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Let A and B be two affinely generating sets of Z
n
2. As usual, we denote their Minkowski

sum by A + B. How small can A + B be, given the cardinalities of A and B? We give a tight

answer to this question. Our bound is attained when both A and B are unions of cosets

of a certain subgroup of Z
n
2. These cosets are arranged as Hamming balls, the smaller of

which has radius 1.

By similar methods, we re-prove the Freiman–Ruzsa theorem in Z
n
2, with an optimal

upper bound. Denote by F(K) the maximal spanning constant |〈A〉|/|A| over all subsets

A ⊆ Z
n
2 with doubling constant |A + A|/|A| � K . We explicitly calculate F(K), and in

particular show that 4K/4K � F(K) · (1 + o(1)) � 4K/2K . This improves the estimate

F(K) = poly(K)4K , found recently by Green and Tao [17] and by Konyagin [23].

AMS 2010 Mathematics subject classification: Primary 11P70

1. Introduction

Much work has been devoted to the study of Minkowski sums of sets. Questions

concerning such sums come up in geometry, and are at the core of additive combin-

atorics. Research in this area has blossomed in recent years, and even Tao and Vu’s

monograph [36] no longer covers all the most recent developments. In this paper we

concentrate on the Minkowski sum of two generating sets of Zn
2.

We first review some of the relevant literature. Let G be an abelian group, and let A

and B be two finite subsets of G. As usual, we denote

A + B = {a + b | a ∈ A, b ∈ B}

and we ask about the minimum of |A + B|, given the cardinalities of A and B.

In general, the answer ranges from max(|A|, |B|) to |A| + |B| − 1, depending on the

structure of G. For a torsion-free G, if A and B are arithmetic progressions with the
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same step, then |A + B| = |A| + |B| − 1, which is optimal. Likewise, if G = Zp is cyclic

of prime order, then the answer is given by the Cauchy–Davenport theorem, |A + B| �
min(|A| + |B| − 1, |G|) [2, 4]. Moreover, by a theorem of Vosper [38], if |A| + |B| < |G|
then equality holds only for arithmetic progressions. In the other extreme case, G has

a finite subgroup of a suitable cardinality. Thus, if H � G is a subgroup of cardinality

|H | = max(|A|, |B|), an optimal choice is to have A and B be subsets of H , in which case

|A + B| = max(|A|, |B|). More generally, |A + B| can be as small as max(|A|, |B|) if and only

if min(|A|, |B|) � |H | and |H | divides max(|A|, |B|) [36, p. 55]. In the general case [8, 10],

the smallest possible cardinality of |A + B| is min(�|A|/|H |� + �|B|/|H |� − 1)|H |, where the

minimum is over all finite subgroups H of G. In a sense, this result interpolates between

the two extremes. In an optimal construction [1, 10] the sets A and B are contained

in �|A|/|H |� and �|B|/|H |� cosets of H , whose arrangement is a lexicographical variant

of an arithmetic progression. In particular, for G a 2-torsion group this reduces to the

well-studied Hopf–Stiefel function [20, 35, 39, 1, 7, 9].

Stability is a recurring theme in modern extremal combinatorics. Once an extremal

problem is solved, it is interesting to explore what happens when we consider candidate

solutions that do not resemble the global optimum. The crucial feature of the above-

mentioned optimal constructions is that A and B are densely packed in cosets of properly

chosen subgroups of G. We therefore return to the original question, under the requirement

that A and B are not allowed to be contained in a proper subgroup of G or a coset thereof.

The affine span of A, denoted 〈A〉, is the smallest coset (of any subgroup) containing A.

We say that A affinely generates G if 〈A〉 = G. Clearly this definition coincides with the

usual notion of a generating set if 0 ∈ A. The refined problem is as follows. In a finitely

generated abelian group G, find min |A + B| as a function of |A| and |B|, where A and B

are finite affinely generating subsets of G.

Naturally, the structural properties of G play a role in this problem as well. For the

torsion-free case, G = Zd, this question and similar ones were discussed by Ruzsa [30], and

a full answer was finally given by Gardner and Gronchi [15]. In the extremal construction,

the smaller set is a simplex of d + 1 points, on one of whose edges lies an arithmetic

progression, and the other set is roughly the sum of several copies of it. As discussed

there, this is analogous to the Brunn–Minkowski theorem [33].

Here we present the following lower bound for the opposite extreme of a 2-torsion

group, G = Zn
2.

Theorem 1.1. Suppose A,B ⊆ G = Zn
2 such that 〈A〉 = G, B �= ∅ and |A| � 3

4
|G|. If t is the

largest positive integer such that

|A| � t + 1

2t
· |G|

and 0 � k < t and w ∈ [−1, 1] are such that

|B| =

(
t
0

)
+

(
t
1

)
+ · · · +

(
t
k

)
+ w

(
t−1
k

)
2t

· |G|,
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then

|A + B| �
(
t
0

)
+

(
t
1

)
+ · · · +

(
t
k

)
+

(
t

k+1

)
+ w

(
t−1
k+1

)
2t

· |G|.

This bound is tight when w = 0, and it is attained by the sets

A = Dt
1 × Zn−t

2 , B = Dt
k × Zn−t

2 , A + B = Dt
k+1 × Zn−t

2 ,

where Dt
k = {x ∈ Zt

2 | #{i|xi = 1} � k} is a Hamming ball of radius k in Zt
2.

The Freiman–Ruzsa theorem [31] is a major result in additive combinatorics. In the

context of the above discussion, it addresses the special case A = B. It states that if A

is a subset of an r-torsion abelian group with |A + A| � K|A|, then A is contained in

a coset of cardinality at most F(K)|A|, with F(K) = K2rK
4
. The special case r = 2 has

received considerable attention [5, 6, 16, 17, 19, 23, 26, 32, 37]. Among the most recent

contributions is work by Green and Tao [17] with further improvement by Konyagin [23].

It shows that one can take F(K) = 22K+O(logK). Here we exactly determine the lowest

possible value of F(K) for r = 2.

Theorem 1.2. For K � 1, denote by t � 1 the unique integer for which(
t
2

)
+ t + 1

t + 1
� K <

(
t+1
2

)
+ (t + 1) + 1

(t + 1) + 1
.

For A ⊆ Zn
2 such that |A + A|/|A| � K , we have |〈A〉|/|A| � F(K), where

F(K) =

⎧⎨
⎩

2t

(t2)+t+1
· K (t2)+t+1

t+1
� K < t2+t+1

2t
,

2t+1

t2+t+1
· K t2+t+1

2t
� K <

(t+1
2 )+(t+1)+1

(t+1)+1
.

This choice of F(K) is tight, and grows as Θ(22K/K).

Compression is an important tool from extremal set theory. Much progress in the

application of compression to additive problems was made by Bollobás and Leader in [1],

and it is a key ingredient in Green and Tao’s proof in [17]. There is a whole range of

compression operators C that transform an arbitrary set A into another set C(A), with

|C(A)| = |A| and |C(A) + C(A)| � |A + A|. By a finite sequence of such compressions, it is

possible to reduce to the case where A is compressed in some appropriate sense, and hence

has certain structural properties which make A + A easier to study. The difficulty is that

C(A) need not be affinely generating even if A is. Green and Tao handled this difficulty

by restricting the types of compression operators they used. Our approach is different. We

employ more types of compression operators and we proceed as long as possible without

jeopardizing affine generation, i.e., as long as 〈C(A)〉 = 〈A〉.
Isoperimetric inequalities play an important role in our work. In our investigations of

A + B, we prove a new variant of the isoperimetric inequality for the hypercube.

Overview. In Section 2 we discuss compressions and other useful tools. We explore the

key notion of compression that maintains affine generation. In Section 3 Theorem 1.2
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is proved, first in an asymptotic form, then with the exact expression. In Section 4 we

establish Theorem 1.1. The proof utilizes our new isoperimetric inequality.

2. Tools

In this section we briefly survey several concepts and results that are used below.

These include the lexicographic order and the Hopf–Stiefel function. Then we discuss

compressions in Zn
2, in line with Section 2 of [17], and we introduce the study of

compressions that preserve affine generation.

2.1. The lexicographic order

Throughout, we use the linear basis {e1, e2, . . . , en} for Zn
2. Elements x ∈ Zn

2 are expressed

as x =
∑n

i=1 xiei. The correspondence between vectors x ∈ Zn
2 and their supports {j | xj =

1} ⊆ {1, . . . , n} = [n], is used to simplify certain notation and arguments.

The lexicographic order is a total order on Zn
2. For x, y ∈ Zn

2, we say that x ≺ y if xi < yi
for the largest coordinate i for which xi �= yi. For example, the ordering of Z3

2 is

0 ≺ e1 ≺ e2 ≺ e1 + e2 ≺ e3 ≺ e1 + e3 ≺ e2 + e3 ≺ e1 + e2 + e3.

The height, �(x), of an element x in a finite totally ordered set is x’s place in that order.

For a set of elements A we denote �(A) =
∑

x∈A �(x).

If T ⊆ Zn
2, then its initial segment of size a, denoted IS(a, T ), is the set of the a smallest

elements of T in the lexicographic order. We use the abbreviation IS(a) = IS(a,Zn
2) for

n ∈ N large enough.

2.2. The Hopf–Stiefel function

For the reader’s convenience we prove the following observation of Bollobás and

Leader [1].

Proposition 2.1. For two initial segments IS(a), IS(b) ⊆ Zn
2, the sum IS(a) + IS(b) is an

initial segment as well.

Proof. For z ≺ x + y, we claim that z = x′ + y′ for some x′ � x and y′ � y. Let i ∈ N be

the largest index such that xi = 1 or yi = 1. Say xi = 1. If zi = 0, then clearly z ≺ x, so we

can take x′ = z and y′ = 0. If zi = 1, then note that (z − ei) ≺ (x − ei) + y. By induction

on i, obtain (z − ei) = x′′ + y′′ for x′′ � (x − ei) and y′′ � y, and choose x′ = x′′ + ei and

y′ = y′′.

The Hopf–Stiefel binary function a ◦ b can be defined on N × N as follows:

a ◦ b = |IS(a) + IS(b)|.

Proposition 2.1 can be restated as IS(a) + IS(b) = IS(a ◦ b). This definition is relevant for

us for the following reason. The cardinality of a sumset of two sets of given cardinalities

is minimized by taking the two sets to be initial segments:

a ◦ b = min
{

|A + B| | A,B ∈ Zn
2, |A| = a, |B| = b

}
.
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Note that here the sets are not required to be affinely generating. This result can be

deduced by the technique of compressions, as we discuss below: see Lemma 2.4.

In particular, taking A = IS(a) and B = IS(b1) ∪ (en + IS(b2)) for n large enough, one

can verify the sub-distributive law:

a ◦ (b1 + b2) � a ◦ b1 + a ◦ b2.

Similarly, one can deduce the recursive relations for a, b � 2n:

a ◦ (2n + b) = 2n + a ◦ b,

(2n + a) ◦ (2n + b) = 2n+1.

These two formulas can be taken as an alternative definition of the Hopf–Stiefel

function [27].

The function first arose in works of Hopf [20] and Stiefel [35]. They used tools from

algebraic topology to prove that a ◦ b provides a lower bound for solutions of the Hurwitz

problem, concerning real quadratic forms (see [34]). The relation to set addition in Zn
2

was given by Yuzvinsky [39]. As it turns out, the Hopf–Stiefel function arises in the study

of several more problems in various contexts. There is also a base-p analogue of this

function for p > 2: see [7]. For a survey, see [9].

2.3. Compressions

For I = {i1, i2, . . .} ⊆ [n], denote HI = 〈0, ei1 , ei2 , . . .〉 � Zn
2. As usual, if H is a subgroup of

G, we denote by G/H the collection of all H-cosets in G. The I-compression of a subset

A ⊆ Zn
2 is defined by

CI (A) =
⋃

T∈Z
n
2/HI

IS(|A ∩ T |, T ).

In words, in every HI -coset T we replace the elements of A ∩ T by a same-cardinality

initial segment, with respect to the lexicographic order. We say A is compressed with

respect to I , or I-compressed, if CI (A) = A. In particular, lexicographic initial segments of

Zn
2 are exactly all [n]-compressed sets.

Example 2.2. C{1,2,3}({0, e1, e2, e3, e4}) = {0, e1, e2, e1 + e2, e4}.

This notion of compression is closely related to the operation bearing the same name

from extremal set theory (see, e.g., [12]). A subset of Zn
2 naturally corresponds to a family

(a.k.a. set-system) F of subsets of [n]. We freely move between these terminologies if no

confusion can occur. An {i}-compression corresponds to the push-down operator Ti, which

replaces J ∈ F by J \ {i} provided that J \ {i} �∈ F . If F is {i}-compressed for each i, then

it is closed under taking subsets and is called a downset. The shift operator Sij replaces

j by i wherever possible. Namely, for every J with i, j �∈ J it replaces J ∪ {j} by J ∪ {i},
given that the former belongs to F and the latter does not. We say that F is shift-minimal

if it is invariant to all shifts Sij where i < j. One can check that being {i, j}-compressed

for all i, j ∈ [n] corresponds to being a shift-minimal downset.
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Compression can simplify matters substantially, while preserving several useful features

of the set-system. Here are some observations about compressions. These and others are

found in [17]. The proofs are straightforward, working coset by coset.

Lemma 2.3 (Properties of compressions). Suppose A ⊆ Zn
2 and I ⊆ [n].

(i) |CI (A)| = |A|.
(ii) CI (A) is I-compressed.

(iii) �(CI (A)) � �(A) with equality if and only if A is I-compressed.

(iv) An I-compressed set is J-compressed for all J ⊆ I .

(v) CI (A) ⊆ CI (B) for all A ⊆ B.

Compressions behave well on sumsets. By Proposition 2.1, one can deduce that the sum

of two I-compressed subsets is I-compressed too. The following well-known lemma deals

with the compression of a sum of two general subsets. For the sake of completeness, we

prove it here, following [1] and [17].

Lemma 2.4 (Sumset compression). Suppose A,B ⊆ Zn
2 and I ⊆ [n]. Then

CI (A) + CI (B) ⊆ CI (A + B).

Consequently |CI (A) + CI (B)| � |A + B|.

Proof. We use a double induction, on |I | and on �(A) + �(B). For the induction step,

suppose that for some J � I either A or B is not J-compressed. In this case

CI (A) + CI (B) = CI (CJ(A)) + CI (CJ(B)) ⊆ CI (CJ(A) + CJ(B))

⊆ CI (CJ(A + B)) = CI (A + B).

Both inclusions are by the induction hypothesis: the first one since �(CJ(A)) + �(CJ(B)) <

�(A) + �(B) by property (iii) of Lemma 2.3, and the second one since |J| < |I | and by

property (v). The equalities are by property (iv).

It only remains to verify the lemma for A and B which are both J-compressed for all

J � I . We start with the simpler case n = |I |.
What are the subsets of G = Zn

2 that are J-compressed for all J � [n]? By property

(iv), all initial segments are such. If S ⊆ G is not an initial segment, then we must have

x /∈ S and y ∈ S for some consecutive x ≺ y. The only consecutive pair in G that is not

contained in a proper HJ-coset is (e1 + · · · + en−1) ≺ en. One can verify, for example by S

being [2 · · · n]-compressed, that the only such set is S = H[n−1] \ {e1 + · · · + en−1} ∪ {en}.
In conclusion, it is enough to check the case where A and B are initial segments or equal

to S . Now there are four cases to consider.

(1) If both A and B are initial segments, then by Proposition 2.1 A + B is an initial

segment too:

⇒ CI (A) + CI (B) = A + B = CI (A + B).
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(2) If A = B = S , then note that |S | � |S + S | and CI (S) = H[n−1]:

⇒ CI (S) + CI (S) = CI (S) ⊆ CI (S + S).

(3) If B = S and A is an initial segment with |A| � |S |, then A = CI (A) ⊆ CI (S) = H[n−1]:

⇒ CI (A) + CI (S) = CI (S) ⊆ CI (A + S).

(4) If B = S and A is an initial segment with |A| > |S | then |A| + |S | > |G|. This means

A + S = G, as the reader may verify by a standard pigeonhole argument:

⇒ CI (A) + CI (S) = G = CI (G) = CI (A + S).

The case n > |I | is implied by the case n = |I |:

CI (A) + CI (B) =
⋃

Hc∈G/HI

((
CI (A) + CI (B)

)
∩ Hc

)

=
⋃

Hc∈G/HI

⋃
Ha+Hb=Hc

((
CI (A) ∩ Ha

)
+

(
CI (B) ∩ Hb

))

=
⋃

Hc∈G/HI

⋃
Ha+Hb=Hc

(
CI

(
A ∩ Ha

)
+ CI

(
B ∩ Hb

))

⊆
⋃

Hc∈G/HI

⋃
Ha+Hb=Hc

CI

((
A ∩ Ha

)
+

(
B ∩ Hb

))

⊆
⋃

Hc∈G/HI

CI

( ⋃
Ha+Hb=Hc

((
A ∩ Ha

)
+

(
B ∩ Hb

)))

=
⋃

Hc∈G/HI

CI

(
(A + B) ∩ Hc

)

=
⋃

Hc∈G/HI

(
CI (A + B) ∩ Hc

)

= CI (A + B).

The first and second inequalities are simply dividing into cases, according to the involved

HI -cosets. The third one holds because compressions work coset-wise. Then there is

inclusion, by the assumption on the case I = [n] applied to our HI and translated to the

relevant HI -cosets, together with inclusion of the initial segments, because the union is at

least as large as each of its components. The three remaining equalities are similar to the

first three.

2.4. Compressions that preserve affine generation

As Lemma 2.4 shows, in the problems we consider here, compressing the sets under

consideration can only improve our objective function. However, we are restricting

ourselves to affinely generating sets and compression may destroy this property (e.g.,

Example 2.2). Therefore, our strategy is to keep compressing as long as affine generation

is maintained. To this end we introduce the following definition.

Suppose that A ⊇ E, where E = {0, e1, e2, . . . , en} is the standard affine basis of Zn
2. If

A is I-compressed for every I such that CI (A) ⊇ E, we say that A is 〈〈E〉〉-compressed.
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Note that by part (iii) of Lemma 2.3 every set A containing E, can be turned into

an 〈〈E〉〉-compressed set by a finite sequence of such compressions. It turns out that

〈〈E〉〉-compressed sets are very structured.

Lemma 2.5 (Structure of 〈〈E〉〉-compressed sets). Let A ⊆ Zn
2 be an 〈〈E〉〉-compressed set.

(i) A is a shift-minimal downset.

(ii) A contains a subgroup of maximal size H � Zn
2 of the form H = 〈0, e1, . . . , eh〉.

(iii) A is {1, . . . , h, h + i}-compressed for every 1 � i � m = codimH .

(iv) A ⊆ H + E, i.e., A = H ∪ A1 ∪ A2 ∪ · · · ∪ Am, where Ai = A ∩ (eh+i + H).

(v) For 1 � i � m, 0 < |Ai| < |H |.
(vi) For 1 � i < j � m, |Ai| + |Aj | � |H |.
(vii) If m > 1, then |A| �

(
1 + m

2

)
|H |.

Proof. The proofs are fairly straightforward.

(i) It is a simple observation that both {i}-compressions and {i, j}-compressions preserve

E ⊆ A. Hence A must already be compressed with respect to these sets, i.e., a shift-minimal

downset.

(ii) Let h be the maximal dimension of a subgroup contained in A. As shown below in

Lemma 2.6, a subgroup of dimension h must contain an element of Hamming weight

at least h. By shift-minimality e1 + e2 + · · · + eh ∈ A, and by the downset property H =

〈0, e1, . . . , eh〉 ⊆ A.

(iii) Denote I = {1, . . . , h, h + i}. The sets H ∪ {eh+i} and {eh+j} for j �= i are initial segments

of their HI -cosets. These sets cover E and remain included in A through the I-compression.

(iv) By the downset property, it is sufficient to show eh+i + eh+j /∈ A for each 1 � i < j � m.

Indeed, if A contains eh+i + eh+j then it contains eh+i + H by being {1, . . . , h, h + j}-
compressed. This implies H ∪ (eh+i + H) ⊆ A, contrary to the maximality of the subgroup

H in A.

(v) For the lower bound note that eh+i ∈ E ⊆ A. On the other hand, if |Ai| = |H | then

H ∪ (eh+i + H) ⊆ A, contrary, again, to the maximality of H .

(vi) Note that eh+j ∈ A, while some lexicographically smaller elements in eh+i + H are not

contained in A. Therefore A cannot be I-compressed for I = {1, . . . , h, h + i, h + j}. Since it

is 〈〈E〉〉-compressed, this means eh+j /∈ CI (A). Equivalently, |A ∩ HI | � 2|H |, which leads

to our claim.

(vii) If |Ai| � 1
2
|H | for every i, clearly |A| = |H | +

∑m
i=1 |Ai| �

(
1 + m

2

)
|H |. Otherwise,

|Ai| > 1
2
|H | for some i, thus |Aj | � |H | − |Ai| < 1

2
|H | for every j �= i. So |Ai| + |Aj | � |H |

for some i and j, and the remaining Aj are no bigger than 1
2
|H |.

Lemma 2.6. Let H be an h-dimensional subgroup of Zn
2. Then H contains an element of

Hamming weight at least h.

https://doi.org/10.1017/S0963548312000351 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000351


924 C. Even-Zohar

Proof. If h = n, take e1 + e2 + · · · + en. Otherwise, there exists a basis element ei such

that ei /∈ H . In this case, moving from H to C{i}(H) simply deletes ei from the standard

basis representations of H ’s elements, thereby not increasing their Hamming weights.

Now note that C{i}(H) is an h-dimensional subgroup of 〈0, e1, . . . , ei−1, ei+1, . . . , en〉, and by

induction on n contains an element of Hamming weight at least h.

3. The Freiman–Ruzsa theorem in Zn
2

For A ⊆ Zn
2 we refer to |〈A〉|/|A| as A’s spanning constant and to K = |A + A|/|A| as its

doubling constant. The Freiman–Ruzsa theorem gives an upper bound on the spanning

constant in terms of K . We first review the theorem and some of its quantitative

aspects. Then we calculate the bound explicitly, and in particular we determine its correct

asymptotics, which turns out to be Θ(22K/K). We present the proof in two stages, starting

with the asymptotic estimates. We find this presentation convenient, since the proof of

the asymptotic bound contains our main ideas.

3.1. Brief review of the Freiman–Ruzsa theorem

Freiman’s celebrated theorem [14] states that if A ⊂ Z is a finite subset with |A + A| �
K|A|, then A is included in a generalized arithmetic progression, whose size (relative to

|A|) and dimension are bounded. The bounds depend only on K and not on |A|. Ruzsa

[28, 29] has made crucial contributions to this area. More recently much work was done

on similar problems where Z is replaced by other groups. In particular Ruzsa [31] proved

the analogous result for abelian torsion groups. See [37] for a nice exposition.

Theorem 3.1 (Ruzsa). Let G be an abelian group in which every element has order at most

r. If A is a finite subset of G with |A + A| � K|A|, then A is contained in a coset of a

subgroup H � G of size |H | � f(r, K)|A|, where

f(r, K) � K2rK
4

.

Better estimates on f(r, K) were subsequently found. We denote by F(r, K) the smallest

bound for which this statement holds. Note that F(r, K) is non-decreasing in K and

F(r, 1) = 1.

By considering the case where A is an affine basis of Z2(K−1)
r , we see that F(r, K) �

r2K−O(logK) (see Example 3.3 below). This suggests the following conjecture [31].

Conjecture 3.2 (Ruzsa). For some C � 2 we have F(r, K) � rCK .

In an attempt to understand the role of torsion in these phenomena, much work was

dedicated to the special case r = 2, where G = Zn
2. This work is also motivated by the role

that Zn
2 plays in discrete mathematics and in particular in coding theory [3]. We introduce

the following notation:

F(K) = F(2, K) = sup

{
|〈A〉|
|A|

∣∣∣ A ⊆ Zn
2, n ∈ N,

|A + A|
|A| � K

}
.
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As observed by Ruzsa [5], for r = 2 his method gives somewhat more, namely F(K) �
K2�K�3−1. Later work by Green and Ruzsa [16] gave F(r, K) � K2r2K

2−2, which was again

refined for r = 2 to F(K) � 2O(K3/2 logK) by Sanders [32]. Using compressions, Green and

Tao [17] were able to prove F(K) � 22K+O(
√
K logK). Note that this confirms Conjecture 3.2

for r = 2. The best bound so far is due to Konyagin [23], who further improved this

method to derive F(K) � 22K+O(logK).

The range of small K has received some attention as well. In the sub-critical range

K < 2, the exact value of F(K) is known to be F(K) = K for 1 � K < 7/4 and F(K) = 8
7
K

for 7/4 � K < 2. See [6, 17, 19, 26, 41]. For K � 12/5 we have F(K) � (2K − 1)/(3K −
K2 − 1) and for 12/5 < K < 4, a recursive formula is available. See [5].

The following simple construction [31] provides a lower bound on F(K).

Example 3.3 (Independent points). Consider the subset

A[t] = {0, e1, e2, . . . , et} ⊆ Zt
2.

Here, for t ∈ N we have

F

((
t
2

)
+ t + 1

t + 1

)
� 2t

t + 1
,

and by monotonicity one can obtain

F(K) � 1

4K
22K (1 − o(1)).

3.2. Asymptotics of F (K)

We first prove a new upper bound, which coincides with the construction in Example 3.3

for t ∈ N.

Theorem 3.4. F
( (t2)+t+1

t+1

)
� 2t

t+1
holds for 2 � t ∈ R. Consequently,

F(K) � 1

2K
22K (1 − o(1)).

The exponential term 22K is as in [17, 23], but the polynomial coefficient 1/K is new.

Thus it re-proves Conjecture 3.2 for r = 2 with C = 2. This bound and Example 3.3

determine the asymptotics of F(K) up to a factor of 2. In the next section we calculate

F(K) exactly, and show that the gap is unavoidable and results from the oscillations in

F(K).

Proof. For an affinely generating subset A ⊂ G = Zn
2, it is sufficient to prove

|A| =
t + 1

2t
|G| ⇒ |A + A| �

(
t
2

)
+ t + 1

2t
|G|, (3.1)

where 2 � t ∈ R. Since both expressions are monotone in t, the theorem follows.

As in [17], the main tool is reduction to compressed sets of some sort. First, since

〈A〉 = G we can assume that A contains an affine basis for G. But |A|, |A + A| are
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not affected by invertible affine transformations, so we may assume without loss of

generality E ⊆ A, where E = {0, e1, e2, . . . , en} is the standard affine basis of G. Now we

assume without loss of generality that A is 〈〈E〉〉-compressed. Indeed, supposing (3.1)

holds for 〈〈E〉〉-compressed subsets, we proceed to general subsets inducting on �(A).

Let I ⊆ [n] be a set such that E ⊆ CI (A) �= A. By Lemma 2.4, |CI (A) + CI (A)| � |A + A|
while |CI (A)| = |A|, so A satisfies (3.1) provided that CI (A) does. The inductive argument

applies, since �(A) > �(CI (A)) by Lemma 2.3(iii).

We continue the proof using the structure of 〈〈E〉〉-compressed sets. As in Lemma 2.5

let H ⊆ A be a maximal subgroup, h = dimH , m = codimH and Ai = A ∩ (eh+i + H) for

1 � i � m. By Lemma 2.5(vii), |A| � (1 + m/2)|H |, and an upper bound on m is given by

1 + m
2

2m
� |A|

|G| ,

where the case m = 1 follows from the assumption 2 � t.

Given m, Lemma 2.5(iv) gives a decomposition of A into m + 1 parts, and we use it to

show that A + A is at least ∼ m/2 times larger than A. This is shown by the following

calculation, where all indices go from 1 to m and all unions are disjoint:

A = H ∪
⋃
i

Ai

⇒ A + A = H ∪
⋃
i

(Ai + H) ∪
⋃
i<j

(Ai + Aj),

∑
i<j

|Ai + Aj | �
∑
i<j

max
(
|Ai|, |Aj |

)
�

∑
i<j

|Ai| + |Aj |
2

=
m − 1

2

∑
i

|Ai| =
m − 1

2

(
|A| − |H |

)

⇒ |A + A| � |H | + m|H | +
m − 1

2

(
|A| − |H |

)
=

m + 3

2
· |G|

2m
+

m − 1

2
|A|.

The right-hand side is decreasing in m in the real interval where ((m + 3) log 2 − 1)/2m >

|A|/|G|. This interval includes the range of our interest, which is (m/2 + 1)/2m � |A|/|G| =

(t + 1)/2t, or equivalently m � t − 1. Thus, we obtain a lower bound on |A + A| by

evaluating this expression at t − 1, namely

|A + A| � (t − 1) + 3

2(t−1)+1
|G| +

(t − 1) − 1

2
· t + 1

2t
|G| =

(
t
2

)
+ t + 1

2t
|G|.

3.3. Exact calculation of F (K)

Theorem 1.2, which we will shortly prove, provides an explicit formula of F(K). This

enables one to rederive the asymptotics of F(K), and to deduce the following corollary.

Corollary 3.5. Both bounds in the asymptotic inequalities

1

4K
22K (1 − o(1)) � F(K) � 1

2K
22K (1 − o(1))

are sharp up to the o(1) terms.
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Figure 1. An illustration of F(K).

It also settles the following conjecture of Diao [6].

Corollary 3.6. F(K) is a piecewise linear function.

In order to calculate F(K), it is useful to consider a related function K̃(F̃), which is

defined for rational numbers of the form F̃ = 2a/b � 1:

K̃(F̃) = inf

{
|A + A|

|A|

∣∣∣ A ⊆ Zn
2, n ∈ N,

|〈A〉|
|A| = F̃

}
.

That is, the minimal doubling constant of an affinely generating set of relative size exactly

1/F̃ . By definition, F(K) = sup{F̃ | K̃(F̃) � K}. Theorem 3.4 asserts K̃(2t/(t + 1)) � (
(
t
2

)
+

t + 1)/(t + 1) for real t � 2, and by Example 3.3 it is an equality for t ∈ N. In order to

analyse K̃(F̃), we refine the arguments in the proof of Theorem 3.4, and elaborate on the

construction in Example 3.3. This yields a better view of the structure of sets with a small

doubling constant. We begin by describing the extended example.

Example 3.7. For non-negative integers s, t such that s < t, consider the subset

A[t,s] = {0, e0, e1, e2, . . . , et, e0 + e1, e0 + e2, . . . , e0 + et−s} ⊆ Zt+1
2 .
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It is not hard to verify that

|A[t,s]| = 2(t + 1) − s, |A[t,s] + A[t,s]| = 2

((
t

2

)
+ t + 1

)
−

(
s

2

)
, |〈A[t,s]〉| = 2t+1.

Therefore

K̃

(
2t

t + 1 − s/2

)
�

(
t
2

)
+ t + 1 −

(
s
2

)
/2

t + 1 − s/2
.

This example provides an upper bound on K̃(F̃) for a discrete sequence of values.

When s = 0 it reduces to Example 3.3. However, K̃(F̃) is not necessarily monotone, so we

cannot imitate the conclusion of Example 3.3 and extend the upper bound to general F̃ .

Still, the following argument does the work.

Lemma 3.8 (Sublinearity of K̃(F̃ )). If F1 < F2 are in K̃’s domain, then K̃(F1)
F1

� K̃(F2)
F2

.

Proof. Let F2 = 2a/b for some a, b ∈ N. Suppose A1 ⊆ Zn
2 is an affinely generating set of

size |A1| = 2n/F1. Let m ∈ N be large enough such that a � n + m < b2n+m−a. Consider

A′
1 = A1 × Zm

2 , and note that A′
1 affinely generates Zn+m

2 and |A′
1| = 2n+m/F1. Since F1 < F2

one can take a subset A2 ⊆ A′
1 of cardinality |A2| = b2n+m−a = 2n+m/F2. Moreover, by m’s

choice n + m + 1 � |A2|, so a subset A2 which affinely generates Zn+m
2 can be chosen. Now

from A2 + A2 ⊆ A′
1 + A′

1 = (A1 + A1) × Zm
2 ,

|A1 + A1|
|A1| · 1

F1
=

|A1 + A1|
2n

=
|A′

1 + A′
1|

2n+m
� |A2 + A2|

2n+m
=

|A2 + A2|
|A2| · 1

F2
� K̃(F2)

F2
.

The task is accomplished by taking the infimum over A1.

Corollary 3.9 (Superlinearity of F (K)). F(K1)
K1

� F(K2)
K2

for every 1 � K1 < K2.

Example 3.7 and Lemma 3.8 supply an upper bound on K̃(F̃). The following lemma

essentially claims that this bound is sharp.

Lemma 3.10 (Formula for K̃(F̃ )). Let F̃ � 1 be of the form 2a/b where a, b ∈ N, and let

s < t be the unique pair of non-negative integers for which

2t

t + 1 − s/2
� F̃ <

2t

t + 1 − (s + 1)/2
.

Then

K̃(F̃) =

(
t
2

)
+ t + 1 − 1

2

(
s
2

)
2t

· F̃ .

Since the function F(K) is basically the inverse of K̃(F̃), Theorem 1.2 is a direct

consequence of Lemma 3.10. Indeed, Figure 1 is obtained by transposing the graph in

Figure 2, and taking the maximum wherever the result is multivalued. We omit further

details.
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Figure 2. An illustration of K̃(F̃).

One can notice that K̃(F̃) has a more complex structure than F(K). Since Theorem 1.2

employs the information in Lemma 3.10 only partially, there may be a quicker way of

calculating F(K). Nevertheless, we feel that the detailed description of K̃(F̃) is interesting

in its own right, and may shed light on the non-trivial form of F(K).

The proof of Lemma 3.10 pursues the analysis in Theorem 3.4’s proof, involving more

reduction steps which preserve |A| without increasing |A + A|. Through these reductions

the structure of A becomes similar to Example 3.7, so that its doubling constant can be

calculated explicitly. We start with two reductions which can be formulated separately in

terms of integer partitions. All of the following will be motivated and applied later, in the

proof of the lemma.

A non-increasing sequence of positive integers a1 · · · am is an integer partition of a =∑
i ai into m parts, and, for short, an m-partition of a. Recall the Hopf–Stiefel function

a ◦ b from Section 2. We are interested in the minimum of
∑

1�i<j�m ai ◦ aj over all

m-partitions of a.

A partition a1 · · · am of a is called compressed if ai + aj > 2k ⇒ ai � 2k for each k and

i < j. It will be implicit in the proof of Lemma 3.10 that at least one of the partitions that

minimize
∑

i<j ai ◦ aj is compressed. Here we shall restrict the discussion to compressed

partitions.
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A partition is called quasi-dyadic if a1 · · · am−1 are powers of 2. No requirement is

made on am. Note that a quasi-dyadic partition is always compressed. Our first reduction

basically asserts that the minimum of
∑

i<j ai ◦ aj is attained by a quasi-dyadic partition.

Lemma 3.11. A compressed m-partition of a that minimizes
∑

i<j ai ◦ aj is quasi-dyadic.

Proof. Otherwise, consider the smallest 1 � i < m for which ai is not a power of 2,

say 2k < ai < 2k+1. Since the partition is compressed, ai + ai+1 � 2k+1. We ‘transfer mass’

from ai to ai+1. Replace ai by a′
i = 2k , and replace ai+1 by a′

i+1 = ai+1 + ai − 2k . Note that

a′
i � a′

i+1 and monotonicity is preserved.

How does this move affect
∑

i<j ai ◦ aj? By the choice of i, for j < i we have aj = 2l ,

where l > k as a partition is non-increasing. Thus the terms involving aj are unchanged:

aj ◦ ai + aj ◦ ai+1 = 2l + 2l = aj ◦ a′
i + aj ◦ a′

i+1.

For j > i + 1 we know aj � ai+1 < 2k . By the recursive definition of the Hopf–Stiefel

function, and the sub-distributive law,

aj ◦ ai + aj ◦ ai+1 = 2k + aj ◦ (ai − 2k) + aj ◦ ai+1

� 2k + aj ◦ (ai − 2k + ai+1) = aj ◦ a′
i + aj ◦ a′

i+1.

Finally, again by the recursive definition the mixed term becomes strictly smaller:

ai ◦ ai+1 = 2k + (ai − 2k) ◦ ai+1 > 2k = a′
i ◦ a′

i+1.

The combination of the last three calculations yields that the sum
∑

i<j ai ◦ aj can be

made smaller by changing the partition, in contradiction to the minimality assumption.

Since 2k ◦ a = 2k for a � 2k , in the quasi-dyadic case the summation can be simplified:

∑
1�i<j�m

ai ◦ aj =
∑

1�i<j�m

max(ai, aj) =
∑

1�i<j�m

ai =

m∑
i=1

(m − i) · ai.

It is natural to conjecture that the minimum is obtained when a1 · · · am are ‘almost’

equal. A quasi-dyadic m-partition of a is quasi-fair if, for some k ∈ N, ai ∈ {2k, 2k−1} for

each 1 � i � m − 1. For example, 4 + 4 + 2 + 2 + 2 + 1 and 4 + 4 + 4 + 3 and 8 + 4 + 3

are some quasi-fair partitions of 15. The following properties of quasi-fair partitions are

easily verified.

(1) In the above definition one can choose

k = �log2(a/m)�,

and then exactly a1 · · · aj exceed 2k−1, where

j = �a/2k−1� − m.

(2) For every two positive integers m � a, there exists a unique quasi-fair m-partition

of a.

(3) If a1 · · · am and a′
1 · · · a′

m are the quasi-fair m-partitions of a � a′, then ai � a′
i for all i.
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(4) A sub-partition (in the sense of a sub-sequence) of a quasi-fair partition is quasi-fair.

Now we are ready to state the second reduction.

Lemma 3.12. The minimum of
∑

i<j ai ◦ aj over all quasi-dyadic m-partitions of a is ob-

tained only by the quasi-fair one.

Proof. This lemma can be verified by induction on m. For a partition that minimizes

the sum, it is enough to show a1 = 2k for k = �log2(a/m)�. By the induction hypothesis

a2 · · · am are quasi-fair and thus constitute the unique quasi-fair sub-partition we are

looking for. By the monotonicity property applied on a2 · · · am, for a competing sequence

a′
1 · · · a′

m with a′
1 > a1, necessarily a′

i � ai for i � 2, and consequently

m∑
i=1

(m − i) · ai =

m∑
i=1

(m − i) · ai + (m − 1)

( m∑
i=1

a′
i −

m∑
i=1

ai

)

=

m∑
i=1

(m − i) · a′
i −

m∑
i=2

(i − 1)(ai − a′
i) <

m∑
i=1

(m − i) · a′
i.

With these reductions in hand, we can complete the calculation of K̃(F̃).

Proof of Lemma 3.10. Let 〈A〉 = G = Zn
2. Lemma 3.10 is proved by showing the following

lower bound on |A + A|, which is reached by Example 3.7 and Lemma 3.8:

t + 1 − (s + 1)/2

2t
<

|A|
|G| � t + 1 − s/2

2t
⇒ |A + A|

|G| �
(
t
2

)
+ t + 1 − 1

2

(
s
2

)
2t

. (3.2)

If |A| > 1
2
|G|, then by the pigeonhole principle A + A = G, as required in the cases t = 1, 2.

Hence we may assume |A| � 1
2
|G| and t � 3.

We start as in Theorem 3.4. We first assume without loss of generality that A is

〈〈E〉〉-compressed and therefore, by Lemma 2.5, has the following properties.

• There exists a subgroup H = 〈0, e1, . . . , eh〉 such that A = H ∪ A1 ∪ A2 ∪ · · · ∪ Am, where

Ai = A ∩ (eh+i + H) and m = codimH .

• 1/2m < |A|/|G| � (1 + m
2
)/2m. By the assumptions t+2

2t+1 < |A|/|G| � 1
2
, we can write

1 < m < t.

• Each Ai is a lexicographic initial segment of ei + H . Therefore A is uniquely determined

by the sequence a1, . . . , am, where ai = |Ai|. Note that 0 < ai < 2h.

• By shift-minimality a1 � a2 � · · · � am. In other words, a1, . . . , am is a partition of

a = |A| − |G|/2m.

As in Theorem 3.4, we use these properties to write A + A as a disjoint union of its

intersections with H-cosets, which are of three forms: H , H + Ai and Ai + Aj . Since the

Ai are initial segments of their cosets, the sumsets of the third form can be expressed via

the Hopf–Stiefel function:

|A + A| = |H | + m|H | +
∑

1�i<j�m

|Ai + Aj | =
m + 1

2m
· |G| +

∑
1�i<j�m

ai ◦ aj .
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This equation makes it interesting to find partitions a1 · · · am of a that minimize
∑

i<j ai ◦ aj .

We next show that the partition a1 · · · am is compressed. For i < j and 1 � k � h we

exclude the case where ai < 2k < ai + aj by the assumption that A is already 〈〈E〉〉-
compressed. For I = {1, 2, . . . , k, h + i, h + j}, let us examine the set CI (A). Ai is replaced

by an initial segment of eh+i + H of size 2k , and Aj is replaced by an initial segment

of eh+j + H of size ai + aj − 2k , which is not empty by assumption. In other words, ai
becomes 2k , and E ⊆ A is preserved.

By Lemmas 3.11–3.12, if |A + A| is minimal then a1 · · · am is the quasi-fair quasi-dyadic

m-partition of a = |A| − |G|/2m. In this situation

|A + A| − m + 1

2m
· |G| =

j∑
i=1

(m − i) · 2k +

m∑
i=j+1

(m − i) · 2k−1 =

[(
m

2

)
− 1

2

(
m − j

2

)]
2k

for 0 � j � m and 0 < k < (dimG − m) such that

m + j − 1

2
· 2k < |A| − |G|

2m
� m + j

2
· 2k.

Remark. Note that in the cases j = m − 1 or j = m we can choose j ′ = 0 and k′ = k + 1

as well. We could avoid this freedom of choice by not permitting j = 0, but since it does

not affect the resulting |A + A|, we allow both ways.

All that remains now is to show that, as in Theorem 3.4, to minimize |A + A| we should

make m as large as possible, i.e., m = t − 1. The proof is by induction on t − m.

• Suppose m = t − 1. We check that (3.2) holds:

2m − (s + 1)

2
· |G|
2m+1

< |A| − |G|
2m

� 2m − s

2
· |G|
2m+1

.

Denote k = dimG − m − 1 and j = m − s, and observe that 0 � j � m. Then the above

expression for the minimal |A + A| becomes

|A + A| =
m + 1

2m
· |G| +

[(
m

2

)
− 1

2

(
m −

(
m − s

)
2

)]
· |G|
2m+1

=

(
t
2

)
+ t + 1 − 1

2

(
s
2

)
2t

· |G|.

• Suppose m < t − 1. The above discussion yields a compressed set A, such that a1 · · · am
is the quasi-fair quasi-dyadic partition of |A| − |H |, and |A + A| is minimal given m,

and equals

|A + A| =
m + 1

2m
|G| +

∑
1�i<j�m

ai ◦ aj .

We show that increasing m makes |A + A| smaller. Denote by A′, H ′ and a′
1 · · · a′

m+1

the corresponding set, subgroup and partition for m′ = m + 1. Similarly,

|A′ + A′| =
m + 2

2m+1
|G| +

∑
1�i<j�m+1

a′
i ◦ a′

j .

Now define a0 = |H ′| = |H |/2 = |G|/2m+1. Since a1 · · · am is a quasi-dyadic m-partition

for m > 1 and a1 < |H |, necessarily a0 � ai and a0 ◦ ai = a0 for all 1 � i � m. Hence,
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for the quasi-dyadic (m + 1)-partition a0 · · · am,

|A + A| =

(
m + 1

2m
− m

2m+1

)
|G| + m · a0 +

∑
1�i<j�m

ai ◦ aj =
m + 2

2m+1
|G| +

∑
0�i<j�m

ai ◦ aj .

But by Lemma 3.12, the partition a′
1 · · · a′

m+1 gives the minimal value for this expression.

Moreover, since a0 = |H ′| > a′
1, these partitions differ and |A′ + A′| < |A + A|.

Remark. An examination of the proof reveals two kinds of reduction steps. Either A is

compressed without changing 〈A〉, or we find a set A′ where |A′| = |A| and |A′ + A′| is

substantially smaller than |A + A|. Hence, the proof actually provides a characterization

of the extremal case, up to compressions that preserve 〈A〉 and |A + A|.

4. Addition of two different sets

What is the smallest possible cardinality of A + B if A,B ⊆ G = Zn
2 are two affinely

spanning subsets of given cardinalities? In this section we prove Theorem 1.1, which gives

an essentially complete answer. In addition we establish a new isoperimetric inequality,

which is used in the proof. But first, we make some remarks concerning the theorem.

Remarks on Theorem 1.1.

(1) Tightness. Consider (|A|/|G|, |B|/|G|, |A + B|/|G|) as a point in [0, 1]3. The Hamming

balls construction shows that the bound goes through the points of the form

(
1 + t

2t
,

1 + t + · · · +
(
t
k

)
2t

,
1 + t + · · · +

(
t

k+1

)
2t

)
, 0 � k < t.

An inspection of Figure 3 shows that all points properly inside their convex hull are

strictly below the bound, and hence cannot be realized by such sets. In other words,

further improvements of the bound will be local in nature.

(2) The formulation of the theorem apparently breaks the symmetry and does not require

〈B〉 = G. Still, there is an asymmetry in the result as well, and the theorem is of interest

mostly when |A| � |B|. See also the remark after the proof.

(3) The only assumption on t which the proof uses is (t + 2)/2t+1 < |A|/|G|. The statement

can, therefore, be applied as well with t larger than in the theorem. As Figure 3 shows,

the resulting bound would be weaker, but may still be useful in certain contexts.

Theorem 1.1 implies that a large enough number of large enough affinely generating

sets must add up to the whole group.

Corollary 4.1. Suppose that 〈A1〉 = · · · = 〈Am〉 = G = Zn
2 with |Ai|/|G| > (m + 2)/2m+1

for all i. Then A1 + A2 + · · · + Am = G.
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Figure 3. An illustration of the lower bound.

Proof. We repeatedly apply the theorem with A = Ai and B = A1 + · · · + Ai−1 for all

1 � i � m, to conclude

|A1 + A2 + · · · + Ai|
|G| >

(
m+1

0

)
+

(
m+1

1

)
+ · · · +

(
m+1
i

)
2m+1

.

Indeed, in view of remark (3) above and the assumption on the cardinalities, we may

choose t = m + 1, and then k = i − 1 and w > 0 by the induction hypothesis. Since

|A1 + A2 + · · · + Am−1| + |Am| > |G|, the proof is completed by the pigeonhole principle,

|A| + |B| > |G| ⇒ A + B = G.

The special case of Corollary 4.1 where all Ai are identical is due to Lev [25], following a

conjecture of Zemor [40]. Taking Ai = Dm+1
1 × Zn−m−1

2 for each i shows that the assumption

on the cardinalities is sharp.

4.1. An isoperimetric inequality

We are inspired by Frankl’s short inductive proof [13] of Harper’s theorem [18].
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Theorem 4.2 (Harper’s inequality). Suppose A ⊆ Zn
2. If, for 1 � k � n integer and 0 � p �

1 real,

|A| =

(
n

n

)
+

(
n

n − 1

)
+ · · · +

(
n

k + 1

)
+ p

(
n

k

)
,

then

|A + Dn
1| �

(
n

n

)
+

(
n

n − 1

)
+ · · · +

(
n

k

)
+ p

(
n

k − 1

)
.

In simple terms this theorem says that Hamming balls solve the vertex-isoperimetric

problem in the hypercube. However, it also deals with sets of cardinalities strictly between

|Dn
k−1| and |Dn

k |, to varying degrees depending on the version of the theorem. A stronger

version would replace the last summand of each expression with
(
x
k

)
and

(
x

k−1

)
respectively,

where x ∈ [k, n] is real. The optimal formulation due to Katona [22] and Kruskal [24] is

stated in terms of the k-cascade representations
(
ak
k

)
+

(
ak−1

k−1

)
+ · · · and

(
ak
k−1

)
+

(
ak−1

k−2

)
+ · · ·

respectively. Frankl’s method yields all three formulations.

Frankl’s proof employs several useful operators on set-systems. As usual, we freely

move between the set-theoretic terminology of 2[n] and the algebraic language of Zn
2. The

push-down operator Ti and the shift operator Sij have already appeared in Section 2. The

upper and the lower shadow operators act on a set-system F ⊆ 2[n] by

δF = {J ∪ {i} | J ∈ F , i /∈ J},
∂F = {J \ {i} | J ∈ F , i ∈ J},

respectively. For downsets, the notion of the shadow is close to that of the neighbourhood

in the theorem. If C ⊆ Zn
2 is a non-empty downset, then C + Dn

1 = δC ∪ {0}. Note that

always 0 /∈ δA. Another useful operation on set-systems is classification by n, denoted by

F− = {J | J ∈ F , n /∈ J},
F+ = {J \ {n} | J ∈ F , n ∈ J}.

When A ⊆ Zn
2, we regard A+ and A− as subsets of Zn−1

2 .

Following Frankl [13], we proceed with two lemmas regarding properties of shifts and

shadows.

Lemma 4.3. Suppose C ⊆ Zn
2 is a shift-minimal downset:

(i) δ(C+) ⊆ (δC)+ = C− with equality if and only if C = ∅,

(ii) δ(C−) = (δC)−.

Proof. Examine the effect of the operators on the representation of some x ∈ C with the

standard basis e1, . . . , en.

In both δ(C+) and (δC)+, some ei is added and en is removed. However, in δ(C+)

certainly i �= n since C+ lives in Zn−1
2 , while in (δC)+ it is possible that i = n. Hence

δ(C+) ⊆ (δC)+. By shift-minimality C is closed under these swaps, thus (δC)+ ⊆ C−.
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Moreover, every element of C− is obtained by adding en and then deleting it, so there is

equality. However, δ(C+) is strictly smaller since 0 ∈ C− \ δ(C+) unless C is empty.

For δ(C−) = (δC)−, note that both sets consist of elements of the form x + ei for x ∈ C

and i < n, where ei and en do not appear in x’s standard representation.

The following lemma is well known: see, e.g., [11, 21]. Here we prove it as a special

case of the compression machinery.

Lemma 4.4. For all A ⊆ Zn
2 and 1 � i, j � n such that i �= j:

(i) δ(SijA) ⊆ Sij(δA),

(ii) ∂(SijA) ⊆ Sij(∂A).

Proof. By passing from A to
∑

i ei − A, it is enough to prove only one of the inclusions.

Denote A =
⋃n

k=0 Ak where Ak = A ∩ (Dn
k \ Dn

k−1). Note that we can work with each Ak

separately. One can write

δ(SijAk) = (Dn
1 + Cij(Ak ∪ Dn

k−1)) \ Dn
k

and

Sij(δAk) = Cij(D
n
1 + (Ak ∪ Dn

k−1)) \ Dn
k ,

yielding our claim by Lemma 2.4, since Dn
1 + Cij(B) = Cij(D

n
1) + Cij(B) ⊆ Cij(D

n
1 + B).

Our isoperimetric inequality concerns a family of non-empty downsets C1 · · ·Cl ⊆ Zn
2,

rather than a single one. For the volume and the shadow we take the average quantities,

denoted by

E[C] =
1

l

l∑
m=1

|Cm|, E[δC] =
1

l

l∑
m=1

|δ(Cm)|.

It is hard to make a meaningful statement about these average quantities without limiting

the downsets somehow. To see this, consider what happens when each Cm is either full

or empty. We limit the variability of the downsets by assuming the antichain condition.

Namely, we require that for each i and j, Ci \ Cj is an antichain with respect to set-systems

inclusion, or equivalently Cj ⊇ ∂Ci.

Proposition 4.5. Suppose C1 · · ·Cl ⊆ Zn
2 is a family of downsets which satisfies the antichain

condition. If

E[C] =

(
n

0

)
+

(
n

1

)
+ · · · +

(
n

k − 1

)
+ p

(
n

k

)

for some integer k � 0 and real number 0 � p < 1, then

E[δC] �
(
n

1

)
+

(
n

2

)
+ · · · +

(
n

k

)
+ p

(
n

k + 1

)
.
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Since for non-empty downsets C + Dn
1 = {0} ∪ δC , the corresponding inequality in the

language of neighbourhoods is as follows.

Corollary 4.6. In the setting of Proposition 4.5, if C1 · · ·Cl are non-empty then

E[C + Dn
1] �

(
n

0

)
+

(
n

1

)
+ · · · +

(
n

k

)
+ p

(
n

k + 1

)
.

Proof of Proposition 4.5. We may assume that the downsets are shift-minimal. Indeed,

for each downset Cm clearly SijCm is a downset of the same size, while |δ(SijCm)| �
|Sij(δCm)| = |δCm| by Lemma 4.4. If Cm′ \ Cm is an antichain, then Cm ⊇ ∂Cm′ . Thus, by

Lemma 4.4 again, SijCm ⊇ Sij(∂Cm′ ) ⊇ ∂(SijCm′), and hence SijCm′ \ SijCm is an antichain

as well. In conclusion, SijC1 · · · SijCl satisfy the antichain condition, E[C] = E[SijC] and

E[δC] � E[δ(SijC)]. After a finite sequence of shifts the downsets are all shift-minimal,

since for a proper shift ∑
m

�(SijCm) <
∑
m

�(Cm).

The case k = 0 is established separately. Note that in this case E[C] < 1, hence Cm = ∅

for some m. Actually, this is a sufficient condition for k = 0, because all other downsets

are either ∅ or {0} by the antichain condition. Since δ{0} = {e1, . . . , en}, clearly E[δC] =

n · E[C] as required.

Following Frankl, we proceed by induction on n. By convention
(
n
k

)
= 0 for n < k. Thus,

for n = 0 the lemma is vacuously satisfied by E[δC] � 0.

For positive k and n, we employ the induction hypothesis on the families C−
1 · · ·C−

l

and C+
1 · · ·C+

l in Zn−1
2 . It is easily checked that given a downset Cm, the sets C+

m and C−
m

are downsets as well. In addition, if Cm′ \ Cm is an antichain, then so are its two parts,

C−
m′ \ C−

m and C+
m′ \ C+

m , hence the new families satisfy the antichain condition.

By the induction hypothesis on C+
1 · · ·C+

l ⊆ Zn−1
2 , at least one of the following must

hold:

E[C+] <

(
n − 1

0

)
+

(
n − 1

1

)
+ · · · +

(
n − 1

k − 2

)
+ p

(
n − 1

k − 1

)
,

E[δ(C+)] �
(
n − 1

1

)
+

(
n − 1

2

)
+ · · · +

(
n − 1

k − 1

)
+ p

(
n − 1

k

)
.

Use E[C−] = E[C] − E[C+] and Pascal’s rule in the first case, or E[C−] � 1 + E[δ(C+)]

by Lemma 4.3(i) in the second one, to deduce

E[C−] �
(
n − 1

0

)
+

(
n − 1

1

)
+ · · · +

(
n − 1

k − 1

)
+ p

(
n − 1

k

)
.

Note that since k > 0 each Cm is non-empty, so there is proper inclusion in the lemma,

which yields the extra 1 in the calculation. By the induction hypothesis on C−
1 · · ·C−

l ⊆
Zn−1

2 ,

E[δ(C−)] �
(
n − 1

1

)
+

(
n − 1

2

)
+ · · · +

(
n − 1

k

)
+ p

(
n − 1

k + 1

)
.
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By Lemma 4.3, E
[
δC

]
= E

[
(δC)−]

+ E
[
(δC)+

]
= E

[
δ(C−)

]
+ E

[
C−]

. Hence, by Pascal’s

rule,

E[δC] �
(
n

1

)
+

(
n

2

)
+ · · · +

(
n

k

)
+ p

(
n

k + 1

)
.

4.2. Proof of the lower bound

Proof of Theorem 1.1. The general idea is similar to the case A + A discussed in the

previous section. By applying various compressions, the sets A and B acquire certain

structural properties. These, in turn, allow us to derive estimates on the cardinality of

A + B.

Lemma 2.4 asserts that compressions do not increase sumsets: |CI (A) + CI (B)| � |A +

B| holds while |CI (A)| = |A| and |CI (B)| = |B|. Thus, in the search for a lower bound for

|A + B|, one can first apply a compression CI on A and B simultaneously. Since 〈A〉 = G,

we may suppose E = {0, e1, e2, . . . , en} ⊆ A and restrict ourselves only to compressions that

preserve the inclusion E ⊆ A. By Lemma 2.3(iii), if a compression CI changes either A or

B, then �(A) + �(B) strictly decreases. It follows that every sequence of such compressions

must terminate. In conclusion, we can assume that both A and B are invariant under these

compressions, or, for short, 〈〈E ⊆ A〉〉-compressed. This implies that B is I-compressed for

every I ⊆ [n] such that A is I-compressed.

Lemma 2.5 provides a description of A under this assumption. In particular, H ⊆ A ⊆
H + E for some subgroup H = 〈0, e1, . . . , eh〉. We next derive some structural properties

of B.

Lemma 4.7. Suppose A,B ⊆ G = Zn
2 are 〈〈E ⊆ A〉〉-compressed. Let H ⊆ A be as in

Lemma 2.5. Consider G/H ∼= Zm
2 , where m = n − h = codimH , with the basis {eh+1 + H, . . . ,

eh+m + H} and the partial order of the corresponding set-system. For 1 � j � |H | let

Cj =
{
H ′ ∈ G/H | |B ∩ H ′| � j

}
.

Then C1 · · ·C|H | are downsets, and satisfy the antichain condition.

Proof. By Lemma 2.5(iii), A is {1, . . . , h, h + i}-compressed for 1 � i � m, and therefore

so is B.

Let H ′ ≺ H ′′ be adjacent H-cosets in the partial order. H ′′ = eh+i + H ′ for some 1 �
i � m. Since B is {1, . . . , h, h + i}-compressed, B ∩ (H ′ ∪ H ′′) must be an initial segment

of H ′ ∪ H ′′. Note that all H ′ elements are lexicographically smaller than those of H ′′.

Consequently, if B ∩ H ′′ �= ∅ then necessarily H ′ ⊆ B. In other words, H ′′ ∈ C1 ⇒ H ′ ∈
C|H | for each such pair.

In particular, Cj is a downset because H ′′ ∈ Cj ⊆ C1 ⇒ H ′ ∈ C|H | ⊆ Cj , and Cj \ Ck is

an antichain since Cj \ Ck ⊆ C1 \ C|H | �⊇ {H ′, H ′′}.

We can now conclude the proof of Theorem 1.1 in the following three steps.

(1) We use the structure of the compressed sets to find new expressions for the cardinalities

of B and A + B. Let C1 · · ·C|H | be as in Lemma 4.7. By interchanging the order of
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summation,

|B| =
∑

H ′∈G/H

|B ∩ H ′| =
∑

H ′∈G/H

#
{
j ∈ N | |B ∩ H ′| � j

}
=

|H |∑
j=1

|Cj |.

We estimate |A + B| in a similar fashion. For 1 � j � |H |, suppose H ′′ ∈ δ(Cj) ∪ {H}. We

show that A + B intersects H ′′ in at least j elements.

• If H ′′ = H , use H ⊆ A and 0 ∈ B �= ∅, to obtain |(A + B) ∩ H ′′| � |(H + 0) ∩ H | � j.

• Otherwise H ′′ = eh+i + H ′ for some H ′ ∈ Cj and 1 � i � m = codimH . Since eh+i ∈
E ⊆ A, clearly |(A + B) ∩ H ′′| � |(eh+i + B) ∩ (eh+i + H ′)| = |B ∩ H ′| � j.

Consequently,

|A + B| =
∑

H ′′∈G/H

#
{
j ∈ N | |(A + B) ∩ H ′′| � j

}
�

|H |∑
j=1

|δ(Cj) ∪ {H}|.

(2) We use the isoperimetric inequality in order to obtain a lower bound on |A + B| given

m and |B|. Let 0 � k � m and w ∈ [−1, 1] be such that

|B| =

(
m+1

0

)
+

(
m+1

1

)
+ · · · +

(
m+1
k

)
+ w

(
m
k

)
2m+1

· |G|.

We substitute |B| =
∑

|Cj | in the left-hand side, apply Pascal’s rule to
(
m+1

1

)
· · ·

(
m+1
k

)
on

the right-hand side, and divide both by |H | = |G|/2m, to obtain

E[C] =
1

|H |

|H |∑
j=1

|Cj | =
|B|
|H | =

(
m

0

)
+

(
m

1

)
+ · · · +

(
m

k − 1

)
+

1 + w

2

(
m

k

)
.

Now, by Proposition 4.5,

E[{H} ∪ δC] � 1 +

(
m

1

)
+

(
m

2

)
+ · · · +

(
m

k

)
+

1 + w

2

(
m

k + 1

)
,

where the union is disjoint since always H /∈ δCj . In terms of A and B, this implies

|A + B| �
(
m+1

0

)
+

(
m+1

1

)
+ · · · +

(
m+1
k

)
+

(
m+1
k+1

)
+ w

(
m

k+1

)
2m+1

· |G|.

(3) What values can m = codimH take? By Lemma 2.5(vii),
(
1 + m

2

)
/2m � |A|/|G|, where

the case m = 1 is separately deduced from the assumption |A|/|G| � 3/4. On the other

hand, by the theorem’s assumption on t, |A|/|G| > (t + 2)/2t+1 =
(
1 + t

2

)
/2t. Since the

sequence
(
1 + n

2

)
/2n is monotone, we infer m < t.

The theorem is obtained by plugging m = t − 1 into the derived lower bound. We claim

that for smaller m the bound is even higher, as demonstrated in Figure 3. Indeed, for each

1 � i � t − 2, the graph of the lower bound on |A + B| given m = i is concave down by

the log-concavity of the binomial coefficients,
(
m
k

)
/
(

m
k−1

)
�

(
m

k+1

)
/
(
m
k

)
. Thus the graph of

m = i + 1, which connects the midpoints of adjacent segments in the m = i graph, must

be lower.
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Remark. By the Hamming balls construction, the lower bound we have found is optimal

on a biparametric discrete family of points. In view of our treatment of F(K) in the

previous section, we expect that at intermediate points better bounds should be provable.

There are three points where our approach to Theorem 1.1 may be suboptimal: the

isoperimetric inequality we use is not always perfectly tight, the addition of H ∪ E instead

of the whole of A, and dropping the assumption on B’s affine span.

It is perhaps worth remarking that the machinery of compressions can still be applied

under the assumption 〈A〉 = 〈B〉 = G. This is done by showing that without loss of

generality we may assume that A and B are simultaneously compressed such that they

include a common affine basis.

Here is a brief outline of how this is done. First, partition A and B into their intersections

with cosets of 〈(A − A) ∩ (B − B)〉. These parts can be translated without increasing

|A + B|, such that A − A and B − B include a common basis of G. Then apply {i}-
compressions with respect to this basis, until it is included in A ∩ B.
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