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AN EXTENDED CONSTANT
CONDITIONAL CORRELATION
GARCH MODEL AND ITS
FOURTH-MOMENT STRUCTURE

CHANGLI HE AND TiIMO TERASVIRTA
Stockholm School of Economics

The constant conditional correlation general autoregressive conditional heteroske-
dasticity (GARCH) model is among the most commonly applied multivariate
GARCH models and serves as a benchmark against which other models can be
comparedIn this paper we consider an extension to this model and examine its
fourth-moment structurér he extensionfirst defined by Jeanthedd998 Econo-

metric Theoryl4, 70—86, is motivated by the result found and discussed in this
paper that the squared observations from the extended model have a rich autocor-
relation structureThis means that already the first-order model is capable of repro-
ducing a whole variety of autocorrelation structures observed in financial return
series These autocorrelations are derived for the first- and the second-order con-
stant conditional correlation GARCH modérhe usefulness of the theoretical
results of the paper is demonstrated by reconsidering an empirical example that
appeared in the original paper on the constant conditional correlation GARCH
model

1. INTRODUCTION

Univariate models for conditional heteroskedasticity have long been popular
in financial econometrics and volatility forecastingnd a large number of
applications have been published using general autoregressive conditional
heteroskedasticity GARCH) models The probability structure of univariate
GARCH(p,q) models has recently been under stu@pnditions of the exis-
tence of moments andh particular the fourth-moment structure of these mod-
els have been derive@ee e.g., He and Terasvirtal999a 1999h Karanasos
1999. These results are important as they help the user to find out how well
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the GARCH model and its extensions are capable of characterizing stylized
facts typical of many high-frequency financial time seriEsr general results

on the existence of moments in volatility modedee Carrasco and Chéz002

and Lanne and Saikkong2002.

GARCH models have been generalized to the vector,dagehe number of
applications has remained rather limited compared to univariate mddels-
variate GARCH models are surveyed in BollersiEmgle and Nelson(1994)
and Gouriéroux1997 Ch. 6); see also Palni1996 for a short reviewAs yet
relatively little is known about the moment structure of these modefgle
and Kroner(1995 derive a necessary and sufficient condition for weak station-
arity of vector GARCH modelsbut results for higher order moments do not
seem to exist in the literatur®ur starting point is one of the frequently applied
multivariate GARCH modelghe so-called constant conditional correlation gen-
eralized autoregressive heteroskedastic@Z C-GARCH model of Bollerslev
(1990. Bollerslev's model is in turn a generalization of the constant condi-
tional correlation ARCH model that appears in Cecch€ttimby and Figlewski
(1988. In this paper we consider an extended version of the CCC-GARCH
model We derive a sufficient condition for the existence of the fourth moments
for this model and most importantits complete fourth-moment structure
Because of rather involved calculations we restrict our considerations to the
second-order CCC-GARCH moddéls most of the applications seem to rely on
first-order modelsthis does not appear to be a serious restrictiamo other
papers containing results on fourth moments of multivariate GARCH models
Hafner(2003 and Karanaso&003, should be mentioned heréhese papers
contain rather general fourth-moment expressions that are not directly applica-
ble to the rather specific problem considered in this paper

Our model is an extension to the original CCC-GARCH model as defined in
Jeantheay1998; see also Ling and McAleg2003. In particular we show
that the squared observations of the extended first-order CCC-GARCH model
can already have a remarkably rich correlation structure able to cover many
shapes of autocorrelation functions that have been observed in praidtise
motivates the extension of the standard CCC-GARCH mddedarticular the
autocorrelations of individual processes do not necessarily decay monotoni-
cally from the first lag onwardBy comparisonthe autocorrelations of squared
observations in the standard CCC-GARQH) model still have the same
properties as they do in the univariate GAR@H) model This includes the
exponential decay of the autocorrelations of squared observations from the first
lag for all variables in the modelsing an empirical example in Bollerslev
(1990 we demonstrate how the use of the correlation structure of the CCC-
GARCH(1,1) model worked out in this paper helps one to enrich the interpre-
tation of the estimated models

The plan of the paper is as followShe extended CCC-GARCH model is
defined in Section 2Sections 3 and 4 contain the main results on the fourth-
moment structure of this mode$ection 5 briefly takes up a special case
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bivariate first-order modelSection 6 contains an empirical exampdad the
conclusions can be found in Section The proofs of results appear in the
Appendix

2. THE EXTENDED CONSTANT CONDITIONAL CORRELATION
GARCH MODEL

Following Jeanthea(i1998), consider the following vector stochastic process

Yi=pt &, (1)
& = Dz, (2

whereD, = diag{hy,...,hy} andh; is the conditional standard deviation of
&, 1 = 1,...,M. Furthermorethe stochastic vectar, = (zy,...,zZw)’ IS inde-
pendent and identically distribute@i.d.) with mean0O and positive definite
covariance matribR = [ p; ] such thatp; = 1 andp; # 0, i,j = 1,...,M. The
main diagonal elements & are restricted to unity for identification reasons
compare this with the univariate case which customarilyez? = 1. Further-
more h; = (hy,...,hu)’ is anM X 1 vector of conditional standard deviations
of g,. Let

&” = (ek,...,8%) = 22h?, 3)
where h{? = (h2,...,h2,)" and Z, = diag{z,..., zw}. Define the vector
GARCH(p,q) process
@ § @, - @
h” =ay+ > A5+ > BhZ, 4)
i=1 j=1

wherea, is anM X 1 vector with positive elements ad, i = 1,...,q, andB;,
j=1...,p, areM X M matrices such that each elemenﬂ'({ﬁ) is positive for
everyt. Note that(4) defines the diagonal elements Bf. From (2) it follows

that
E(stu:t—l) =0, (5)
E(e.&|/_1) = D;RD,, (6)

whereF;_, is theo-field generated by all the available information up through
timet — 1.

Remark 1 A sufficient condition forhﬁz) > 0 for all t is that all elements in
ag be positive and all elements i; andB; for eachi andj be nonnegative
(Note that all vector and matrix inequality signs in this paper represent element-
by-element inequality From Nelson and Caél992 we conjecture that this
condition is not necessargt least not ifp > 1 orq > 1 or both It follows
from z, ~ iid (O,R) thatE(e, &{| %_,) is positive definite
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Remark 2 The vector GARCH process defined by equatid@s-(6) is a
multivariate GARCH model with constant conditional correlatioflse CCC-
GARCH model of Bollerslev(1990 is obtained by assuming tha;, B,
i=1,...,0, andj = 1,..., p are diagonal matrice$n particular settingB; = 0,

i =1,...,p, yields the constant conditional correlation ARCH model intro-
duced in Cecchetti et a{1988.

3. THE FOURTH-MOMENT STRUCTURE OF THE SECOND-ORDER
EXTENDED CCC-GARCH MODEL

In this section we consider the vector GARCER) model defined in(2)—(6)
and seCy; = [c; ;] = A;ZZ + By, i = 1,2. Note that{C;} is a sequence ofiid.
random matrices such th&; is independent oh{z). By (3) we may rewrite

(4) as
hEZ) =89+ Cl,tflhg)l + Cz,t—zh@z- (7)
Let I, = EC;; and o = E(Ci ® Cjp), i,j = 1,2, where® denotes the

Kronecker product of two matriceket A(T") denote the modulus of the largest
eigenvalue of". We can now state the following result

THEOREM 1 The vectortGARCH(2,2) process defined in (2) and (3) and
(7) is weakly and strictly stationary if

MIg, +Te,) <1 (8)

Proof Apply Proposition 3L of Jeanthea(1998 to {&;} defined in(2) and
(3) and(7). u

Remark 3 Bollerslev and Engle(1993 and Engle and Kronef1995
derived a necessary and sufficient condition for weak stationarity of a vector
GARCH(p,q) model without the assumption of the constant conditional corre-
lation. Condition(8) is a special case of their resuwhen it holds the uncon-
ditional variances of the elements gfin the vector GARCHZ2,2) model (2)
and(3) and(7) are

Bo=Eel? =(Iy— I, — I,) ta,. 9

We are now ready to state our result concerning the fourth-order uncondi-
tional moment matrix of moddR2) and(3) with (7). Let veqA) be a vector in
which the columns of thé X M matrix A are stacked one underneath the
other Then vecA’) = K yu ved(A), whereK yy is theM? X M? commutation
matrix (see e.g., Magnus 1988 pp. 35-37. We have the following theorem
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THEOREM 2 Consider the vectoGARCH(2,2) model (2) and (3) and (7).
Assume that condition (8) holds aftlg,; = E(ZZ ® Z?) exists Then the
fourth-order moment matri€[e? &?'] of {&,} exists if
AT) < 1, (10)
where

I' = (Te,ec, t Ie,ec,)
+ (Iyz + Kyn) [(Te, ® Ty) (Iyz — T, ® Te) Te e,
+ (I, ® T, )(Iyz — T, ® rcz)flrc2®cl]-

Under (10),

vecE[e? e!?"]

=Tygz(lyz—T)* {Vec(ao%)

2
+ [_El(l“q ®Rag+a,®TIg,)

+ (Iyz + Kym) (T, ® 1y)
X[y ®Te,)(Iyz =T, ® FCZ)_l(ao® Im)

+ (T, ® T, (Iwz — T, ® rc2)71(| m & ao)]]

X (ap & Im)vedly — I, — Fcz)l}- (11)

Proof See the Appendix

Remark 4 Figure 1 helps to compare the largest absolute eigenvalues in con-
dition (10) and the one of Ling and McAlegR003 for the existence of the
fourth-order unconditional moments in CCC-GARCR) models The graphs
are obtained by fixing values of all parameters of the modeldut and let-
ting b, 1, increase from 2. The moduli of the largest eigenvalues of maffix
in CCC-GARCH?2,2) models are monotonically increasing functions of the
parameteb, 1;. The solid curve is fon(T'), wherer is defined in(10), whereas
the dashed-dotted one is the counterpart of the solid oneInatE(A; Q) A,)
defined in Theorem .2 of Ling and McAleer(2003. It is seen that these two
curves have an intersection exactlydT) = 1 (dashed ling Similar graphs
can be obtained for any other parameter combination it appears that those
two conditions although they look differentlways give the same answé&he
advantage of conditiofiL0) is that it can be used in deriving the fourth-moment
matrix of g;.
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max eigenvalue

075 1 1 1 1 1 1 1 1
0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52

Parameter bz,ﬂ

Ficure 1. Moduli of the largest eigenvalues of matricEsfor a CCC-GARCH?2,2)
model as a function of parametbs ;; when(a) I' is defined by conditior{10) (solid
curve and(b) T' = E(A; ® A;) is defined in Theorem.2 of Ling and McAleer(2003
(dashed-dotted curyeThe parameters of the model ag;; = 0.06, a; 1, = 0.08, a; 1 =
0.1, a1’22 = 012, az’ll = 007, a2,12 = 01, a2,21 = 008, a2’22 = 012, bl,ll = 005,
b]_’]_z =0.08, bLZl =0.11, b1,22 =0.2, b2,12 =0.09, b2,21 =0.1, andbz,zz = 0.12, and the
nondiagonal element of the correlation matrix of the standard normal error pragkss
equals @.

Remark 5 SettingM = 1 in (10) and(11) yields the condition for the exis-
tence of the fourth-order moment for the univariate GARZ,H) model

Y= (')/c1><c1 + ')’czxcz) + 2'Yc1'yc1><cz(1 - 7c2)71 <1 (12)
wherey, = @11 + bi11, Yoxe = b1 + 2ai 110511 + a?y;Ezd, i = 1,2, and

Yeyxe, = P1110211 + Q1110211 + @21101 11 + @4 1185 1,EZ7;, and the expression
for the fourth unconditional moment @f;;:

ag(Eth)[(l + Ye, + 7(:2)(1 - 7(:2) + ZYClycz]
(A=7ve, = ve,) (1= 7) '

a4 _
€1t =
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Both are derived in He and Terasvirta999a. The necessary and sufficient
conditions for finite fourth-order moments of GARCH1) and GARCH1,2)
models of Bollersle1986 are nested if12). The result illustrated in Fig-
ure 1 also holds for the univariate GARCE2) modet the left-hand side of
(12) and the corresponding eigenvalue in Theor@m) of Ling and McAleer
(2002 intersect at(T') = 1.1

Next we consider the relationship between the distributiorss ahdz, through
their fourth-moment structurd-or this purposelet p, = (wa1,..., tom) =
Ee? and M, = diag{so1,..., wom} and define the multivariate “rescaled
fourth-moment matrix” of e;} in (2)—(4) as
K =Mz [E(e;” & )IM3™.

Thejth diagonal element of is the kurtosis ok, j = 1,..., M.

COROLLARY 1. Assume thalyg; exists and (10) holds for the vector
GARCH(2,2) model (2) and (3) and (7). Then

vedK) = vedK (z)), (13)
where the inequality sign refers to element-by-element inequalitykaizg) is
the “rescaled fourth-moment matrix” d&,}.

Inequality(13) follows from Jensen'’s inequalityo illustrate if z, has a multi-
variate normal distributigrthe unconditional distribution o is leptokurtic in
the sense 0f13).

The cross-moment matrik; ¢, | # |, is required in the considerations if
the vector model is of higher order than or&pressions in Theorem 2 sim-
plify for the vector GARCH1,1) model This is seen from the following result

COROLLARY 2. Let the assumptions of Theorem 2 hold and assume
C, = 0in (7). Then the fourth-order moment matEKst(z) et(z)’] of {&,} for the
vectorGARCH(1,1) model (2) and (3) and (7) exists if

ATge,) < 1. (14)
Under (14),
vecE[e;” 8;”"] = Tyg;{(Inz — Te,pc,) *[ved@gap)
+(Te,®ap+a,®TIc,) (@@ Iv)
X vedly —TIe,) 1k (15)

4. AUTOCORRELATION FUNCTION OF SQUARES
FOR THE EXTENDED CCC-GARCH MODEL

In this section we shall derive the multidimensional correlation function
of {&!?} for our vector GARCH?2,2) process Let u, = Ee(? as before and

https://doi.org/10.1017/50266466604205059 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604205059

FOURTH-MOMENT STRUCTURE OF CCC-GARCH 9211

Tu(n) = [yy(M)] = E[(&” — p,)(e2, — m2)']. Furthermore let Dy =
diag{y42(0),...,v#a(0)}. To fix notation write the nth-order autocorrelation
matrix of {¢?} for the vector GARCH2,2) process as

Ry (n) = Dy Ty (n) Dyt (16)

forn=1.

The ith diagonal elementr;(n), i = 1,...,M, of Ry(n) in (16), is the nth
autocorrelation of the squared observations foritheeomponen{e; }, whereas
ry(n), i,j =1,...,M, i # j, the off-diagonal elements &y (n), represent the
cross-correlations betweesf ands?_,.

To obtainRy,(n), we must find an expression fd,(n) = E[ &!?"]. This
can be done by applyin7) to e§2> recursively up to theath step and further
applying Theorem 2 t(E[st(z)st(z)']. The final result appears in the following
theorem

THEOREM 3 Assume thal,g; and u, in (9) exist and condition (10) holds
for the vectortGARCH(2,2) model (2) and (3) and (7). Then the nth-order auto-
correlation matrixRy, (n) of {&\?} has the stacked form

ved(Ry (n)) = (Dy' ® Dyt)ved Ty (n)), (7)
where
veTy, (n)) = vedTy(n)) — ved pm, p)) (18)

such that for n= 1,2,

ved Ty (1) = (Iy ® ag) g, + Tyge, vedTy) + vedTy), (19)
vedTy(2) = (Iy ® ag)p, + ec, vedTy,)
+ (Iy ® T, )ved Ty (1)), (20)

Furthermore, for n= 3,
ved Ty (n) = (Iy ® ag)po + (Iy @ Ie,)vedTy (n — 1))

+ (Iy ® I, ved Ty (n — 2) (21)
with

vedTy) = (Tugz) ' vecE(e” ). (22)
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In (19),
vedTy) = [(Iy @ Te,) Iz — T, ® Te,) (3 ® 1)

+ (Te, @ Te,) (Iyz = Te, ® Te,) (1w ® a)]

X (8@ Iy)vedly — Tg, — Te)) ™

+ [z — T, ® Te,) Teee,

+ (G QTe)(Iyz — Te, @ Te,) *Te,pc, JvedTy), (23)

andTygc = E(ZZ ® Cy), i = 1,2.

Proof See the Appendix

If the assumptions of Theorem 3 are satisfied and the first two autocorrela-
tion matricesRy,(1) andRy(2) are known we can compute tmgh autocorre-
lation matrixRy,(n) recursively through equatiori$7)—(23). The autocorrelation
structure simplifies for the first-order modéWe state this result in the follow-
ing corollary

COROLLARY 3. Assume that the assumptions of Theorem 3 holdGner O
in (7). Then the vectors (19)—(21) in the definition of the autocorrelation matrix
Ru(n) of {2} for the CCC-GARCHZ1,1) model (2) and (3) and (7) are

vedTy (1) = (Iy ® ag) k2 + Tzgc, vedTy), (24)
vedTy(n) = (Iy @ ag)py + (Iy @ T )vedTy(n—1), n=2 (25)
with
vedTy) = (Iyz — Tg,ec,) M [vedapay) + (Te, ® a + a8, ® I;,)

X (ap @ Im)vedly —Ig) ™). (26)

A number of theoretical properties of the autocorrelation mafiRy; (n)},
n=12,..., for the first-order modelobtained through Corollary,&re listed
here

1. Ry(n) > 0asn — co.

It follows from Corollary 3 that we can write

n—2
vedTy (n) = [Z‘é(l w®Tc,) :|(IM @ )k

+ (Iy ® Ie,)" " ved T (2)). (27)
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Under condition(10), lim,_,,vedTy(n)) = [Iy> — (Iy ® Tc)] Hy ®
ao) m». This implies

vedI,(n)) > 0, asn— co.

2. The autocorrelation matricé®,, (n) satisfy the Yule—Walker equations
Suppose that véEy (1)) is known so that ve®R,, (1)) is known (see(17)
and(18)). It follows from equation(25) that vecRy, (n)), for anyn = 2, can be
solved byRy (1) and(ly & It,) through
n—2
ved Ry (n)) = (Dy' ® Dy') { [ E (I ® rcl)i ](' m & ao)l-‘z}

i=0

+ (Dw' ® Dy {(Ily ® T " * ved Ty (1) — ved g, p3)}-

(28)
In particular
vedRy(2)) = (Dy" ® Dy ) {(lu & &) o} + vedRy (1))
3. The first-order auto- and cross-correlatiop€l) fori,j =1,..., M, in Ry (1)
are positive if the positivity restrictiore; > 0, & ; andb, ; = 0,i,j =1,..., M,

I =1,...,max{p,q}, mentioned in Section,Zre satisfied

4. The decay rate oRy (n) as a function oh depends on the eigenvalues of
(Iw ® Ic,). WhenM = 2 the autocorrelations iR,(n) will exhibit a mixture
of decaying exponential decayecausél, @ I ) only has real rootsWhen
M = 3 the autocorrelations display a mixture of exponential decay if there exists
a dominant real root il &® I,) and dampening sinusoidal behavior if the
moduli of the complex conjugate pairs of eigenvalues are sufficiently |&ige
example of the latter case is depicted in Figur&VhenM = 1, the decay rate
of the autocorrelation function of the squared observations for the univariate
GARCH(1,1) model is exactly(l; ® T¢,) = vy, = E(a;112¢ + byq1). In this
case the decay is exponential E®) = y¢ 'r(1), n = 2. This property also
holds wherM > 1 andA; andB; are diagonal matrices as in Bollersle\990.
Thus our extension of the CCC-GARCH model allows a considerably richer
autocorrelation structure than the original CCC-GARCH model

5. BIVARIATE GARCH(1,1) MODEL

To illustrate the general correlation results we consider the bivariate
GARCH(1,1) process(2) and(3) and (7). The correlation matrix ofs®? for
this process is obtained as a special case of Corollary 3

COROLLARY 4. LetM=2,C, =0, and G 1ot = €123t = 01in (7). Further-

more, letT, = [y; | wherey; = Ecyj; fori,j = 1,2, T¢ gc, = [vij, ] where
Yik = E(CpijiCown) for i,j, k| =12, and, finally, I;gc, = [v4c,,] Where
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FIGURE 2. Auto- and cross-correlations of squared observations of a three-dimensional extended CCC-GARpidcesslags 1-8
HereI¢ has a pair of complex conjugate eigenvalues with model@432 and a real root 0.858 The parameter values aag; = 0.1,
Aoz = 02, Aoz = 025, g = 005, adjp = 025, ajz = 0067 dp = 0077 Ao = 008, apz = 025, agy = 025, agy = 008, azz = 008, bll =
0.05, by, = 0.4, by3= 0.05, by; = 0.05, by, = 0.07, b,z = 0.3, by = 0.25, b3, = 0.08, andbz; = 0.08. The correlation matrix of the standard
normal error procesg;} has the following nondiagonal elements, = 0.2, p13 = 0.3, and p,3 = 0.23.
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Yz = E(zfcy ), for i,j,k = 1,2. Assume that = (zy,z,)" ~ NID(O,R)
and, furthermore, that condition (10) holds for the bivari@@RCH(1,1) model
(2) and (3) with (7). TheiR,(n) = [r;(n)] in (17) for i,j = 1,2 has the simpli-
fied form

Y Y20, (L= 2 — y12(1— y1111)]

() = 31— ’}’121) -(1- ')’11,11) ’
1) = Y95 (A= y1110) (1= Y22 29172 [ V2,0,,(1 = Y11¥22) = Y22(1 = ¥11.20)]
2t {3(1- 7121) -(1- 711,11)] [3(1— 7222) -(1- 722,22)]}1/2 ’
() = Y (A= y1010) (1 ’)/22,22)]1/2[722c11(1_ Y11Y22) — Y11(1— ¥11.22)]
2 31— 7121) -(1- '}’1],11)] [3(1- ')’222) -(1- 722,22)]}1/2 ’
Y55 Y2001 = ¥52) = V22(1 = ¥2225)]
r2o(n) = .

3(1- ’)/222) -(1- ’)’22,22)

According to Corollary 4the elements ifR,(n), n = 1, decay exponentially
The autocorrelations;;(n) and cross-correlationg,(n), n = 1, have the decay
rate y,1, whereasr,;(n) andr,,(n) also have a common decay ratg,. The
exponential decay rates generalize to the ddse 2 and are a characteristic
feature of the standard CCC-GARCH madel

6. AN EMPIRICAL EXAMPLE

The purpose of this section is to illustrate practical usefulness of our theoreti-
cal results Bollerslev (1990 fitted two CCC-GARCH models with nonzero
constant conditional correlations to a set of five weekly exchange rate return
series His purpose was to analyze the dynamic behavior of these returns before
the introduction of the European monetary systdfVS) and thereafterThe
pre-EMS period ran from July 1973 to the second week of March 1299
observationsand the secondhe EMS periodfrom the third week of March
1979 to the second week of August 19683 observations The estimated
constant correlations from the pre-EMS and EMS models appear in Table 1
The parameter estimates are not reproduced and can be found in Tables 1 and 2
of Bollerslev(1990. The exchange rates that are rates against tise ddllar

are indexed as followsl = DM (the Deutschmank 2 = FF (the French frang

3 = IL (the ltalian lira, 4 = SF (the Swiss frang and 5= BP (the British
pound. Bollerslev concludedamong other thingghat the conditional correla-
tions are significantly higher for the EMS period than for the period preceding it
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TaBLE 1. The estimated constant correlatiofs, i,j = DM, FF, IL, SF, BP,
from the two estimated CCC-GARCH modéBMS period and pre-EMS peripd
of Bollerslev (1990

EMS Pre-EMS

i DM FF IL SF BP DM FF IL SF BP

Pomi 1 0932 0886 0917 Q674 1 0607 Q425 Q714 Q443

prri — 1 0876 Q866 Q676 — 1 0441 Q517 0488
DiLi — — 1 0816 0622 — — 1 0336 Q345
Psri  — — — 1 0635 — — — 1 0305
peRi  — - — - 1 - — - - 1

Source Tables 1 and 2 of Bollersle(1990.

Using plug-in auto- and cross-correlation estimates based on the definitions
of the true quantities derived in the previous sections we are able to complete
Bollerslev’s analysisHowever in the pre-EMS modely;; > 1, so that the IL
process does not have a finite varian&e this would invalidate our small exam-
ple, we shrink the estimate @33 to 0.287 to satisfy the fourth-moment exis-
tence condition for the pre-EMS systeBstimated auto- and cross-correlations
of the squared observations from the two models after this adjustment can be
found in Table 2The individual autocorrelations are relatively high and persis-
tent for FF and SF anaf course very high and persistent for Iithe adjusted
v33 remains just below unify On the other handhey are low for DM It may
also be noted that most cross-correlations are negligible

This can be compared with the results from the model for the EMS period
The autocorrelation structure of DM is practically unaffected by EBI& then
the three rates with previously large autocorrelations of squared returns are now
much more weakly autocorrelated than befdree autocorrelations in the BP
not included in the EMS increase slightlijhus although the conditional cor-
relations between the returns of EMS currencies increase as a result of the EMS
the autocorrelations of squared returns decre@ke anchor currency of the
monetary systemDM, constitutes an exceptiorOn the other handcross-
correlations appear where none were observed before the BMS the ones
between DM and IL and FF and Ilt seems that in the EMS peripthe changes
in the volatility of DM and FF have dynamic effects on the volatility of. IL
This may not be unexpected as these currencies belong to the EMS during the
observation periodFinally, about the only nonnegligible pre-EMS cross-
correlationsthe ones between BP and Digractically vanish in the EMS period
As BP has not been a part of the EMS during the observation peticdmay
not be an unexpected result either
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TaBLE 2. Auto- and cross-correlationg(n),i,j = DM, FF IL, SE BP, n = 1,
2, 5, 10, are computed from the two estimated CCC-GARCH modE&sS
period and pre-EMS perigdf Bollerslev (1990

EMS Pre-EMS

1 2 5 10 1 2 5 10

ra(n) 0.0462 Q0441 Q0384 Q0305 00584 Q0562 Q0502 Q0416
rio(n) 0.0207 Q0205 Q0201 Q0193 Q0577 Q0491 Q0301 Q0133
ria(n) 0.1167 00977 Q0573 Q0235 Q0059 Q0054 Q0041 Q0026
ri4(n) 0.0638 00633 00616 Q0588 Q0519 Q0507 Q0475 Q0425
ris(n) 0.0461 Q0444 Q0399 00334 00217 Q0170 Q0083 Q0025
ri(n) 0.0370 00353 Q0307 Q0244 Q0234 Q0226 00201 Q0167
rp(n) 0.0150 00148 00144 Q0138 02039 01733 Q1064 Q0472
rs(n) 0.1088 Q0911 Q0534 00219 Q0074 Q0068 Q0051 Q0032
rq(n) 0.0554 Q0549 Q0535 00511 Q0258 Q0252 Q0236 Q0211
rs(n) 0.0407 00392 Q0353 Q0295 Q0309 00243 00118 Q0036
rsz(n) 0.0401 00383 Q0338 Q0265 00020 Q0019 Q0017 Q0014
rsa(n) 0.0206 Q0204 Q0199 00191 Q0050 Q0042 Q0026 Q0011
rss(n) 02175 01821 Q1067 Q0438 04939 04510 03432 02177
ras(n) 0.0481 Q0477 Q0464 Q0443 Q0022 Q0021 Q0020 Q0018
rss(n) 0.0422 00408 00366 00306 Q0020 Q0016 Q0007 Q0002
rsz(n)  0.0470 Q0449 Q0391 00311 Q0307 Q0295 Q0264 00218
rs2(n) 0.0304 Q0301 Q0294 Q00282 Q0270 Q0229 Q0014 Q0062
rs3(n) 0.0841 00704 Q0412 00169 Q0029 Q0026 Q0020 Q0012
rsa(n) 02115 02096 02040 01949 03532 03454 03231 02891
rss(n) 0.0497 Q0479 Q0431 Q0361 Q0060 Q0047 Q0023 Q0007
rsz(n) 0.0265 00253 Q0221 Q0175 Q0894 Q0861 Q0769 Q0637
rsp(n) 0.0138 00137 Q0133 Q0127 Q0393 00334 00205 00091
rsa(n) 0.0590 Q0494 Q0289 00119 Q0040 Q0036 Q0028 Q0017
rsq(n) 0.0437 Q0434 Q0422 Q0403 00071 Q0069 Q0065 Q0058
rss(n) 0.1712 01652 01484 Q01242 (01331 01104 (00511 Q0154

arij(n), n=1,2,5,10, are computed from the estimated pre-EMS model by reducing the estimatg tof 0.287
to satisfy condition(10) for this pre-EMS system

These results should be viewed with caution because one parameter estimate
was adjusted to allow the estimated pre-EMS process to have finite uncondi-
tional fourth momentsBesides the uncertainty in the parameter estimates is
not accounted for in the discussioite emphasizenowevey that the main pur-
pose of this example is to demonstrate practical uses of the theoretical results
of the paperThe example shows that the fourth-moment results are useful
already in the case of the standard first-order CCC-GARCH mate the
same can be said about more general situations also
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7. CONCLUSIONS

In this work we have derived the fourth-moment structure for a constant-
correlation GARCH model that contains as a special case the CCC-GARCH
model of Bollersle1990. We demonstrate the fact that already the first-order
version of this model is capable of characterizing processes with rather general
autocorrelation structure$his extended model could then be a viable alterna-
tive to the standard CCC-GARCH model

Despite the appealing theoretical properties of the extended ymodet work
is needed to find out how useful the model is in practM®ng Li, and Ling
(2002 can be seen as a first step in this directibntheir applicationthe non-
diagonal parameters in the coefficient matrices of the model appear to be non-
zera Whether or not the extended model reduces the need for time-varying
correlations—another extension of the basic CCC-GARCH m¢akd Engle
2002 Tse and Tsyi2002—remains a question for further wark

NOTE

1. This requireshowever that in Theorem 2 of Ling and McAleer(2002, A(T') is redefined
to be the largest eigenvalue Bfinstead of being the smallest eigenvalue

The proof of the necessary condition for the existence of the fourth moment of the GARGH
model in He and Terasvirtel999a is complete It is important to note that the authors begin by
representing the recursion formula for the squared conditional variance fuh@tgrch that it has
a bilinear form(see pp835-836. The advantage of this form is obvious from form@a21). The
authors show that under some conditiohm,_, a’Z,kI‘ib = c implies A(T) < 1, wherea =
(@g,...,ap"), b= (by,...,b,) fora; > 0,b; =0 (i =1,...,p") andb # 0, andI'® = [yigs)], which
is a positive(p* X p*) matrix (yi(js> > 0 for anys = 2), andT is well defined To see that the
necessary condition(I') < 1 holds for(A.21), set lim_, &’ Eikr‘b = c. That is for any given
e > 0, there exists an integét > 0 such thata’ Eikl“b —c| < e for anyk > N. It follows from
the positiveness ai andT'' and nonnegativeness bfthat for anyi,j = 1,..., p* ands andN given
previously [3; X; ai(E!‘yi}S))bj — ¢| < &, which implies thaf>¥ ; T’ converges ak approaches
infinity. This shows that the necessary conditivfT) < 1 in Lemma 4 of He and Teréasvirta
(19993 holds Ling and McAleer(2002 note ) argue that this result is proved by concluding that
ST < oo follows from 3°T'b < co. This is not the case
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APPENDIX

Let I; be an indicator function defined for nonnegative integessich that
1, ifi=02,...
=00 ifi=13...

LEMMA 1. Let k= 1. For the vectorGARCH(2,2) model (2) and (3) and (7),
vedC,, ,hi?,h{?;C1, 1) can be expressed in terms &%, veoh{?;hi/), and

vec(h{?;h{2}) as follows:
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2 2)1 ~y
vedC, - 2h() h( 1CLi-1)

=1

= é{(cm_l@ ) [iﬁl@_l(lm ® Coqivn) T L(Co 1) ® m»]
X 118 ® ) + (I ®ao>]}ht a+i)
+ lﬁl{(cm ®lw) [iﬁlﬂila M ® Ca—en) + 1(Co i ian @ m»}
X[ 4(Criaey @ 1) + (1w ® cmlﬂ-))]} veah? i, hi¥ia)

K
+(Crie1® Iw) I1 (I ® Cot24jy) + L41(Co i 24) @ Tw)]
j=o

X [T 1 veoh{? 1102 Gi10) + LvedhZ o, h2(1 )] (A1)
Proof. Applying (7) to h{?; in h?,h{?; yields
ved(Cy o Zon?1C1 1) = (C1io1 ® Cai2) (B30 @ I
+(Cp-1® Cat2)(Co 2 @ I)veahi?; %))
+(Cp1 ® Cp i 2)(Co 3 ® Iy vedhZ,hi%)).
(A.2)

Applying (7) to h'?, in h{®,h{®; on the right-hand side ofA.2) and continuing the
iteration until thekth step giveqA.1). |

LEMMA 2. Assume thalzgz exists and condition (8) holds fde;} defined in (2)
and (3) and (7). Then

S k2250 ask— oo, (A.3)
where
K
Sk=(Cri-1®1In) 'Ho [Ty @ Cot—24jy) + L41(Co i 24) @ Tm)]
e

X [Tt 1 Vec(hﬁ)(nk)ht (2410) T I, vea h” (2+k)ht2 (1410)]-
Proof. {I[;(Im ® Cx,t—2+j)) + Lj+1(Cz,t—2+j) ® Im)} is @ sequence ofiid. random

matrices This and the fact that(E(Iy ® C,,+—j)) < 1 for anyj lead to lim,,,S;—«k=0
almost surely when the assumptions of the lemma .hbten
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E{(Cl,tl® Iw) _l_Io[Hj(IM ® Cz,t—(zﬂ')) + Hj+1(C2,t—(2+j> ® IM)]}
j=

= I‘cl HE(IM ® Cz,t—zj) HE(IM ® Cz,t—(zj+1))
j=1 j=1

=0.

On the other handas{s,} is strictly stationary we can assume that sequdegestarted
at a finite value in the infinite pasThen(A.3) holds |

Proof of Theorem 2. From (7) we have
veah”hi?") = vedayap) + (Cy 1 ® ap + 8o ® Cy )%
+(Cor2® a5+ 3 ® Cpya)i,
+(Cp 1®Cyp )vedh?1h?]) + (Cypy »® Cy i 2)vedhi?,hi?s)
+ (12 + Ky (Cp 1 ® Cop)vedhiZ,h(2)). (A4)

Noting that(Cy -1 ® C,, »)vedh?,hi?}) = vedC,, ,h?;h*1C1, ;) and apply-
ing Lemmas 1 and 2 yieldsifter rewrltlng(A 4), that

@ (L)vedh;”hi”) = vedayap) + @(L)hi? (A.5)
almost surelyIn (A.5), ®(L) (M? X M?) and®(L) (M2 X M) are infinite-order
matrix polynomials in the lag operatarsuch that® (L) = 372,®;, ;L' and@®(L) =

2.0, L. In particulay

‘I’o,t—l =lyz,

D, 1= *(CLt—l ® Cl,t—l),

L=
N
o

[
i

I

= —[(Imz + Kum)(Cre1 @ Cot-2) (Co 2 @ Iu) + (Co -2 ® Co10)],

3 j
D11 = —(Iyz+ Kym) _E{(Cl,t—l@) Im) [H (Ti—1(ly @ Coi—ivn))
j=1 i=1
+(Coi iy ® lM)):|

X L1(Copimauy @ Iw) + LIy ® Cl,t—(l+j))]}
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fork=2,3,..., and
0, =C1®a+a,®Cy,
0,=C, 2®a+a®Cy
T (w2 + Kum)(Cri-1 ® Cor2) (@ ® ),

Kk i
O, = (|M2 + KMM) _2{(Cj,t1® IM) [H (Hi—l(IM ® Cz,t—(i+1))
j=1 1

+1 (Cz,t—(i+1) ® IM)):l

X [I-1(ag @ ) + L (Iy ®ao)]}

fork=2,3,....
Under conditiong8) and(10), [®(L)] * exists Let I} = —Ei"ilcbi,t_lL‘. Define
[@(L] *=(pz—L) *=lyz+ L+ LG+ GL_ G, + -,

For the definition see for example Tong (199Q pp. 137-138. Thus vecth?h{®") in
(A.5) has a representation

veoh?h®") = [@(L)] *(vedayap) + ®(L)h{?) (A.6)

almost surely
BecausdC;}, i = 1,2, is a sequence ofiid random matrices andi(T, + T,) < 1,
it follows that

K
lim > E(®) = (Te,pc, + Te,ec,)

koo j=1
+ (I + Ky [(Te, ® Tw) 1wz = Te, ® Ie,) e,
+ (I, ®Tc,) (Inz — Te, ® Te,) ' Te @0, ]
=T. (A.7)
Condition(10) implies thatE(® (1)) = (I y2 — T') is finite and thaE(®(1)) is invertible
Similarly,

k
E(8(1) = lim ;E(®i)

2
= _:21(1'0. ®agt+asI;)

+ (|M2 + KMM)(FC1® IM)
X[y @ Te,) (Iyz — T, ® Fcz)il(ao® Im)
+ (T, ®Te,) Iz — T, ® 1-‘cz)_1(| v ® ag)] < oo, (A.8)
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Thus the matrix sequences §E(®;)}{~, and{E(®; )}, are absolutely summablé&
follows from (A.7) and (A.8) and condition(8) that {vec(h?h{®")} in (A.6) is finite
almost surely

Assume thatk(®(1)) andE(®(1)) have no common eigenvaludsfollows from (A.7)
and(A.8) that ve¢h?h{®") in (A.6) has a fourth-order weakly stationary solution and
that E(vech?h{®")) is finite. Under condition(10), taking expectations on both sides
of (A.5) gives

E(vedh?h®")) = [E®(1)] Hvedayap) + [E@(V][E(h{?)]}.

Now, E(vede?e?")) = E(Z2 ® Z2)E(vedh®h{?")), which concludes the proof of
equation(11). |

LEMMA 3. Assume thafl,g, exists and condition (10) holds for the vector
GARCH(2,2) model (2) and (3) and (7). Then

EvedC,  ,hZ,h®1z2 )
=R IWI(IM®T)(Inz —Te, ® Te,) (@8 ® Iv)
+ (T, ®Te,) Iz = T, ® Ie,) Iy @ )]
X (ay® Iw)vedly — I, —Tc,) ™
+ (@) (w2 — T, @ Ie,) *Tegc,
+ ([ @ Te,)(Iy2 — T, ® Ie,) T, JE vedhiZohi?)). (A.9)
Proof. Equation(A.9) follows from Lemma 1 and Theorem 2 u

LEMMA 4. Assume thafl;x; exists and condition (10) holds for the vector
GARCH(2,2) model (2) and (3) and (7). Letk 3. Then

EPh?) = (@ T, Te)T'Ehy,, (A.10)
where

1 0 0 h®:
IL=|a Ic T, | and hi,=| h®h?

o I 0 hi? i hi2k

Proof. Rewrite(7) as

1

h? =@ Cii1 Coro) hy |. (A.11)
h(2)
-2
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Applying equation(7) to h{?; on the right-hand side ofA.11) and continuing the iter-
ation until thekth step yields

1
h? = (8 Cici CoraCi,Cia..Cie M2 |, (A12)
ht(i)(k+1)
where
1 0 0
Cii=|la Citi Corqsp
0 | 0

Note thatE(C;_;Ci ;) = T2 for i # . Left-multiplying (A.12) by h{ and taking expec-
tations yields(A.10). n

Proof of Theorem 3. We prove Theorem 3 by induction fox
(i) We shall show that17)—(21) hold forn = 3
First we show that17)—(19) hold for n = 1. Consider

e e = Z%(ap+ Cy 1h?1 + Cyy o201 22, (A.13)
Taking expectations on both sides(@f.13) and expressing them in vec form yields
vecE[s;” &;”1] = (I ® @) p2 + Tagc, VecE (N7 h?")

+ VecE(C,  ,h?,h?122 ). (A.14)

Set ved}, = vecE(h?h!?’) and vedy = vecE(C,, ,h?,h?;Z2 ). Rewriting
(A.14) using these definitions and applying Theorem 2 and Lemma 3 yields

vecE[e? 611 = (I ® ap) p, + Ty, vecky, + vecky,
= veclj, (). (A.15)

Thus (17)—(19) hold forn = 1.
Similarly, for n = 2,

vecE[e{” &3] = (I ® a0) 5 + Ty, vecE (P h®")
+ (Iy @ T [y ® 80) 2 + Ty, VecE (P hi?")
+ VecE(C,, shZ3h®5z2 )]
= (Iy ® a) 2 + g, vecy + (Iy ® Ie,)vechy, (1)
= vecI},(2) (A.16)

so that(17)—(20) are valid forn = 2
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We shall now show thai21) holds forn = 3. We have
vecE[e” &;%5] = (In ® a)uo + Iy @ Tc,)
X {(In ® @0) 2 + Tz, VecE (N N™) + (1 ® Tc,)
X [(In ® @o) g2 + Trgc, VecE(hi hi?")
+ Ty, VECE(Cy  4hP4h{P522 5)]
+ (I @ Te,)[(Iy ® @) w2 + e, VecE(hP hi?")
+ vecE(Cy, 4h?,hP5z2 )1k (A.17)
Applying (A.15) and(A.16) to (A.17) gives
vecy(3) = (Iy ® a) po + (I @ I, ) vecky (2)
+ (Iy ® I,)vecky, (1).

(i) Assume that17)—(21) hold for all n = k. We shall show that they hold far =
k + 1. From this assumption one obtains

Tu(k) = agpuh + I‘le‘M(k_ 1+ rczf‘M(k_ 2)

’

M2
= (ao I‘Cl FCZ) fM (k - 1)
Tw(k—2)
1 0 0 m
=@ T Tg)la T I || Tyk—2)
0 1 0/\f,k-3
1%
=@ T Toyrk3|Ly@) |. (A.18)
L@

On the other handusing Lemma 4 one obtains
2 2)r 2 2)r
Ele )at(—)(k+1)] = TLE(h{ )ht(—)(k+1)zt2—(k+1))
= ]"Z(ao rcl rcz) r*k72
1
b @ /
X E Ct—kct—(k+1) ht—(k+l) hg)(kﬂ)ztz—(kﬂ) . (A.19)

@
ht—(k+2)
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Applying (A.15) and(A.16) to the right-hand side ofA.19) gives

1 I
* * 2) ! =
E Ct—kct—(kﬂ) ht*(k+l> hg)(kﬂ)ztz—(kﬂ) = | Tw®@ |. (A.20)
hi%)(k+2) fM (1)
It follows from (A.18) and(A.20) that
Mo Mo
2| W@ | =3[ Tu®)
L@ L@
I’
= uk | (A.21)
(k-1

Applying (A.20) to (A.21) and rewriting it in the vec form completes the proof of equa-
tion (21) whenn = k + 1. ]
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