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Abstract

In seed formation the role of ethylene has received little
attention. The data available on zygotic embryogenesis
suggest an association of the ethylene biosynthetic
pathway and seed maturation. Over the course of dicot
embryogenesis, ACC-oxidase mRNA can be expressed
in the cotyledons and embryonic axis. However, as
maturation proceeds, cotyledonary ACC-oxidase
expression disappears. In some seeds that develop
primary dormancy, ethylene synthesis can be among the
prerequisites for breaking dormancy. Moreover, the
persistence of dormancy may be related to the difficulty
of the embryonic axis to produce the necessary ethylene
levels or to low tissue sensitivity. The use of inhibitors of
ethylene biosynthesis or its action has provided data
implicating an ethylene requirement for seed dormancy
or germination in some species. However, the role of
ethylene in germination remains controversial. Some
authors hold that gas production is a consequence of the
germination process, while others contend that ethylene
production is a requirement for germination. Furthermore,
among seeds that require ethylene, some are extremely
sensitive to the gas, while others require relatively high
levels to trigger germination. Recent studies with
Xanthium pennsylvanicum seeds suggest that �-
cyanoalanine-synthase is involved in ethylene-dependent
germination. In addition, regulation of the partitioning of
S-adenosyl-L-methionine (AdoMet) between the ethylene
vs polyamine biosynthetic pathways may be a way of
controlling germination in some seeds. Such regulation
may also apply to the reversal of seed thermoinhibition,
which can occur when polyamine synthesis is inhibited,
thereby strongly channelling AdoMet towards ethylene.
The biological models and approaches that may shed
additional light on the role of ethylene during seed
germination are presented.
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Introduction

The growth and development of higher plants, from
the earliest to the most advanced stages of the life
cycle, are strictly regulated by phytohormones, such
as ethylene (Fluhr and Mattoo, 1996). Germination,
flowering, maturation, senescence and response to
pathogens are some of the processes that involve this
two-carbon alkene (Esashi, 1991; Mattoo and Suttle,
1991; Kepczynsky and Kepczynska, 1997; Kieber,
1997).

From the time of the discovery of methionine as
the precursor of ethylene (Lieberman et al., 1965; Yang
et al., 1966) to the first studies of ethylene signal
transduction using Arabidopsis thaliana mutants
(Ecker, 1995; Fluhr, 1998), major breakthroughs have
been made in the knowledge and understanding of
ethylene physiology. Thus, it has been demonstrated
that: (a) methionine is transformed into AdoMet and
methyl-thyoadenosine (MTA) which, via the “Yang
cycle”, regenerates methionine (for review, see
Miyazaki and Yang, 1987; Kushad, 1990); (b) AdoMet
is transformed into ethylene with 1-
aminocyclopropane-1-carboxylic acid (ACC) as the
only intermediate (Adams and Yang, 1979); (c) ACC
can be alternatively conjugated to 1-(malonylamino)
cyclopropane-1-carboxylic acid (MACC) (Amrhein et
al., 1981) or 1-(�-L-glutamylamino)cyclopropane-1-
carboxylic acid (GACC) (Martin et al., 1995), although
MACC is the principal conjugate (Peiser and Yang,
1998); (d) MACC, under stress conditions, can be
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transformed into ACC (Jiao et al., 1986; Hanley et al.,
1989); (e) AdoMet can be alternatively channelled
towards ethylene or towards the polyamine (PA)
pathway, constituting a control mechanism for certain
physiological processes in higher plants (Miyazaki
and Yang, 1987; Evans and Malmberg, 1989; Mattoo
and White, 1991; Matilla, 1996).

Ethylene production in higher-plant tissues is
usually low but is greatly increased at certain stages
of growth and development, such as the germination
of some seeds, the ripening of climacteric fruits or the
abscission of leaves. In higher plants, the ethylene
synthesis involves ACC-synthase, ACC-oxidase, and
in some cases MACC-transferase and GACC-
transferase (John, 1991; Kende, 1993; Fluhr and
Mattoo, 1996). Since ethylene regulates diverse
processes, its production must be closely regulated.
Multiple genes encode key enzymes of ethylene
biosynthesis (ACC-synthase and ACC-oxidase), and
their transcripts are differentially regulated (van der
Straeten and van Montagu, 1991; Rodrigues-Pousada
et al., 1993; Gray et al., 1994; Zarembinski and
Theologis, 1994; Nakatsuka et al., 1998). In this review,
data are presented on the production of ethylene in
seeds and the role played by this phytohormone in
seed development and germination.

Ethylene and zygotic embryogenesis

Plant embryogenesis (for review, see Meinke, 1994)
involves multiple developmental pathways co-
ordinated by phytohormones, abscisic acid (ABA)
being the most thoroughly studied (Hilhorst, 1995;
Rock and Quatrano, 1995; Bewley, 1997; Marion-Poll,
1997; Thomas et al., 1997; Le Page-Degivry, 1998).
While there are many molecular studies on the
ethylene pathway in fruits and flowers (Fluhr and
Mattoo, 1996), information for vegetative tissues and
embryogenesis is extremely limited. In some
photosynthetic tissues, ethylene affects chlorophyll
metabolism (Johnson-Flanagan and Thiagarajah,
1990; Abeles et al., 1992). Because chlorophyll loss is
triggered during the final stages of embryogenesis
(e.g. development of desiccation tolerance), this
process may be affected by ethylene. In sunflower
seeds, ethylene production from ACC decreased
during seed maturation, and non-dormant mature
seeds were unable to synthesize ethylene until
germination and growth occurred (Corbineau et al.,
1989). Mustard and canola seeds produce significant
amounts of ethylene during embryogenesis,
specifically in the early pre-desiccation stages
(Johnson-Flanagan and Spencer, 1994; Child et al.,
1998). The thickness of the silique, an organ that does
not produce ethylene, may have a key role in
controlling the gas concentration during maturation.

Transitory climacteric ethylene is detectable prior to
senescence in oilseed rape pods, much of which is
attributable to the seeds (Meakin and Roberts, 1990).
The decline in this ethylene production is
accompanied by a rise in �-1,4-glucanase in the
dehiscence zone of siliques (Meakin and Roberts,
1990), and polygalacturonase may also be involved
(Jenkins et al., 1996; Petersen et al., 1996). The results
concerning the pod wall of oilseed rape strongly
suggest regulation of ethylene biosynthesis by ACC-
oxidase rather than at the level of ACC-synthase
(Child et al., 1998).

ACC and MACC have been quantified during
embryogenesis in very few seeds. In oilseed rape, the
variation in ACC is exceedingly small during the
climacteric period, implying its rapid conversion to
ethylene, while the MACC level is very low (Child et
al., 1998). However, the MACC content of seeds
increased after the production of climacteric ethylene
slowed, indicating that some ACC is continually
being conjugated rather than used for the production
of ethylene. The presence of climacteric ethylene
appears to accelerate more than initiate the abscission
of the silique. Cell separation in the dehiscence zone
of oilseed rape takes place only when auxin levels in
that zone decline to low values, coinciding with the
ethylene climacteric (Chauvaux et al., 1997). Pod
dehiscence involves highly regulated and controlled
expression of an array of different genes at precise
times and cellular location and requires a complex
signal transduction network. Recently, a cDNA
(SAC29) encoding a response regulator protein was
isolated from Brassica napus pods (Whitelaw et al.,
1999). SAC29 was highly expressed in the dehiscence
zone when ethylene and auxin reached a maximum
(Meakin and Roberts, 1990; Johnson-Flanagan and
Spencer, 1994). The role of SAC29 as a component of
an ethylene-mediated cascade regulating dehiscence
is under study.

Legume seeds are also widely studied in relation
to the ethylene pathway and embryogenesis.
Exogenous ethylene injected through the maturing
pod wall was a powerful initiator of precocious
germination in Phaseolus vulgaris cv. Seminole seeds
(Fountain and Outred, 1990), probably owing to
induction of ABA catabolism or to changes in tissue
permeability to ABA caused by ethylene. A slow rate
of ethylene production was found in these seeds, the
testa being the source. In seeds of Lupinus luteus, ACC
inhibited assimilate import from the seed coat to the
developing embryo, and ABA played an important
role in this import to the seeds (Zayakin and Nam,
1998). Recently, some aspects of embryogenesis of
Cicer arietinum were studied in relation to ethylene
biosynthesis. A full-length cDNA encoding ACC-
oxidase was isolated and sequenced from embryonic
axes of chick-pea seeds, which depend on ethylene
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production for germination (Gómez-Jiménez et al.,
1998). ACC-oxidase mRNA was found both in
cotyledons and the embryonic axis during early and
middle embryogenic stages, but not in the cotyledons
during the desiccation period (Gómez-Jiménez et al.,
1998). ACC content, ACC-synthase activity (Gómez-
Jiménez and Matilla, unpublished data), ethylene
production and in vitro ACC-oxidase activity reached
a maximum towards the mid-stages of chick-pea
embryogenesis and then declined during late
embryogenesis and seed desiccation (Gómez-Jiménez
et al., 1998). However, the expression of the ACC-
synthase gene remained practically invariable over
zygotic embryogenesis in C. arietinum (Gómez-
Jiménez and Matilla, unpublished data). These results
suggest a relationship between ethylene production
and normal C. arietinum seed development. In chick-
pea seeds, the relationship between the control of
embryogenesis by ABA (Colorado et al., 1995) and
ethylene is currently under study.

A role of ethylene in breaking dormancy

A seed is programmed to survive after being
dispersed from the mother plant until the
establishment of a photosynthetically competent
seedling. Seed dormancy prevents germination
during periods unfavourable to seedling growth.
Primary dormancy develops during seed formation
on the mother plant and can be relieved by dry
storage or by imbibition at certain temperatures over
a particular time period. The breaking of dormancy is
characterized by changes in several physiological
parameters that affect the subsequent germination
response. There is increased sensitivity to
germination-stimulating factors such as GAs, nitrate,
chilling and light (Karssen et al., 1989; Derkx and
Karssen, 1993). Various studies suggest that
membrane transitions may be involved as regulatory
elements in dormancy and germination (Hilhorst et
al., 1996).

Since many species produce ethylene during
germination and some factors that break dormancy
also stimulate ethylene production, it was proposed
that gas production during early imbibition may
contribute to the breaking of dormancy in some
species. The first observations were made in the seeds
of Trifolium subterraneum (Esashi and Leopold, 1969),
Arachis hypogea (Ketring and Morgan, 1971, 1972),
Spergula arvensis (van Staden et al., 1973) and Avena
fatua (Adkins and Ross, 1981), among others. For
dormant Chenopodium album seeds, endogenous
ethylene stimulates germination (Saini et al., 1985a, b)
and depends on an interaction with nitrate supply
from the mother plant or the in vitro germination
medium (Saini and Spencer, 1987). As opposed to

seeds of A. caudatus, L. sativa and cocklebur (Satoh et
al., 1984; Kepczynski and Karssen, 1985; Abeles, 1986),
non-dormant C. album seeds do not require ethylene
for radicle protrusion, although they produce the gas.
While treatment with norbornadiene (NBD) impeded
the germination of dormant C. album seeds, inhibition
was reversed by exogenous ethylene. However,
aminoethoxyvinylglycine (AVG) did not inhibit seed
germination when dormancy was broken by GA,
nitrate and light, probably because the small quantity
of gas produced was sufficient owing to the assumed
great sensitivity to this phytohormone (Machabée and
Saini, 1991).

Steward and Freebairn (1969) inhibited lettuce
seed germination at 25°C by first heating dry seeds at
97°C for 8–16 h; ethylene (100 µl l�1) released this
dormancy when added during the imbibition period.
Exogenous ACC was not as effective as ethylene, and
the dormancy induced by the heat lowered ethylene
production and ACC synthesis. Both processes
increased when exogenous ethylene was applied (Fu
and Yang, 1983).

Non-dormant cocklebur seeds produced much
more ethylene than dormant ones (Satoh and Esashi,
1983), but exogenous ethylene was not capable of
breaking dormancy (Esashi et al., 1978). One cause of
primary dormancy in these seeds may be the
difficulty of producing ethylene in the axis (Esashi
and Katoh, 1975) and the lack of high sensitivity to
ethylene. Ethylene production in the axes of the non-
dormant cocklebur seeds parallels ACC synthesis
without the participation of MACC (Satoh and Esashi,
1983). The ACC and MACC contents in dormant and
non-dormant seeds are quite similar, suggesting that
dormant seeds have difficulties in oxidizing ACC.
The seeds of the legume, Stylosanthes humilis, have a
strong dormancy when freshly harvested, but this
physiological dormancy is gradually relieved with
time (i.e. 6 months). The authors of this work
conjecture that ACC-synthase, a key enzyme in
dormancy control, is absent or not operative in young
seeds and that ABA appears to control ethylene
production (Vieira and Barros, 1994).

One approach to the mechanism of seed
dormancy is to study mutants lacking dormancy or
having a weak dormancy within a species that
normally has dormant seeds. Such an approach was
taken in Arabidopsis thaliana with the rdo1 and rdo2
mutants (León-Kloosterziel et al., 1994, 1996). The
reduced dormancy of these mutants was caused by a
single recessive mutation at two distinct loci and
was embryo determined (León-Kloosterziel et al.,
1996). The seeds of these mutants show the same
sensitivity to ABA, ethylene, auxin and cytokinin as
the wild type. However, double-mutant analysis
suggested an ABA and GA requirement for
germination.
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Responses of seeds to ethylene and compounds
related or unrelated to their biosynthetic pathway

Many seeds produce ethylene during germination, but
the detailed role of this phytohormone remains
unclear. To provide insight into the action of ethylene,
experiments were performed in which the
germination medium was enriched in ethylene
(ethephon), ACC, substances that alter the
biosynthetic pathway, or compounds that inhibit the
action mechanism (Esashi, 1991). In other studies, the
experimental protocols included an examination of the
effect that ethylene exerts on seed responses to an
exogenous phytohormone whose action mechanism
on some physiological process is relatively well
understood (i.e. ABA, GAs, auxins or kinetin). In the
1970s and 1980s, experiments were conducted to
confirm preliminary results from previous years.
Thus, it was demonstrated that exogenous ethylene
accelerates germination in cocklebur, Amaranthus
retroflexus (Egley, 1980; Schonbeck and Egley, 1980a),
aged Striga lutea (Egley and Dale, 1970) and aged
Brassica napus seeds. From these data, it was suggested
that ageing deteriorated the ethylene-production
system (Takayanagi and Harrington, 1971). Esashi et
al. (1976), submitting cocklebur seeds to an anaerobic
pre-treatment to enhance germination, demonstrated
that exogenous ethylene boosted the germination
percentage even more than anaerobiosis.

In addition, in ABA-treated cotton seeds,
germination was increased with ethylene, GAs and
kinetin. Germination was greater when ethylene was
supplemented with one of the two phytohormones.
Fusicoccin, a toxin that induces cell elongation,
completely reversed the effect of ABA (Halloin, 1976).
Ethylene reversed ABA inhibition of the germination
of A. hypogea (Ketring and Morgan, 1972), C. album
(Karssen, 1976) and also reversed the polyethylene
glycol (PEG) inhibition of A. retroflexus seeds
(Schonbeck and Egley, 1981b, c). Schonbeck and Egley
(1980b) demonstrated that redroot pigweed seed
germination increased with exogenous ethylene
concentrations under most experimental conditions,
but the response was significantly altered by
temperature which decreased the ethylene response
thresholds. Schonbeck and Egley (1981a)
hypothesized a timing sequence for redroot pigweed
seeds, taking into account light (via Pfr), ethylene
sensitivity, temperature, water stress and CO2. The
role of ethylene in the germination of A. caudatus
seeds was studied by Kepczynski (1986a) by using
ACC, AVG, ABA and PEG-6000. Both ABA and PEG
effects were reversed by exogenous ethylene and by
ACC; the effect of this ethylene precursor was
correlated with increased gas production by seeds.
The ABA effect was strengthened by AVG
(Kepczynski, 1986a).

However, ethylene in the form of ethephon, which
in many seeds stimulates germination, can also
provoke inhibition. Such is the case for seeds of
watergrass and rice, among others (Taylorson, 1979;
Southwick et al., 1986). Germination of recalcitrant
Quercus robur seeds exposed to light was inhibited by
ethephon, ACC and ABA (Finch-Savage and Clay,
1994). The germination of cocklebur seeds responded
positively to ethylene at 23°C but was strongly
inhibited by ethylene at high temperatures (Esashi et
al., 1986a). On the other hand, ethephon was the most
efficient antagonist in A. caudatus seeds inhibited by
paclobutrazol (Kepczynski et al., 1988) or by
jasmonates (Kepczynski and Bialecka, 1994, 1997).
Ethylene reversed the inhibition induced by methyl
jasmonate in the germination of cocklebur seeds.
Ethylene production, ACC content and ACC
oxidation were reduced by methyl jasmonate.
However, MACC was not altered by methyl
jasmonate (Nojavan-Asghari and Ishizawa, 1998). In
some seeds the promotion of germination by
ethephon depends on an interrelationship with CO2
(i.e. cocklebur, lettuce, Spergula arvensis or redroot
pigweed), and the sequence of the CO2- and ethylene-
sensitive phases could be changed by seed
conditioning (Esashi et al., 1986b, 1988). Secondary
dormancy in cocklebur seeds was broken only by the
simultaneous application of CO2 and ethylene (Esashi
et al., 1978). The fact that NBD, an inhibitor of
cocklebur seed germination, was capable of
counteracting CO2 action in some cases, but was
incapable of reversing the action of ethylene, suggests
that NBD acts with some side-effects besides 
being a competitive inhibitor of ethylene action
(Ishizawa et al., 1988). Exogenous ethylene was
capable of alleviating the chilling injury to peas, while
AVG and NBD tended to increase the chilling injury
(Petruzzelli and Harren, 1997). By contrast, Echinaceae
angustifolia seeds need a continuous-light treatment,
pre-chilling and ethephon in order to reach 100%
germination (Feghahati and Reese, 1994). The
germination of C. arietinum seeds is stimulated by
ACC and ethephon and depressed by aminooxyacetic
acid, CoCl2 and NBD, among others (Gallardo et al.,
1994a). However, the germination of these seeds is
accelerated by inhibitors of the polyamine pathway
(i.e. cyclohexylamine or methylglyoxal-bis-
guanylhydrazone), suggesting a greater channelling
of AdoMet towards ACC-synthase and, consequently,
greater ethylene synthesis (Matilla, 1996). Gallardo et
al. (1994c) showed that the presence of
cyclohexylamine in the germination medium
increased the activity of ACC-synthase and ACC-
oxidase in addition to raising the levels of ACC and
ethylene concomitantly with a strong drop in
endogenous polyamines.

In addition, short-chain saturated fatty acids are
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known to inhibit the germination of chick-pea seeds,
and this inhibition was reversed by ACC or ethylene
(Gallardo et al., 1994b). The mechanism of short-chain
saturated fatty acid action is unknown, but in C.
arietinum seeds these fatty acids negatively affected all
steps in the transformation from AdoMet to ethylene
(Gallardo et al., 1994b). Furthermore, the sensitivity of
various plant tissues (e.g. peanut and cyclopia seeds)
to ethylene increased as a result of short-chain
saturated fatty acid incorporation into cell
membranes (Whitehead and Nelson, 1992; Sutcliffe
and Whitehead, 1995).

Also, when considering pollen grain germination
during sexual reproduction in higher plants, it bears
noting in relation to ethylene that: (1) the in vitro
maturation of pollen grains of Nicotiana tabacum from
the mid-binucleate stage was inhibited by
aminooxyacetic acid and AVG, while ACC and
ethephon were able to overcome this inhibition; and
(2) ethylene production increased in isolated pollen
during in situ maturation (Chibi and Matilla, 1994).
These results, together with other previously
published data (Chibi et al., 1993), lead us to believe
that there is competition for AdoMet by the ethylene
and polyamine pathways, providing some degree of
regulation of maturation and germination in Nicotiana
tabacum pollen grains.

Finally, strigol, isolated from root exudates of
cotton (Cook et al., 1972), stimulates germination in
witchweed by promoting ethylene biosynthesis in the
seed (Babiker et al., 1993a). Ethylene is a good
germination promoter in witchweed (Egley and Dale,
1970), and the soil atmosphere can contain ethylene
(Smith, 1976) which positively or negatively affects
germination in various seeds (Taylorson, 1979).
Curiously, the synthetic strigol analogue GR-24
stimulated ethylene production in S. hermonthica and
S. forbesii seeds, but promoted germination only in the
former (Jackson and Parker, 1991). Applying ethephon
to soils can encourage germination of this devastating
plant; after the plant becomes photosynthetically
competent, it can be killed with herbicides (Egley,
1999). Soil experiments with seeds of witchweed or A.
retroflexus (Schonbeck and Egley, 1981b) demonstrated
that cultivation can influence germination, dormancy
and deterioration of buried weed seeds. More recently,
an unidentified compound extracted from a plant-
derived smoke extract, at relatively high
concentrations, strongly inhibited the germination of
light-sensitive lettuce seeds, counteracting increased
germination by ethylene (Jager et al., 1996).

A role for ethylene in germination

Seed germination involves a series of hormonally
regulated metabolic processes. Consequently, as

germination involves the revival of the growth of the
organ that breaks the seed coat, this part of the seed
may contain the true target cells for certain
phytohormones (e.g. ethylene; Matilla, 1996; Kieber,
1997). Egley (1999) rightly considers germination and
dormancy in this light: “dormancy (a reduced ability
to germinate) results when some pre-germination
events do not follow an essential sequential pattern
and perhaps an orderly sequence of metabolic events
is necessary to ‘set the stage’ for germination”.

Although the great majority of seeds produce
ethylene during the germination process, it is not yet
clear whether this gas acts as a phytohormone in the
chain of germination events (Abeles, 1986), or
whether ethylene production is a result of, rather than
a requirement for, germination (Fu and Yang, 1983)
and consequently does not alter the pattern of events
prior to or during the breaking of the seed coat. A
number of papers will be reviewed to shed more light
on this enigma. Various studies have demonstrated
that ethylene production in certain seeds increased
before radicle protrusion, and this protrusion was
reduced on trapping the ethylene produced.
However, in wild oat an early temporary rise in
ethylene production was reported in both dormant
and non-dormant seeds (Adkins and Ross, 1981), and
in seeds of peanut and bean, the application of AVG
effectively inhibited ethylene production without
reducing germination (Hoffman et al., 1983). The use
of inhibitors of ethylene synthesis and action indicate
the dependence of seed germination in some species
on endogenous ethylene. The criteria used for
correlating germination and ethylene production
were: (1) parallel increase of seed ethylene production
with the progress of germination; (2) inhibition of
germination by AVG and CoCl2 (inhibitors of ACC-
synthase and ACC-oxidase, respectively) and NBD
(inhibitor of ethylene action); and (3) the effects of all
the inhibitors being overcome by exogenous ethylene
alone or application of ACC.

Ethylene synthesis and action are indispensable
for the germination of lettuce under favourable
conditions (Abeles, 1986; Khan and Prusinski, 1989;
Saini et al., 1989) and Striga hermonthica (Logan and
Stewart, 1995). In addition, the germination of A.
caudatus and C. arietinum seeds requires ethylene
synthesis as well as for alleviation of inhibition
induced by ABA and for GA action (Kepczynski and
Karssen, 1985; Kepczynski, 1986a, b; Matilla, 1996).
The possibility that other compounds could replace
the need for GAs in the GA-deficient mutants of
Arabidopsis was studied by Karssen et al. (1989). Thus,
ethylene and light together induced full germination
in the ga1 mutant in the absence of applied GA, the
effect being much weaker in darkness. By contrast, in
tomato, ethylene did not stimulate germination of the
gib1 mutant in light or darkness (Groot and Karssen,
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1987); fusicoccin was the only compound tested that
partly replaced the need for applied GA.

In a study including different seeds that produce
ethylene, Lalonde and Saini (1992) demonstrated that
of 10 species examined, only Tagetes erecta strictly
required ethylene synthesis to germinate. This
dependence was demonstrated for seeds of other
Compositae [i.e. lettuce and cocklebur (Dunlop and
Morgan 1977a; Satoh et al., 1984; Abeles, 1986)]. On
the other hand, the germination of dormant seeds of
C. album depended on ethylene, although the non-
dormant seeds did not seem to need the gas they
produce (Machabée and Saini, 1991). By using
inhibitors of ethylene synthesis and action and a
laser-photoacoustic detection system to measure
ethylene evolution, Petruzzelli et al. (1994, 1995)
found that pea seeds started to release ethylene before
visible germination. It is noteworthy that some seeds
are highly sensitive to ethylene and thus require only
a small amount for germination. Therefore, these
seeds can germinate in the presence of AVG, which is
not always capable of completely eliminating
ethylene production (Kepczynski and Karssen, 1985;
Saini et al., 1989; Machabée and Saini, 1991; Gallardo
et al., 1994a).

Little is known about the action mechanism of
ethylene in the germination of ethylene-dependent
seeds. Logan and Stewart (1991, 1995) proposed that
cytokinins elicited germination of S. hermonthica by
stimulating ACC-synthase activity. However, Babiker
et al. (1993b) proposed that cytokinins affected
ethylene biosynthesis and germination of S. asiatica by
increasing ACC-oxidase activity rather than ACC-
synthase. This germination can be inhibited by AVG
and NBD. It is possible that stimulation of
germination by ethylene and ACC in S. hermonthica
led to a higher rate of cell division prior to radicle
protrusion and that cell division required a higher
rate of aerobic respiration than elongation (Logan and
Stewart, 1991, 1995).

It was suggested that alternative respiration may
be involved in the normal germination process of
cocklebur seeds (Esashi et al., 1979). However, Esashi
et al. (1987) later concluded that ethylene action could
not be explained only in terms of regulation of the
respiratory system. In a number of recent
publications, the activity of �-cyanoalanine synthase
(CAS), the enzyme likely to be involved in cyanide
metabolism (Maruyama et al., 1998), is related to
regulation of the cocklebur germination. However,
mitochondrial CAS, which may control cocklebur
seed respiration by decreasing the cyanide level, is
greatly stimulated by ethylene in all the seeds studied
to date (Hasegawa et al., 1995). Cytosolic CAS activity
of rice was stimulated by ethylene during the pre-
germination period, but this did not occur in
cocklebur (Hasegawa et al., 1994, 1995). Ethylene is

capable of activating electron transport through both
cyanide-sensitive and -resistant pathways in
cocklebur seeds (Esashi et al., 1982). The stimulation
of aerobic respiration by ethylene in cocklebur was
associated with increased mitochondrial development
during imbibition (Esashi et al., 1975). Ethylene as
well as cysteine and/or HCN (both substrates of
CAS) increased the amino acid content in dormant
and non-dormant cocklebur seeds simultaneously
with increased CAS activity (Maruyama et al., 1997).
This ethylene-induced amino acid accumulation also
occurred under anoxic conditions (Yoshiyama et al.,
1996b). It appears that mitochondrial CAS activated
by ethylene provided asparagine and aspartate and
increased the amino acid pool during the pre-
germination period (Maruyama et al., 1997). Ethylene
action may also be related to amino acid
accumulation in primed seeds (Yoshiyama et al.,
1996a, b).

The germination of chick-pea seeds depended on
ethylene synthesis by the embryonic axis. Radicle
emergence was inhibited by NBD, high temperatures,
ABA, PEG, n-propyl gallate or CoCl2, and the
inhibition was reversed by exogenous ACC or
ethylene (Gallardo et al., 1991, 1994a). Much work has
been done on this species to understand the role of
ethylene in the germination process (Matilla, 1996).
ACC-N-malonyl-transferase (Martínez-Reina et al.,
1996) and ACC-oxidase (Muñoz De Rueda et al., 1995)
have been biochemically characterized; calcium may
be an important cofactor for the latter activity
(Gallardo et al., 1999). During germination, the levels
of mRNA for ACC-oxidase from chick-pea increased
in the embryonic axis and reached a maximum at 
24 h (maximum percentage of germination),
coinciding with a maximum ACC-oxidase activity
and ethylene production. Similar transcriptional
activity was not detected in the cotyledons (Gómez-
Jiménez et al., 1998). Chick-pea germination may
require activation of mRNA transcription for ACC-
oxidase, which can be inhibited by ABA and 
osmotic stress and stimulated by IAA and 
polyamines (Gómez-Jiménez and Matilla,
unpublished data). Exogenous polyamines (i.e.
putrescine or spermine), or the presence of inhibitors
of their synthesis (i.e. cyclohexylamine or
methylglyoxal-bis-guanylhydrazone), activated the
transformation of AdoMet to ethylene, resulting in a
strong stimulation of radicle protrusion under
optimal (25°C) as well as non-optimal (30–35°C)
germination conditions (Gallardo et al., 1992, 1994c,
1996; Matilla, 1996). Cyclohexylamine (25°C)
stimulated the mitotic index in the sub-apical and
apical zones of radicle apex and plumule, respectively
(Gallardo et al., 1994c). However, ethylene did not
seem to have a significant effect on the mitotic activity
of the radicle meristem, since the mitotic index was

116 A. J. Matilla

https://doi.org/10.1017/S096025850000012X Published online by Cambridge University Press

https://doi.org/10.1017/S096025850000012X


not altered by the addition of ethephon (Matilla,
unpublished data).

The ability of seeds to oxidize applied ACC was
the basis of a highly sensitive vigour test (Khan,
1994). In lettuce, cabbage, tomato, snap bean and
sweet corn seeds, this test detected ACC-derived
ethylene before the radicle protrusion; its production
was directly related to the seed vigour. Babiker et al.
(1993b, 1994) demonstrated that germination and
embryo growth of S. asiatica seeds was limited by a
low capacity to oxidize ACC, and this activity was
increased by cytokinins or auxins. Nojavan-Asghari
and Ishizawa (1998) recently concluded that methyl
jasmonate, an inhibitor of cocklebur germination,
reduced ethylene production by inhibiting ACC-
oxidase and ACC-synthase, and thereby retarded
germination.

Finally, it is essential to mention osmopriming
(pre-soaking of seeds in osmotic solutions that allow
the seeds to imbibe water and initiate germination,
but which do not permit radicle protrusion through
the seed coat) and its relationship to ethylene
biosynthesis. Osmopriming improves germination in
certain seeds at suboptimal temperatures, and it was
associated with increased respiration and gene
expression (Bray, 1995), as well as ethylene
production and ACC-synthase activity (Fu et al.,
1988). Osmopriming of sunflower with PEG-6000
enhanced the conversion of ACC to ethylene (a good
indicator of seed vigour, as indicated above) and
probably increased ACC-oxidase activity
(Chojnowski et al., 1997). The low ACC-dependent
ethylene production in aged sunflower seeds could be
related to a reduced in vivo ACC-oxidase activity as in
pea and cocklebur (Gidrol et al., 1991).

Ethylene and thermoinhibition in seeds

Lettuce seeds

Most studies of the alleviation of thermoinhibition by
ethylene have used lettuce seeds (Abeles, 1986).
Lettuce germination (i.e. radicle protrusion) is
sensitive to many internal and external factors (plant-
growth regulators, light, temperature and water
availability) and depends on cell expansion initiated
within the embryo (i.e. hypocotyl region). As the
temperature of germination or imbibition is raised
from optimal (25°C) to supraoptimal (30–35°C),
germination is inhibited. This effect is called
thermoinhibition, since the embryo itself germinates
readily if the endosperm is removed (Saini et al.,
1989). Such thermoinhibition can be overcome by
treating seeds with ethylene. Therefore, this system is
highly useful in studying the action of ethylene in the
germination process.

Effects and interactions among GA, kinetin and
ethylene with CO2 on the relief of thermoinhibition
have been reported (Negm et al., 1972; Keys et al.,
1975; Rao et al., 1975; Khan, 1980/81). However, these
reports were based on germination tests conducted in
sealed systems where metabolic activities of the seeds
could dramatically change the concentrations of gases
such as ethylene and CO2 (Negm et al., 1972; Keys et
al., 1975), possibly resulting in modified effects of
other treatments (Keys et al., 1975; Saini et al., 1986a).
With the use of a flow-through gas system, no
hormone treatment alone was able to overcome
thermoinhibition in the dark; the action of exogenous
ethylene required the presence of at least another
hormone, CO2 or light, or a combination of these
(Saini et al., 1986a). Ethylene synthesis was essential
for the relief of thermoinhibition in the dark by
applications of GA, kinetin and/or CO2 (Saini et al.,
1986b). A similar requirement for ethylene under non-
thermoinhibitory conditions (25°C) in the light was
reported by Abeles (1986). Endogenous ethylene was
also essential for the light-induced relief of
thermoinhibition (Saini et al., 1989). These results
suggest that ethylene plays an essential role in lettuce
seed germination, regardless of the conditions for
germination or the means used to induce it. Finally,
although lettuce seeds subjected to high temperature
and other stresses produce little ethylene (Abeles,
1986; Khan and Huang, 1988), thermoinhibition itself
appears not to be caused by a reduction in the ability
of seeds to produce ethylene (Burdett, 1972; Dunlap
and Morgan, 1977b; Abeles, 1986); high temperatures
may raise the threshold concentration of ethylene
needed for germination (Dunlap and Morgan, 1977b).
The cytokinin or ethylene requirements for
overcoming thermoinhibition and osmotic restraint
(prevention of germination at non-thermoinhibitory
temperatures by placing seeds in an osmoticum) can
also be eliminated or diminished by removing or
weakening the seed coats (Abeles, 1986). Khan and
Prusinski (1989) demonstrated that thermoinhibition
was synergistically alleviated by kinetin + ACC and
concluded that cytokinins may play an important role
in regulating ethylene biosynthesis and germination
in intact seeds at high temperatures, and the seed
coats may be essential for such a regulation. In
addition, thermoinhibition can also be completely
relieved by a combination of kinetin and 100% O2, to a
lesser extent by O2 and ethylene, but not at all by O2 +
GA (Tables 1 and 2). A combination of O2 + kinetin or
ethylene was more effective than all three
phytohormones and CO2 in air (Small et al., 1993).
However, ethylene + kinetin + GA were effective in
breaking and preventing skotodormancy (imposed by
imbibition in continuous darkness) in Lactuca serriola
seeds (Small and Gutterman, 1992a). Whether
thermoinhibition and skotodormancy are controlled

Ethylene in seeds 117

https://doi.org/10.1017/S096025850000012X Published online by Cambridge University Press

https://doi.org/10.1017/S096025850000012X


by similar mechanisms has not been clarified; but the
efficacy of hormones in their alleviation appears to be
different (Small and Gutterman, 1992a, b). Ethylene
participates in the germination process of
thermoinhibited Lactuca sativa seeds or those
germinated at the optimal temperature (Abeles, 1986),
as well as in seeds that were matriconditioned with
the moist solid carrier Micro-Cel E (a synthetic
calcium silicate with matric properties and a high
water-holding capacity) at 15°C for 20 h (this
treatment allowed the seeds to germinate at 35°C)
(Khan, 1996). Lastly, priming is an effective method to
overcome thermoinhibition in lettuce seeds (Cantliffe,
1981), but the mechanism by which seed priming
bypasses thermoinhibition is not understood.
Cantliffe et al. (1984) concluded that seed priming
appeared to lead to the irreversible initiation of cell
elongation, thus overcoming thermoinhibition. This
cell elongation could be caused by an increased
accumulation of free amino acids in the radicle tip
(Takeba, 1980). The relationship between ethylene and
increased osmotic potential is not well understood.

Chick-pea seeds

Germination (i.e. emergence of embryonic axis) of
Cicer arietinum seeds under optimal conditions (25°C)
depends on ethylene production by the embryonic
axis (Gallardo et al., 1994a). Germination was
inhibited at supraoptimal temperatures (30–35°C),
and thermoinhibition was reversed by the application
of ethylene or ACC or when channelling of AdoMet
towards ACC and ethylene was increased (Matilla,
1996) (Table 3). In chick-pea seeds the main results
were as follows: (i) maximum ethylene production in
the embryonic axis occurred when growth was
entirely due to cell elongation before mitotic 
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Table 1. Effect of oxygen plus growth regulators on germination of Grand Rapids lettuce seeds at 25°C (control) and 38°C
(thermoinhibited). Concentrations used: GA3, 100 mg l�1; kinetin, 10 mg l�1; ethylene, 200 µl l�1; CO2, 10% (v/v); O2, 100%.
Numbers are germination percentages recorded after 48 h (means ± SE, n = 3). Adapted from Small et al. (1993)

25°C 38°C

Treatment Light Dark Light Dark

Air control 92 ± 5 47 ± 4 0 0
Air + kinetin 98 ± 1 57 ± 13 10 ± 2 1 ± 1
Air + GA3 95 ± 4 89 ± 4 1 ± 1 0
Air + ethylene 93 ± 2 88 ± 4 0 0
Air + kinetin + GA3 + CO2 + ethylene 99 ± 1 93 ± 2 72 ± 4 68 ± 1
O2 94 ± 3 90 ± 5 23 ± 5 22 ± 1
O2 + kinetin 99 ± 1 97 ± 6 93 ± 2 89 ± 5
O2 + GA3 97 ± 4 99 ± 2 23 ± 4 26 ± 4
O2 + ethylene 96 ± 2 97 ± 5 89 ± 3 48 ± 2

Table 2. Effect of aminoethoxyvinylglycine (AVG),
norbornadiene (NBD) and Hg(ClO4)2 on germination
percentage in the light at 25°C (control) and 38°C
(thermoinhibition) of Grand Rapids lettuce seeds.
Concentrations used: NBD, 2 ml l�1; Hg(ClO4)2, 250 mM;
kinetin, 10 mg l�1; O2, 100%; ethylene, 200 µl l�1; AVG, 2
mM. Numbers are recorded after 48 h (means ± SE).
Adapted from Small et al. (1993)

Germination

Treatment 25°C 38°C

Air control 92 ± 5 0
Air + AVG 56 ± 4 0
Air + NBD 18 ± 6 0
Air + Hg(ClO4)2 92 ± 4 0
Air + AVG + NBD 1 ± 1 0

Air + ethylene 93 ± 3 0
Air + AVG + ethylene 96 ± 4 0
Air + NBD + ethylene 95 ± 5 0
Air + AVG + NBD + ethylene 96 ± 0 0

Air + kinetin 93 ± 4 9 ± 3
Air + kinetin + AVG 52 ± 4 0
Air + kinetin + NBD 29 ± 4 0
Air + kinetin + AVG + NBD 12 ± 2 0
Air + kinetin + Hg(ClO4)2 92 ± 3 5 ± 2
Air + kinetin + AVG + NBD + ethylene 92 ± 4 5 ± 1

O2 95 ± 0 21 ± 3
O2 + kinetin 96 ± 2 93 ± 3
O2 + kinetin + AVG 93 ± 3 84 ± 1
O2 + kinetin + NBD 92 ± 4 84 ± 5
O2 + kinetin + AVG + NBD 78 ± 6 76 ± 1
O2 + kinetin + Hg(ClO4)2 96 ± 1 92 ± 1

O2 + kinetin + ethylene 98 ± 3 96 ± 2
O2 + kinetin + AVG + ethylene 96 ± 2 94 ± 6
O2 + kinetin + AVG + NBD 96 ± 2 92 ± 2
O2 + kinetin + AVG + NBD + ethylene 96 ± 2 92 ± 2
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activity began (Sánchez-Calle et al., 1989). (ii)
Thermoinhibition lowered ethylene production and
ACC levels; however, ACC-synthase activity and the
MACC content increased concomitantly at
supraoptimal temperatures (30°C and 35°C) (Gallardo
et al., 1991). (iii) Polyamine biosynthesis inhibitors
alleviated thermoinhibition (Muñoz De Rueda et al.,
1994b), induced ACC-synthase and ACC-oxidase,
and increased ethylene production (Gallardo et al.,
1995). (iv) Alleviation of thermoinhibition by
spermine (Gallardo et al., 1992) or putrescine
(Gallardo et al., 1996) involved the ethylene pathway,
suggesting that polyamines can play a major part in
controlling germination in Cicer arietinum seeds
(Matilla, 1996). Therefore, one of the causes of
thermoinhibition in chick-pea seeds is a fall in the
production of ethylene, apparently due to the greater
activity of ACC-malonyl transferase, a key enzyme in
this seed (Martínez-Reina et al., 1996), and greater
channelling of AdoMet towards the polyamine
pathway. ACC-malonyl transferase activity and
AdoMet channelling bring about low levels of ACC
and lower endogenous ethylene in the embryonic
axis.

Other seeds

The seeds of Amaranthus retroflexus germinate in the
absence of light at 35–40°C. Lower temperatures
reduced germination, an effect that can be reversed by
ACC or ethrel (Kepczynski et al., 1996). The reason for
this may be that the sensitivity of seeds to exogenous
ethylene decreased at lower temperatures, to reduced
conversion of ACC to ethylene (Kepczynski and
Kepczynska, 1997), or to lower levels of endogenous
ACC. High-temperature treatments of Amaranthus
lividus seeds during imbibition decreased ethylene
production in germinating seeds probably due to
membrane damage caused by the lipid-peroxidation
process (Bhattacharjee and Mukherjee, 1998). In
sunflower seeds the induction of thermodormancy
appeared to be associated with loss of the ability to
convert ACC to ethylene (Corbineau et al., 1988). An

additive or synergistic effect of ethylene and GA3 in
breaking seed dormancy has also been demonstrated
in Rumex crispus (Samimy and Khan, 1983), Xanthium
strumarium (Esashi et al., 1975) and Lactuca sativa
(Keys et al., 1975). The results of these studies appear
to confirm that all factors related to the breaking of
any type of thermodormancy somehow stimulate
ethylene production in the seed. However, there are
exceptions, such as the seeds of Manihot glaziovii and
Avena sativa, in which thermoinhibition must be due
to factors other than reduced ethylene production
(Poljakoff-Mayber et al., 1990; Drennan and van
Staden, 1992).

Conclusions

Although zygotic embryogenesis of seeds is the least
characterized in relation to the role of ethylene,
existing data point towards the involvement of this
phytohormone in cell growth, seed maturation and,
possibly, with the acquisition of primary dormancy. It
is highly probable that the ethylene biosynthetic
pathway is active in all the seed organs throughout
the initial and middle stages of embryogenesis, but
that it tends to be located exclusively in the
embryonic axis in the final stages, and some of its
components remain stored in this organ during the
period of seed desiccation, to be used at the onset of
the imbibition period of viable seeds.

The mechanism by which endogenous ethylene
participates in seed germination is not currently
known. However, some advances have been made in
this respect. Thus, in seeds of Xanthium
pennsylvanicum, it has been proposed that ethylene
regulates germination by acting on mitochondrial-
CAS activity concomitantly with the increase in the
amino acid pool and sulphydryl bases (Yoshiyama et
al., 1996a, b; Maruyama et al., 1998). In chick-pea
seeds, the competition for AdoMet by ethylene and
the polyamine pathways provides some degree of
regulation at the onset and in the course of
germination (Matilla, 1996). Thus, when ethylene
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Table 3. Characteristics of the thermoinhibition in chick-pea (Cicer arietinum) seeds

Physiological process involved Reference

Inhibition of protrusion at 30–35°C compared with a 25°C control Gallardo et al. (1991)
Alleviation with inhibitors of polyamine synthesis Muñoz De Rueda et al. (1995)
Alleviation with spermine or putrescine Gallardo et al. (1992, 1996)
Accumulation of free and bound polyamines Muñoz De Rueda et al. (1994a)
Rise of ACC-synthase and decrease of ACC-oxidase Gallardo et al. (1991)
Inhibition of ethylene production and increase in MACC Gallardo et al. (1991)
Channelling of AdoMet towards polyamine pathway Muñoz De Rueda et al. (1994a)
Rise of ACC-synthase and ACC-oxidase with polyamine synthesis inhibitors Gallardo et al. (1995)
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production is stimulated by the presence of
polyamine biosynthesis inhibitors, an acceleration of
the transformation of AdoMet into ethylene and
stimulation of germination occurs (Gallardo et al.,
1994c). This and other results in Cicer arietinum
strongly suggest that ethylene synthesis may be one
of the triggers of germination rather than being a
consequence of it (Matilla, 1996).

Endogenous ethylene production may be essential
for alleviation of thermoinhibition in some seeds.
Ethylene synthesis or sensitivity to ethylene action
often decreases at high temperatures. However, the
mechanism by which ethylene promotes germination
at thermoinhibitory temperatures is not clearly
understood. Ethylene may not act by lowering the
mechanical resistance of the endosperm to embryonic
growth (Prusinski and Khan, 1990). According to
Abeles (1986), Dunlap et al. (1990) and Dutta and
Bradford (1994), ethylene-dependent seeds require
the gas to enhance radial cell expansion in the
embryonic hypocotyl, rather than on the tissues
enveloping it. However, Logan and Stewart (1995)
proposed that stimulation of germination by ethylene
leads to a higher rate of cell division prior to radicle
emergence and that cell division requires a higher rate
of aerobic respiration than elongation. By using the
hydrotime model in Lactuca sativa, Dutta and
Bradford (1994) concluded that ethylene extended the
high-temperature limit for germination by acting in
the embryo to maintain a lower water potential
threshold for the initiation of growth as temperatures

increase. On the other hand, when Cicer arietinum
seeds (which depend on ethylene synthesis to
germinate) are subjected to thermoinhibition
(30–35°C), ethylene production falls markedly in the
embryonic axis (Fig. 1) as a consequence of the
inhibition of ACC synthesis mediated by a greater
conjugation to MACC as well as inhibition in ACC-
oxidase activity and a greater channelling of AdoMet
towards the polyamine pathway than towards
ethylene (Gallardo et al., 1991; Matilla, 1996).
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