions. Therefore so is (C™)%/2,
and its geometric realization is (cp 4+ n)-connected. Since homotopy cofibers commute
with realizations, there is a cofiber sequence of spaces

72

hocolim KR(S; N ()i’ —> KR(S; N(ur))a’> —> [(C™)2|
PUAD\kEL
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with (c2 + n)-connected cofiber. This shows that the cofiber C of the map of spectra

hocolim KR(S; N(x)) —> KR(S; N(xk+1))
Pk+1)\k+1 —

is levelwise (cp + n)-connected on fixed points. A similar argument (see [19, 3.2]) shows
that it is non-equivariantly levelwise (¢ 4 2n)-connected, where

c1:=k+ Z Conne;.
1< <k+1

Therefore the connectivity of the Z/2-spectrum C is
(c1+2n, ¢ +n) — (dim ", dim(S™)%/?) = () +k, v, +k).

Since the homotopy fiber of a map of spectra is the loop of the cofiber, the map in the
cofiber sequence above is (v; +k, v» + k)-connected, that is the (k + 1)-cube K R(S; N(x))
is (vi +k, vo +k)-cocartesian. Therefore it is v-Cartesian.

Let us show that KTQ(S; N(-)) is relatively additive. Given a finite based simplicial
Z/2-set B in Z/2-Sy, a retractive Z/2-space (X, p, j) in Z/2-Sp, and a finite set J with
involution, we need to estimate the connectivity of

~ ~J ~
1: KR(S; N(X Ap (J4 X B))) —> ]_[ KR(S; N(X)).
KR(S; N (B))

In spectrum level n and simplicial degree p, this map fits into the commutative diagram

~J

\/(NX(X/\B (J4+ x B)) [1 ( \/()NS(X))
n) n
sESK ( \/ N,(B)) SGSE

(n)
teSB

) ;
SG\S/Ln)< NEB) Ng(X )> <—se\s/;,"> (NYJ)NAY(X )) (vzb,/(JB ))(se\s/;") NS(X)>
i B Iesg’) n

The left-hand vertical map is an equivalence, since Ny(—) is Z/2-linear for every s
in (S;,n))z/2 (see Remark 2.2.11 and Appendix A.1.1). The right-hand vertical map
defines a Z/2-equivalence of symmetric Z/2-spectra by Proposition 1.1.5. Therefore the
connectivity of the top horizontal map is determined by the left-hand bottom map. The
calculation of Lemma 1.1.7 expresses its connectivity in terms of the connectivity of the
maps N;(p) : Ng(X) — Ng(B). By linearity of Ny(—), its splitting N, (j) fits into a fiber
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sequence Ng(B) — N;(X) — N;(X/B), and therefore
Conn Ny (p)" = Conn Ns(j)* +1 = Conn Ny (X/B)"
> min Conn X/B > min ConnpK.
K<H K<H

By Lemma 1.1.7, the connectivity of our map is

v(H) = min{ZConn p, min Conn pK} —1
KSH

in /1. Arguing like before, the fact that (S, N) is 1-reduced shows that the connectivity of
our map in spectrum degree n is v+ (2n, n), and therefore v-connected on the homotopy
colimit.

It remains to show that @(S ; N(—)) preserves connectivity. The argument is similar
to the calculation of the connectivity of the cofiber C™ above, using that N(—) preserves
connectivity.

We also extend MacLane homology to a functor HR(S; N(—)) : Z/2-S, — Sp%/2 in a
similar way. The inclusion of wedges into direct sums defines a natural transformation
KR(S; N(—)) — HR(S; N(—)).

Proposition 3.3.2. The functor HR(S; N(-)) : Z/2-Sx — Spg/2 is Z/2-linear, and the
inclusion of wedges into direct sums induces a natural mwy-equivalence of symmetric
7./2-spectra,

D.KR(S; N(X)) —> D, HR(S: N(X)) <— HR(S; N(X)) < HR(S; N) A | X|
for every X in Z/2-S,.

Proof. To show that HR(S; N(—)) sends homotopy cocartesian squares to homotopy
Cartesian squares, it is enough to show that the map

HR(S; N(X)), — QHR(S; N(X A ShH),

is an equivalence of pointed Z/2-spaces for every X in Z/2-S, (e.g., by [11, 1.8]). Since
both HR(S; N (X)), and HR(S; N(X))%/2 are geometric realizations of simplicial Abelian
groups, loop spaces and realizations commute, and the assembly map above factors as

‘ D N0 D Nxash

sesd, SM sesd, S

_ = Q

Q @ Ng(X A ShH

sesd,S™

Since loops commute with indexed direct sums, it is enough to show that
P V) — P aN(x ash
seS(K") SGSg)

is an equivalence of simplicial Z/2-sets for every p. Non-equivariantly this is just

linearity of the Dold—Thom construction Ng(—). On Z/2-fixed points the map is, up
to isomorphism, the direct sum of the assembly maps

EB Ny (X)) g @ Ny(X) — @ QN (X ASHZ2 g @ QN (X A SH.

se(SIHZ/2 seF sS4z seF
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where F ,(,") is a set of representatives for the free orbits of S;,"). This is an equivalence by
linearity of Ny(—) on the second summands, and by Z/2-linearity of N(—), for s fixed in
S;,n), on the first summands (see Appendix A.1.1). To see that HR(S; N(—)) sends indexed
wedges to indexed products, we show in Appendix A.1.1 that, for every finite Z/2-set J
and Abelian group with Z/2-action N, the canonical map from wedges to products is an
equivariant isomorphism N(\/; X) = [[; N(X). Thus the canonical map for HR(S; N(—))
is also an isomorphism:

(Y| @ Tvew]=T1

(n) J

@ N;(X)'

(n)

This shows that HR(S; N(—)) is Z/2-linear, and therefore that it is equivalent to its
differential (see 2.2.8 and 2.1.5).

It remains to show that D*@(S; N(=)) — D,HR(S; N(—)) is an equivalence. The
calculation of Lemma 1.1.7 shows that the equivariant connectivity of IZR(S i N(X)) >
HR(S; N(X)) is

(2Conn X + 1, min{2 Conn X%/2, Conn X} + 1).

Therefore ~ Q"KR(S; N(X A S")) — Q" HR(S; N(X AS")) is  non-equivariantly
vi-connected, for

v =2(Conmn X +2n)+1—-—2n=2n+2Conn X + 1
and vy-connected on fixed points, for
vy = min{2(Conn X + 2n) + 1 — 2n, min{2(Conn X224 n),Conn X +2n}+1—n}.

For n sufficiently large, the second term of the outer minimum in v, is smaller than the
first, and v, becomes

vy = min{2(Conn X?/2 4 1), Conn X +2n} + 1 —n = n + min{2 Conn X%/, Conn X} + 1.

The equivariant connectivity (vq, v2) diverges with n, and the map on differentials is an
equivalence. O

3.4. Real K-theory of semi-direct products as Real K-theory with
coefficients

Let (A, w, €) be a Wall antistructure and (M, h) a bimodule over (A, €, w) as defined in
3.0.7. The goal of this section is to prove that the Real K-theory IZIQ(A X M) of §3.1 is
equivalent to the Real K-theory of a certain coefficients system, in the sense of Definition
3.2.6. This is a Real analog of Theorem [6, 4.1]. We use this comparison to finish the proofs
of Theorems A and C, by means of Proposition 3.3.2 and Theorem 3.3.1 respectively.
The coefficients system whose K-theory compares to @(A X M) is constructed from a
bimodule with duality on P4 induced by M, via the construction of Example 3.2.5. Let
us define a bimodule HY : P ® P4 — Ab by sending two A-modules P and Q to the
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Abelian group of module maps
HY (P, Q) = homa(P, Q ®4 M).
There is a duality J : HY = HM o D, on HM (in the sense of Definition 3.2.4) defined as

j\P’Q
Jp,0 thomy (P, Q ®4 M) —— homy (D Q, homy (P, My)) —> homa(DQ, (DP) @4 M).

1

Here M, is the right A-module structure on M defined by m -a := w(a)e - m. The second
map is induced by the canonical isomorphism homy (P, As) ®4 M — homy (P, My,). The
map J sends a module map f to

~ A®id (w(=)-€)®h ~
TN Pt 0oim 2L a0, " Agu M, = M,

By strictifying the dualities, this construction induces a bimodule DHM over the exact
category with strict duality DP,4, with associated coefficients system (S(DP4), Npgm), as
in Example 3.2.5. Its associated Real K-theory and Real MacLane homology are denoted
respectively by KVR(A; M) and HR(A; M).

Theorem 3.4.1. Let (M, h) be a bimodule over a Wall antistructure (A, €, w). There is a
natural zig-zag of ms-equivalences of symmetric Z/2-spectra

KR(A x M) ~ KR(A; M(S"1)),

where M(SY') is the Dold-Thom construction of the Real circle S©' = A/, with
mwvolution (my,...,mp) = (h(mp), ..., h(my)).

The proof of Theorem 3.4.1 is technical, and it is given at the end of the section. We
first end the proofs of Theorems A and C assuming Theorem 3.4.1.

Proof of Theorem A. We need show that D*IaQ(A X M(—)) is equivalent to
HR(A; M(S'1)). This immediate by 3.4.1 and 3.3.2.

Proof of Theorem C. By Theorem 3.4.1, it is enough to show that the functor
KR(S(A). Nyystiyy) : Z/2-Se — Sp

is 7Z/2-p-analytic, for the function p = (—1,0). Here M(S"1)(X) is the iterated
configuration bimodule. It is isomorphic to M(S"! A X), where ST A X is the smash
product of the pointed Real simplicial set S'! and the pointed Z/2-simplicial set X. This
is the bisimplicial set obtained by taking the smash product levelwise. The Z/2-action is
simplicial in the X factor, and Real in the ! factor. As usual, we realize all the simplicial
directions after taking Real K-theory, and we take the diagonal of the Z/2-actions coming
from each simplicial direction.

The functor IZR(S(A); Np(stin—y) is of the form IZI/((S; N(-=)) precomposed with
the functor S"!' A (=). By Theorem 3.3.1, we know that, given a strongly cocartesian
(n 4 1)-cube in Z/2-S, with initial maps e;, its image under the composite functor is
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v = (v, vp)-Cartesian, for

n+1
Vv = ZConn(ei /\Sl’l)
i=1

n+1
= Z(Conn e;+1)
i=1
and
n+1
vy = Y min{Conn(e; A S""), Conn(e; A S”)Z/z}
i=1
n+1
= Zmin{Connei + 1, Conn eZ/z}.

i
i=1

This shows that our functor satisfies E% / 2(,0, 0), and it is therefore Z/2-p-analytic (with
function g = 0).

The rest of the paper is dedicated to proving Theorem 3.4.1. The equivalence of 3.4.1
is induced by a zig-zag of Real bisimplicial sets of the form

[I DM(SY), = Ni((S2)DPa) x (D(HM),) > Ni(S2)YDPawm < Ob(SZ)DPawu.
(SEHDPa

The symbol x denotes the semi-direct product of categories and bimodules, defined
in 3.4.2 below. We define these maps and we prove that they are Z/2-equivalences, in
Proposition 3.4.5 for the middle map, and in Proposition 3.4.7 for the left-hand and
right-hand maps.

Let C be an exact category and M : C? ® C — Ab an additive functor. For a morphism
f:c— din C and an object b in C, we denote by

fo=M(@dy®f): M(b,c) — M(b,d) and f*=M(f®idy): M(d,b) — M(c,b)

the induced maps.

Definition 3.4.2. The semi-direct product C x M is the category with the same objects
of C, and with morphism sets (C x M)(c,d) = C(c,d) x M(c,d). Composition is defined
by

(f:c—>dmeM(,d)o(g:b—c,ne Mb,c))=(fog, fin+g"m).
Strict dualities D on C and J on M induce a strict duality D x J on C x M, defined by D
on objects and by D x J on morphisms. The projection onto the morphisms of C defines

a functor p: C x M — C, with a section s : C — C x M defined by the inclusion at
the zeros of M.

We show that this semi-direct product construction models split square zero extensions
of exact categories. Let p: B — C and s : C — B be exact functors, and U : pos = id
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a natural isomorphism. Define a bimodule ker p : C°?  C — Ab by
(ker p)(c, d) = ker(B(s(c), s(d)) = C(ps(c), ps(d))).

Suppose additionally that for every f in (ker p)(c, d) and g in (ker p)(b, ¢) the composite
f og is zero in the Abelian group B(s(b), s(d)). Then there is a functor

F:Cx(kerp) — B

that sends an object ¢ to s(c), and a morphism (f :c— ¢, m € (ker p)(c, c’)) tos(f)+m.

Lemma 3.4.3. Let (p,s,U) be as above, and suppose additionally that the section s
is essentially surjective. Then the functor F :C x (ker p) —> B is an equivalence of
categories over C.

Proof. The argument is analogous to the classification of split square zero extensions of
rings. The functor F is obviously essentially surjective, since s is by assumption. To see
that it is fully faithful, define an inverse for

F :C(c,d) x (ker p)(c,d) —> B(s(c), s(d))

by sending f : s(¢) — s(d) to the pair (Uzo p(f) oUC_I, f=sWUgop(f) oUc_l)), where
U. : ps(c) — c is the natural isomorphism. O

Example 3.4.4. Let M be a bimodule over a ring A, and p: A X M — A the projection
with zero section s : A — A X M. These ring maps induce functors

Pp=()®@axmA:Paxy — Pa and s=(-)Q@s(AXM):Ps— Paxwm,

and a natural isomorphism U : P ®4 (A X M) @ axm A — P. In [5, 1.2.5.1], the authors
show that the bimodule ker p : PZP ® Pas — Ab is canonically isomorphic to the bimodule
HM = homy(—, — ®4 M), and that the section functor s is essentially surjective. Hence

the lemma above describes an equivalence of categories Ps x H M _=, Paxm-
The next proposition extends this equivalence to the S.z’l—construction.

Proposition 3.4.5. For every n > 0, the functor
F:i((S2H"WDPy) x (DHM)™M) — i(S2H) D DPysu

induced by the split functor (S.Z*l)(”)p : i(S.z’l)(")DPANM — i(S.Z’l)(”)D'PA commutes with
the dualities, and it is levelwise an equivalence of categories. In particular, it induces a
Z./2-equivalence on geometric realizations.

Proof. Generally, if B and C carry dualities and p and s commute with the dualities, so
does F : C x (ker p) — B.

We prove that F is a levelwise equivalence of categories. The extension of the bimodule
HM o (S.z’l)(")PA defined in 3.2.5 sends a pair of diagrams X and Y in (S%,’])(”)PA to
the Abelian group of natural transformations -

(HM) = homa(X, Y @4 M),
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where the tensor product and the sum of maps of diagrams are taken objectwise.
The identification between ker p and M of [5, 1.2.5.1] extends to an isomorphism
ker(S>1Wp = DHM)™. By Lemma 3.4.3, it is enough to show that the section
i(S.Z’l)(”)DPA — i(S_z’l)(")DPAKM is essentially surjective. As DP4 and P4 are naturally
equivalent categories, it suffices to show that the section i(S.Z’l)(")PA — i(S?’l)(")PAxM
is essentially surjective. For n = 0, this is the section

s =(-)®a(AxX M) :Pr — Paxm

4 which is essentially surjective by [5, 1.2.5.4]. For n > 1, we show more generally that,
if s : C — B is an essentially surjective exact functor, and B is a split-exact category,
then S2!s: S2!C — S>!B is also essentially surjective. The result follows by induction
on n as (S.z’l)(")PAKM is split-exact. Since B is split-exact, a diagram X in SIZ,’IB is
(non-canonically) isomorphic to the diagram Y in Sf,’lB with vertices

Yy = @ ker(Xi—1<itj—1<it+j — Xi<itj—1<itj)-
o=(0F 172P=i=i+1)er(6)

Here r(0) is the set of retractions for the map 6 : [2] — [p], and the maps of the diagram
Y are inclusions and projections of the direct summands. This splitting is the sz,’l-analog
of the result that the objects of a diagram in S,B decompose as direct sums of the
diagonal objects. We refer to [13] for a proof. By the above splitting, it is enough to find
a diagram in S,f‘lC whose image by s is isomorphic to Y. We denote the kernel in the
above splitting corresponding to a retraction p by b,. As s is essentially surjective, one
can choose isomorphisms €, : b,—s(c,) for some objects ¢, in C. Since the maps in the
diagram Y are all projections and inclusions, these arbitrary choices of isomorphisms fit
together into an isomorphism of diagrams ¥ = @per(e) s(cp). Define Z in S,f’lc to have
vertices Zyp = P per(®) Cp and projections and inclusions as maps. Since s is exact, it is in
particular additive, and there are isomorphisms s(Z) = @per<0) s(cp) =Y =X.

We are left with showing that F induces a Z/2-equivalence on realizations. This is a
general property of equivalences of categories, proved in Lemma 3.4.6 below. O

Lemma 3.4.6. Let A and B be categories with strict duality, and let F : A — B be a fully
faithful and essentially surjective functor which commutes strictly with the dualities. Then
F induces a Z/2-equivalence on geometric realizations.

Proof. Let us denote by D4 and Dp the respective dualities on A and B. A choice of
objects ap in A and of isomorphisms €, : F(ap) — b, for every object b in B, gives an
inverse functor F’ : B — A. It is defined on objects by F’(b) = ap, and on morphisms by

-1

€,
L) = F Y (Fay) -2 b L5 b 2 F(a))).

F /(b —
The functor F/ commutes with the dualities up to a natural isomorphism & : F/Dg =
D4 F'’ defined by

€Dgb Dp(ep)

& = F~'(FF'Dy(b) = F(apy) Dyb Dy F(ap) = FD(ay) = FDAF' (b))
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The pair (F’,&) induces an inverse D(F’, &) for the functor DF : DA — DB that

commutes strictly with the dualities. It sends an object (b, d,¢:d 3 DB(b)) of DB
to

(F'(b). F'(d). F'(d) “% F'Dp(b) 2> DAF (b)),

and a morphism (f, g) in DB to (F'(f), F'(g)). This induces a Z/2-homotopy inverse for
DF on geometric realizations. There is a natural equivalence of categories A — DA that
sends a to (Daa, a,idp,,), giving a commutative square of Z/2-spaces

|A| —E—B|

| o |

|DA| _=" |DB|
D(F'£)

It remains to show that the vertical maps are Z/2-equivalences. We show this for A, and
we drop the subscript A from the strict duality D := D4. Since A — DA is an equivalence
of categories, it induces a non-equivariant equivalence on realizations. Therefore we need
to show that |A|%/2 — |DA|%/? is an equivalence. Taking the edgewise subdivision of the
nerve of A, one can see that the Z/2-fixed points of |A| are naturally equivalent to the
geometric realization of the category Sym A, with objects self-dual isomorphisms

ObSymA = {(a € A, k:a > Da) | D(k) =k},

and morphisms (a, k) — (a’, k') maps f:a — a’ in A which satisfy k = D(f/)k'f. Tt
remains to show that Sym A is equivalent to SymDA. There are mutually inverses
equivalences of categories p:SymDA — Sym A and s:SymA — Sym DA defined on

objects by
k k
d<——c Da<—a
e » B
t/)i%%/ ziqu) — (c,¢po0k) and (a,k:a — Da) +—— H H
Dc <— Dd Da <— DDa
D(k) D (k)

and on morphisms by p(f :c— ¢’,g:d — d) = f and s(f) = (f, D(f)). O

Given an exact category C and an additive functor M : C°? @ C — Ab, let [ [~ M be the
groupoid defined as the disjoint union of the groups M(c, c¢). Its objects are the objects
of C, and it has only endomorphisms, defined by

(]_[ M) (c,c) = M(c, ).
C

The composition of endomorphisms is the addition in the Abelian groups M(c, ¢). Strict
dualities D on C and J on M induce a strict duality on [[- M defined by D on objects
and by J: M(c,c) = M(Dc, Dc) on morphisms. There is an embedding e : [[o M —
i(C x M) which is the identity on objects, and which sends a morphism m in M(c, ¢)
to the morphism (id., m). Here i(C x M) denotes the subcategory of isomorphisms of
Cx M.
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Proposition 3.4.7. For every integer n > 1, the embedding

e: ] DPMP—i(s>H"DC)x DM
(2H"DC

induces a weak 7Z/2-equivalence on geometric realizations.

Remark 3.4.8. For the trivial bimodule M = 0, Proposition 3.4.7 states that the inclusion
Ob S.Z’IDC — iS.z’lDC induces a Z/2-equivalence on geometric realizations. The proof of
Proposition 3.4.7 uses a swallowing argument completely analogous to the argument of
[26, 1.4-Cor(2)], which shows that the inclusion as a discrete simplicial category Ob S,C —
iS,C induces an equivalence of classifying spaces.

Proof of 3.4.7. By induction, it is enough to prove the proposition for n = 1. We are
going to show that for every fixed integer k the map

Noipie : Noeyr || DM, — Naws1 (i(S2'DC) x DM,)
s21DC

admits a Z/2-equivariant homotopy inverse (which is not simplicial in k). This will show
that the edgewise subdivision of N,e is a levelwise Z/2-equivalence of Z/2-bisimplicial
sets, and hence it induces a Z/2-equivalence on geometric realizations.

Since [ | s21DC DM, is a disjoint union of groups, there is a natural isomorphism

Nogt1 ]_[ DM, = ]_[ Nop+1DM, = ]_[ DMEHFD
s21De s21De s21DC

where the direct sums are taken objectwise. An element of Ny 1 (i (S,z,’lDC) x DM)) is a
pair (¢, m) of a diagram of isomorphisms

by by b br+1 bit2 bak+1

Yo Y Y Yit1 Yor+1

e
e
¢ = ¢ol ¢1\L ¢1\¢ e J{¢k+l J{¢2k+l
~

D(Xo) <D71 D(X1) E ce m D(Xy) mlD(XkJrl)[m' e m D(X2k+1)

in S%’IC, and a collection of elements m; in the Abelian groups M, (X;—1, X;). We define a
homotopy inverse r : Nap41(i(S*1DC) x DM.) — Ls21pc DMEC+D by contracting the
bimodule components of (¢, m) onto the diagonal of the middle square in ¢. Precisely, r
is defined by B B

b
rg,m) = (Yer =5 Yo 25 D(Xp), r(m) € M(Xg, X)),

where r(m) has i-component

N

@ @Y @) @ip)emi, 1< <k
r(m); =

afyy @@ Dso a7 Dami, k1 <0 <2k 41
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This defines a retraction of Nok1e. Moreover, r commutes strictly with the dualities, since
we are contracting onto the middle square. We need to define a simplicial homotopy

H : Noj 1 (i (S31DC) x DM,) x A[1] —> Ny 1(i (S>'DC) x DM,)

between (Npg41€) or and the identity, which commutes with the dualities. Let us forget for
a moment the bimodule component. Consider N2k+1iS§’1DC = Nox4+1iDC as a category
with strict duality, with natural transformations of diagrams as morphisms. The DC
component of (Nagi1€2) orp extends to a functor A : Nogy1iDC — Nojy1iDC by sending
all the morphisms to identities. There is a natural isomorphism U : id = X defined at an
object ¢ by the diagram

Dcy Dc; e Dy, Dcyyy Dcyyo e Dcopy
do di a d di+1 dr+2 e dafy1
D(ay...ar) | D(ag...ar) D! | Darjags)™! D(agy1..azk41)”"
by...bgt1 by...bg41 bi+1 bk;lz (bry2.bos1) !
Dck::DCk:. .. Dck Dck Dck%. oo — Dck
Dkbr+1 Gkbr+1 Gkbit1 Gkbk+1 Gkbk+1 Gkbk+1
dit1 di+1 e==dpy1 di+1 di+1 e di+1

This natural transformation respects the dualities, in the sense that DUy o Upg = idpyg.
Write this natural transformation as a functor U : Npg41iDC X [1] —> No4+1iDC. In
simplicial degree p, define a homotopy

Ky : N2k+1i512,’1'DC x All], — N2k+1,'5127,lpc

by sending (g, o : [p] — [1]) to the composite

id,ev ¢xo . .
Car(21, [pD) Y Car (121, [p]) X [p] = Nas1iDC x [1] —L> Nyy11i DC.

Here we used the identification N2k+1i512,’1DC = iSIZ,’lNZk_HDC, and evy : Cat([2], [p]) —
[p] is the evaluation functor that sends 6 : [2] — [p] to 6(1). The construction of this
homotopy is similar to the one defined in [5, 1.2.3.2]. The map K defines a simplicial
homotopy between the i S.Z’IDC component of (Nyxyi1e)or and the identity. Now we
reintroduce the bimodule components. We label the objects and the maps in the diagram

K(¢,0) by
o(by) o(by) o (b2+1)
o (Yo) o (Y]) = - o (Yak+1)
K(f, o) = fT(d)o)i 0(¢1)l l0(¢2k+1)
D X D X D X
(0(Xo)) T (0(X1)) So@D Do GaiD (0 (X2k+1))
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In order to define the homotopy on the bimodule component, we need isomorphisms
o(X;) = X; to push forward and pull back the m;. By definition, o (X;) is the diagram
of S,z,’lC whose vertex at 0 : [2] — [p] is

(Xi)o, 06(1)=0

Xr)g, o6(1)=1.

o(Xi)e =

Let f; :0(Xi) — X; be the isomorphism with components

id(x;) 00(1)=0
(fDe =1 (a...aiy);'s o0()=1,1<i<k
(@i ...ar+1)0, o) =1, k<i <2k+1.
We define the simplicial homotopy H : N2k+1(i(S.2'1DC) X DM,) x A[1] — N2k+1(i(S.2’1

DC) x DM,) by
(¢, m, o : [p] = [1]) > (K($.0). K(§, 0)sm),

where K (¢, 0).m has i-component

(K (. 0)em)i = (fi D (f);'mi € M(o(Xi_1). 0 (X))). m
Proof of 3.4.1. For every n > 0, there is a commutative diagram of Real (n 4 1)-simplicial
sets
[ DM(S'H® == N, 1] DM® 2% Ni(SEHYWDP 4 gy <— Ob(S2)DDPy,
(S2HIMDPy (S21HYWDPy

T~ ! ]

Ob($2")MWDP, —=> N,i(§2")MWDPy <=— Ob(S2HWDP,

The three inclusions of objects are equivalences by Remark 3.4.8. The collection of
geometric realizations

KR, (A; M(s") =]  [[pm(s"H™
(S.Z,l)(n)’D'PA

has the structure of a symmetric Z/2-spectrum analogous to the one for I’(\R(A; M(St1y),
and the diagram above is a diagram of symmetric Z/2-spectra. Moreover, the composite
F oe is an equivalence for n > 1 by Propositions 3.4.5 and 3.4.7 (see also Lemma 3.4.6),
and hence it induces a m4-equivalence of Z/2-spectra.

As the Real K-theory spectrum IaQ(A X M, w X h, (¢, 0)) is defined as the homotopy
fiber of the right-hand vertical map, it is enough to show that the homotopy fiber of
the left-hand map KR(A; M(S'!)) — KR(A) is ms-equivalent to KR(A; M(Sh1)). This
is a consequence of the following general argument, which uses only that the map
KR(A; M(S'1)) — KR(A) is split. Let p: E — W be a map of Z/2-spectra, with a
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section s : W — E. The sequence W — E — hoc(s) is a fiber sequence, and therefore
the horizontal homotopy fibers in the square

E —— hoc(s)

|

W—m—sx

are equivalent, showing that the square is homotopy Cartesian. Thus the vertical fibers are
also equivalent; that is, the homotopy fiber of p is equivalent to the homotopy cofiber of
s. In our case, s : KR(A) — KR(A; M(S"1)) is a levelwise cofibration, and in particular
its homotopy cofiber is equivalent to the strict cofiber, which is IER(A; M), by
definition.

A. Appendix

A.1. Equivariant Dold—Thom construction and G-linearity

Let G be a finite group, and let M be a simplicial Z[G]-module. Define a functor
M(—) : G-S — G-Top, by sending a based simplicial G-set to the realization of the
based bisimplicial G-set with horizontal n-simplices

M(X), = M(Xy) = (EB(M-x))/M.* = P w-x.
x€Xy xeX,\*
The simplicial maps are defined as in Example 2.1.3. The group G acts both on M and

X, by conjugation. We prove the following proposition, which we used extensively in §3.

Proposition A.1.1. The functor M(—) : G-Sx — G-Top,, is a G-linear reduced homotopy
functor (see 2.1.1 and 2.1.3). Moreover, it preserves connectivity, in the sense that

ConnM(X)H > Ir{nir;IConn xK

for every subgroup H of G.
Lemma A.1.2. An inclusion of pointed G-simplicial sets X C Y in G-Si induces a fiber
sequence of G-spaces M(X) - M(Y) > M(Y/X).

Proof. The H-fixed points of the sequence in simplicial degree n is isomorphic to the

projection
B wia— D M B uhy
[x]le(Xp\x)/H [yle(Yp\x)/H [yle(Yu\Xn)/H

where H, is the stabilizer group of x in H. The projection of this sequence is a Kan
fibration of simplicial Abelian groups for every n. The bisimplicial Abelian groups M (X)
and M(X/Y)H satisfy the conditions for the Bousfield-Friedlander theorem of [9, TV-4.9],
and therefore the realization is a fiber sequence as well. O
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Proof of A.1.1. To prove that M(—) is a homotopy functor, suppose first that M is
discrete. We use a topological model for the functor M(—). Given a G-CW-complex
Y, define

M) = | [JmM" x¥"/s, / ~,

n>0

where ~ is the standard equivalence relation of the Dold-Thom construction, which
collapses the basepoint and identifies the zero labels. The space M (Y) has the quotient
topology, and its G-action is induced by the diagonal action on M" x Y". Notice that
M(—) defines a continuous functor from G-CW-complexes to G-spaces, and therefore
it preserves H-homotopy equivalences. If X is a simplicial set, the canonical map
M(X) - M(]X]) is a natural G-homeomorphism. If f : X — Y is a weak H-equivalence
of simplicial pointed G-sets, the induced map |X| — |Y| is a weak H-equivalence of
G-CW-complexes, and therefore an H-homotopy equivalence. By continuity of the functor
M, the map M(X) = M(|X|) > M(|]Y]) = M(Y) is an H-homotopy equivalence. Now let
M be a simplicial Z[G]-module, and let f : X — Y be a weak H-equivalence of simplicial
pointed G-sets. The argument above shows that in every simplicial degree k the map of
simplicial G-sets
M (X) — Mp(Y)

is an H-homotopy equivalence. Therefore its realization M(X) - M(Y) is a weak
H-equivalence, and M(—) is a homotopy functor.

To see that the functor M(—) preserves connectivity, fix a subgroup H of G, and
define ¢y := ming <y Conn XK. Suppose first that X is cgy-reduced. In this case, M(X)
is also cy-reduced, and therefore so is M (X)X . In particular, M(X)¥ is cy-connected.
For the general case, we claim that every pointed cy-connected simplicial G-set X
is H-equivalent to a cy-reduced pointed simplicial G-set. Non-equivariantly, one can
collapse the simplices of X up to the connectivity of X without changing the weak
homotopy type. Collapsing simplices up to simplicial degree cy gives a cpy-reduced
pointed simplicial G-set that has the same H-homotopy type of X. Since M(—) is a
homotopy functor, M(X)" is cy-connected.

Now we prove G-linearity. Given a homotopy cocartesian square X : P(2) - G-S, of
pointed simplicial G-sets, we can replace the horizontal maps by G-cofibrations since
M (—) is a homotopy functor. The rows of the diagram

M(f1)
M(Xy) N(Xy) M (hoc( f1))

M(fz)l lM(f2) cl'v

M(X) = M(X12) — M (hoc(f1))

are fiber sequences by the lemma above, and the map ¢ induced by the map between
cofibers is a G-equivalence. Therefore the homotopy fibers of M(f>) and M(f,) fit into
a fiber sequence

hof M(f) — hofM(?2) — hof(c) >~ *,
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where hof(c) is a weakly G-contractible space. To finish the proof it remains to show that
M (—) sends indexed wedges to indexed products. Given a pointed simplicial G-set X and
a finite G-set J, the canonical map

M(\/ X) — UM(X)

J

is a G-homeomorphism.
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