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This paper presents the theoretical formulation of a lithographical bending control (LBC) method that uses lithographical
degrees of freedom to control the bending of a multilayered beam. LBC is applied to a piezoelectric actuator that uses
PZT as the piezoelectric material. The theoretical model is compared with measurements using a weakly fixed bridge structure
suited for curvature measurement.
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I . I N T R O D U C T I O N

A piezoelectric actuator has ideal properties for RF-MEMS
switches and variable capacitors that require large displace-
ment with low voltage and low power. So far, several
groups are pursuing this approach [1–5]. The use of a piezo-
electric actuator, however, requires special care in controlling
actuator bending, since the multilayered beam can easily
bend owing to its residual stress. The bending can be con-
trolled, in principle, by optimizing the thickness and/or
stress of layers that constitute the beam. It is, however, not
easy to carry out this process, because the layer thickness
must be optimized to maximize piezoelectric displacement.
Tuning the stress values is also not easy because they
are affected by the process temperatures of succeeding
process steps.

In view of this, we have proposed the lithographical
bending control (LBC) method [5], which uses a lithogra-
phical pattern formed on top of the actuator to control
the bending. The use of lithographical degrees of freedom
enables one to control the bending without fine process
tuning. This paper aims to supplement our previous
paper by presenting a detailed theoretical framework
of LBC. The theoretical model is then compared with
measurements using a test structure designed for this
purpose.

This paper is organized as follows: In section II, a practical
model describing the bending of a multilayered beam and
piezoelectric displacement is reported. The theoretical
model of LBC is explained in section III. A unique actuator
structure is introduced in section IV to verify the theoretical
model. The measurement and discussion are also presented
in section IV.

I I . B E N D I N G A N D D I S P L A C E M E N T
O F A P I E Z O E L E C T R I C A C T U A T O R

A) Bending of a multilayered beam
Understanding the behavior of a multilayered beam is indis-
pensable in designing piezoelectric actuators. In this section,
we briefly summarize the key features.

The theoretical model of a piezoelectric actuator is pre-
sented by several authors [3], [6–9]. Smits have derived the
static and dynamic behavior of bimorphs [6]. DeVoe has
extended the approach to n-layer multimorphs [7]. DeVoe’s
formulation, however, requires inversion of an n � n matrix.
More practical models are presented by Klaasse et al. [3],
Tilmans [8] and Weinberg [9], which are essentially identical.
The formulation presented below is based on Weinberg’s
approach, but is further extended to a case in which the residual
stresses of all layers are taken into account.

To start with, let us consider a multilayer cantilever beam of
length L, width W and thickness T. The beam consists of n
layers and is fixed at the left edge as shown in Fig. 1. The thick-
ness, Young’s modulus and residual stress of the ith layer are
denoted as Ti, Ei and si (i ¼ 1, . . .n), respectively. For an iso-
tropic beam of W� T, Young’s modulus Ei should be replaced
by plate modulus Ei/(1 2 ni

2), with ni being a Poisson’s ratio of
the ith layer [7, 9]. The ti’s of Fig. 1 are related to Ti via Ti ¼

ti 2 ti21 and the total thickness is T ¼
P

i¼1
n Ti. The stress

at position z of the ith layer is given by:

si(z) ¼ si þ
Ei

r
(�z � z), (1)

where r is the radius of curvature and �z is the neutral axis. The
second term represents the stress caused by bending. Note that
r� L holds for our beam. The internal axial force F and
internal bending moment M can be written as

F ¼
Xn

i¼1

ðti

ti�1

si(z)W dz, (2)
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M ¼
Xn

i¼1

ðti

ti�1

si(z)Wz dz, (3)

For a free cantilever, we have F ¼ 0 and M ¼ 0. By solving
these equations, the unknown parameters r and �z can be
determined. The resulting radius is:

r ¼
E

2
1 � E0E2

E1S0 � E0S1
, (4)

where Sk and Ek (k ¼ 0, 1, 2) are k-th moments defined by:

Sk ¼
Xn

i¼1

ðti

ti�1

siz
k dz

¼
1

kþ 1

Xn

i¼1

si[(ti)
kþ1
� (ti�1)kþ1],

(5)

Ek ¼
Xn

i¼1

ðti

ti�1

Eiz
k dz

¼
1

kþ 1

Xn

i¼1

Ei[(ti)
kþ1
� (ti�1)kþ1]:

(6)

The beam deflection Z thus becomes:

Z ¼
L2

2r
¼
E1S0 � E0S1

2(E2
1 � E0E2)

L2: (7)

The analytic expression (7) suggests that the bending can
be controlled by tuning the residual stress of a specific layer.
However, the stress value is often affected by a high-
temperature annealing process. This implies that a number
of process iterations are needed to optimize the bending.

B) Piezoelectric displacement
Next we will derive piezoelectric displacement. Suppose the
jth layer is a piezoelectric material with the transverse piezo-
electric coupling constant d31. By applying a voltage difference
Vpiezo to the piezoelectric layer, the stress sj changes as:

sj ! sj þ Dsj, (8)

where

Dsj ¼ Ejd31Vpiezo=Tj (9)

is a stress change caused by the piezoelectric effect.
The change Ds is positive for upward electric field and posi-
tive d31. It should be noticed that in actual piezoelectric
material, Dsj is non-linear with respect to the electric field.
Especially, in the case of ferroelectric material, d31 has non-
trivial electric field dependence owing to the hysteresis
effect. Note also that d31 should be replaced by d31(1 þ nj)
for an isotropic beam of W� T.

The piezoelectric displacement is given by:

DZ ¼
@Z
@sj

Dsj: (10)

From equation (7), (9), (10), the explicit form of piezoelec-
tric displacement can be written as:

DZ ¼
L2[2E1 � E0(tj þ tj�1)]

E
2
1 � E0E2

Ejd31Vpiezo: (11)

As we can see, piezoelectric displacement is unaffected by
the residual stresses of layers i = j, since Z is a linear function
of stresses. This expression thus coincides with those derived
by Klaasse et al. [3] and Weinberg [9].

The above formulation can be extended to a case with
external loads. The deformation of the beam in this case can
be derived by solving the differential equation that represents
the matching of the external loads to the internal bending
moment [10]. For example, if a vertical point load Fext is
applied to the beam tip, the beam deflection changes as:

Z! Z0 ¼ Z þ Fext=kbeam, (12)

where

kbeam ¼
3W(E0E2 � E

2
1)

L3E0
(13)

is the effective beam spring constant. Equation (12) can be
used to calculate the contact force of the piezoelectric actuator,
if we recall Newton’s third law on action–reaction forces.
Namely, the actuator force pushing the substrate at a certain
Vpiezo is identical to the Fext that gives the same deflection at
the same voltage.

I I I . L I T H O G R A P H I C A L B E N D I N G
C O N T R O L

This section reports a theoretical formulation of LBC that is
not shown in our previous paper [5]. Before going into the
details, we shall explain the concept of LBC. As shown in
Fig. 2, a thin film is deposited and patterned on top of the
beam, so that after the sacrificial layer etching, the portions
with and without the top film become convex and concave
shape, respectively. The beam of length L is divided into n
concaves and convexes. If the ratio of the concave and
convex portion is set to a: 1 – a, the bending Z can be con-
trolled by the parameter a. In the following, we will derive

Fig. 1. Multilayered beam.
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beam deflection as a function of a and n. In doing this, we
make two assumptions:

1) The concave and convex portions are represented by
arcs with radii of r1 and r2, respectively, as in Fig. 3.

2) Each portion is jointed smoothly, i.e., the first deriva-
tives are continuous at the arc joints.

From now on, we try to find the tip coordinate Jn ¼ (Xn,
Zn)T in the xz Cartesian coordinate system. As we shall see, the
analytical expression of Jn can be derived, thanks to the
assumptions. As in Fig. 3, we denote the central angles of
the concave and convex as u1/n and u2/n, respectively. Since
the cantilever length is L, there exists a constraint:

r1u1 þ r2u2 ¼ L: (14)

The angles u1 and u2 are related to the ratio a via u1r1 ¼

La and u2r2 ¼ L(1 2 a). We also introduce angles Qi and
Fi (i ¼ 1, . . . , n) as in Fig. 4. The vectors Ai and Bi are
the centers of arcs that constitute the beam. Because of the
assumptions, the vector Bi 2 Ai is perpendicular to the
beam tangent. We thus obtain:

B i ¼ Ai þ (r1 þ r2)
cosQi

sinQi

� �
, (15)

Aiþ1 ¼ B i þ (r1 þ r2)
cosFi

sinFi

� �
: (16)

The coordinate of the cantilever tip can be written in terms
of Anþ1 as

Jn ¼ Anþ1 � r1
cosFn

sinFn

� �
: (17)

By solving the recurrence equations (15) and (16), the
vector Anþ1 can be expressed as

Anþ1 ¼ A1 þ (r1 þ r2)

Pn
i¼1

( cosQi þ cosFi)

Pn
i¼1

( sinQi þ sinFi)

0
BB@

1
CCA, (18)

where

A1 ¼ r1
0
1

� �
: (19)

Now, from Fig. 4, we can write down relationships between
Qi and Fi as;

Fi ¼ Qi �
u2

n
� p, (20)

Qiþ1 ¼ Fi þ
u1

n
þ p: (21)

These recurrence equations can be solved to yield:

Fi ¼
p

2
þ

i
n

(u1 � u2), (22)

Qi ¼
3
2
pþ

i
n
u1 �

i� 1
n

u2: (23)

The analytic expression of the tip coordinate can be derived
by inserting the above result in equation (18). Using the sumFig. 3. Model of the cantilever.

Fig. 2. Concept of LBC.

Fig. 4. Definition of angles Qi and Fi (i ¼ 1, . . . , n).
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rules of trigonometric functions,1 the result can be written as

Jn ¼
2 sinf

sinf=n

~Xn
~Zn

� �
, (24)

where f is defined by:

f ¼
u1 � u2

2
, (25)

and

~Xn ¼ (r1 þ r2) sin
u1

2n
cos

u1

2n
þ f

� �
þ r1 sin

f

n
cosf,

~Zn ¼ r1 sin
u1

2n
sin

u2

2n
þ f

� �
þ r2 sin

u2

2n
sin

u1

2n
þ f

� �
:

This is the analytic result. For practical purposes, it is useful
to derive some approximate formulas.

Firstly, in the n!1 limit, the tip coordinate converges to
a non-trivial value. Recalling the constraint of equation (14),
the limit becomes:

J1 ¼

L
f
þ 2(r1 þ r2)

� �
sinf cosf

L
f

sin2 f

0
BB@

1
CCA: (26)

At f! 0, this converges to (L 0)T, as it should.
Secondly, we derive an expression when the radii r1 and r2

are much longer than the actuator length L. This is the case
that holds for most MEMS actuators. The expression for this
case is obtained by retaining the first order terms of ui’s in
equation (24). For later purposes, it is useful to recast the
result in terms of the ratio a. The resulting bending Zn becomes:

Zn ¼ Z1 þ
L2a(1� a)

2n
1
r1
þ

1
r2

� �
, (27)

where

Z1 ¼
L2

2
a

r1
�

1� a

r2

� �
(28)

is a term that survives at n! 1. The expression of Z1 can also
be derived by setting ui� 1 in equation (26). In Fig. 5, we, show
the a-dependence of Zn for some n’s. As can be see Zn becomes
linear for large n, and the bending can be changed from 2L2/
(2r2) to þL2/(2r1) by the parameter.

I V . F A B R I C A T I O N A N D
M E A S U R E M E N T O F A N
L B C - A P P L I E D A C T U A T O R

A) Actuator structure
To see the applicability of the above approach, we have fabri-
cated a piezoelectric actuator to which LBC is applied. As a
piezoelectric material, lead zirconate titanate (PZT) is used.
The composition of the actuator is depicted in Fig. 6. The
two Pt layers are used as actuation electrodes. The residual
stresses of the top SiO2 film and Al are compressive and
tensile, respectively. Thus, the portions with and without the
top layer become convex and concave, respectively, after sacri-
ficial layer removal. The actuator is fabricated in a surface
micromachining process with a polysilicon sacrificial layer.
Details of the process flow are reported in [4].

The cantilever-type actuator presented in our previous paper
[5] is not suited for verification of LBC, since the cantilever tip
touches the substrate when the beam shape is in convex form.
We have thus introduced a weakly-fixed-bridge (WFB) struc-
ture. The top view and corresponding xz-axis of the WFB struc-
ture are shown in Fig. 7. The actuator portion is fixed at both
ends, but thanks to the flexures, the actuator can bend freely
according to its internal stress. The flexures also serve as bias
lines to the top/bottom actuation electrodes. Thus, the actuator
curvature changes when a voltage is applied. The PZT layer
shrinks in the lateral direction when the downward electric
field is applied. Because of the thick Al layer, the displacement
Z decreases by electric field application. We confirmed that the
curvature change is identical to the cantilever case, which
implies that the flexure spring constant is weak enough.

B) Measurement and analysis of initial
deflection
The dimension L shown in Fig. 7 is set to 150 mm and n ¼ 19
for the L section. The interference microscope images for

Fig. 5. Theoretical plot of Zn.

Fig. 6. Composition of the piezoelectric actuator.

1Sum rules of trigonometric functions with arguments in arithmetic
progression:

Xn

k¼0

sin (mþ kn) ¼
sin (((nþ 1)n)=2) sin (mþ (nn=2))

sin (n=2)
,

Xn

k¼0

cos (mþ kn) ¼
sin (((nþ 1)n)=2) cos (mþ (nn=2))

sin (n=2)
:
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some values of a are shown in Figs. 8(a) and (b). The
measured a-dependence of the initial displacement is
plotted in Fig. 9. The radii are found to be r1 ¼ 5.4 mm and
r2 ¼ 2.3 mm. As expected, the deflection Z increases monoto-
nically with a. However, the naive theoretical model (the
dotted line) does not fit well with the measurements. The dis-
crepancy can be explained by assuming an offset in the stress
distribution. This model is illustrated in Fig. 10. As shown in
the figure, the non-zero stress exists only in the central portion
of the top layer, and the stress is zero in the offset region of
length D. The offset is caused by a stress relaxation at the
edge. Over-etching of the top layer can also induce
the offset. If the stress distribution is abrupt as in Fig. 10,
the displacement becomes:

Z0n ¼ Zn þ
nLD

2
1
r1
þ

1
r2

� �
(29)

for 0 , a � 1 2 nD/L and

Z0n ¼
L2

2r1
(30)

for 1 2 nD/L � a� 1. This model succeeds in explaining
the tendency of the measured plot as shown in Fig. 9. The
fitted offset value is D ¼ 1.8 mm. The offset model may be
improved by incorporating smooth stress distribution
instead of the abrupt one. Note also that if the offset value
is independent of n, which is plausible, the discrepancy
between the measurement and the naive model of equation
(27) becomes smaller for small n, since the offset is negligible
for this case.

C) Piezoelectric displacement
The measured piezoelectric displacement is shown in Fig. 11.
As expected from the theoretical analysis, the displacement is
nearly independent of a. The piezoelectric actuator of L ¼
150 mm enables 2.7 mm displacement at Vpiezo ¼ 3 V. This
actuator is used to realize the 3 V-operation RF-MEMS variable
capacitor [5].

Fig. 7. Top view of the weakly-fixed-bridge (WFB) structure and definition of
Z in the cross section.

Fig. 8. Images of fabricated WFB structure taken by an interference
microscope.

Fig. 9. Measured and theoretical initial deflection.

Fig. 10. Offset model.

Fig. 11. Measured piezoelctric displacement.
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D) Cancellation of temperature dependence
The essence of the present approach is in the use of the
additional degrees of freedom a, brought about by the litho-
graphy. This implies that in case the bending can be controlled
simply by stress tuning, the additional parameter a can be
used for other purposes. For example, the parameter can be
used to eliminate the dependence of Z with respect to temp-
erature t. This can be accomplished as in the band-gap refer-
ence circuit, which is a circuit generating temperature-
independent reference voltage [11]. Namely, in our case, the
t-dependence can be eliminated to the first order in t by
tuning a so that @Z/@t becomes zero at a certain t.

V . S U M M A R Y

In this paper, we have presented a theoretical model of LBC in
which a lithographical pattern is used to control the bending.
The model succeeds in explaining the measured data obtained
from the WFB structure. The additional degrees of freedom
introduced by the lithographical method enable simple and
practical curvature tuning. In this sense, the method can be
applied to various kinds of microstructures.
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