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Abstract
Let G(n,M) be a uniform random graph with n vertices andM edges. Let ℘n,M be the maximum block size
of G(n,M), that is, the maximum size of its maximal 2-connected induced subgraphs. We determine the
expectation of ℘n,M near the critical pointM = n/2. When n− 2M � n2/3, we find a constant c1 such that

c1 = lim
n→∞

(
1− 2M

n

)
E(℘n,M).

Inside the window of transition of G(n,M) with M = (n/2)(1+ λn−1/3), where λ is any real number, we
find an exact analytic expression for

c2(λ)= lim
n→∞

E
(
℘n,(n/2)(1+λn−1/3)

)
n1/3

.

This study relies on the symbolic method and analytic tools from generating function theory, which enable
us to describe the evolution of n−1/3

E
(
℘n,(n/2)(1+λn−1/3)

)
as a function of λ.

2010 MSC Codes: Primary: 68R05; Secondary: 05C30, 05C80

1. Introduction
Random graph theory [2, 13, 20] is an active area of research that combines algorithmics, combi-
natorics, probability theory and graph theory. The uniform random graph model G(n,M) studied
by Erdős and Rényi [8] consists of n vertices withM edges drawn uniformly at random from the
set of

(n
2
)
possible edges. Another closely related model, denotedG(n, p), was introduced indepen-

dently by Gilbert [15]. In the G(n, p) model, each potential edge is chosen to be included in the
graph, independently of the other edges, with probability p. Erdős and Rényi showed that formany
properties of random graphs, graphs with a number of edges slightly less than a given threshold are
unlikely to have a certain property, whereas graphs with slightly more edges are almost guaranteed
to satisfy the same property, showing radical changes in their structures (referred to as phase tran-
sition). As shown in their seminal paper [8], whenM = cn/2 for constant c, the largest component
of G(n,M) has asymptotically almost surely (a.a.s. for short) O( log n),�(n2/3) or �(n) vertices
according to whether c< 1, c= 1 or c> 1. This double-jump phenomenon about the structures of
G(n,M) was one of themost spectacular results in [8] which later became a cornerstone of random
graph theory. Due to such a dramatic change, researchers worked around the critical value n/2,
and one can distinguish three different phases: subcritical when (M − n/2)n−2/3 → −∞, critical
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for M = n/2+O(n2/3) and supercritical as (M − n/2)n−2/3 → ∞. We refer to Bollobás [2] and
Janson, Łuczak and Ruciński [20] for books devoted to the random graphs G(n,M) and G(n, p).
While theG(n, p) model is the one more commonly used today, partly due to the independence of
the edges, theG(n,M) model has a more enumerative flavour, allowing generating-function-based
approaches. By setting

p= 1
n

+ λ

n4/3
,

the stated results of this paper can be extended to the G(n, p) model.

Previous work. In graph theory, a block is a maximal 2-connected subgraph (formal definitions
are given in Section 2). The problem of estimating the maximum block size has been well studied
for some classes of graphs. For a graph drawn uniformly from the class of simple labelled planar
graphs with n vertices, the expectation of the number of vertices in the largest block is αn asymp-
totically almost surely (a.a.s.) where α ≈ 0.95982 (see Panagiotou and Steger [24] and Giménez,
Noy and Rué [16]).

For the labelled connected class, these authors also proved independently that a connected
random planar graph has a unique block of linear size.

When we restrict to subcritical graphs, Drmota and Noy [7] proved that the maximum block
size of a random connected graph in an aperiodica subcritical graph class is O( log n).

For maps (a map is a planar graph embedded in the plane), Gao andWormald [14] proved that
a random map with n edges has almost surely around n/3 edges. That is, the probability that the
size of the largest block is about n/3 tends to 1 as n goes to infinity. This result has been improved
by Banderier, Flajolet, Schaeffer and Soria [1].

Panagiotou [23] obtained more general results for any graph class C. He showed that the size
of the largest block of a random graph from C with n vertices and m edges is either linear �(n)
or logarithmic O( log n). In particular, the author pointed out that random planar graphs with cn
edges belong to the first category, while random outerplanar and series-parallel graphs with fixed
average degree belong to the second category.

For the Erdős–RényiG(n,M) model, the maximum block size is implicitly a well-studied graph
property whenM = cn/2 for fixed c< 1. For this range, G(n,M) contains only trees and unicyclic
components a.a.s. [8]. So, studying maximum block size and the longest cycle are the same in
this case. Let ℘n,M denote the maximum block size of G(n,M). It is shown in [2, Corollary 5.8]
that as M = cn/2 for fixed c< 1, then ℘n,M is a.a.s. at most ω for any function ω = ω(n)→ ∞.
Pittel [25] then obtained the limiting distribution (amongst other results) for ℘n,M for c< 1. Note
that the results of Pittel are extremely precise and include other parameters of random graphs with
c satisfying c< 1− ε for fixed ε > 0.

Our results. In this paper we study the fine nature of the Erdős–Rényi phase transition, with
emphasis on what happens as the number of edges is close to n/2: within the window of the phase
transition and near to it, we quantify precisely the expectation of the maximum block size of
G(n,M).

For subcritical random graphs, our finding can be stated precisely as follows.b

Theorem 1.1. If n− 2M � n2/3, the maximum block size ℘n,M of G(n,M) satisfies

E(℘n,M)∼ c1
n

n− 2M
, (1.1)

aIn the periodic case, n≡ 1 mod d for some d > 1 (see [7] for more details).
b Throughout the rest of this paper we use standard asymptotic notation. We write A(n)	 B(n) if A(n)= o(B(n)), i.e.

limn→∞ A(n)/B(n)= 0. Similarly, we write A(n)∼ B(n) if limn→∞ A(n)/B(n)= 1.
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where c1 ≈ 0.378 911 is the constant given by

c1 =
∫ ∞

0
(1− e−E1(v)) dv with E1(x)= 1

2

∫ ∞

x
e−t dt

t
. (1.2)

Note that the constant c1 above is up to a factor of 2 referred to as the Flajolet–Odlyzko con-
stant in Finch’s book [9, p. 290] and appeared as the proportion of the expected size of the largest
connected component in a random mapping of n elements [11].

For critical random graphs, we have the following result.

Theorem 1.2. Let λ be any real constant and M = (n/2)(1+ λn−1/3). The maximum block size
℘n,M of G(n,M) satisfies

E(℘n,M)∼ c2(λ) n1/3, (1.3)
where

c2(λ)= 1
α

∫ ∞

0

(
1− √

2π
∑
r�0

∑
d�0

A
(
3r + 1

2
, λ
)
e−E1(u) e[�uα

−1n1/3�]
r,d (e−u)

)
du, (1.4)

E1(x) is defined in (1.2), α is the positive solution of
λ = α−1 − α, (1.5)

the function A is defined by

A(y, λ)= e−λ3/6

3(y+1)/3

∑
k�0

( 123
2/3λ)k

k! 	((y+ 1− 2k)/3)
, (1.6)

and the (e[s]r,d(z)) are polynomials with rational coefficients defined recursively by (2.14).

Our results give the first-order asymptotics of the expectation of the maximum block size in
the critical regime of G(n,M). As is the case for similar results on the probability of planarity
of the Erdős–Rényi critical random graphs [22] or on the core of large random hypergraphs [5],
our results are also expressed in terms of the function A, which is related to the Airy function, as
described in [19, equations (10.28)–(10.32)].

Indeed, the function A(y, λ) given by (1.6) has been encountered in the physics of random
graphs (see [10, 19]).

It is important to note that there is no discontinuity between Theorems 1.1 and 1.2. First,
observe that as

M = n
2

− λ(n)n2/3

2
with 1	 λ(n)	 n1/3,

equation (1.1) states that E(℘n,M) is about c1n1/3/(λ(n)). Next, to see that this value matches the
one from (1.3), we argue as follows. In (1.5), as λ(n)→ −∞ we have α ∼ |λ(n)| and

A
(
3r + 1

2
, λ
)

∼ 1√
2π |λ(n)|3r

(see [19, equation (10.3)]). Thus, all the terms in the inner double summation ‘vanish’ except the
one corresponding to r = 0 and d = 0 (this term is the coefficient for graphs without multicyclic
components e[k]0,0 = 1). It is then notable that as λ(n)→ −∞, c2(λ(n)) behaves as c1/|λ(n)|.

Outline of the proofs and organization of the paper. In [11, Section 4], Flajolet and Odlyzko
described generating-function-based methods to study extremal statistics on random mappings.
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Random graphs are obviously harder structures but, as shown in the masterful work of Janson,
Knuth, Łuczak and Pittel [19], analytic combinatorics can be used to study the development of
the connected components of G(n,M) in depth. As in [11], we will characterize the expectation of
℘n,M by means of truncated generating functions.

Given a family F of graphs, let (Fn) denote the number of graphs of F with n vertices. The
exponential generating function (EGF for short) associated with the sequence (Fn) (or family F)
is F(z)=∑

n�0 Fn(zn/n!). Let F[k](z) be the EGF of the graphs in F but with all blocks of size at
most k. From the formula for the mean value of a discrete random variable X,

E(X)=
∑
k�0

kP[X = k]=
∑
k�0

(1− P[X � k]), (1.7)

we get a generating function version to obtain


(z)=
∑
k�0

[F(z)− F[k](z)], (1.8)

and the expectation of the maximum block size of graphs of F isc

n![zn]
(z)
Fn

.

In this paper we apply the scheme above by counting realizations of G(n,M) with all blocks of
size less than a certain value k. Once we get the forms of their generating functions, we will use
complex analysis techniques to obtain our results.

To get the forms of the exponential generating function, we start with the enumeration of
trees of given degree specification. For sake of simplicity, suppose that we know how to count
the number of labellings of a fixed tree τ with a given degree specification. We can replace each
node v of degree d(v) in τ with a block bv of size at most k and with d(v) distinguished vertices.
Such blocks can be enumerated using the Chae–Palmer–Robinson formula [3] for the number
of cubic (3-regular) block multigraphs with any given numbers of single edges and double edges.
This is of great help since a.a.s. in critical random graphs, the cores are cubic: it is well known
(see [19,20]) that the typical realizations of random graphs whenM is close to n/2 contain a set of
trees, another set of unicyclic components (connected components containing exactly one cycle)
and some complex components not necessarily connected but with cubic (or 3-regular) 3-cores.

By substituting each edge of the original tree τ with a sequence of rooted trees with generating
series 1/(1− T(z)) (where T(z)= z eT(z) is the Cayley rooted tree EGF), we can now deduce from
this construction the EGFs of the typical graphs whose blocks are of size almost k. Finally, using
these series in the spirit of (1.8), we can quantify asymptotically the expectation of the maximum
block size in critical random graphs.

This paper is organized as follows. Section 2 starts with the enumeration of trees of given
degree specification. We then show how to enumerate 2-connected graphs with 3-regular 3-
cores. Combining the trees and the block graphs lead to the forms of the generating functions
of connected graphs under certain conditions. Section 2 ends with the enumeration of complex
connected components with all blocks of size less than a parameter k. Based on the previous
results and by means of analytic methods, Section 3 (resp. 4) provides the proof of Theorem 1.1
(resp. 1.2).

cFor any power series A(z)=∑
anzn, [zn]A(z) denotes the nth coefficient of A(z), i.e. [zn]A(z)= an.
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2. Enumerative tools
Trees of given degree specification. Let U(z) be the exponential generating function of labelled
unrooted trees and let T(z) be the EGF of rooted labelled trees. It is well known thatd

U(z)=
∞∑
n=1

nn−2 zn

n! = T(z)− T(z)2

2
and T(z)=

∞∑
n=1

nn−1 zn

n! = z eT(z). (2.1)

For a tree with exactlymi vertices of degree i, define its degree specification as the (n− 1)-tuple
(m1,m2, . . . ,mn−1). We have the following.

Lemma 2.1. The number of labelled trees with n vertices and degree specification
(m1,m2, . . . ,mn−1)

with
∑n

i=1 mi = n and
∑n

i=1 imi = 2n− 2 is

an(m1,m2, . . . ,mn−1)= (n− 2)!∏n−1
i=1 ((i− 1)!)mi

(
n

m1,m2, . . . ,mn−1

)
.

Proof. Using the Prüfer code (see [21]), the number of trees with degree sequence d1, d2, . . . , dn
(i.e. with node numbered i of degree di) is (n− 2)!/(∏n

i=1 (di − 1)!). The result is then obtained
by regrouping nodes of the same degree.

Define the EGF associated with an(m1,m2, . . . ,mn−1) by

U(δ1, δ2, . . . ; z)=
∞∑
n=2

∑
an(m1,m2, . . . ,mn−1)δm1

1 δ
m2
2 · · · δmn−1

n−1
zn

n! , (2.2)

where the inner summation is taken over all i such that
∑

imi = 2n− 2 and
∑

mi = n. Define
Un(δ1, δ2, . . . , δn−1) as

Un(δ1, δ2, . . . , δn−1)= [zn]U(δ1, δ2, . . . , δn−1; z). (2.3)
The following result allows us to compute Un(δ1, . . . , δn−1) recursively.

Lemma 2.2. The generating functions Un defined in (2.3) satisfy U2(δ1)= δ21/(2), and for any n� 3,

Un(δ1, . . . , δn−1)= δ2Un−1(δ1, . . . , δn−2)+
n−2∑
i=2

δi+1

∫ δ1

0

∂

∂δi
Un−1(x, δ2, . . . , δn−2) dx.

Proof. The case n= 2 is immediate. Let Un be the family of trees of size n and let U•
n be the family

of rooted trees of size n whose roots are of degree one. Deleting the root of the latter trees gives
unrooted trees of size n− 1. Conversely, an element of U•

n can be obtained from an element of
Un−1, by choosing any vertex and by attaching to this vertex a new vertex which is the root of the
newly obtained tree. In terms of EGF, we have

U•
n(δ1, . . . , δn−1)=

n−2∑
i=1

δ1δi+1
∂

∂δi
Un−1(δ1, . . . , δn−2).

The combinatorial operator corresponds to choosing a vertex of degree i and adding the root is
δ1δi(∂/(∂δi)). The multiplication by the terms δi+1δ

−1
i reflects the fact that we have a vertex of

d We refer for instance to Goulden and Jackson [17] for combinatorial operators, to Harary and Palmer [18] for graphical
enumeration and to Flajolet and Sedgewick [12] for the symbolic method of generating functions.
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degree i that becomes a vertex of degree i+ 1 after the addition of the new vertex of degree 1 (thus
the term δ1). Next, we have to unmark the root, which is by construction of degree one. After a bit
of algebra, we obtain the result.

Enumerating 2-connected graphs whose kernels are 3-regular. A bridge or cut-edge of a graph is an
edge whose removal increases its number of connected components. In particular, the deletion
of such an edge disconnects a connected graph. Similarly, an articulation point or cut-vertex of a
connected graph is a vertex whose removal disconnects a graph. A connected graph without an
articulation point is called a block or a 2-connected graph.

Following the terminology of [19], a connected graph has excess r if it has r edges more than
vertices. Trees (resp. unicycles or unicyclic components) are connected components with excess
r = −1 (resp. r = 0). Connected components with excess r > 0 are called complex connected com-
ponents. A graph (not necessarily connected) is called complex when all its components are
complex. The total excess of a graph (not necessarily connected) is the number of edges plus the
number of acyclic components, minus the number of vertices.

Given a graph, its 2-core is obtained by deleting recursively all nodes of degree one. A smooth
graph is a graph without vertices of degree one.

The 3-core (also called kernel) of a complex graph is the graph obtained from its 2-core by
repeating the following process on any vertex of degree two: for a vertex of degree two, we can
remove it and splice together the two edges that it formerly touched. A graph is said to be cubic or
3-regular if all of its vertices are of degree three. Let Br denote the family of 2-connected smooth
graphs of excess r with 3-regular 3-cores, and let

B =
∞⋃
r=1

Br . (2.4)

In this paragraph, we aim to enumerate asymptotically the graphs of Br with n vertices. In [3],
Chae, Palmer and Robinson established recurrence relations for the numbers of labelled cubic
multigraphs with given connectivity, number of double edges and number of loops. For instance,
they were able to rederive Wormald’s result about the numbers of labelled connected simple cubic
graphs with 3n simple edges and 2n vertices [3, equation (24)]. They proved that the number of
such objects is given by

(2n)!
3n2n

(tn − 2tn−1), n� 2 (2.5)

with

t1 = 0, t2 = 1 and tn = 3ntn−1 + 2tn−2 + (3n− 1)
n−3∑
i=2

titn−1−i, n� 2. (2.6)

From the sequence (tn), they found the number of 2-connected multigraphs.

Lemma 2.3. (Chae, Palmer, Robinson). Let g(s, d) be the number of cubic block (2-connected
labelled) multigraphs with s single edges and d double edges. Then, the numbers g(s, d) satisfy

g(s, d)= 0 if s< 2, g(s, s)= (2s− 1)! and g(3s, 0)= (2s)!
3s2s

, ts − 2ts−1,

with ts defined as in (2.6). In all other cases,

g(s, d)= 2n(2n− 1)
(
(s− 1)

d
g(s− 1, d − 1)+ g(s− 3, d)

)
.
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Figure 1.

We are now ready to enumerate asymptotically the familyBr . Throughout the rest of this paper,
if A(z) and B(z) are two EGFs, we write

A(z)
 B(z) if and only if [zn]A(z)∼ [zn]B(z) as n→ +∞.

Lemma 2.4. For r � 1, let Br(z) be the EGF of smooth multigraphs of excess r whose kernels are
3-regular and 2-connected. Br(z) satisfies Br(z)
 br/(1− z)3r where b1 = 1/12 and, for r � 2,

br =
∑

s+2d=3r

g(s, d)
2d(2r)! , (2.7)

with the g(s, d) defined as in Lemma 2.3.

Proof. For r = 1, the unique 3-regular kernel of graphs of excess 1 whose cores are blocks is
depicted in Figure 1. It is easily seen that their EGF is given by

B1(z)= z2

12(1− z)3
,

so that

B1(z)
 1
12(1− z)3

.

The numbers g(s, d) defined in the above lemma count labelled cubic multigraphs with s single
edges and d double edges. If s+ 2d = 3r, these multigraphs are exactly the 3-cores of the graphs of
the family Br . Starting from the EGF g(s, d)((w3rz2r)/(2r)!) – with the variable w (resp. z) marking
the edges (resp. vertices) – if we want to reconstruct from these multigraphs the graphs of the
family Br , each edge w of these multigraphs is replaced by a sequence of vertices of degree two
introducing the term 1/(1− z) (for each of the 3r edges of the multigraphs). Next, we have to
compensate the symmetry of each double edge introducing the factor 1/2! d times.We then obtain
the EGF of the family Br :

Br(z)=
∑

s+2d=3r

g(s, d)
2d(2r)!

z2r

(1− z)3r
.

The proof is then completed using singularity analysis of EGFs (see [12]).

We need to count graphs of excess r with at most k vertices so that all the blocks of such
structures are of size at most k. We begin our task with the graphs with cubic and 2-connected
kernels.

Lemma 2.5. Let B[k]
r be the family of 2-connected graphs of excess r, with at most k− 2r vertices of

degree two in their 2-cores and whose 3-cores are cubic. For any fixed r � 1, we have

B[k]r (z)
 br
1− zk

(1− z)3r
.

Proof. Let us use temporarily two variables x and t to mark vertices of degree two and three.
The 3-cores of the graphs of Br have as bivariate EGF brw3rt2r (with w the variable marking the
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edges). In order to reconstruct the 2-cores of B[k]
r , we insert at most k− 2r vertices on the 3r

paths between the vertices of degree three. This operation can be viewed as a sequence of an edge
subdivision operation. We proceed as follows. Starting with a 3-core, we have 3r possibilities for
adding one vertex x1 of degree two. Since adding a new vertex increases the number of edges, the
obtained graph contains exactly 3r + 1 edges. We do an edge subdivision operation to this graph
to obtain a graph with exactly two (x1, x2) vertices of degree two. This graph contains 3r + 2
edges. We repeat the same operation, and at the ith iteration we start with a graph with 3r + i−
1 edges which contains i− 1 vertices of degree two, to obtain a graph with i vertices of degree
two (x1, x2, . . . , xi). Therefore, the number of possibilities for adding i vertices from the 3-core
is 3r(3r + 1) · · · (3r + i− 1). Then we divide by i! to have a set of vertices {x1, x2, . . . , xi}. So the
generating function of the 2-cores having exactly i vertices of degree two and 2r vertices of degree
three whose 3-cores are 3-regular is br

(3r+i−1
i
)
xit2r . Taking into account all possible values of i, we

have

br
k−2r∑
i=0

(
3r + i− 1

i

)
xit2r = br

k−2r∑
i=0

(3r + i− 1)(3r + i− 2) · · · (i+ 1)
(3r − 1)! xit2r


 br
1− xk+1−2r

(1− x)3r
t2r 
 br

1− xk

(1− x)3r
t2r .

Let B•s
r be the set of graphs of Br such that s vertices of degree two of their 2-cores are distin-

guished amongst the others. In other words, an element of B•s
r can be obtained from an element

of Br by marking (or pointing) s unordered vertices of its 2-core. In terms of generating functions,
we simply get (see [12, 17, 18])

B•s
r (z)=

xs

s!
∂ s

∂xs
Br(x, t)

∣∣∣∣
t=x=z

= zs

s!
∂ s

∂zs

(
br

t2r

(1− z)3r

)∣∣∣∣
t=z

, (2.8)

where Br(x, t) is the bivariate EGF of Br , with x the variable for the vertices of degree two and t of
the degree three. (The substitution is made after the derivations.)

Define

b•s
r = 1

s!br
s∏

i=1
[3r + (s− i)]

so that

B•s
r (z)


b•s
r

(1− z)3r+s .

Now, if we switch to the class of graphs with blocks of size at most k, then by similar arguments,
the asymptotic number of graphs of B•s

r with s distinguished vertices and at most k vertices on
their 2-cores can be deduced by the formula

B•s,[k]
r (z)
 b•s

r
1− zk

(1− z)3r+s .

Counting 2-cores with cubic kernels by number of bridges. In this paragraph, we aim to enumerate
connected smooth graphs whose 3-cores are 3-regular according to their number of bridges (or
cut-edges) and their excess. To that end, let Cr be the family of such graphs with excess r � 0, and
for any d � 0 let

Cr,d def= {G ∈ Cr :G is a cycle or its 3-core is 3-regular and has d bridges}.
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Clearly, we have Cr,0 = Br . If we want to mark the excess of these graphs by the variable w, we
simply have

Cr,d(w, z)=wrCr,d(z).

Lemma 2.6. For any r � 1 and d � 1,
Cr,d(z)= (2.9)

[wr]Ud+1
(
B•1(w, z), 2!B•2(w, z), 3!B•3(w, z)+w−1z, 4!B•4(w, z), . . . , d!B•d(w, z)

) wd

(1− z)d
,

where Ud+1 is the EGF given by Lemma 2.2,

B0(w, z)= −1
2
log (1− z)− z

2
− z2

4
,

B•s
0 (w, z)=

1
s!

∂ s

∂zs
B0(w, z),

B•s(w, z)=
∑
r�0

wrB•s
r (z).

Proof. Any element of the family Crd can be obtained from a tree with d + 1 vertices as follows.
Consider a tree T of size d + 1. For each vertex v of T of degree s, we can replace vwith an element
ofB•s in s!manners.We distinguish two cases according to the degree of v: vertices of degree three
can be left unchanged or replaced by elements of B•3. This yields the term 3!B•s(w, z)+w−1z in
(2.9). Next, each edge of T can be replaced by a path of length at least 1 with a factor w, which
parametrizes the excess of the obtained graph. Since we have d edges in the tree, we add the factor
wd/((1− z)d).

Lemma 2.7. For r � 1 and d � 1, we have

Cr,d(z)
 cr,d
(1− z)3r

,

where the coefficients cr,d are defined by

cr,d = [wr]Ud+1(β1(w), β2(w), β3(w)+w−1, β4(w), . . . , βd(w))wd,
with b� given by (2.7) and

βs(w)= (s− 1)!
2

+
r−1∑
�=1

w�b�

s∏
i=1

[3� + (s− i)] with s� 1.

Proof. Applying the operator of
zs

s!
∂ s

∂zs
on unicyclic components gives

b•s
0 = 1

s!
(s− 1)!

2
.

Define the ordinary generating function of (b•s
� )��0 as

b•s(w)=
∞∑

�=0
b•s
� w

� = 1
s!
(
(s− 1)!

2
+

∞∑
�=1

b�

s∏
i=1

[3� + (s− i)]w�

)
. (2.10)
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After a bit of algebra, we obtain

cr,d = [wr]Ud+1(b•1(w), 2!b•2(w), 3!b•3(w)+w−1, 4!b•4(w), . . . , d!b•d(w))wd. (2.11)

Observe that for any d � 1, each block used to obtain an element of Cr,d is necessarily of excess at
most r − 1. So, the summation in (2.10) can be truncated to r − 1.

Let us restrict our attention to elements of Cr,d with blocks of size at most k. Denote this set
of graphs by C[k]

r,d . Since they can be obtained from a tree with d + 1 vertices by replacing each
vertex of degree s with an s-marked block (a block with a distinguished degree of degree two) of
the family

⋃∞
r=0 B•s,[k], we infer the following lemma.

Lemma 2.8. For fixed values of r, the EGF of graphs of C[k]
r,d satisfies

C[k]
r,d 
 cr,d

(1− zk)d+1

(1− z)3r
.

From connected components to complex components. Let E [k]
r denote the family of complex graphs

(not necessarily connected) of total excess r with all blocks of size � k. Let E[k]r be the EGF of E [k]
r .

Using the symbolic method and sprouting the rooted trees from the smooth graphs counted by
C[k]
r,d(z), we obtain

∞∑
r=0

wrE[k]r (z)= exp
( ∞∑
r=1

wr
2r−1∑
d�0

C[k]
r,d( T(z) )

)
.

We now use a general scheme which relates EGFs of connected components and EGFs of com-
plex components (see for instance [19, Section 8]). If E(w, z)= 1+∑

r�1 wrEr(z) with Er(z)

er/((1− T(z))3r) and Cr(z)
 cr/((1− T(z))3r) are EGFs satisfying

1+
∑
r�1

wrEr(z)= exp
( ∞∑
r=1

wrCr(z)
)
. (2.12)

then the coefficients (er) and (cr) are related by

e0 = 1 and er = cr + 1
r

r−1∑
j=1

jcjer−j as r � 1. (2.13)

Similarly, after some algebra we obtain the following result.

Lemma 2.9. For fixed r � 1,

E[k]r (z)

2r−1∑
d=0

e[k]r,d( T(z) )
(1− T(z))3r

,

where the functions (e[k]r,d) are defined recursively by e
[k]
0,0(z)= 1, e[k]r,d(z)= 0 if d > 2r − 1 and

e[k]r,d(z)= cr,d(1− zk)d+1 + 1
r

r−1∑
j=1

jcj,d e
[k]
r−j,d(z) (1− zk)d+1. (2.14)
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Remark.Note that the maximal range 2r − 1 of d appears when the 2-core is a cactus graph (each
edge lies on a path or on a unique cycle), each cycle has exactly one vertex of degree three and its
3-core is 3-regular.

3. Proof of Theorem 1.1
Following the work of Flajolet and Odlyzko [11] on extremal statistics of randommappings, let us
introduce the relevant EGF for the expectation of the maximum block size in G(n,M).

On the one hand, if there are n vertices,M edges and with a total excess r there must be exactly
n−M + r acyclic components. Thus, the number of (n,M)-graphse of total excess r without
blocks of size larger than k is

n![zn] U(z)n−M+r

(n−M + r)! (e
W0(z)−∑∞

i=k+1 T(z)i/(2i))E[k]r (z),

where

W0(z)= −1
2
log (1− T(z))− T(z)

2
− T(z)2

4
is the EGF of connected graphs of excess r = 0 (see [19, equation (3.5)]). Note that the above
expression is very similar to the right-hand side of [19, equation (13.5)]).

On the other hand, the EGF of all (n,M)-graphs is

GM(z)=
∑
n�0

((n
2
)

M

)
zn

n! .

Define


(z)=
∑
k�0

[
GM(z)−

∑
r�0

∑
n�0

(
n![zn] U(z)n−M+r

(n−M + r)! (e
W0(z)−∑∞

i=k+1 T(z)i/(2i))E[k]r (z)
)
zn

n!
]

(3.1)

so that
n![zn]((n2)

M
) 
(z)=

∑
k�0

[
1−

∑
r�0

n!((n2)
M
) [zn] U(z)n−M+r

(n−M + r)! (e
W0(z)−∑∞

i=k+1 T(z)i/(2i))E[k]r (z)
]

(3.2)

is the expectation of ℘n,M .
We know from the theory of random graphs that in the subcritical phase, i.e. when n− 2M �

n2/3, G(n,M) has no complex components with probability 1−O(n2/((n− 2M)3)) (see for
instance [4, Theorem 3.2]). We can restrict our attention to the typical random graphs since we
can obtain the result by using bounds for the EGF E[k]r (z) in (3.1):

1�
∑
r�0

E[k]r (z)�
∑
r�0

Er(z)�
∑
r�0

er
(1− T(z))3r

T(z).

The inequality between the two EGFs means that the coefficients of every power of z obeys
the same relation. In the above formula, the last inequality is [19, equation (15.2)] with er =
(6r)!/(25r32r(3r)! (2r)!). By means of these inequalities between EGFs, the coefficients of 
(z) are
bounded from below by those of∑

k�0

[
GM(z)−

∑
n�0

(
n![zn]U(z)n−M

(n−M)!
e−T(z)/2−T(z)2/4

(1− T(z))1/2
exp

(
−
∑

j�k+1

T(z)j

2j

))
zn

n!
]

(3.3)

eA graph with n vertices andM edges.
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and bounded from above by those of∑
k�0

[
GM(z)−

∑
r�0

∑
n�0

(
n![zn]U(z)n−M

(n−M)!
e−T(z)/2−T(z)2/4

(1− T(z))1/2
exp

(
−
∑

j�k+1

T(z)j

2j

)

× U(z)r

(n−M + r) · · · (n−M + 1)
erT(z)

(1− T(z))3r

)
zn

n!
]
. (3.4)

We need the following lemma to obtain the asymptotics of the coefficients of (3.3) and (3.4).

Lemma 3.1. Let a and b be any fixed rational numbers. For any sequence of integers M(n) such that
δn<M for some δ ∈ [0, 1/2] but n− 2M � n2/3, define

fa,b(n,M)= n!((n2)
M
) [zn]U(z)n−M

(n−M)!
U(z)b e−T(z)/2−T(z)2/4

(1− T(z))a
.

We have

fa,b(n,M)∼ 2b
(
M
n

)b (
1− M

n

)b(
1− 2M

n

)1/2−a
.

Proof. We write fa,b(m, n)= St(m, n) ·Ca(m, n) with

St(m, n)= n!((n2)
m
)
(n−m)!

and Ca(m, n)= [zn]
U(z)n−m

(n−m)!
U(z)b e−t(z)/2−t(z)2/4

(1− T(z))a
.

Using Stirling’s formula, for the stated range ofm we have

n!m!
(n−m)! = √

2 π
nn+1/2mm+1/2

(n−m)n−m+1/2 e
−2m

(
1+O

(
1
n

))
.

We also have ((n
2
)

m

)
= n2m

2mm! exp
(

−m
n

− m2

n2
+O

(
m
n2

)
+O

(
m3

n4

))
.

Next, we obtain

St(m, n)=
(
2πnm
n−m

)1/2 2mnnmm

n2m(n−m)n−m exp
(

−2m+ m
n

+ m2

n2

)(
1+O

(
1
n

))
. (3.5)

For Ca(m, n), using Cauchy’s integral formula and replacing z with z e−z, we obtain

Ca(m, n)= 2m−n

2π i

∮
(2T(z)− T(z)2)n−mU(z)b e−T(z)/2−T(z)2/4

(1− T(z))a
dz
zn+1

= 2m−n

2π i

∮
g(z)enh(z)

dz
z
, (3.6)

where

g(z)= (z − z2/2)b e−z/2−z2/4

(1− z)a−1 ,

and

h(z)= z − m
n
log z +

(
1− m

n

)
log (2− z).
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We have h′(z)= 0 for z = 1 or z = 2m/n. Further, h′′(1)= 2m/n− 1< 0 and

h′′
(
2m
n

)
= n(n− 2m)

4m(n−m)
> 0.

As in [10], we can apply the saddle-point method integrating around the circular path |z| = 2m/n.
Let �(θ) be the real part of h(2m/neiθ ). We have

�(θ)= 2m
n

cos θ +
(
1− 2m

n

)
log 2− m

n
log

(
m
n

)
+ (1−m/n)

2
log

(
1+ m2

n2
− 2m

n
cos θ

)
and

�′(θ)= −2m
n

sin θ + (1−m/n)m
n(1+m2/n2 − 2m/n cos θ)

sin θ .

We note that�(θ) is a symmetric function of θ . Fix a sufficiently small positive constant θ0. Then,
�(θ) takes its maximum value at θ = θ0 as θ ∈ [− π ,−θ0]∪ [θ0, π]. In fact,

�(θ)− �(π)= 4m
n

+
(
1− m

n

)
log

(
n−m
n+m

)
+O(θ2).

Therefore, if θ → 0, �(θ)> �(π). We also have �′(θ)= 0 for θ = 0 and θ = θ1 (for some θ1 such
that 0< θ1 < π). Calculations show that�(θ) is decreasing from 0 to θ1 and then increasing from
θ1 to π . We also have

h(p)(z)= (p− 1)!
(
(− 1)p

m
n zp

− (n−m)
n (2− z)p

)
, p� 2.

Hence,

h
(
2m
n

eiθ
)

= h
(
2m
n

)
+
∑
p�2

ξp(eiθ − 1)p,

where

ξp = (2m/n)p

p! h(p)
(
2m
n

)
.

We observe that in the stated range we have

|ξp| = (2m)p

pnp

∣∣∣∣(− 1)p
m

n (2m/n)p
− (n−m)

n (2− 2m/n)p

∣∣∣∣� m
np

+ mp

(n−m)p
n−m
np

.

We then have ∣∣∣∣∑
p�4

ξp(eiθ − 1)p
∣∣∣∣=O(θ4).

This allows us to write

h
(
2m
n

eiθ
)

= h
(
2m
n

)
− m(n− 2m)

2 n(n−m)
θ2 − i

(n2 − 5nm+ 2m2)m
6n(n−m)2

θ3 +O(θ4).

Let τ = n(n−m)/(m(n− 2m)) and

θ0 =
(

(n−m)
(n− 2m)m

)1/2
· ω(n)=

√
τ

n
· ω(n)

where we need a function ω(n) satisfying nθ20 � 1 but nθ30 	 1 as n→ ∞. We choose

ω(n)= (n− 2m)1/4

n1/6
. (3.7)
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We can now use the magnitude of the integrand at θ0 to bound the error, and our choice of θ0
satisfies ∣∣∣∣g(2mn eiθ0

)(
exp

(
nh
(
2m
n

eiθ0
))

− exp
(
nh
(
2m
n

)))∣∣∣∣=O(e−ω(n)2/2).

Thus we obtain

Ca(m, n)= 2m−n

2π

∫ θ0

−θ0

g
(
2m
n

eiθ
)
exp

(
nh
(
2m
n

eiθ
))

dθ(1+O(e−ω(n)2/2)).

We replace θ with (τ 1/2/n1/2)t. The integral in the above equation leads to(
τ

n

)1/2 ∫ ω(n)

−ω(n)
g
(
2m
n

exp
(
it
√

τ

n

))
exp

(
nh
(
2m
n

exp
(
it
√

τ

n

)))
dt.

Expanding g(2m/n eit
√

τ/n), we obtain(
τ

n

)1/2 ∫ ω(n)

−ω(n)
g
(
2m
n

)(
1− i

2mτ 1/2(n2 − 2m2)
n5/2(n− 2m)

t +O
(

n2

(n− 2m)3
t2
))

× exp
(
nh
(
2m
n

exp
(
it
√

τ

n

)))
dt.

Observe that our choice of ω(n) in (3.7) and the hypothesis n− 2m� n2/3 justify such an
expansion. Similarly, using the expansion of h(2m/n eit

√
τ/n) yields(

τ

n

)1/2 ∫ ω(n)

−ω(n)
g
(
2m
n

)(
1− i

2mτ 1/2(n2 − 2m2)
n5/2(n− 2m)

t +O
(

n2

(n− 2m)3
t2
))

× exp
(
nh
(
2m
n

)
− 1

2
t2
)

×
(
1− i

(n2 − 5nm+ 2m2)
6(n−m)1/2m1/2(n− 2m)3/2

t3 +O
(

n
(n− 2m)2

t4
))

dt.

Using the symmetry of the function, we can cancel terms such as it and it3 (in fact all odd powers
of t). Standard calculations show also that form in the stated ranges, multiplication of the factors
of it and it3 leads to a term of order of magnitude O(n2/(n− 2m)3t4). Therefore we obtain

Ca(m, n)= 2m−n

2π

(
τ

n

)1/2
g
(
2m
n

)
enh(2m/n)

∫ ω(n)

−ω(n)
e−t2/2

(
1+O

(
n2

(n− 2m)3
t4
))

dt,

Ca(m, n)= 2m−n
(

τ

2π n

)1/2
g
(
2m
n

)
enh(2m/n)

(
1+ e−O(ω(n)2) +O

(
n2

(n− 2m)3

))
. (3.8)

Multiplying (3.5) and (3.8) leads to the result after nice cancellations. (Note that the error terms
e−O(ω(n)2) and O(1/n) can be regrouped with the O(n2(n− 2m)−3).)

Using Lemma 3.1 with a= 1/2 and b= 0 on (3.3) after the change of variable u= T(z) and
approximating the sum by an integral, we obtain that E(℘n,M) is asymptotically bounded from
below by ∑

k�0

(
1− exp

(
−1
2

∫ ∞

(k+1)(1−2M/n)
e−v dv

v

))
.
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(We use the Euler–Maclaurin summation formula and the change of variable (k+ 1)(1− (2M)/n)
= u so dk= (1− (2M)/n)−1du.) The differences between (3.3) and (3.4) are the terms

er U(z)r T(z)
(n−M + r) · · · (n−M + 1)(1− T(z))3r

for r � 0, but our proof of Lemma 3.1 shows that the only contribution of these terms comes from
the termwith r = 0 (e0 = 1) for the considered values ofM. Combining these facts, we obtain (1.1).

4. Proof of Theorem 1.2
The following technical result is essentially Lemma 3 of [19]. Here we give it in a modified version
tailored to our needs (namely involving truncated series).

Lemma 4.1. Let M = (n/2)(1+ λn−1/3). Then for any natural integers a, k and r we have

n!((n2)
M
) [zn] U(z)n−M+r

(n−M + r)!
T(z)a(1− T(z)k)
(1− T(z))3r

exp
(
W0(z)−

∞∑
i=k

T(z)i

2i

)

= √
2 π exp

(
−

∞∑
j=k

e−jαn−1/3

2j

)
(1− e−kαn−1/3

)A
(
3r + 1

2
, λ
)(

1+O
(

λ4

n1/3

))
, (4.1)

uniformly for |λ| 	 n1/12, where A(y,μ) is defined by (1.6) and α is given by (1.5).

Proof. Using Stirling’s formula, we obtain

St(M, n)= n!((n2)
M
) 1
(n−M + r)! = √

2πn
2n−M+r

nr
exp

(
−λ3

6
+ 3

4
− n

)(
1+O

(
λ4

n1/3

))
. (4.2)

Using Cauchy integral’s formula and substituting z by z e−z, we obtain

Ca(M, n)= [zn]U(z)n−M+r T(z)a (1− T(z)k)
(1− T(z))3r

e(V(z)−
∑∞

j=k T(z)j/(2j))

= 1
2π i

∮ (
T(z)− T(z)2

2

)n−M+r T(z)a e−T(z)/2−T(z)2/4−∑∞
j=k T(z)j/2j

(1− T(z))3r+1/2
dz
zn+1

= 2M−n−ren

2π i

∮
g(u) exp (nh(u))

du
u
, (4.3)

where the integrand has been split into

g(u)= ua (2u− u2)r e−u/2−u2/4−∑∞
j=k uj/2j (1− uk)

(1− u)3r−1/2

and

h(u)= u− 1− log u−
(
1− M

n

)
log

1
1− (u− 1)2

.

The contour in (4.3) should keep |u| < 1. Precisely at the critical value M = n/2 we also have
h(1)= h′(1)= h′′(1)= 0. This triple zero occurs in the procedure used by Janson, Knuth, Łuczak
and Pittel [19] when investigating the value of the integral for large n. Let ν = n−1/3, and let α be
the positive solution of (1.5). Following the proof of [19, Lemma 3], we will evaluate (4.3) on the
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path z = e−(α+it)ν , where t runs from −πn1/3 to πn1/3:∮
f (z)

dz
z

= iν
∫ πn1/3

−πn1/3
f (e−(α+it)ν) dt.

Themain contribution to the value of this integral comes from the vicinity of t = 0. Themagnitude
of eh(z) depends on the real part of h(z), i.e. �h(z). �h(e−(α+it)ν) decreases as |t| increases and
|enh(z)| has its maximum on the circle z = e−(α+it)ν when t = 0.

We have

n h(e−sν)= 1
3
s3 + 1

2
λs2 +O((λ2s2 + s4)ν),

uniformly in any region such that |sν| < log 2. In [19, equation (10.7)], Janson, Knuth, Łuczak and
Pittel define

A(y,μ)= 1
2π i

∫
�(1)

s1−yeK(μ,s) ds,

where K(μ, s) is the polynomial

K(μ, s)= (s+ μ)2(2s− μ)
6

= s3

3
+ μs2

2
− μ3

6
and�(α) is a path in the complex plane that consists of the following three straight line segments:

s(t)=

⎧⎪⎨⎪⎩
−e−π i/3 t for− ∞ < t � −2α,
α + it sin π/3 for− 2α � t � +2α,
e+π i/3 t for+ 2α � t < +∞.

In particular, Janson, Knuth, Łuczak and Pittel proved (see [19, Section 10]) that A(y,μ) can be
expressed as (1.6).

For the function g(u), we have

g(e−sν)= (2e−sν − e−2sν)r

(1− e−sν)3r−1/2 e−asν−e−sν/2−e−2sν/4−∑∞
j=k e−jsν/(2j) (1− e−ksν)

= (sν)1/2−3re−3/4−∑∞
j=k e−jsν/(2j) (1− e−ksν) (1+O(sν)).

For g(u)enh(u) in the integrand of (4.3), we have

e−λ3/6f (e−sν)= e−3/4−∑∞
j=k e−jsν/(2j)

ν1/2−3r (1− e−ksν) s1−(3r+1/2)eK(λ,s)

× (1+O(sν)+O(λ2s2ν)+O(s4ν)),

when s=O(n1/12). Finally,

e−λ3/6

2π i

∮
g(u)enh(u)

du
u

= exp
(

−3
4

−
∞∑
j=k

e−jαν

2j

)
(1− e−kαν)

× ν3/2−3r A
(
3r + 1

2
, λ
)

+O(ν5/2−3re−λ3/6λ3r/2+1/4),

where the error term has been derived from those already in [19]. The proof of the lemma is
completed by multiplying (4.2) and (4.3).
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Using this lemma, equation (3.2) and approximating a sum by an integral, the expectation of
℘n,M is about

n∑
k=0

(
1−

∑
r

∑
d

√
2π exp

(
−

∞∑
j=k

e−jαn−1/3

2j

)
e[k]r,d(e

−αn−1/3
)A
(
3r + 1

2
, λ
))

(4.4)

= α−1n1/3
∫ αn2/3

0

(
1−

∑
r

∑
d

√
2π exp

(
−
∫ ∞

u

e−v

2v
dv
)
e[�uα

−1n1/3�]
r,d (e−u)A

(
3r + 1

2
, λ
))

du

where the polynomials e[s]r,d are given by (2.14).

Remark.We can give a lower bound for the expectation of℘n,M with a simple expression. Observe
that

1− T(z)k

(1− T(z))3r
� 1− T(z)k2

(1− T(z))3r
.

Thus, in (2.14), if we replace the factor (1− zk) by (1− zk2 ), we obtain a lower bound forE(℘n,M).
From (4.4), we can only consider the summation with values of k such that k� n1/6 since the
expectation of ℘n,M is of order O(n1/3). For k� n1/6,

e[k]r,d(e
−k2αn−1/3

)= er,d (1−O(e−k2n−1/3
)), (4.5)

where the coefficients er,d are defined recursively by

er,d = cr,d + 1
r

r−1∑
j=1

jcj,d er−j,d. (4.6)

Using these observations, the expectation of ℘n,M is bounded from below by

α−1n1/3
∫ αn2/3

0

(
1−

∑
r

∑
d

√
2π exp

(
−
∫ ∞

u

e−v

2v
dv
)
er,dA

(
3r + 1

2
, λ
))

du. (4.7)

Observe now that
∑

d er,d = er with er defined by (2.13) (see also [19, equation (7.2)]) and∑
r
√
2πerA(3r + 1/2, λ)= 1 as proved in the same paper (see [19, Section 14]). Thus, after nice

cancellations, we obtain

E(℘n,M)� n1/3

α

∫ ∞

0

(
1− exp

(
−
∫ ∞

u

e−v

2v
dv
))

du. (4.8)

5. Conclusion
We have shown that the generating function approach is well suited to precisely analysing the
expectation of the maximum block size of random graphs. Our analysis shows that analytic com-
binatorics gives access to a fine description of extremal parameters inside the window of transition
of random graphs. Our work complements previous descriptions of the structures of random
graphs such as the one in [6], where typical distances between the vertices and sizes of the 2-core
have been investigated.
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[21] Matoušek, J. and Nešetřil, J. (2008) An Invitation to Discrete Mathematics, second edition. Oxford University Press.
[22] Noy, M., Ravelomanana, V. and Rué, J. J. (2015) On the probability of planarity of a random graph near the critical

point. Proc. Amer. Math. Soc. 143 925–936.
[23] Panagiotou, K. (2009) Blocks in constrained random graphs with fixed average degree. In 21st International Conference

on Formal Power Series and Algebraic Combinatorics.
[24] Panagiotou, K. and Steger, A. (2010) Maximal biconnected subgraphs of random planar graphs. ACM Trans. Alg. 6 31.
[25] Pittel, B. (1988) A random graph with a sub-critical number of edges. Trans. Amer. Math. Soc. 309 51–75.
[26] Wright E.M. (1977) The number of connected sparsely edged graphs. J. Graph Theory 1 317–330.
[27] Wright E.M. (1980) The number of connected sparsely edged graphs III: Asymptotic results. J. Graph Theory 4 393–407.

Cite this article: Rasendrahasina V, Rasoanaivo A and Ravelomanana V (2019). Expected Maximum Block Size in Critical
Random Graphs. Combinatorics, Probability and Computing 28, 638–655. https://doi.org/10.1017/S0963548319000154

https://doi.org/10.1017/S0963548319000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000154
https://doi.org/10.1017/S0963548319000154

