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Abstract

The concept of a rapid spread of self-replicating interstellar probes (SRPs) throughout the
Milky Way adds considerable strength to Fermi’s Paradox. A single civilization creating a sin-
gle SRP is sufficient for a fleet of SRPs to grow and explore the entire Galaxy on timescales
much shorter than the age of the Earth – so why do we see no signs of such probes? One
solution to this Paradox suggests that self-replicating probes eventually undergo replication
errors and evolve into predator-prey populations, reducing the total number of probes and
removing them from our view.

I apply Lotka-Volterra models of predator-prey competition to interstellar probes navigat-
ing a network of stars in the Galactic Habitable Zone to investigate this scenario. I find that
depending on the local growth mode of both populations and the flow of predators/prey
between stars, there are many stable solutions with relatively large numbers of prey probes
inhabiting the Milky Way. The solutions can exhibit the classic oscillatory pattern of
Lotka-Volterra systems, but this depends sensitively on the input parameters. Typically,
local and global equilibria are established with prey sometimes outnumbering the predators.
Accordingly, we find this solution to Fermi’s Paradox does not reduce the probe population
sufficiently to be viable.

Introduction

Why have we detected no sign of intelligent life beyond the Earth? This fundamental question
continues to challenge our deepest-held beliefs about humanity and our place in the Universe.
Fermi’s Paradox forces us to confront our Copernican assumptions about our lack of unique-
ness with the lack of extraterrestrial intelligences (ETIs, see e.g. Brin 1983; Ćirković 2009). Its
strongest formulation can be given as follows (Tipler 1980).

Imagine a civilization constructs an interstellar probe that is self-replicating. Such a probe
would be able to produce a copy every time it visits a new star system. As each copy makes
copies, the number of self-replicating probes (SRPs) grows exponentially, and every star in
the Milky Way is explored on a timescale much, much shorter than its age. Estimates for
this exploration timescale vary but are as short as ten million years (Nicholson and Forgan
2013), and perhaps shorter still.

Given that this timescale is much shorter than the age of the Earth, and only one ETI con-
structing SRPs is sufficient to produce this scenario, on balance we should expect to see an
interstellar probe orbiting the Sun. And yet, we do not. How can this be resolved?

Among many possibilities, we can include solutions that require civilizations to be rare.
However, as a single civilization is sufficient to swamp the galaxy in SRPs, we are effectively
asking for humanity to be alone in the Universe.

It may well be the case that other intelligent beings exist and that their probes are en route,
and may not arrive for several thousand or several million years. This demands that the bio-
logical timescale of most of the Milky Way is somehow correlated. Perhaps this is due to global
regulation mechanisms, large-scale destructive events that reset the biological clocks of many
civilizations simultaneously (Annis 1999; Vukotic and Ćirković 2007; Vukotic and Cirkovic
2008). However, there are no known astrophysical regulation mechanisms that are truly global.
For example, when the Milky Way’s central supermassive black hole enters an active accreting
phase, the subsequent radiation output results in a regulation mechanism with a correlation
length of order ten thousand light years (Balbi and Tombesi 2017). The Milky Way is
much larger than this correlation length, and even a small handful of uncorrelated biospheres
is fit to make this type of solution untenable.

Of course, it may well be the case that an interstellar probe is in the outer solar system, and
we have not yet found it (Papagiannis 1978; Freitas 1983). While this is indeed plausible, the
possible places for an interstellar probe to hide continues to decrease (see also Haqq-Misra and
Kopparapu 2012).
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Other solutions suggest that SRPs themselves are rare. There
have been several arguments put forth regarding the safety of
SRPs as a technology. Sagan and Newman (1983) suggest that
civilizations will voluntarily refrain from building SRPs, for a
host of reasons. For example, self-replication could result in
encoding errors. These ‘mutations’ will propagate from generation
to generation with unforeseen, unintended consequences. The
consequences of this could be severe, e.g. a genocidal conversion
of a species and its technology into probes. It has been argued that
these risks would persuade intelligent beings to place a
moratorium on SRPs. Such arguments are notorious for their
anthropological assumptions, and the larger assumption that
‘civilisations’ are unified in purpose and execution – an assump-
tion humanity repeatedly invalidates (for a limited set of exam-
ples, see e.g. Collins 2008; Denning 2011; Lempert 2014, also
Forgan 2017). This heterogeneity crucially undermines the likeli-
hood of a Galactic moratorium. Once technology achieves a cer-
tain threshold, a very small number of individuals in a single
civilization become capable of building illegal technology and
producing a species-ending moment, or indeed an SRP fleet
(see e.g. Sotos 2017).

We will explore a variant of the unintended consequences of
SRPs, the ‘Predator-Prey’ hypothesis (Chyba and Hand 2005).
In this scenario, a subset of SRPs mutate into predators of
other SRPs. For an SRP to make a copy of itself, it is likely that
cannibalizing another SRP will be the most energy-efficient solu-
tion. In the standard description of this scenario, predators reduce
the prey population until the available prey are exhausted, redu-
cing the visibility of SRPs in the Milky Way.

However, we should also expect in this scenario that the spread
of SRPs across interstellar space will be modulated by the non-
trivial population dynamics of predator-prey systems, which are
among the most well-studied fundaments of mathematical biol-
ogy. The full implications of these population dynamics in SRPs
are largely unstudied (although see Wiley 2011).

In this work, we apply the classic Lotka-Volterra formalism for
predator-prey systems to an interstellar network. In the network,
each star plays host to a predator-prey population, which trans-
mits and receives both predator and prey from neighbouring
star systems. We will consider under what circumstances preda-
tors can reduce the population significantly, as well as what cir-
cumstances permit stable, significant populations of prey to
remain in existence.

Method

We model the Galactic Habitable Zone (GHZ) as a graph of N∗
stars. The stars are distributed in space, with their locations
fixed. The semimajor axes of the stars ai around the Galactic
Centre are exponentially distributed to simulate the Milky
Way’s surface density profile:

P(ai)/ e−(ai/rS), (1)

with the scale radius rS = 3.5 kpc (Ostlie and Carroll 1996). The
minimum and maximum permitted radius of the stars is [7, 10]
kpc respectively, following the Gowanlock et al. (2011) model of
the GHZ. We assume a uniform eccentricity distribution, pro-
vided that the star’s orbit prevents its closest approach to the
Galactic Centre being smaller than the inner radius of the
GHZ. We also restrict the inclination of the orbits so that they

do not exceed 0.5 radians. The longitude of the ascending node,
the argument of periapsis and the true anomaly are uniformly
sampled in the range [0, 2π] radians. Note that once the stellar
orbital parameters are determined, we fix the stellar positions
throughout the calculation.

Each star provides a vertex to our graph, and we construct the
graph G such that for a star i, any star j within a minimum dis-
tance Rmin of i is connected by an edge. We then define the min-
imum spanning tree T of this graph, and use this for computing
predator/prey evolution (see Fig. 1).

For each star i in the network, we solve the Lotka-Volterra
equations for the local numbers of prey Ri, and number of preda-
tors Pi, with inflow and outflow rates of prey determined by the
edges that connect each star to its neighbours. For logistic growth,
the equations for star i are:

dRi

dt
= bR,iRi 1− Ri

KR,i

( )
− dR,iRiPi − OR,i + IR,i (2)

dPi
dt

= bP,iPiRi − dP,iPi − OP,i + IP,i (3)

To model exponential growth, we can simply set the carrying cap-
acity K to very large values (1030). We give a list of all variables
with their definition in Table 1. The outflow of prey from star i
to star j, OR,ij is calculated assuming a fixed outflow rate oR,i, a
fixed probe speed vprobe, and the distance between i and j, Dij:

OR,ij =
oR,ivprobe

Dij
Ri (4)

As we begin our simulations with many stars containing zero
prey initially, we demand that OR,ij be zero until a sufficient time
has elapsed for the first prey to arrive at i to complete the journey
to j. The total outflow is then

OR,i =
∑
j

OR,ij (5)

Inflows are computed similarly:

IR,i =
∑
j

IR,ij (6)

where all outflow/inflow terms are pairwise, i.e.

IR,ji = OR,ij (7)

and an identical set of equations are used for predator outflow
and inflow (OP,i, IP,i).

Results

Tests

Single star, exponential growth.
We test the code by considering a single star with no inflow or
outflow, to ensure that we retrieve the solution to the classic or
‘vanilla’ Lotka-Volterra equations for exponential growth (i.e.
infinite carrying capacity), where we now drop the i subscript
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for clarity:

dR
dt

= bRR− dRRP (8)

dP
dt

= bPPR− dPP (9)

Table 2 shows the parameter values for this run, and Figure 2
shows the resulting behaviour. We see that the predator/prey
populations are oscillatory, both with period 8.6 Myr, and out
of phase. This represents a fixed locus in predator-prey space
(right panel of Fig. 2). This locus can be determined by

condensing the coupled equations into a single equation:

d
dt

bPR+ dRP − dP logR− bR log P
( ) = 0 (10)

If we define the above as a Hamiltonian:

H(R, P) = bPRi + dRP − dP logR− bR log P (11)

We can use standard Hamiltonian analysis (see Murray 2004)
to obtain a single solution for the predator/prey population:

(R, P) = dP
bP

,
bR
dR

( )
. (12)

This defines an initial point on the R−P locus, with all other
points on the locus defining a surface of constant H.

Single star, logistic growth.
We repeat the calculation of the section ‘Single star, exponential
growth’, where we now impose a prey carrying capacity KR = 20
(see Table 3). We recover the standard result, that the stabilizing
effect of carrying capacity damps the oscillations in predator/prey
populations, until an equilibrium is eventually found at late times
(Fig. 3). This is represented in R−P space by a spiral with end
point given by the equilibrium solution. Note that the equilibrium
prey value is much less than the carrying capacity, which is a com-
mon outcome in models of this type. Depending on the input
parameters, steady-state solutions are possible where either the
prey or predators dominate the combined population.

Logistic growth, globally constant parameters

Moderate, constant outflow rate.
We now consider a full stellar network, where each star possesses
the same fixed values for all parameters (see Table 4). We place an
initial population (R1, P1) on star 1, with all other stars hosting
zero prey/predators initially. The global picture is similar to the
single star case (section ‘Single star, logistic growth’) - the initial
oscillatory phase is quickly damped towards equilibrium values.
Again, we find that the total prey population is lower than the
maximum permitted by carrying capacity (N∗KR,i = 104), but
the predator population is also constrained, and hence we find
the prey population can be sustained at relatively high levels (pro-
vided they do not exhaust local resources for self-replication).

Interrogating individual stars reveals that all systems assume
damped oscillatory states similar to the previous section, all
with equal oscillation periods for both the prey and predator
populations (now 9.17 Myr). This is made possible by the

Fig. 1. The stellar network on which we conduct our calculations. Each star repre-
sents an individual system on which we integrate the Lotka-Volterra equations.
Lines indicate edge connections between stars, which determines the rate of out-
flow/inflow of predators and prey onto each star (see text). This stellar network is
the minimum spanning tree T of the graph G (see text for definition).

Table 1. A list of variables used in this paper, with their definition

Ri Number of prey at star i (thousands)

bR,i Birth rate of prey at star i (thousands/Myr)

dR,i Death rate of prey at star i (thousands/Myr)

KR,i Carrying capacity of prey at star i (thousands)

IR,i Inflow of prey to star i (thousands/Myr)

OR,i Outflow of prey from star i (thousands/Myr)

oR,i Outflow rate of prey from star i (thousands/Myr)

Pi Number of predators at star i (thousands)

bP,i Birth rate of predators at star i (thousands/Myr)

dP,i Death rate of predators at star i (thousands/Myr)

KR,i Carrying capacity of prey at star i (thousands)

IP,i Inflow of predators to star i (thousands/Myr)

OP,i Outflow of predators from star i (thousands/Myr)

Table 2. Parameter values used for the results shown in Figure 2

R (initial) 1.8

bR 0.6

dR 1.333

P (initial) 1.0

bP 1.0

dP 1.0
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relatively large outflow rate (oR,i = 10−3), which seeds a system
with sensible initial quantities of prey/predators while remaining
sufficiently small that the internal predator-prey dynamics dom-
inate the population’s evolution.

As the initial prey population requires time to traverse the
stellar network, each predator-prey system begins operating at a
slightly different initial time. The oscillations seen in the global
population have a slightly increased wavelength compared to
individual systems, due to the constructive interference of many
oscillatory curves, each slightly out of phase with each other,
‘smearing’ the curve over a longer period range.

Low, constant outflow rate.
We consider the effect of outflow rate by repeating the previous
experiment, with the outflow parameter reduced to very low
values (oR,i = 10−9). We find that this significantly alters both
the global behaviour and the behaviour of individual systems
(Figs 5 and 6).

The reduced outflow rate ensures that a greater time interval is
required for all stars to host predator-prey systems with sufficient
quantities of each population. As a result, the initial evolution of
all systems depends strongly on their local environment – the
number of directly connected neighbours, and the quantities of
prey/predators arriving from each neighbour. Once each star in
the entire Galaxy is sufficiently populated, the individual systems
are able to attain an equilibrium state, resulting in a global equi-
librium with total predator/prey counts very similar to the previ-
ous example (where oR,i = 10−3). Note that while the behaviour of
each individual system is markedly different (Fig. 6), the periodic
behaviour of prey and predators in any given system remains
tightly coupled.

This run demonstrates the highly time-dependent nature of
this solution to Fermi’s Paradox. Two quite distinct phases of evo-
lution can be characterized – a relaxation phase which persists for
the first 200–400 Myr, followed by an equilibrium phase that
endures beyond 400 Myr. Given that human SETI searches span
a time interval of <10−4 Myr, any constraint we can place on
the total number of probes in a given star system will only be a
brief snapshot. As a result, our ability to use observations of
any kind to constrain any of the parameters of our model will
be extremely limited indeed, even with a bona fide detection of
alien SRPs.

Spatially varying prey growth rates

It is quite likely that the prey growth rate around individual stars
will vary, perhaps due to the quality of resources available for self-
replication. This is likely to be a function of system chemical
composition (i.e. stellar metallicity), but also the degree of elem-
ent differentiation and chemical processing experienced by aster-
oids and minor bodies orbiting said star. The location of the

Fig. 2. The Lotka-Volterra solution assuming exponential growth in a single star system with zero inflow/outflow.

Table 3. Parameter values used for the results shown in Figure 3

R (initial) 1.8

bR 0.6

dR 1.333

KR 20

P (initial) 1.0

bP 1.0

dP 1.0

Table 4. Parameter values used for the results shown in the section ‘Moderate,
constant outflow rate’

R1 (initial) 1.8

bR,i 0.6

dR,i 1.33

KR,i 20

oR,i 10−3

P1 (initial) 1.0

bP,i 1.0

dP,i 1.0
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debris may also limit its usefulness to SRPs – if most of the ‘desir-
able’ raw material resides inside a deep gravitational potential
well, this places energy constraints on the probe’s manoeuvrabil-
ity, further restricting its maximum replication rate.

We consider this possibility by rerunning the previous calcula-
tion (section ‘Moderate, constant outflow rate’), but now ran-
domly sampling bR,i in the range [0.5, 2.0]. The resulting total
population can be seen in Figure 7. The steady equilibrium of
the previous section has disappeared. Periodogram analysis
shows oscillatory behaviour over a range of periods, with principal
period 8.77 Myr. However, there is significant amplitude spread
around this principal period, as the oscillation period of an indi-
vidual system (equivalently, the velocity of the system’s trajectory
around its constant H surface in R−P surface) will depend on its
individual Lotka-Volterra parameters (bR,i, dR,i, bP,i, dP,i). The
combination of a range of oscillation periods results in a ‘smear-
ing’ of the total oscillatory period.

Spatially varying prey carrying capacity

In a similar vein to the previous section, the resources provided by
local asteroid belts may support varying levels of prey populations.
We might therefore expect that the prey carrying capacity will
vary between individual stars. We investigate this possibility by
resetting bR,i = 0.6 and randomly sampling KR,i from a uniform
distribution in the range [5, 30]. The resulting total populations
again assume an oscillatory state, but with no clear principal per-
iod, and reduced variations in the value of R and P (Fig. 8). The
total prey population tends to remain at larger values than the
previous case, mostly because the prey growth rates can now be
set at a relatively large value.

When we consider individual star systems (Fig. 9), we can see
that the individual predator populations are difficult to distin-
guish from the total predator population. However, we can see
that the prey populations show a variety of periodicities, defined
not only by the local KR,i but also the carrying capacity of its
neighbouring stars. For example, the prey population in the top

Fig. 3. The Lotka-Volterra solution assuming logistic growth in a single star system with zero inflow/outflow. The prey carrying capacity is 20.

Fig. 4. The predator/prey population in the Galactic Habitable Zone, assuming logis-
tic growth over 500 stars with globally fixed predator/prey growth and death rates
(see Table 4).

Fig. 5. As Figure 4, but with significantly reduced outflow.
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Fig. 6. The predator/prey populations of selected stars, where the outflow rate is constant and very low (oR,i = 10
−9).

Fig. 7. As Figure 4, where we now allow the prey growth rate to vary uniformly
amongst the 500 stars in the range bR,i = [0.5, 2.0].

Fig. 8. As Figure 4, where we now allow the prey carrying capacity to vary uniformly
amongst the 500 stars in the range KR,i = [5, 30].
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right panel of Figure 8 exhibits a visible periodicity of around 100
Myr, whereas the bottom right panel shows no obvious evidence
of periodicity.

Notably, in contrast to every other simulation conducted so
far, computing periodograms for individual systems reveals that
predator and prey populations no longer share the same overall
periodicity. This decoupling is a direct consequence of the preda-
tor populations practising exponential growth, while the prey
populations exercise logistic growth with varying K.

Spatially varying outflow rates

Finally, we consider the effect of varying outflow rates between
star systems by running the model with oR,i uniformly sampled
in the range (10−4, 10−3) (Figs 10 and 11). As with the previous
section, this variation forces the predator and prey populations
of individual stars to oscillate on differing periods, with the oscil-
lation period being sensitive to the local o and the value of o for
connected neighbours. However, Figure 10 shows that this
decoupling at local scales is not evident at global scales.
Periodogram analysis confirms that the predator and prey popu-
lations on Galaxy-wide scales oscillate with identical periodicity!

Fig. 9. The predator/prey populations of selected stars, where the prey carrying capacity varies uniformly in the range KR,i = [5, 30].

Fig. 10. As Figure 4, where we now allow the outflow parameter oR,i to vary in the
range [10−4, 10−3].
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Discussion

Comparison with other studies of predator-prey dynamics

Predator-prey dynamics has a rich history of study in mathemat-
ical biology. The Lotka-Volterra equations have been applied to a
variety of cases, in particular considering how the system is gen-
eralized to more than two species, as an attempt to model the
food chain of an ecosystem (for examples see Macarthur and
Levins 1967; Smale 1976; Palamara et al. 2011; Gavina et al.
2018).

At a basic level, one can incorporate spatial effects into the
vanilla Lotka-Volterra system by recasting it as a set of reaction-
diffusion equations (Cross and Hohenberg 1993), where one can
think of predators and prey as two reactants combining to form a
product, and both entities diffuse spatially with a diffusion con-
stant D, e.g.:

dR(x, t)
dt

= DR
d2R
dx2

+ bRR− dRRP (13)

dP(x, t)
dt

= DP
d2P
dx2

+ bPPR− dPP (14)

Such systems can be stable in the absence of diffusion (D=0), only
to become unstable when diffusion is added (Turing 1952). Of
course, these models are inherently symmetric, and cannot
account for spatial heterogeneities.

Most modern attempts to incorporate geography into calcula-
tions of this sort assume a lattice configuration, upon which either
analytic or probabilistic solutions can be obtained. For example,
Frachebourg et al. (1996) considered the behaviour of predator-
prey systems on a 1D lattice. For a two-species system, one can
model the entire evolution in terms of interfaces separating spe-
cies. Over time, species tend to organize into a mosaic of alternat-
ing domains, with the size of each domain increasing linearly with
time. If the number of species exceeds 5, these domains can
become ‘frozen-in’ (although this depends on whether the species
chain is symmetric, i.e. can species 1 eat species 2 and species 5?).

Tomé and de Carvalho (2007) construct a probabilistic cellular
automaton, inspired by the Lotka-Volterra equations, on a 2D

Fig. 11. The predator/prey populations of selected stars, where the outflow parameter oR,i varies uniformly in the range [10−4, 10−3]..
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lattice. They are able to show that self-sustained stable oscillations
can be set up in the system, just as in the ‘vanilla’ Lotka-Volterra
case. However, these oscillations are stable against changes in the
initial conditions.1 A more generalized version of this result was
obtained by Rozhnova and Nunes (2010), who considered ran-
dom networks with k neighbours per node (see also Ohtsuki
and Nowak 2006).

As far as the author is aware, there are no examples of a
coupled Lotka-Volterra system computed on spatial graphs/net-
works (although see Palamara et al. 2011 for an example on a net-
work of species, to resemble food webs). Lotka-Volterra systems
usually model spatially continuous environments, although delib-
erately inserting heterogeneity into a continuous environment has
been shown to remove the sustained oscillations, as we have found
in our analysis (McLaughlin and Roughgarden 1991; Täuber
2011).

Limitations of the analysis

The flow of predators/prey between star systems depends heavily
on the distance between them. In our model, we have kept stellar
positions fixed. If we allowed the stars to move, we can expect that
this will result in quasi-periodic forcing of the flow rates. The
periodicity of both predator and prey populations for a given
star would be further modified, to accommodate both the star’s
motion and that of its neighbours.

We also assume that each star system has an unending supply
of resources. While the growth of prey is generally limited by the
local carrying capacity K, we have not considered the possibility
that replication eventually exhausts the local supply of raw mate-
rials. One could model this rather simply as a non-constant K that
decays with time. If resources could be exhausted sufficiently
quickly, that might limit the number of probes overall, and pro-
vide a resolution to Fermi’s Paradox. However, if one considers
the number of probes that can be produced from the available
debris mass in the solar system, the exhaustion timescale of a typ-
ical star system is likely to be much too long to be of concern to
this analysis.

That being said, we might note that the quality of raw material
can vary from system to system, as a function of local metallicity.
We have attempted to model this by allowing K to vary between
stars. However, our models allowed K to be effectively random. In
practice, K should vary according to the metallicity gradient of the
Galaxy (e.g. Bergemann et al. 2014). This uniform variation may
result in similar spatial variations in system periodicities.

It is also worth noting that predator probes can also scavenge
other predators for resources to self-replicate. Adding such
‘omnivorous’ probes to a star system could have important conse-
quences – reducing the predator population in this way could
allow prey populations to grow to larger values.

In any case, the above additions to the analysis will not affect
the final result – the predator/prey solution to the SRP formula-
tion of Fermi’s Paradox does not significantly reduce the SRP
population, and is therefore not a viable solution.

Conclusions

In this paper, we have considered a proposed solution to Fermi’s
Paradox regarding the growth and spread of self-replicating

interstellar probes. It has been proposed that if some SRPs were
to ‘mutate’ and begin predating other probes, this would reduce
the total population of probes, ensuring that humanity would
not see them.

We conduct simulations of predator-prey probe evolution
using the Lotka-Volterra equations, amongst a connected network
of stars in the GHZ. We find that traditional competition can
result in oscillating behaviour for the predator/prey populations
at a given star, as well as equilibrium solutions where both local
and global populations tend to fixed values. The nature of the sys-
tem behaviour depends sensitively on the birth and death rates of
each species, as well as the local carrying capacity and the flow of
species between star systems. In any case, we find that significant
quantities of prey probes can persist throughout the Galaxy –
admittedly less than the maximum permitted by carrying cap-
acity, but still sufficiently large that this solution to Fermi’s
Paradox is weak at best, and in effect, not a solution at all.

In summary, the self-replicating probe formulation of Fermi’s
Paradox remains, in our view, one of the strongest and most test-
ing formulations, and an important check on our assumptions
regarding the number of intelligent species in the Milky Way.

Author ORCIDs. Duncan H. Forgan, 0000-0003-1175-4388

Acknowledgments. The author gratefully acknowledges support from the
ECOGAL project, grant agreement 291227, funded by the European
Research Council (ERC) under ERC-2011-ADG. This research has made use
of NASA’s Astrophysics Data System Bibliographic Services. The code used
in this paper is available at https://github.com/dh4gan/lotka-volterra-probes

References

Annis J (1999) An astrophysical explanation for the “great silence”. Journal of
the British Interplanetary Society 52, 19.

Balbi A and Tombesi F (2017) The habitability of the Milky Way during the
active phase of its central supermassive black hole. Scientific Reports 7,
16626.

Bergemann M, Ruchti GR, Serenelli A, Feltzing S, Alves-Brito A,
Asplund M, Bensby T, Gruiters P, Heiter U, Hourihane A, Korn A,
Lind K, Marino A, Jofre P, Nordlander T, Ryde N, Worley CC,
Gilmore G, Randich S, Ferguson AMN, Jeffries RD, Micela G,
Negueruela I, Prusti T, Rix H-W, Vallenari A, Alfaro EJ, Allende
Prieto C, Bragaglia A, Koposov SE, Lanzafame AC, Pancino E, Recio-
Blanco A, Smiljanic R, Walton N, Costado MT, Franciosini E, Hill V,
Lardo C, de Laverny P, Magrini L, Maiorca E, Masseron T,
Morbidelli L, Sacco G, Kordopatis G and Tautvaišienė G (2014) The
Gaia-ESO Survey: radial metallicity gradients and age-metallicity relation
of stars in the Milky Way disk. Astronomy & Astrophysics 565, A89.

Brin GD (1983) The great silence - the controversy concerning extraterrestrial
intelligent life. QJRAS 24, 283.

Chyba CF and Hand KP (2005) ASTROBIOLOGY: The Study of the Living
Universe. ARA&A 43, 31.

Ćirković MM (2009) Fermi’s paradox: the last challenge for copernicanism?
Serbian Astronomical Journal 178, 1.

Collins SG (2008) All Tomorrow’s Cultures: Anthropological Engagements with
the Future. New York City: Berghahn Books.

Cross MC and Hohenberg PC (1993) Pattern formation outside of equilib-
rium. Reviews of Modern Physics 65, 851.

Denning K (2011) Ten thousand revolutions: conjectures about civilizations.
Acta Astronautica 68, 381.

Forgan DH (2017) The Galactic Club or Galactic Cliques? Exploring the limits
of interstellar hegemony and the Zoo Hypothesis. International Journal of
Astrobiology 16, 349.

Frachebourg L, Krapivsky PL and Ben-Naim E (1996) Spatial organization in
cyclic Lotka-Volterra systems. Physical Review E 54, 6186.

1see also Nowak and May 1992, who derive related results on a 2D lattice using evo-
lutionary game theory

560 Duncan H. Forgan

https://doi.org/10.1017/S1473550419000053 Published online by Cambridge University Press

https://orcid.org/
https://orcid.org/0000-0003-1175-4388
https://github.com/dh4gan/lotka-volterra-probes
https://github.com/dh4gan/lotka-volterra-probes
https://doi.org/10.1017/S1473550419000053


Freitas RA (1983) The search for extraterrestrial artifacts (SETA). British
Interplanetary Society 36, 501.

Gavina MKA, Tahara T, Tainaka KI, Ito H, Morita S, Ichinose G, Okabe T,
Togashi T, Nagatani T and Yoshimura J (2018) Multi-species coexistence
in Lotka-Volterra competitive systems with crowding effects. Scientific
Reports 8, 1198.

Gowanlock MG, Patton DR and McConnell SM (2011) A model of habitabil-
ity within the Milky Way galaxy. Astrobiology 11, 855.

Haqq-Misra J and Kopparapu RK (2012) On the likelihood of non-terrestrial
artifacts in the Solar System. Acta Astronautica 72, 15.

Lempert W (2014) Decolonizing encounters of the third kind: alternative
futuring in native science fiction film. Visual Anthropology Review 30, 164.

Macarthur R and Levins R (1967) The limiting similarity, convergence, and
divergence of coexisting species. The American Naturalist 101, 377.

McLaughlin JF and Roughgarden J (1991) Pattern and stability in predator-
prey communities: How diffusion in spatially variable environments affects
the Lotka-Volterra model. Theoretical Population Biology 40, 148.

Murray JD (2004) Mathematical Biology. Interdisciplinary Applied Mathematics
Vol. 17. New York, New York, NY: Springer.

Nicholson A and Forgan D (2013) Slingshot dynamics for selfreplicating
probes and the effect on exploration timescales. International Journal of
Astrobiology 12, 337.

Nowak MA and May RM (1992) Evolutionary games and spatial chaos.
Nature 359, 826.

Ohtsuki H and Nowak MA (2006) The replicator equation on graphs. Journal
of Theoretical Biology 243, 86.

Ostlie D and Carroll B (1996) An Introduction to Modern Stellar Astrophysics.
Cambridge University Press: Pearson Education.

Palamara GM, Zlatic V, Scala A and Caldarelli G (2011) Population dynam-
ics on complex food webs. Advances in Complex Systems 14, 635.

Papagiannis MD (1978) Are we all alone, or could they be in the asteroid belt?
QJRAS 19, 277.

Rozhnova G and Nunes A (2010) Population dynamics on random networks:
simulations and analytical models. The European Physical Journal B 74,
235.

Sagan C and Newman WI (1983) The solipsist approach to extraterrestrial
intelligence. QJRAS 24, 113.

Smale S (1976) On the differential equations of species in competition. Journal
of Mathematical Biology 3, 5.

Sotos JG (2017) Biotechnology and the lifetime of technical civilizations. arXiv
e-print 1709.01149.

Täuber UC (2011) Stochastic population oscillations in spatial predator-prey
models. Journal of Physics: Conference Series 319, 012019.

Tipler FJ (1980) Extraterrestrial intelligent beings do not exist. QJRAS 21,
267.

Tomé T and de Carvalho KC (2007) Stable oscillations of a predator–prey
probabilistic cellular automaton: a mean-field approach. Journal of Physics
A: Mathematical and Theoretical 40, 12901.

Turing AM (1952) The chemical basis of morphogenesis. Philosophical
Transactions of the Royal Society B: Biological Sciences 237, 37.

Vukotic B and Ćirković MM (2007) On the timescale forcing in astrobiology.
Serbian Astronomical Journal 175, 45.

Vukotic B and Cirkovic MM (2008) Neocatastrophism and the milky way
astrobiological landscape. Serbian Astronomical Journal 176, 71.

Wiley KB (2011) The Fermi Paradox, Self-Replicating Probes, and the
Interstellar Transportation Bandwidth. arXiv e-prints 1111.6131.

International Journal of Astrobiology 561

https://doi.org/10.1017/S1473550419000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550419000053

	Predator-prey behaviour in self-replicating interstellar probes
	Introduction
	Method
	Results
	Tests
	Single star, exponential growth.
	Single star, logistic growth.

	Logistic growth, globally constant parameters
	Moderate, constant outflow rate.
	Low, constant outflow rate.

	Spatially varying prey growth rates
	Spatially varying prey carrying capacity
	Spatially varying outflow rates

	Discussion
	Comparison with other studies of predator-prey dynamics
	Limitations of the analysis

	Conclusions
	Acknowledgments
	References


