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ON AN EVOLUTIONARY
FOUNDATION OF NEUROECONOMICS

BURKHARD C. SCHIPPER∗

University of California, Davis

Neuroeconomics focuses on brain imaging studies mapping neural
responses to choice behaviour. Economic theory is concerned with choice
behaviour but it is silent on neural activities. We present a game theoretic
model in which players are endowed with an additional structure – a
simple “nervous system” – and interact repeatedly in changing games.
The nervous system constrains information processing functions and
behavioural functions. By reinterpreting results from evolutionary game
theory (Germano 2007), we suggest that nervous systems can develop to
“function well” in exogenously changing strategic environments. We present
an example indicating that an analogous conclusion fails if players can
influence endogenously their environment.

1. INTRODUCTION

Neuroeconomics mainly focused on economic experiments using methods
of brain imaging (for surveys see Glimcher and Rustichini 2004; Camerer,
Lowenstein and Prelec 2005; McCabe 2008). Since neural activity is not
explicitly modelled in economic theories, such theories may be of limited
use for generating hypotheses that guide neuroeconomic experiments in
an insightful way. To fill the gap, neuroeconomic theories are required
that are more explicit on the biological constraints that the nervous system
imposes on behaviour. In developing such theories, the formal tools of
game theory may be a useful language for modelling complex phenomena
of interaction within and between brains as it was similarly useful in the
development of modern economic theory. The aim of this note is to outline
how existing tools of evolutionary game theory and learning in games
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may be reinterpreted to shed some light on the development of “brain”
functions in a changing environment. No claim of originality is made:
the main result has been developed elsewhere in the abstract context of
evolution and learning in games by Germano (2007).

We consider a finite set of players who play repeatedly different
strategic games selected randomly according to some exogenously given
probability distribution on a finite set of games. The players are endowed
with a “nervous system”. This is a suggestive interpretation of a simple
network-like structure with “neurons” as nodes and “synapses” as binary
relation on neurons. The structure constrains the player’s perception of
the environment and her behavioural response – similar to incomplete
information in games. The “richer” the nervous system, the better it
can detect the variability of the environment and the more variability
of behaviour it can generate. We ask the following question: Can such
a nervous system be designed by evolution, development and learning
to “function well” in the player’s interaction with other players and the
environment? Intuitively, a “well functioning” brain should be adapted
to its environment in the sense of generating appropriate behavioural
responses that enable the survival of the population of “brain-carriers”.
In this paper, we assume that “function well” means the brain’s ability to
play strategies that are not strictly dominated in the respective games and
in the “average” game over the player’s life-time. Reinterpreting a result
by Germano (2007), we answer this question affirmatively. Yet, a simple
example shows that if players can endogenously affect the change of the
environment (like in non-trivial stochastic games), then this conclusion
may not hold anymore.

At first glance, the evolutionary approach sketched in this note seems
to be orthogonal to “mainstream” neuroeconomics today but we argue
that it is relevant for the foundations of neuroeconomics. While economics
studies optimal decision making, a typical neuroeconomic experiment
will produce brain images of subjects when confronted with an economic
decision task. These data are then interpreted with constructs that play
a role in economic theories such as utility, expected utility, multiple
selves etc. despite the fact that economic theory treats those as abstract
constructs and optimizing behaviour “as if”. So the implicit assumption in
neuroeconomics is that the brain is the very machine that could produce
in principle optimal or constrained optimal behaviour. More generally, the
assumption behind functional magnetic resonance imagining (fMRI) is that
different subsets of the brain are activated to fulfil different functions or
goals. Glimcher (2003: Chapters 6 to 8) traced this assumption back to
Marr, who according to Glimcher (2003: 142) suggested that “(i)n order
to understand the relationship between behavior and brain, one had to
begin by understanding the goals or functions of a behavior. Then one
could begin to ask how the brain accomplishes a specific goal.” Further
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he writes (p. 167)1 that “(t)he goal of the nervous system is to maximize
the inclusive fitness of the organism”. The question that we raise in this
paper is whether or not evolution, development and learning can produce
a nervous system that is capable of doing that. This answer seems to be
not obvious to neuroscientists. According to Glimcher (2003: 166) a “major
criticism that Marr’s approach has faced is that it has been unclear whether
evolution can be conceived of as a process that structures nervous systems
to accomplish goals with enough efficiency to make the computational
goal a useful starting point for neurobiological analysis.”2 This note may
be seen as a very preliminary attempt to provide an answer to this criticism
of the foundations of neuroeconomics with some tools of evolutionary
game theory.

We are not the first to sketch some neuroeconomic theory. Others realized
that hypotheses on how the brain constrains economic behaviour should
be ideally grounded on models that integrate microeconomic theory with a
theory of the brain. Recent papers by Benhabib and Bisin (2005), Bernheim
and Rangel (2004), Brocas and Carrillo (2008a, 2008b), and Fudenberg
and Levine (2006) build models with “multiple selves” motivated by the
modularity of the brain but do not really attempt to represent physiological
elements of the brain.3 Hence, they are of limited use for generating

1 Similarly, Glimcher (2003: 155) writes “(t)he other possibility, and the one implicitly
advocated by Marr’s approach, is to assume that the system was evolved to achieve a
specifiable, and theoretically defined, mathematical goal so as to maximize the fitness of
the organism.”

2 This criticism may be rooted in the first sentence of the following quote in Darwin (1859:
171–2.): “To suppose that the eye with all its inimitable contrivances for adjusting the focus
to different distances, for admitting different amounts of light, and for the correction of
spherical and chromatic aberration, could have been formed by natural selection, seems, I
freely confess, absurd in the highest degree. When it was first said that the sun stood still
and the world turned round, the common sense of mankind declared the doctrine false;
but the old saying of Vox populi, vox Dei, as every philosopher knows, cannot be trusted
in science. Reason tells me, that if numerous gradations from a simple and imperfect eye
to one complex and perfect can be shown to exist, each grade being useful to its possessor,
as is certainly the case; if further, the eye ever varies and the variations be inherited, as is
likewise certainly the case; and if such variations should be useful to any animal under
changing conditions of life, then the difficulty of believing that a perfect and complex eye
could be formed by natural selection, though insuperable by our imagination, should not
be considered as subversive of the theory. How a nerve comes to be sensitive to light,
hardly concerns us more than how life itself originated; but I may remark that, as some of
the lowest organisms in which nerves cannot be detected, are capable of perceiving light,
it does not seem impossible that certain sensitive elements in their sarcode should become
aggregated and developed into nerves, endowed with this special sensibility.” (The first
sentence only is quoted in Glimcher 2003: 152.)

3 Brocas and Carrillo (2008b) write “The objective in this research is not to model the
physiological elements involved in a brain process (neurons, synapses, neurotransmitters)
but, instead, to capture the fundamental properties of those processes. The models are still
‘as-if’ representations of reality . . . ”
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hypotheses on neural data observable with modern technology (while
being capable of generating hypotheses on economic behaviour).4 Our
approach here is different in that (besides taking an evolutionary approach)
we seek to complement standard game theoretic models with a (crude)
model representing physiological elements of the brain such as neurons
and synapses. The hope is that an enhanced version could generate
hypotheses that are eventually useful for empirical neuroeconomics.

2. BASIC BUILDING BLOCKS

2.1 Environment

Let � be a potentially large but finite space of states of nature. These states
provide some description of the environment such as which game is to
be played. The states of nature are drawn randomly and independently
according to some probability distribution μ ∈ �(�), where �(�) denotes
the set of probability measures on �.

There is a finite game defined by a finite set of players I = {1, . . . ,m},
for each player i a finite set of actions Ai, and for each player i a
fitness function ui : ×iε I �(Ai ) ×� −→ R, where �(Ai) denotes the set of
probability distributions on Ai (i.e. mixed actions). Let us denote ai ∈ Ai an
action of player i and a−i ∈ A−i := × j∈I\{i} Aj a profile of actions of player
i’s opponents. Similarly, let αi ∈ �(Ai ) denote a mixed action of player i
and α−i ∈ × j∈I\{i}�(Aj ) a profile of mixed actions of player i’s opponents.
We restrict the analysis to symmetric games, i.e. Ai = A for all i ∈ I and for
all ω ∈ �, ui (αi , α−i , ω) = u f (i)(α f (i), α− f (i), ω) for all bijections f : I → I.

The framework is interpreted as follows: In each period, a state ω ∈
� is drawn according to the probability distribution μ on �. The state
ω determines a symmetric finite strategic game G(ω) := 〈I, A, (ui (ω))i∈I 〉.
That is, we assume that players may not just play one game in their life but
at each period games are selected according to some exogenously fixed
probability distribution μ.5 We call (�, μ) the environment. We say a game
G(ω) is relevant if μ({ω}) > 0.

2.2 Nervous system

Each player i ∈ I has a potentially large but finite set of neurons, Ni =
{1, . . . ,ni }. Let �i be a binary relation defined on Ni for player i called
“synapse”. We interpret j �i j′ as “for player i neuron j projects to neuron j′”,

4 An exception is Chaplin and Dean (2008) who provide an axiomatic characterization of the
dopamine reward prediction error hypothesis. (Dopamine is a neurotransmitter.)

5 In section 6.3 we relax this assumption and allow players to influence the probabilities with
which states are drawn.
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j, j′ ∈ Ni. Since such a synapse is directed, we let �i be irreflexive (but it
may not be transitive or complete). If j �i j′, then we call j the presynaptic
neuron and j′ the postsynaptic neuron for player i. Clearly, our model of the
neuron abstracts from many interesting features (see Gazzaniga et al. 2002:
Chapter 2).

There are special neurons called receptors used to obtain signals from
the environment. Examples are the photoreceptor cells of the retina (see
Gazzaniga et al. 2002: Chapter 5). Perhaps one way of featuring receptors
in Ni would be to require that if j ∈ Ni is a receptor then there is no j′ ∈ Ni

such that j′ �i j. That is, a receptor is a neuron which may project to other
neurons but to which no other neuron projects to. Yet, this feature will not
play a role in this note.

A neuron sequence for player i is j0, j1, . . . jl̄ with j l �i j l+1 for l ∈
{0, 1, . . . , l̄ − 1}. There can be loops. We call Ni = 〈Ni ,�i 〉 the anatomy of
player i’s nervous system or bluntly player i’s “brain”. One may imagine
it as a directed graph or network. The conception of the nervous system
as a network has a long tradition in neuroscience that can be traced back
at least to Exner (1894) and more recently to artificial neural networks. We
will not use a neural networks approach here but just stick to primitive
features of networks.

A sensory correspondence si : � → 2Ni for player i maps states of nature
to neuronal responses thought of as neural “firing” or activation of a subset
of neurons. We may want to impose conditions reflecting the constraints of
the neural activity by the anatomy of the nervous system. To this extend,
define for a brain Ni, a particular set of subsets denoted Si ⊆ 2Ni by N′ ∈ Si

if for all j ∈ N′ there exists a neuron sequence j0, . . . , j ∈ N′ with j0 being
a receptor. We explicitly let ∅ ∈ Si . We may think of an element of Si as a
subset of neurons that is accessible by a receptor, i.e. a “module” (Glimcher,
2003: 150) or “neural circuit” accessible by a receptor. We let the sensory
correspondence si be constrained by the anatomy of the brain by imposing
the condition si (ω) ∈ Si for all ω ∈ �. If for ω ∈ � the subset of neurons si(ω)
is nonempty, then it must contain a receptor. Hence it can be activated by
an environmental stimulus. If si(ω) = ∅ for some ω ∈ �, then the stimulus
ω does not activate any neurons.

To complete the model, we introduce a behavioural function bi : 2Ni →
�(A) for player i that maps neural activity to mixtures over actions. An
example is the activation of motor structures inducing responses of what
are called effectors such as arms, hands etc. (see Gazzaniga et al. 2002;
Chapter 11). Note that since ∅ ∈ 2Ni , bi defines a default behaviour if no
neurons are activated. Note further that since bi maps neural responses to
mixtures of actions, we allow for randomness of behaviour. For instance,
trichoplax adhaerens, a tiny marine animal, has no neurons (Schierwater
2005). Hence, its behaviour is not controlled by a brain. Still it displays
variability in behaviour that we may view here as random.
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3. A DIGRESSION: NEUROECONOMICS VS. ECONOMICS

Functional neuroimaging may be viewed as mainly occupied with the
description of si and bi. That is, a subject i is exposed to some stimulus
ω ∈ �, observations of brain activity si(ω) are made through MEG, EGG,
PET or fMRI (for a discussion of those methods see Gazzaniga et al.
2002; Chapter 4) and a response in behaviour bi(si(ω)) is recorded. The
implementation of such experiments is not as straightforward as it sounds
here. To appreciate the difficulties involved, one needs to consider that
the equipment requires large fixed costs. Moreover, the small sample sizes
used in neuroeconomic experiments seem to suggest that the variable costs
of experiments must be extremely high too. The experimental designs must
meet additional challenges from potential confounding effects involved
with brain scanners. Finally, typical neuroeconomic papers reveal that the
data transformations and statistical analysis including their underlying
assumptions are apparently difficult to report in a transparent manner.

Imaging studies of the brain yielded some empirical restrictions on
si. For example let Ni = 〈Ni ,�i 〉 be a brain. The condition si (ω) 
= Ni for
all ω ∈ � would capture a weak version of the Principle of Functional
Segregation: No functions of the brain are performed by the brain as a
whole. Similarly, the condition if si (ω) = E 
= ∅ then E = F ′ ∪ F ′′ with
F ′ 
= F ′′ and nonempty F′, F ′′ ∈ Si would capture a weak version of the
Principle of Functional Integration: No function is performed by a single
“module” of the brain alone. For a discussion of those principles, see
Cohen and Tong (2001).

Economics essentially follows a traditional behavioural paradigm and
focuses in our game theoretic context on the optimality of strategies under
complete or incomplete information. Complete information refers to the
case where the player can perfectly observe the state of nature. In our
framework, it would correspond to si being one-to-one or injective: for any
ω, ω′ ∈ �, ω 
=ω′ implies si(ω) 
= si(ω′). Incomplete information refers to the
case where a player can not discriminate between some states of nature.
That is, we do not rule out that for some ω, ω′ ∈ � with ω 
= ω′ we have
si (ω) = si (ω′).

Under complete information, a strategy is simply a map σ i : � →
�(A). It assigns to each state of nature a mixture of actions. Under
incomplete information, we need to restrict explicitly the strategies to
private information. In our context it means that we need to constrain it
by values of the sensory correspondence (analogous to the constraining
strategies to types in games with incomplete information). That is, a
strategy under incomplete information is a map σ i : � → �(A) subject
to for any ω, ω′ ∈ � with si(ω) = si(ω′) implies σ i(ω) = σ i(ω′).

The name “strategy” may be misleading here because it suggests
that σ i is the object of conscious choice by player i. Since we assume a
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large number of states and at each period a random selection of states
according to some probability distribution, such interpretation may not
be appropriate in a descriptive sense. Rather, we may view a player
as “programmed” to a heuristic or a rule (see Gigerenzer et al. 2000)
that is then calibrated by an evolutionary learning process as outlined
in section 6. While this “programming” perspective may not be the
standard interpretation in economics, it is familiar to the economists from
evolutionary game theory (see Weibull 1995).

Note that we allow for framing: Let ω, ω′ ∈ � be such that ω 
= ω′ and
G(ω) = G(ω′). That is, games at ω and ω′ are formally identical but they
may differ in their “colour” or “smell”. Yet, we allow the values of the
feasible strategy to differ between the states. For example, we allow that
administering subjects oxytocin before playing trust games as in Kosfeld
et al. (2005) or Zak et al. (2005) may alter the actions of the subjects as
compared to a placebo.6

No matter whether we focus on complete or incomplete information,
in our context we may view a strategy as a composition of the
sensory correspondence and the behavioural function, σi = bi ◦ si . So an
analogy between neuroeconomics and economics should become clear:
When economics studies informational constraints on choice behaviour,
neuroeconomics studies neurobiological constraints on choice behavior
by adding the focus on how the nervous system constraints information
processing. Which approach one should take depends largely on the type
of question one wishes to ask. If one wants to study for instance the
impact of brain lesions on behaviour (a question taken up in section 5),
the standard economic approach does not suffice but a model on how the
nervous system constrains information processing has to be added.

4. “WELL FUNCTIONING” BRAINS

Glimcher (2003: 167) writes “(t)he goal of the nervous system is to
maximize the inclusive fitness of the organism”. If a nervous system would
play a strategy that is strictly dominated in the “average game of life”, then
clearly it would not maximize its fitness. Therefore we assume that in our
context “functioning well” shall mean to play strategies that are not strictly
dominated in the “average game of life”. In experiments we usually judge
a player’s performance only in one isolated controlled game at a time but
do not observe the player’s performance in the “average game of life”.
Hence, we consider as a second criterion that “functioning well” refers to
the ability of choosing in all relevant situations actions that are not strictly
dominated.

6 It is actually not clear whether oxytocin does not change the game (e.g. the fitness) as well
since we are not specific here on what we mean by fitness.
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More formally, an action ai ∈ A is strictly dominated in the game G(ω)
if there is a mixed action αi ∈ �(A) such that7 ui (ai , a−i , ω) < ui (αi , a−i , ω)
for all a−i ∈ A−i .

For ω ∈ �, let Dω be the set of actions that are not strictly dominated in
the game G(ω). Define for �′ ⊆ �, a set D�′ ⊆ A by (i) for all ω ∈ �′ there
exists ai ∈ D�′ with ai ∈ Dω, and (ii) there is no D � D�′ for which (i) holds.
Condition (i) ensures that for each state ω ∈ �′ there exists an action ai in
D�′ that is not strictly dominated in G(ω). Condition (ii) requires that D�′

is “minimal” in the sense that there is no smaller set of actions satisfying
condition (i). That is, D�′ is a smallest set of actions in A with the property
that for each state ω ∈ �′ there is exactly one action in D�′ that is not strictly
dominated in G(ω). |D�′ ∩ Dω| = 1 for all ω ∈ �′. Note that D�′ may not be
unique.8 For �′ ⊆ �, let D�′ denote the set of all sets of actions satisfying
(i) and (ii). Note further that since � is finite, we must have that every
D ∈ D�′ is finite for every �′ ⊆ �. In fact |D| ≤ |�′| for all D ∈ D�′ and all
�′ ⊆ �.

We define the variability of the environment (�, μ) by ε(�,μ) :=
minD∈Dsupp μ

|D|, where supp μ := {ω ∈ � : μ({ω}) > 0} is the support of μ.
Intuitively, ε(�,μ) is the minimal number of actions required that enables
the play of an action that is not strictly dominated in any relevant state. By
definition, ε(�,μ) ≤ |�|. That is, the number of states of the environment
provide an upper bound on the variability of the environment. Note that
the definition of the variability of the environment depends on the choice
of the solution concept (here actions that are not strictly dominated) and
hence on the fitness “goal”.

Let Si(�, Ni) be the set of all sensory correspondences from � to Si .
Similarly, let Bi(Ni, A) be the set of all behavioural functions from 2Ni to
�(A). A strategy σi : � → �(A) is feasible for the brain Ni if σi = bi ◦ si with
si ∈ Si (�, Ni ) and bi ∈ Bi (Ni , A). As mentioned in section 3, we don’t view
here a strategy as an object of conscious choice by the brain but rather as
a heuristic or rule to which a player is “programmed”.

We define the size of the brain by β(Ni ) := |Si |. Note that the size is not
necessarily increasing in the number of neurons but such increase requires
also appropriate synapses and the connectivity to receptors and effectors.
The larger the size of the brain, the more variability in behaviour it may
generate and the better it can gather information about the environment.
The following example is used to motivate the above definition:

7 We abuse notation when writing ui both as a function of pure actions and mixed actions.
8 An example is easily constructed: Let � = {ω1, ω2, ω3}. Moreover, let Dω1 = {a1, a2},

Dω2 = {a2, a3} and Dω3 = {a4}. Then both {a1, a3, a4} and {a2, a4} satisfy the definition
for D{ω1,ω2,ω3}.
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Example 1. Consider the brain Ni = {1}. Si = {∅, {1}}. Hence β(Ni) = 2. The
environment is given by � = {ω1, ω2, ω3}, μ({ω}) > 0 for all ω ∈ � and a
single person game as follows:

State si Activation bi Action Fitness

ω1 -→ ∅ -→ a1 ui (a1, ω1) > ui (a2, ω1) > ui (a3, ω1)
ω2 ↗ ui (a2, ω2) > ui (a3, ω2) > ui (a1, ω2)
ω3 -→ {1} -→ a3 ui (a3, ω3) > ui (a1, ω3) > ui (a2, ω3)

The table shows also one possible assignment of the sensory
correspondence si and behavioural function bi. There are no possible
assignments of si and bi that would allow the individual to choose her
most preferred action in each state. The reason is simply that the size of
the brain is not large enough given the variability of the environment,
ε(�,μ) = 3. One more neuron would be sufficient to solve the problem.

This observation can be generalized to characterize brains that
“function well” in all relevant situations.

Remark 1. The size of the brain Ni is strictly lower than the variability of the
environment (�, μ) if and only if for any feasible strategy σ i of the brain Ni there
exists a relevant game G(ω) for which σ i prescribes a strictly dominated action.

Proof. “⇒”: Suppose to the contrary that there exists a strategy σ i

feasible for Ni such that σ i(ω) is not strictly dominated for all ω ∈ �

with μ({ω}) > 0. Then |range σi | ≥ ε(�,μ). Since σ i is feasible, σi ∈ bi ◦ si

with si ∈ Si (�, Ni ) and bi ∈ Bi (Ni , A). Thus |range σi | = |range bi | ≤ β(Ni ),
a contradiction to β(Ni ) < ε(�,μ).

“⇐”: Suppose to the contrary that β(Ni ) ≥ ε(�,μ). Then construct a
strategy σ i such that for each ω ∈ � with μ({ω}) > 0, σ i(ω) is not strictly
dominated in G(ω). Such a strategy is feasible for Ni, a contradiction.

We denote by 
(Ni) a finite set of strategies feasible for the brain Ni.
Moreover, in light of Remark 1 we assume that if the size of the brain Ni is
at least as large as the variability of the environment (�, μ) then 
(Ni) contains
a strategy prescribing for each relevant game G(ω) an action that is not strictly
dominated. Finally, we assume that if Ni = Nj then 
(Ni) = 
(Nj).

A brain may be well adapted to its environment in the sense of not
playing a strictly dominated action in any relevant situation. Yet, such
a strategy may be strictly dominated by another strategy in the overall
“average game of life”. Let Ui (σ ) := ∑

ω∈� μ({ω}) ui (σ (ω), ω) denote the
expected fitness of player i from playing strategy σ i when opponents play
σ−i (i.e. expected over the entire life for a fixed strategy profile). This is
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the payoff function in the “average game of life” denoted by � defined for
a given environment (�, μ), the set of players I, a given profile of brains
(Ni)i∈I and for each player i/brain Ni a set of feasible strategies 
(Ni).

A feasible strategy σ i ∈ 
(Ni) is strictly dominated by a mixture of
feasible strategies ρ i ∈ �(
(Ni)) in � if9 Ui (σi , σ−i ) < Ui (ρi , σ−i ) for all
σ−i ∈ × j∈I\{i}
(N j ). Note that according to this definition, a strategy of
player i may become strictly dominated if player i’s size of the brain
increases or the sizes of her opponents’ brains increase. That is, a player
with a previously “well functioning” brain may find it impossible to adapt
herself well after opponents evolve more sophisticated brains.

Remark 2. Suppose that for every player i ∈ I the size of her brain Ni is weakly
larger than the variability of the environment. If σ i ∈ 
(Ni) is not strictly
dominated in the average game of life � by some other strategy feasible for Ni,
then σ i(ω) is not strictly dominated in G(ω) for all ω ∈ � with μ({ω}) > 0.

Proof. Suppose by contradiction that σ i ∈ 
(Ni) is not strictly
dominated in � but that there exist a state ω ∈ � such that σ i(ω) is strictly
dominated in G(ω). Construct a new strategy σ ∗

i that agrees with σ i on all
games G(ω′) with μ(ω′) > 0 where σ i(ω′) is not strictly dominated in G(ω′).
In any other games G(ω′′) with μ(ω′′) > 0 where σ i(ω′′) is strictly dominated
in G(ω′′) let σ ∗

i (ω′′) strictly dominate σ i(ω′′). Since β(Ni) > ε(�, μ), such
strategy is feasible for Ni and by assumption such strategy is contained in

(Ni). Note that σ ∗

i strictly dominates σ in �, a contradiction.

The converse is not true. A counter example can be constructed
similarly to Germano (2007: Example 2).

5. BRAIN LESIONS

The motivation for this section is twofold: first, in neuroscience, lesion
studies are common. A lesion is a damage of brain tissue possibly
separating projections between neurons or destroying neurons altogether.
The effect of such lesions is then studied in patients. While some brain
functions are lost due to lesions, patients are often quite well calibrated
to the environment. For instance, the patient N.R. who suffered from the
Balint’s syndrome caused by a right pariental lesion due to a stroke can
not see two objects shown to him at the same time but only sees one object
at a time while speech and comprehension are normal (see Gazzaniga
et al. 2002: 245, 292). The second purpose of this section is to define a
“set of brains” that we will use in the next section on the evolution of
brains.

Given a brain Ni = 〈Ni ,�i 〉, define a brain N′
i = 〈Ni ,�′

i 〉 by N′
i ⊆ Ni

and for j, j ′ ∈ N′
i , j �′

i j ′ implies j �i j ′ (but not necessarily vice versa).

9 Again, we abuse notation when writing Ui both as a function of strategies and mixtures of
strategies.
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We can view N′
i as a brain obtained from Ni by a lesion. By definition,

β(N′
i ) ≤ β(Ni ). That is, the size of the brain without the lesion is weakly

higher than the size of the brain with the lesion. Naturally, we assume

(N′

i ) ⊆ 
(Ni ). A brain with a lesion has a lower number of feasible
strategies available than the brain without the lesion.

Let N i denote the (partially ordered) set of all brains that can be
obtained from Ni by lesions. We call N i the set of brains derived from Ni.
In the next section, we do not necessarily interpret a brain N′

i ∈ N as a
brain obtained from N by a lesion. Rather, Ni is just a set of brains with
weakly lower size than the size of brain Ni.10

Do lesions always matter? The following example illustrates that this
depends on the kind of lesion of the player’s brain and the environment.

Example 2. Consider a brain given by Ni = {1, 2, 3} with 1 �i 2, 1 �i 3
and 2 �i 3. Thus Si = {∅, {1}, {1, 2}, {1, 3}, {1, 2, 3}} and β(Ni) = 5. Consider
now a lesion that severs the synapse between 2 and 3. Note that Si and
β(Ni) remains unchanged. Hence such a lesion won’t affect information
processing and behaviour no matter how rich the environment is. Consider
now a lesion that severs the synapse between 1 and 2. The size of the brain
is now reduced to 3 even though no neuron was removed. Despite this
“brain damage”, the player still can “function well” in below environment
� = {ω1, ω2, ω3} with μ({ω}) > 0 for all ω ∈ � because it is feasible for her
to be programmed to si and bi given in the table:

State si Activation bi Action Fitness

ω1 -→ ∅ -→ a1 ui (a1, ω1) > ui (a2, ω1) > ui (a3, ω1)
ω2 -→ {1} -→ a2 ui (a2, ω2) > ui (a3, ω2) > ui (a1, ω2)
ω3 -→ {1, 3} -→ a3 ui (a3, ω3) > ui (a1, ω3) > ui (a2, ω3)

For such an environment, the lesion won’t affect her ability to play actions
that are not strictly dominated in each state. This holds true even if the
lesion would remove either neuron 2 or 3 altogether.

Lesions may have an externality on other players (as caretakers of
patients sometimes note).

Example 3. Let the environment consist of two states, �= {ω1, ω2}, with
μ({ω}) = 1

2 for all ω ∈ �. The game at each state is given by the following
payoff matrices:

ω1 ω2

(
10, 10 1, 9
9, 1 0, 0

) (
0, 0 9, 1
1, 9 10, 10

)

10 Note that there may be several different brains in Ni with an identical size.

https://doi.org/10.1017/S0266267108002113 Published online by Cambridge University Press

https://doi.org/10.1017/S0266267108002113


506 BURKHARD C. SCHIPPER

Let both players‘ brains be given by N1 = N2 = {1}. Such a brain enables
each player to play a feasible strategy given by

σ1(ω) =
{

up if ω = ω1
down if ω = ω2

σ2(ω) =
{

left if ω = ω1
right if ω = ω2

that selects the strict dominant action and the Pareto efficient outcome in
each game. That is, for player 1 we let s1(ω1) = ∅, b1(∅) = up, s1(ω2) = {1},
b1({1}) = down and analogously for player 2. Suppose now that player 1
suffers a brain lesion such that her brain with the lesion is N′

1 = ∅. The
above strategy is not feasible any more for player 1 with the brain damage.
Only constant strategies are feasible that prescribe either up or down or a
constant mixture thereof at both states. Since player 2 sticks to his dominant
strategy, in expectations any constant strategy yields a fitness of 9 1

2 to
player 1. Yet, player 2 incurs a much bigger fitness loss since she receives
in expectations only 5 1

2 . While player 1 suffered the brain damage, the
healthy player 2 incurs most of the costs.11

6. DEVELOPMENT AND EVOLUTION OF BRAIN FUNCTIONS

We are not born with a fully developed brain. For instance, in newborns
the optic nerves are not developed completely but reach typical adult
patterns only at the age of about 2 years. But even the nervous systems
of adults maintain some neural plasticity as indicated by learning of
new skills or the development of phantom sensation of amputees (see
Gazzaniga et al. 2002: Chapter 15). More generally, if the nervous system
regulates the interaction of the organism with other organisms and the
complex changing environment, there should be an evolutionary selection
of nervous systems. First, we will try to analyse the question whether
“successful” brain functions si and bi can develop among interacting brains
in a changing environment. Second, we focus on the evolution of brains.

6.1. Development

Starting from an initial distribution of feasible strategies ρ̄ = (ρi , ρ−i ) ∈
× j∈I �(
(N j )) among brains, we assume that brains develop feasible
strategies according to a discrete-time stochastic aggregate log-monotone
dynamics defined by

(1) ρt+1
i (σi ) = ρt

i (σi )eλi (ρ̄t)(ui (σi (ωt),ρt
−i ,ω

t)−ui (ρ̄t,ωt))∑
σ ′

i ∈
(Ni ) ρ
t
i (σ ′

i )eλi (ρ̄t)(ui (σ ′
i (ωt),ρt

−i ,ω
t)−ui (ρ̄t,ωt))

11 Similarly, one can find examples in which the value of a brain damage is strictly positive
because the brain damage works like a commitment device.
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where λi : × j∈I �(
(N j )) −→ R+ is a positive continuous function
bounded away from zero. This dynamics is just one learning dynamics
reflecting the “law of effect”: The probability of playing a certain strategy
increases in the relative performance of the strategy in randomly drawn
games among brains. Note that the propensity to use a certain strategy is
updated with respect to randomly drawn games (instead of the average
game of life). This dynamics has been studied by Cabrales and Sobel
(1992) in a standard evolutionary game setting and for our stochastic
environments by Germano (2007).

Proposition 1. Fix an environment (�, μ) and a profile of brains (N j ) j∈I . Let
σi ∈ 
(Ni ) be a feasible strategy of the brain Ni for some player i, which is strictly
dominated in the average game �. If for every player j ∈ I there is initially positive
probability that Nj uses any feasible strategy in 
(Nj), then the brain Ni develops
to use σ i with zero probability almost surely.

Suppose further that for every player i ∈ I the size of the brain Ni is weakly
larger than the variability of the environment (�, μ). If for some player i ∈
I, σi ∈ 
(Ni ) is a feasible strategy for Ni that prescribes a strictly dominated
action in some relevant game and for every player j ∈ I there is initially positive
probability that Nj uses any feasible strategy in 
(Nj), then the brain Ni develops
to use σ i with zero probability almost surely.

Proof. The first conclusion is a reinterpretation of Germano (2007:
Proposition 1). The second conclusion follows from the first conclusion
using Remark 2.

Since the statement is for a fixed profile of brains, the interpretation is
restricted to learning and development of brains. In light of Proposition 1
it would be interesting to study the correlation between behavioural
changes and the development of nervous systems in children. For instance,
Harbaugh, Krause and Berry (2001) examine to which extent consumption
choices by 7- and 11-year-old children and college undergraduates satisfy
the axioms of revealed preference. They find that choices by even the
7-year-olds are considerably more likely to obey revealed preference
axioms than would be true if they were choosing randomly. Eleven-year-
olds do better still, while college students do no better than 11-year-old
children. They argue that this evidence suggests that the ability to choose
rationally is not innate, but that it does develop quickly.

6.2. Evolution

Now we turn our attention to the evolution of brains. Consider a
sufficiently large population of players. Each player is endowed with a
brain N ∈ N̄ , where N̄ is a set of brains derived from some brain N̄ as
discussed in section 5. We assume that the size of N̄ is weakly larger then
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the variability of a fixed environment (�, μ), β(N̄) ≥ ε(�,μ). We denote
by η ∈ �(N̄ ) the distribution of brains within the population. For example,
η(N) denotes the fraction of the population endowed with the brain N ∈ N̄ .

At each period t players are randomly and anonymously matched to
play the game at ωt. If a player’s brain is N ∈ N̄ , then he is programmed to
some feasible strategy σ ∈ 
(N). Let ρN ∈ �(
(N)) be the distribution
of strategies in the population of players endowed with brain N. For
example, ρN(σ ) is the fraction of players programmed to σ ∈ �(
(N))
among all players in the population with brain N. (If η(N) = 0, then ρN can
be arbitrary.) We define ρ ∈ �(
(N̄)) by ρ(σ ) = ∑

N∈N̄η(N)ρN(σ ). This is
the fraction of the entire population programmed to σ .

We assume that the evolutionary selection of strategies within the
entire population follows equation (1), i.e.

ρt+1(σ ) = ρt(σ )eλ(ρ̄t)(ui (σ (ωt),
m−1

ρt,...,ρt,ωt)−ui (ρ̄t,ωt))

∑
σ ′∈
(N) ρ

t(σ ′)eλ(ρ̄t)(ui (σ ′(ωt),
m−1

ρt,...,ρt,ωt)−ui (ρ̄t,ωt))
.

This equation may be viewed as a discrete-time version of the replicator
dynamics used in standard evolutionary game theory (see Cabrales and
Sobel 1992). By Remark 1, the evolutionary selection of strategies has
implications on the evolution of brains:12 If ρ(σ ) = 0 for all feasible strategies
σ ∈ 
(N) of the brain N, then η(N) = 0.

Corollary 1. Given the environment (�, μ), consider the set of brains N̄ derived
from a brain N̄ whose size is weakly larger than the variability of the environment.
If initially there is a completely mixed distribution of brains η ∈ �(N̄ ) in the
population of players and for each brain any feasible strategy has initially strict
positive probability in the population, then evolution lets the fraction of players
with a brain of strictly smaller size than the variability of environment go to zero
almost surely.

Proof. For all brains N with β(N) < ε(�, μ) it follows from Remark 1
that any feasible strategy σ ∈ 
(N) must prescribe a strictly dominated
action σ (ω) for some game G(ω) with μ({ω}) > 0. Then the result follows
from Proposition 1. That is, the result is just a reinterpretation of Germano
(2007: Proposition 1).

Empirically, there is quite some variation of the number of neurons
(a proxy for our measure of brain size) in organisms. For instance,
trichoplax adhaerens, a tiny marine animal, has no neurons at all
(Schierwater, 2005) whereas human beings are estimated to have about
95 billion neurons and about 100 trillion synapses. While humans do not

12 So the evolution of brains is “indirect” in the spirit of the indirect evolution of utility
functions in an approach pioneered by Güth and Yaari (1992).
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have the largest brain both in terms of relative or absolute volume or
weight or the total number of neurons, they have the highest number
of cortical neurons (for a survey see Roth and Dicke 2005). The cerebral
cortex is often associated with “thinking”, “perceiving”, “producing” and
“understanding” language but it is also involved in more basic functions
such as vision, hearing, touch, movement and smell (Gazzaniga et al. 2002:
70). It is the most recent structure in the history of brain evolution. The
following table provides a comparison of numbers of cortical neurons in
some mammals (see Haug, 1987; Roth and Dicke 2005):

Animal taxa Number of cortical neurons

Man 11 500 000 000
African elephant 11 000 000 000
False killer whale 10 500 000 000
Chimpanzee 6 500 000 000
Bottlenose dolphin 5 800 000 000
Gorilla 4 300 000 000
Horse 1 200 000 000
White-fronted capuchin 610 000 000
Rhesus monkey 480 000 000
Squirrel monkey 480 000 000
Cat 300 000 000
Dog 160 000 000
Opossum 27 000 000
Hedgehog 24 000 000
Rat 15 000 000
Mouse 4 000 000

In light of Corollary 1, it would be an interesting empirical exercise to
investigate beside the brain sizes of organisms also a measure of the
variability of their environment, and check for a correlation. Note however
that this does not provide a test for the result because it could well be that
organisms 1 and 2 are such that the brain size of 1 is smaller than the brain
size of 2 and the variability of 1’s environment is higher than the variability
of 2’s environment but both organisms’ brain sizes are larger than their
respective environment’s variability.

6.3. Endogenous changes of environments

Today there are signs that human behaviour changes the environment
more and more. For instance, the industrial revolution may cause global
warming. Even in more primitive societies, actions today impact the
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environment tomorrow; for example hunters need to move on once
animals are hunted, nomads need to move depending on the grazing
activity of their livestock, wars destroy potentials of future production etc.
Do the conclusions of the previous section remain intact in such a more
realistic setting?

More formally, in contrast to section 2.1 suppose now that at each
period players can influence interactively through their actions the
probability with which the next state is drawn. In particular, we assume
that μ(ωt+1|ωt, a ) is the transition probability that the state is ωt+1 in period
t + 1 given that the state in t is ωt and the players’ profile of actions at t
is a = (al, . . . , am). Essentially, these transition probabilities together with
games {G(ω)}ω∈� render the environment into a stochastic game. Analogous
to the theory of stochastic games, we call player i’s strategy σ i Markov if at
any period of time it just depends on the current state.

Example 4 (apokalupsis eschaton). There are two players. Their environ-
ment consists of two states � = {ω1, ω2}. In any of those states, either player
can take either of two actions. The payoffs in each state are given by the
payoff matrices. The transition probabilities associated with each state and
each profile of actions are given below the payoff matrices. (Each compo-
nent of the matrix corresponds to the state and action profiles above, as-
signing the probability of transiting to ω1 and ω2 respectively. We let ε > 0.)

ω1 ω2(
3, 3 0, 4
4, 0 2, 2

) (−10,−10 −10,−10
−10,−10 −10,−10

)

(
(1, 0) (1 − ε, ε)

(1 − ε, ε) (1 − ε, ε)

) (
(0, 1) (0, 1)
(0, 1) (0, 1)

)

G(ω1) is a standard Prisoner’s dilemma with down and right being strictly
dominant. In G(ω2) any action is not strictly dominated.

We assume that the initial state is ω1. No matter whether players have
a brain or not, the dynamics in equation (1) should lead players to play the
strictly dominant action in G(ω1) starting from a completely mixed action
profile. Such play leads at some point to the absorbing game G(ω2) with
very low fitness to both players. Yet, playing the strictly dominated action
in G(ω1) is part of the strategy that is strictly dominant in the average game.
So there is no way in which brains as modelled in this note can develop
to “function well” in the “average game of life” with the dynamics in
equation (1) because “functioning well” would mean to avoid the “bad
life” in game G(ω2) altogether. Note that we could slightly perturb the
payoffs and transition probabilities and the same conclusion would obtain.
Thus such class of games is not negligible.
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What to make of it? On one hand, we can dismiss adaptive play
given by equation (1) as extremely mechanistic and backward looking
and our model of the “brain” as a meaningless caricature. What would
a model of a brain need to look like that is able to generate foresight
required to “function well” in problems like Example 4? What enables
the imagination of consequences without having to experience similar
consequences beforehand? On the other hand, stories like the one of Adam
and Eve show that we may (even religiously) believe that humans are
created in such a way that they fail to envision consequences of their
actions (despite being told about them beforehand).

In the exogenously changing environments studied in the previous
section, larger brains have an evolutionary advantage in more complex
environments. When the change of environment depends endogenously
on the players’ actions, a larger brain can also generate more variability
in behaviour and hence make the environment more variable as well.
Therefore, it is not clear any more, whether larger brains maintain an
evolutionary advantage over smaller brains in endogenously changing
environments. It is possible to build more sophisticated examples where
only the presence of a large brain in a population of “no-brainers” triggers
the transition to “bad” absorbing sets of games. It is also possible to
construct examples, where large brains are needed to enter relatively
small absorbing sets of games and then once entered evolutionary drift
reduces the brain size in the population over time because the evolutionary
selection pressure is not present anymore in the small absorbing set of
games.

7. SOME FURTHER DISCUSSION

What is really the relevance of such an evolutionary model? It gives
a preliminary answer to the “major criticism that Marr’s approach has
faced”. Namely, that “it has been unclear whether evolution can be
conceived of as a process that structures nervous systems to accomplish
goals with enough efficiency to make the computational goal a useful
starting point for neurobiological analysis,” (Glimcher 2003: 166). It does
shed some light on the dependence of the appropriate brain size on the
variability of the environment but such a relationship is far from surprising
and the model falls short of generating a hypothesis that is really testable.
It does also question the ability of evolution and development to adapt
appropriately to an environment that can be changed by the players
themselves. But given the crude model of the nervous system and the
evolutionary process, how seriously should it be taken?

One important aspect from an economic point of view – which is not
considered here at all – is that large brains in humans constitute large
investments. This large investment does not only come in form of bodily
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capital (the extreme rapid growth requires prenatally about 60% of the
metabolism, see Roth and Dicke 2005: 254) but large brains also demand
education and hence further investment by society into human capital.
Moreover, the “maintenance” of such large brains consumes about 20% of
the total metabolism while it constitutes only 2% of the body weight (Roth
and Dicke 2005: 254). A more comprehensive theory of the development
and evolution of the brain needs to take into account the trade off between
the higher costs of a larger brain and the more sophisticated behaviour it
may generate. Robson and Kaplan (2003) present such a “brain-capital”
theory.

This note uses results by Germano (2007) and he may have anticipated
such use when he wrote (p. 324) “(I)t seems that some of the main
challenges lie in the characterizing ‘good’ rules that ideally apply to a wide
range of games and environments, and linking them to actual cognitive
(or genetic) behaviour”. He also presents additional results such as on
the elimination of strategies that are not rationalizable, Nash equilibria in
the average game of life as limit points under convergence etc. It would
be interesting to consider such strategically more sophisticated solution
concepts because Dunbar and Shultz (2007) suggest that the strategic
demand from living in complex societies selected for sophisticated brains
whereas our focus on actions/strategies that are not strictly dominated
covers mainly the demands upon the brain made by the ecological
variability.

Our model has nothing to say about internal mental conflicts modelled
in recent papers on neuroeconomic theory by Benhabib and Bisin (2005),
Bernheim and Rangel (2004), Brocas and Carrillo (2008a, 2008b) and
Fudenberg and Levine (2006). Our hope is that a more sophisticated
evolutionary approach could shed some light on the evolution of multiple
selves. A first attempt is presented by Livnat and Pippenger (2006) who
show what computational constraints give optimally rise to “multiple
selves”. However, they do not model the evolutionary selection of players
with multiple selves in the spirit of evolutionary game theory.
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