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We consider the eigenvalue problem associated with the vibrations of a string with rapidly

oscillating periodic density. In a previous paper we stated asymptotic formulae for the

eigenvalues and eigenfunctions when the size of the microstructure ε is shorter than the

wavelength of the eigenfunctions 1/
√
λε. On the other hand, it has been observed that

when the size of the microstructure is of the order of the wavelength of the eigenfunctions

(ε ∼ 1/
√
λε) singular phenomena may occur. In this paper we study the behaviour of the

eigenvalues and eigenfunctions when 1/
√
λε is larger than the critical size ε. We use the WKB

approximation which allows us to find an explicit formula for eigenvalues and eigenfunctions

with respect to ε. Our analysis provides all order correction formulae for the limit eigenvalues

and eigenfunctions above the critical size. Each term of the asymptotic expansion requires

one more derivative of the density. Thus, a full description requires the density to be C∞

smooth.

1 Introduction

The main motivation of this work is the uniform boundary controllability of the one-

dimensional wave equation in highly heterogeneous media with periodic microstructure.

The results in Avellaneda et al. [2] show that the controllability property is not uniform

due to the existence of eigenfunctions that behave in a singular way concentrating most

of their energy near one of the extremes of the space-interval. It turns out that the

wavelength of these singular eigenfunctions, 1/
√
λε, is of the same order as the size of the

microstructure ε.

In a previous paper [7], we have proved an asymptotic expression for the eigenvalues and

eigenfunctions in which the first-order terms were the eigenvalues and eigenfunctions of

the homogenized problem. This expression is only valid for eigenfunctions with wavelength

lower than the size of the microstructure, i.e. 1/
√
λε 6 cε−1 with c small enough. This

allowed us to prove [7] that, below the critical size 1/
√
λε 6 cε−1 none of the eigenfunctions

concentrate on the boundary. We refer to these eigenfunctions as low frequencies.

In this paper we complement the analysis of the low frequencies in Castro & Zuazua [7]

with a study of the high ones which correspond to 1/
√
λε >> ε−1. As in the previous case,

we give explicit asymptotic formulae for the eigenvalues and eigenfunctions and then we

deduce that the high frequencies do not concentrate in the boundary. The results of the
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596 C. Castro and E. Zuazua

present work combined with the theory of non-harmonic Fourier series allow us to prove

sharp uniform controllability results (see Castro [5] and Castro & Zuazua [6]).

Consider the following eigenvalue problem:{
u′′(x) + λ ρ

(
x
ε

)
u(x) = 0, in (0, 1)

u(0) = u(1) = 0,
(1.1)

where ρ(x) is a periodic function with 0 < ρm 6 ρ(x) 6 ρM < ∞ and ε is a small

parameter which measures the size of the microstructure. To fix ideas and without loss of

generality we take ρ of period 1.

Let us denote by {λεk}k∈IN the set of eigenvalues of (1.1) ordered in an increasing way.

Let {ϕεk}k∈IN be the corresponding eigenfunctions with (ϕεk)
′(0) = 1. We are interested in

the behaviour of eigenvalues and eigenfunctions for small values of the parameter ε.

When using the so called multiple scales method we assume that uε(x) depends upon

the slow and fast variables x and X = x/ε as follows:

uε(x) = u0(x) + ε2u1(x, x/ε) + . . .

where the functions uj(x,X) are 1-periodic with respect to X. The functions u0 and u1

must satisfy {
∂2u1

∂X2 + d2u0

dx2 + λρ(X)u0(x) = 0,

u1(x,X) 1-periodic in X.

It is only possible to have u1 periodic in X if d2u0

dx2 + λρ̄u0(x) = 0 where ρ̄ =
∫ 1

0
ρ(x) dx is

the average of ρ. Hence

u0(x) ∝ exp
(
±i√λρ̄x) ,

and we obtain the homogenization limit after the boundary conditions in (1.1), i.e.

λεk → λk =
k2π2

ρ̄
, k ∈ IN (1.2)

ϕεk(x)→ ϕk(x) =
sin(kπx)

kπ
, k ∈ IN. (1.3)

This method provides good approximations when ε2λ is sufficiently small, i.e. for the

low frequencies. When ε2λ is large, which is the case we study here, the multiple scales

method is no longer valid. Instead, we transform equation (1.1) by means of the change

of variables x/ε = t into

−w′′ε (t) = ε2λ ρ(t)wε(t) (1.4)

where wε(t) = uε(tε). Then we use the WKB method to obtain a good approximation of

the solutions of (1.4) for large ε2λ

wε(t) ∝ exp

(
±i√λε

∫ t

0

√
ρ(s)ds

)
,

and therefore

uε(x) ∝ exp

(
±i√λ

∫ x

0

√
ρ(s/ε)ds

)
.

This is the approach we follow. As we will see, the main difficulty is to prove the uniform

approximation of the asymptotic formula.
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Assuming that the coefficient ρ ∈ WN+1,∞(IR) (the space of bounded measurable

functions with bounded derivatives up to the order N + 1) with N > 1, we give an

approximate formula for the eigenvalues λεk and eigenfunctions ϕεk valid for k > CNε−1−1/N

with CN large enough (see Theorem 2.1 below). In the particular case N = 1, we obtain the

first-order term in the expansion of λεk , actually λεk ∼ (kπ/ρ∗ε)2 where ρ∗ε =
∫ 1

0

√
ρ(x/ε)dx

valid for k > C1ε
−2. Note, however, that the range of validity of this approximation

k > C1ε
−2 is far from covering the whole range of high frequencies k >> ε−1. In this case

(k > C1ε
−2) the associated eigenfunctions ϕεk are close to

ϕεk ∝ ρ∗ε
kπ
[
ρ(x/ε)ρ(0)

]1/4 sin

(
kπ

ρ∗ε

∫ x

0

√
ρ(s/ε)ds

)
in W 1,∞(0, 1), which, of course, do not exhibit any concentration of energy. For lower high

frequencies, i.e. for ε−1 << k < C1ε
−2, it is necessary to introduce some correctors which

depend on ρ and its derivatives. We prove in particular that, if ρ ∈ C∞(IR), eigenfunctions

corresponding to eigenvalues λεk with k > ε−α, for any α > 1 do not exhibit any localization

of energy. This result is sharp.

Observe that the behaviour of the eigenvalues for low and high frequencies is different.

Looking at the first term in the expansion in each case we have

λεk ∼ (kπ)2

ρ̄
for the low frequencies while λεk ∼

(
kπ

ρ∗ε

)2

for the high ones.

Note that ρ∗ε =
∫ 1

0

√
ρ(x/ε)dx approaches

∫ 1

0

√
ρ(x)dx =

√
ρ as ε→ 0. On the other hand,∫ 1

0

√
ρ(x)dx 6

√
ρ̄ and the equality holds if and only if ρ is a constant function. Thus, the

effective limit equation for the high frequencies has density (
√
ρ)2 while for the low ones,

the corresponding density is ρ̄.

Throughout this work we implicitly use the fact that λεk and k2 are of the same order.

In fact,

k2π2

ρM
6 λεk 6

k2π2

ρm
, for all k ∈ IN. (1.5)

This can be checked easily by means of some rough estimates in the Rayleigh formula.

Indeed, observe that if u ∈ H1
0 (0, 1) we have∫ 1

0
|u′(x)|2dx

ρM
∫ 1

0
|u(x)|2dx 6

∫ 1

0
|u′(x)|2dx∫ 1

0
ρ( x

ε
)|u(x)|2dx 6

∫ 1

0
|u′(x)|2dx

ρm
∫ 1

0
|u(x)|2dx . (1.6)

Taking into account that

λεk = max
Ek⊂H1

0
(0,1)

dimEk=k

min
u∈E⊥k

∫ 1

0
|u′(x)|2dx∫ 1

0 ρ( x
ε
)|u(x)|2dx

and applying (1.6) we obtain (1.5).

The rest of the paper is organized as follows: in §2 we state the main approximation

result for the eigenvalues and eigenfunctions. In §3 and §4 we discuss the consequences

for the eigenvalues and eigenfunctions respectively. In §5 we show how our analysis may

be applied to the problem with the oscillating coefficient in the principal part of the
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operator: (a(x/ε)u′)′ + λu = 0. In §6 we prove our main result stated in §2. Finally, two

technical results used in the proofs are proved in the Appendix.

2 Statement of the main result

The main result in this paper is the following:

Theorem 2.1 Let ρ be a 1-periodic function with 0 < ρm 6 ρ(x) 6 ρM < ∞ and such that

ρ ∈ WN+1,∞(IR) for some N > 1. Given δ > 0 there exists a constant C = C(δ) > 0 such

that if k > Cε−1−1/N with 0 < ε < 1 then∣∣∣∣∣∣∣
√
λεk −

kπ∫ 1

0

√
ρ(s/ε)ds

+ i

[N/2]∑
n=1

(∫ 1

0

√
ρ(s/ε)ds

)2n ∫ 1

0
S2n
t (s/ε)ds

k2n−1ε2nπ2n−1

∣∣∣∣∣∣∣ 6 δ, (2.1)

∥∥∥∥∥∥∥∥∥ϕ
ε
k − Aεk exp


[N/2−1]∑
n=0

S2n+1(x/ε)(√
λ̃εkε

)2n

 sin


√
λ̃εkε

[N/2]∑
n=0

S2n(x/ε)(√
λ̃εkε

)2n


∥∥∥∥∥∥∥∥∥
W 1,∞

6 δ, (2.2)

where [·] denotes the integer part and

√
λ̃εk =

kπ∫ 1

0

√
ρ(s/ε)ds

+ i

[N/2]∑
n=1

(∫ 1

0

√
ρ(s/ε)ds

)2n ∫ 1

0 S
2n
t (s/ε)ds

k2n−1ε2nπ2n−1
. (2.3)

Here Aεk is a normalization constant and the coefficients Sn(t) can be computed explicitly by

the following recurrence formula S0(t) = i
∫ t

0

√
ρ(s)ds, Snt (t) = −

Sn−1
tt (t)+

∑
i+j=n
i,j�n

S it (t)S
j
t (t)

2S0
t (t)

, ∀n > 1,

Sn(0) = 0, ∀n > 0.

Moreover,

(1) Snt (t) (the derivative of Sn) are 1-periodic functions which only depend upon ρ,

(2) S2n+1(t) are 1-periodic functions while S2n(t) grow linearly with respect to t,

(3) S2n+1(t) are real functions while S2n(t) are purely imaginary.

Remark 2.2 The main difference between this result and that we found for the low frequen-

cies k 6 cε−1 (see Castro & Zuazua [7]) is that here the approximation is not valid just

above the critical size (k ∼ ε−1), but only above k ∼ ε−1−1/N . Note that N depends upon

the regularity of ρ so that ρ has to be assumed to be C∞ if we want to cover the whole

region k > ε−α with any α > 1.

3 Analysis of eigenvalues

As we said in the introduction, our work is motivated by the uniform controllability

property of the wave equation with oscillating density. This property can be obtained
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from two spectral properties: the uniform gap between two consecutive eigenvalues and

a uniform observability property for the eigenfunctions (see Castro [5] and Castro &

Zuazua [6]). In this section and the following one, we prove that these two properties can

be obtained from Theorem 2.1. We also discuss the first-order terms in the asymptotic

expansion of the eigenvalues and eigenfunctions obtained in Theorem 2.1.

3.1 First order approximation

Looking at the first-order term in the formula (2.1), we have√
λεk =

kπ∫ 1

0

√
ρ( s

ε
) ds

+ O((ε2k)−1). (3.1)

This means that the first-order term is valid for k > Bε−2 with B large enough provided

ρ ∈ W 2,∞(IR). The constant ρ∗ε =
∫ 1

0

√
ρ( s

ε
) ds in the denominator converges to ρ∗ =∫ 1

0

√
ρ(x)ds when ε→ 0. In fact, we have the following estimate:

Lemma 3.1 If ρ is a continuous 1-periodic function,∣∣∣∣∫ 1

0

√
ρ
( s
ε

)
ds−

∫ 1

0

√
ρ(s) ds

∣∣∣∣ 6 2‖√ρ‖∞ε.

Proof of Lemma 3.1 Define n = [ 1
ε
], where [·] represents the integer part. Then∫ 1

0

√
ρ
( s
ε

)
ds−

∫ 1

0

√
ρ(s) ds =

n−1∑
i=0

∫ (i+1)ε

iε

√
ρ
( s
ε

)
ds−

∫ 1

0

√
ρ(s) ds+

∫ 1

nε

√
ρ
( s
ε

)
ds.

We observe that∣∣∣∣∣
n−1∑
i=0

∫ (i+1)ε

iε

√
ρ
( s
ε

)
ds−

∫ 1

0

√
ρ(s) ds

∣∣∣∣∣ =

∣∣∣∣∣ε
n−1∑
i=0

∫ (i+1)

i

√
ρ(y) dy −

∫ 1

0

√
ρ(s) ds

∣∣∣∣∣
=

∣∣∣∣(εn− 1)

∫ 1

0

√
ρ(s) ds

∣∣∣∣ 6 ε‖√ρ‖∞
because ρ is 1-periodic. Then,∣∣∣∣∫ 1

0

√
ρ
( s
ε

)
ds−

∫ 1

0

√
ρ(s) ds

∣∣∣∣ 6 ε‖√ρ‖∞ +

∣∣∣∣∫ 1

nε

√
ρ
( s
ε

)
ds

∣∣∣∣ 6 2ε‖√ρ‖∞. q

However it is not possible to replace ρ∗ε by ρ∗ in Theorem 2.1 or in (3.1) because∣∣∣∣kπρ∗ε − kπ

ρ∗

∣∣∣∣ 6 ∣∣∣∣kπρ∗ − ρ∗ερ∗ρ∗ε

∣∣∣∣ = O(kε)

which is not small when k ∼ ε−2, which is the region of validity of formula (3.1).

In Figure 1 we show the behaviour of the high frequencies
√
λεk for k = 100, ..., 105 with

respect to the parameter ε (which ranges between 1/10 and 2/10) when ρ(t) = (2+sin 2πt)2.

This behaviour is only valid when k > ε−2, i.e. for ε > 1/10.
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Figure 1.
√
λε100, · · · ,

√
λε105 as functions of ε ∈ (0.1, 0.2) when ρ(t) = (2 + sin 2πt)2.

It is interesting to compare (3.1) with the first term in the approximation of the low

frequencies k 6 Cε−1 (see Castro & Zuazua [7]). Indeed, for the low frequencies we proved

that
√
λεk ∼ kπ/

√
ρ which is the limit of kπ/

√∫ 1

0 ρ(s/ε)ds. Note that√∫ 1

0

ρ(s)ds >

∫ 1

0

√
ρ(s)ds

and that equality only holds when ρ is identically constant. Roughly speaking it can be

said that the low frequencies approach the solutions of the wave equation

ρutt − uxx = 0

while the high frequencies obey(∫ 1

0

√
ρ(s)ds

)2

utt − uxx = 0.

3.2 Higher order approximation

Formula (2.1) provides higher order approximations for the eigenvalues. In this section

we analyse these approximations in order to simplify (2.1).

Note that all the terms in the approximation apart from the first order one contain the

factors ∫ 1

0

√
ρ(s/ε)ds and

∫ 1

0

S2n
t (s/ε)ds. (3.2)

From Lemma 3.1 we have∣∣∣∣∫ 1

0

√
ρ(s/ε)ds−

∫ 1

0

√
ρ(s)ds

∣∣∣∣ 6 ‖√ρ‖∞ε. (3.3)

On the other hand, since S2n
t is 1−periodic we also have:∣∣∣∣∫ 1

0

S2n
t (s/ε)ds−

∫ 1

0

S2n
t (s)ds

∣∣∣∣ 6 ‖S2n
t ‖∞ε. (3.4)

So, taking (3.3) and (3.4) into account we can simplify formula (2.1) into the following:
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for any δ > 0, there exists a constant C > 0 (which depends upon ρ, N and δ) such that

if k > Cε−1−1/N with 0 < ε < 1 then∣∣∣∣∣∣∣
√
λεk −

kπ∫ 1

0

√
ρ(s/ε)ds

+ i

[N/2]∑
n=1

(∫ 1

0

√
ρ(s)ds

)2n ∫ 1

0
S2n
t (s)ds

k2n−1ε2nπ2n−1

∣∣∣∣∣∣∣ 6 δ. (3.5)

Observe that the oscillation behaviour of the eigenvalues λεk with respect to ε is relevant

only in the first-order approximation. Then, higher correctors do not exhibit this oscillation

behaviour. For instance, looking to the second order approximation we have√
λεk =

kπ∫ 1

0

√
ρ(s/ε)ds

+

∫ 1

0

√
ρ(s)ds

32πkε2

∫ 1

0

5(ρ′(s))2 − 4ρ′′(s)ρ(s)

ρ5/2(s)
ds+ O(ε−4k−3), (3.6)

which is valid when ρ ∈ C3.

3.3 Estimates for the gap between two consecutive eigenvalues

Theorem 2.1 allows us to obtain the following property on the separability of eigenvalues:

Proposition 3.1 Let ρ be a 1-periodic function such that ρ ∈ WN+1,∞(R) for some N > 1.

Given δ > 0, there exists a constant C = C(δ) > 0 such that if k > Cε−1−1/N we have√
λεk+1 −

√
λεk >

π∫ 1

0

√
ρ(s/ε)ds

− δ.

Proof of Proposition 3.1 From formula (2.1) we deduce that given δ/3 > 0 there exists

C > 0 such that if k > Cε−1−1/N we have

√
λεk+1 −

√
λεk >

∣∣∣∣∣∣∣
(k + 1)π∫ 1

0

√
ρ(s/ε)ds

−
N/2∑
n=1

π
∫ 1

0 S
2n
t (s/ε)ds

(k + 1)2n−1ε2ni
(∫ 1

0

√
ρ(s/ε)ds

)2

− kπ∫ 1

0

√
ρ(s/ε)ds

+

N/2∑
n=1

π
∫ 1

0 S
2n
t (s/ε)ds

k2n−1ε2ni
(∫ 1

0

√
ρ(s/ε)ds

)2

∣∣∣∣∣∣∣− 2
δ

3

=

∣∣∣∣∣∣∣
π∫ 1

0

√
ρ(s/ε)ds

+

N/2∑
n=1

π
∫ 1

0 S
2n
t (s/ε)ds

ε2ni
(∫ 1

0

√
ρ(s/ε)ds

)2

(
1

k2n−1
− 1

(k + 1)2n−1

)∣∣∣∣∣∣∣− 2
δ

3

=
π∫ 1

0

√
ρ(s/ε)ds

+

N/2∑
n=1

O(ε−2nk−2n)− 2
δ

3
=

π∫ 1

0

√
ρ(s/ε)ds

− δ,

since we can choose C so that
∑N/2

n=1 O(ε−2nk−2n) 6 δ/3, for k > Cε−1−1/N . q

As we mentioned above, the gap between consecutive eigenvalues is essential when

analysing the controllability of waves from the boundary (see Castro [5] and Castro &

Zuazua [6]).
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4 Analysis of eigenfunctions

4.1 Uniform observability of eigenfunctions

The following result is another key ingredient when analysing the uniform controllability

of the high frequency solutions of the wave equation associated with (1.1) (see, for instance,

Castro [5] and Castro & Zuazua [6]).

Proposition 4.1 Let ρ be a 1-periodic function such that ρ ∈ WN+1,∞(R) for some N > 1.

There exist C, c > 0 such that the following estimates hold for the eigenfunctions ϕεk with

k > cε−1−1/N:

1

C

(|(ϕεk)′(0)|2 + |(ϕεk)′(1)|2) 6 ∫ 1

0

|(ϕεk)′(x)|2dx 6 C (|(ϕεk)′(0)|2 + |(ϕεk)′(1)|2) .
Observe that, as a consequence of Proposition 4.1, when ρ ∈ WN+1,∞(0, 1) the eigen-

functions corresponding to eigenvalues λεk with k > cε−1−1/N (c large enough) cannot

exhibit any concentration of energy on the extremes of the interval.

According to the asymptotic formula for the eigenvalues given in Theorem 1, the proof

of Proposition 4.1 is similar to that of Proposition 3.5 in Castro & Zuazua [7] and we

omit it.

4.2 Approximation formulae for the eigenfunctions

Theorem 2.1 provides also approximation formulae for the eigenfunctions. For example,

when we consider the case N = 3 in Theorem 1, we obtain

ϕεk(x) ∝
(
ρ(1/ε)

ρ(x/ε)

)1/4

sin

(√
λ̃εk

∫ x

0

√
ρ(s/ε)ds+ ελ̃εk

∫ x

0

4ρ′′(s/ε)ρ(s/ε)− 5(ρ′(s/ε))2

32ρ2(s/ε)
√
ρ(s/ε)

ds

)
where

√
λ̃εk =

kπ∫ 1

0

√
ρ(s/ε)ds

+

(∫ 1

0

√
ρ(s/ε)ds

)2

32kε2π

∫ 1

0

4ρ′′(s/ε)ρ(s/ε)− 5(ρ′(s/ε))2

ρ2(s/ε)
√
ρ(s/ε)

ds,

which is valid for k > Cε−4/3 with C sufficiently large provided ρ ∈W 4,∞(IR).

5 The case where the oscillating coefficient is in the principal part

In this section we study the eigenvalue problem{
(a(x/ε)u′)′ + λu = 0, x ∈ (0, 1),

u(0) = u(1) = 0,
(5.1)

where a(x) ∈ L∞(R) is a periodic function with 0 < am 6 a(x) 6 aM < ∞ and ε is small.

We assume, without loss of generality, that the period of a is 1.

We observe that the oscillating coefficient is now in the principal part of the operator.

Let us denote by {λεk}k∈N the eigenvalues of (5.1) ordered in an increasing way. The
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eigenvalues and eigenfunctions of (5.1) converge, as ε→ 0, to those of the limit system{
âu′′ + λu = 0, x ∈ (0, 1),

u(0) = u(1) = 0,
(5.2)

where â = 1/
∫ 1

0
dr
a(r)

. This is a classical result in homogenization theory which can be

proved with the multiple scales method discussed in the introduction (see, for instance,

Bensoussan et al. [3]). The eigenpairs of (5.2) can be also computed explicitly:

λk = âk2π2, k ∈ N,
ϕk(x) = sin(kπx), k ∈ N. (5.3)

We refer to Castro & Zuazua [7] for a complete description of the convergence of the

spectrum and its correctors.

We show that the analysis of the previous section can be also applied to this system to

obtain a full description of the convergence of the high frequencies. The idea is to reduce

system (5.1) to one in the form (1.1) for which we can apply Theorem 2.1.

Consider the following change of variables:

y(x) =

∫ x/ε
0

dr
a(r)∫ ε−1

0
dr
a(r)

, δ(ε) =

∫ 1

0
dr
a(r)∫ ε−1

0
dr
a(r)

,

b(s) = a(t(s)), v(y) = u(x(y)),

µ = λ

(
ε

∫ ε−1

0

dr

a(r)

)2

, s(t) =

∫ t
0

dr
a(r)∫ 1

0
dr
a(r)

, (5.4)

where x(y) represents the inverse function of y(x), i.e. x(y) = x if and only if y(x) = y,

and t(s) the inverse function of s(t). Obviously, this change of variables depends upon ε

but, for the sake of simplicity, we do not make this fact explicit in the notation.

This change of variables transforms system (5.1) into{
vyy(y) + µb(y/δ)v(y) = 0, y ∈ (0, 1),

v(0) = v(1) = 0.
(5.5)

Let us see that the function b(s) is 1-periodic. Note that t(s) + 1 = t(s+ 1). Indeed,

s(t) + 1 = s(t) +

∫ t+1

t
dr
a(r)∫ 1

0
dr
a(r)

=

∫ t+1

0
dr
a(r)∫ 1

0
dr
a(r)

= s(t+ 1),

Taking this fact and the periodicity of a into account, we deduce that

b(s+ 1) = a(t(s+ 1)) = a(t(s) + 1) = a(t(s)) = b(s), ∀s > 0.

Therefore, b is 1-periodic, and system (5.5) is equivalent to system (1.1).

By (3.5) if b(s) ∈ WN+1,∞(0, 1), i.e. a(t) ∈ WN+1,∞(0, 1), then the eigenvalues µδk of (5.5)

with k > Cδ−1−1/N satisfy:

√
µδk ∝

kπ∫ 1

0

√
b(s/δ)ds

+

[N/2]∑
n=1

(∫ 1

0

√
b(s)ds

)2n ∫ 1

0
iS2n
t (s)ds

k2n−1δ2nπ2n−1
. (5.6)
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Recall that the functions S2n
t (x) can be computed from the coefficient b. On the other

hand, ∫ 1

0

√
b(s/δ)ds = δ

∫ δ−1

0

√
b(s)ds = δ

∫ ε−1

0

√
a(t)s′(t)dt

=
δ∫ 1

0
dr
a(r)

∫ ε−1

0

1√
a(t)

∫ 1

0
dr
a(r)

dx = â
δ

ε

∫ 1

0

dt√
a(t/ε)

=

∫ 1

0
dt√
a(t/ε)∫ 1

0
dt

a(t/ε)

. (5.7)

Consider the first-order approximation which we obtain by truncating the series at the

first term: √
µδk =

kπ∫ 1

0

√
b(s/δ)ds

+ O(δ2k)−1. (5.8)

Coming back to the original variables λ and ε we have

√
λεkε

∫ ε−1

0

dr

a(r)
= kπ

∫ 1

0
dt

a(t/ε)∫ 1

0
dt√
a(t/ε)

+ O(δ2k)−1. (5.9)

From the definition of δ(ε) we have that

εam/â 6 δ(ε) 6 εaM/â, (5.10)

and therefore √
λεk =

kπ∫ 1

0
dt√
a(t/ε)

+ O(ε2k)−1. (5.11)

We observe that the square root of the eigenvalues
√
λεk show an oscillatory behaviour

as a function of ε in the first term which is completely similar to the case where the

oscillation occurs in the density ρ.

6 Proof of Theorem 2.1

The proof of Theorem 1 consists of five steps. In the first step we use a shooting method

to transform the eigenvalue problem in an initial value one (IVP). In the second step we

obtain a formal asymptotic expansion of the solutions of the IVP using the classical WKB

method (see Bender & Orszag [4] for a detailed description of this method). In the third

step we prove that the first N terms in the asymptotic expansion constitute a uniform

approximation of the solution of the IVP. This approximation gets better as N grows. We

use a classical asymptotic method whose general description can be found in Poschel &

Trubowitz [10]. Roughly, it consists of estimating the difference between the solution and

its approximation comparing the equations satisfied by each of them. In step 4 we deduce

the formula for the eigenvalues. The shooting method gives us a characterization of the

eigenvalues in terms of the solution of the IVP. This characterization and a perturbation

argument involving Rouché’s Theorem provides us the desired result. Finally, in step 5 we

deduce the formula for the eigenfunctions.
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STEP 1. Shooting method. We start solving the following Cauchy problem:{ −y′′ε (x) = λ ρε(x)yε(x)

yε(0) = 0, y′ε(0) = 1
(6.1)

so that the eigenvalues and eigenfunctions of (1.1) are characterized as the pairs (λ, yε)

satisfying (6.1) and yε(1) = 0.

As the eigenvalue problem (6.1) is self-adjoint and positive, all the eigenvalues are real

and positive. So, we assume λ ∈ IR.

STEP 2. Formal asymptotic expansion. Here we look for a formal expansion of solutions

of (6.1), when λ >> 1, based on the WKB method.

Consider the change of variables x/ε = t which transforms (6.1) into:{ −w′′ε (t) = ε2λ ρ(t)wε(t)

wε(0) = 0, w′ε(0) = ε
(6.2)

where wε(t) = yε(tε). As we are supposing λε2 to be large, we introduce λε2 = 1
δ2 where δ

is a small parameter, i.e. δ << 1.

The basic idea in the WKB method is to assume that the solution can be written in the

form:

wε(t) = Im

(
exp

(
1

δ

∞∑
n=0

δnSn(t)

))
. (6.3)

Then the coefficients Sn(t) must satisfy:

1

δ

∞∑
n=0

δnSntt +

(
1

δ

∞∑
n=0

δnSnt

)2

+
1

δ2
ρ(t) = 0.

Equating the terms with the same powers in δ we obtain the following system:

(S0
t )2 + ρ(t) = 0

2S0
t S

1
t + S0

tt = 0

(S1
t )2 + 2S0

t S
2
t + S1

tt = 0

· · ·
Sntt +

∑
i+j=n+1 S

i
tS

j
t = 0

· · ·

(6.4)

To integrate the system we assume that Si(0) = 0. From the first equation in (6.4), we

have S0
t = ±i√ρ and then

S0(t) = ±i
∫ t

0

√
ρ(s)ds. (6.5)

We take the + sign in (6.5). From the second equation in (6.4) we obtain

S1
t = −S0

tt/(2S
0
t ) (6.6)

and then

S1(t) = −1

4
log

(
ρ(t)

ρ(0)

)
. (6.7)
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From the third equation in (6.4) we obtain

S2
t =
−(S1

t )2 − S1
tt

2S0
t

=
− (ρ′)2

16ρ2 + ρ′′
4ρ
− (ρ′)2

4ρ2

−2i
√
ρ

=
−5(ρ′)2 + 4ρ′′ρ
−i32ρ2√ρ ,

which is periodic of period 1. Then,

S2(t) =
i

32

∫ t

0

(
5(ρ′)2 − 4ρ′′ρ

ρ2√ρ
)
.

In general

Snt = −
Sn−1
tt +

∑
i+j=n
i,j�n

S itS
j
t

2S0
t

which is 1-periodic in t.

We easily check the following properties for Snt :

−Snt is 1-periodic for all n and does not depend upon δ,

−Snt is real if n is odd and purely imaginary if n is even,

−Snt = fn(ρ
−1/2, ρ1/2, ρ′, . . . , ρn)) for some polynomial fn.

(6.8)

Here and in the sequel we denote by ρn) the derivative of order n of ρ.

We also have the following property which is the key in our analysis:

Lemma 6.1 The coefficients S2n+1(t) are 1-periodic functions for all n > 0.

The proof of this technical lemma is given in the Appendix A at the end of the paper.

In view of the initial conditions wε(0) = 0, w′ε(0) = ε, the formal solution of (6.2) takes

the form

wε(t) = Aεe
( 1
δ

∑∞
n=0 δ

2n+1S2n+1(t)) sin

(
1

iδ

∞∑
n=0

δ2nS2n(t)

)
(6.9)

where Aε = iδε
[∑∞

n=0 δ
2nS2n

t (0)
]−1

. Observe that as Sn(0) = 0, we have wε(0) = 0 while

we have chosen Aε so that the second boundary condition in (6.2) holds, i.e. w′ε(0) = ε.

Coming back to the original variable x = εt we obtain the following asymptotic formula

for the solution yε(x) of (6.1):

yε(x) = Aεe
(
√
λε
∑∞

n=0(
√
λε)−2n−1S2n−1(x/ε)) sin

(√
λε

i

∞∑
n=0

(
√
λε)−2nS2n(x/ε)

)
. (6.10)

The developments above are purely formal. To get a rigorous justification we would

need to get uniform bounds on all the coefficients Sn. We do not pursue this approach

but rather analyse the proximity of the solution of (6.2) towards the expression we obtain

when truncating the above series at the level n = N.

STEP 3. Uniform approximation of the first N terms in the asymptotic formula. Here we

show that the first N terms of the asymptotic expansion (6.10) constitute a uniform

approximation of the solution of (6.1). As we will see later, we need estimates not only

for λ real but also for λ complex. Therefore, from now on we assume that λ is complex.

We use an asymptotic method to estimate the difference between two functions using
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the differential equations they satisfy. So, our first aim is to find the differential equation

satisfied by the first N terms in the asymptotic expansion (6.10) extended to complex

values of λ:

yε,N(x) = Aε,Ne

(√
λε
∑N/2−1

n=0 (
√
λε)−2n−1S2n+1(x/ε)

)
sin

√λε
i

N/2∑
n=0

(
√
λε)−2nS2n(x/ε)

 , (6.11)

with

Aε,N =
i√
λ

N/2∑
n=0

S2n
t (0)

(
√
λε)2n

−1

. (6.12)

To simplify the notation we introduce

R1(x/ε) =
√
λε

N/2−1∑
n=0

(
√
λε)−2n−1S2n+1(x/ε), (6.13)

R2(x/ε) =

√
λε

i

N/2∑
n=0

(
√
λε)−2nS2n(x/ε). (6.14)

Note that R1 and R2 depend also upon N, ρ, ε and λ but we do not make this explicit in

the notation.

A straightforward computation shows that yε,N satisfies the following equation:

y′′ε,N(x) + λρ(x/ε)yε,N(x) +
L1
N(x/ε)

ε2
yε,N(x) +

L2
N(x/ε)

ε2
zε,N(x) = 0, (6.15)

where

zε,N(x) = eR1(x/ε) cosR2(x/ε), (6.16)

L1
N(x/ε) = −

N/2−2∑
k=0

(
√
λε)−N−2k

 ∑
i+j=N+2k+2

i,j6N

S it (x/ε)S
j
t (x/ε)

 , (6.17)

L2
N(x/ε) = − (

√
λε)−N+1

i

SNtt (x/ε) +
∑

i+j=N+1
i,j6N

S it (x/ε)S
j
t (x/ε)


−1

i

N/2−2∑
k=0

(
√
λε)−N−2k−1

 ∑
i+j=N+2k+3

i,j6N

S it (x/ε)S
j
t (x/ε)

 . (6.18)

Observe that the functions L1
N(t) and L2

N(t) depend also upon ε and ρ, but we do not

make explicit this dependence to simplify the notation.

On the other hand, note that yε,N(t) and zε,N(t) are related by the identity

y′ε,N(t) =
1

ε

[
R′1(x/ε)yε,N(x) + R′2(x/ε)zε,N(x)

]
. (6.19)

Eliminating zε,N in (6.15) and (6.19) we obtain that yε,N is solution of

y′′(x) + λρ(x/ε)v(x) + pε(x)y′(x) + qε(x)y(x) = 0 (6.20)
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where

pε(x) =
L2
N(x/ε)

εR′2(x/ε)
, (6.21)

qε(x) =
L1
N(x/ε)

ε2
− L2

N(x/ε)R′1(x/ε)

ε2R′2(x/ε)
. (6.22)

The coefficients pε and qε depend on N and ρ but we do not make explicit this dependence

in the notation.

In a similar way, we deduce that zε,N is also solution of (6.20). Then {yε,N(t), zε,N(t)}
constitutes a linear independent set of solutions of (6.20).

Note that, due to the normalization constant Aε,N , yε,N satisfies also the initial conditions

yε,N(0) = 0, y′ε,N(0) = 1, (6.23)

while zε,N(t) satisfies

zε,N(0) = 1, z′ε,N(0) = 0.

Until now we have introduced the approximation yε,N obtained with the first N terms

in the formal asymptotic expansion (6.10). We have also deduced the differential equation

(6.20) satisfied by yε,N . Let us see now that yε,N is a good approximation of the solutions

of (6.1).

We rewrite system (6.1) in the form:{
y′′ε (x) + λρε(x)yε(x) + pε(x)y′ε(x) + qε(x)yε(x) = pε(x)y′ε(x) + qε(x)yε(x)

yε(0) = 0, y′ε(0) = 1.
(6.24)

Taking into account that yε,N is a solution when the second term in (6.24) vanishes, we

assume that the solution yε of (6.24) has the form

yε(x) = C0(x) +
∑
j>1

Cj(x) (6.25)

where C0(x) = yε,N(x). Substituting this expression in (6.24) and equating terms in a

suitable way we obtain the system:{
C ′′0 + λρεC0 + pεC

′
0 + qεC0 = 0, x ∈ (0, 1),

C0(0) = 0, C ′0(0) = 1,{
C ′′j + λρεCj + pεC

′
j + qεCj = pε(x)C ′j−1 + qεCj−1, x ∈ (0, 1),

Cj(0) = 0, C ′j(0) = 0,
∀j > 1.

Taking into account that both yε,N(x) and zε,N(x) are linearly independent solutions of

the homogeneous equation (6.20) and by means of the variation of constants method we

easily obtain the following result:

Lemma 6.2 Given λ ∈ CI , ρ ∈WN+1,∞(0, 1) and f ∈ C([0, 1]), the problem{
C ′′(x) + λρε(x)C(x) + pε(x)C ′(x) + qε(x)C(x) = f(x), x ∈ (0, 1),

C(0) = 0, C ′(0) = −γ, (6.26)
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admits a unique solution given by:

C(x) = γyε,N(x) +

∫ x

0

yε,N(x)zε,N(s)− zε,N(x)yε,N(s)

yε,N(s)z′ε,N(s)− y′ε,N(s)zε,N(s)
f(s) ds. (6.27)

Corollary 6.3 The solution yε of (6.24) solves the integral equation

yε(x) = yε,N(x) +

∫ x

0

yε,N(x)zε,N(s)− zε,N(x)yε,N(s)

yε,N(s)z′ε,N(s)− y′ε,N(s)zε,N(s)
(pε(s)y

′
ε(s) + qε(s)yε(s))ds. (6.28)

The coefficients Cj in (6.25) can be explicitly computed using Lemma 6.2. So,

C0(x) = yε,N(x),

Cj(x) =

∫ x

0

yε,N(x)zε,N(s)− zε,N(x)yε,N(s)

yε,N(s)z′ε,N(s)− y′ε,N(s)zε,N(s)
(pε(s)C

′
j−1(s) + qε(s)Cj−1(s))ds. (6.29)

We prove that the series (6.25) converges uniformly in bounded subsets of (x, λ, pε, qε) ∈
[0, 1]× CI × L∞(IR)× L∞(IR) and then defines the unique solution of (6.1).

Lemma 6.4 Suppose that ρ ∈WN+1,∞(0, 1). Then there exist BN,D > 0, such that if |√λ| >
BNε

−1 the following estimates hold for the coefficients Cj:

|C0(x)| 6 D

|√λ|e
| Im [R2(x/ε)]|, |C ′0(x)| 6 De| Im [R2(x/ε)]|, (6.30)

|Cj(x)| 6 De| Im [R2(x/ε)]|

(
De|Im[R2( 1

ε
)]|
(
‖pε‖∞ +

‖qε‖∞
|√λ|

))j
|√λ|j! , (6.31)

|C ′j(x)| 6 De| Im [R2(x/ε)]|

(
De|Im[R2( 1

ε
)]|
(
‖pε‖∞ +

‖qε‖∞
|√λ|

))j
j!

, (6.32)

for all j > 1 and x ∈ [0, 1].

When N = 1, we have R2(t) =
√
λε
∫ t

0

√
ρ(s)ds and these estimates can be slightly im-

proved:

|Cj(x)| 6 De| Im [
√
λ]| ∫ x0 √ρ(s/ε)ds

(
D
(
‖pε‖∞ +

‖qε‖∞
|√λ|

))j
|√λ|j! ,

|C ′j(x)| 6 De| Im [
√
λ]| ∫ x0 √ρ(s/ε)ds

(
D
(
‖pε‖∞ +

‖qε‖∞
|√λ|

))j
j!

,

for all j > 1 and x ∈ [0, 1].

We leave the proof of this lemma to the Appendix B.

Remark 6.5 The term | Im [R2(x/ε)]| can be estimated in terms of Im[
√
λ], i.e. it is bounded

if Im[
√
λ] is bounded. Indeed

| Im [R2(x/ε)]| 6 | Im [ε
√
λ]||S0(x/ε)|+

N/2∑
n=1

| Im [(ε
√
λ)−2n+1]||S2n(x/ε)| (6.33)
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The first term in (6.33) is easily estimated as follows

| Im [ε
√
λ]||S0(x/ε)| = | Im [

√
λ]|ε

∫ x/ε

0

√
ρ(s)ds 6

√
ρM | Im [

√
λ]|, (6.34)

while the second term in (6.33) can be bounded by

N/2∑
n=1

|S2n(x/ε)| | Im [(
√
λε)2n−1]|

|√λε|4n−2
6

N/2∑
n=1

|S2n(x/ε)|| Im [(
√
λε)]| |

√
λε|2n−2

|√λε|4n−2

= | Im [
√
λ]|

N/2∑
n=1

ε|S2n(x/ε)|
|√λε|2n 6 D1| Im [

√
λ]|, (6.35)

since it is a finite sum of bounded functions (ε|S2n(x/ε)|) multiplied by powers of |√λε|−1

which are bounded in the range of ε and λ that we are considering.

Proposition 6.1 Assume that ρ ∈ WN+1,∞(0, 1). Given ε and λ fixed, the series
∑

j>0 Cj(x)

converges uniformly in x ∈ [0, 1] to the unique solution yε of system (6.1).

Remark 6.6 Recall that the coefficients Cj(x) depend upon ρ, N, λ and ε as long as they

are computed from pε and qε by means of formulas (6.29). However, we do not make this

fact explicit in the notation.

Proof of Proposition 6.1 From Lemma 6.4 we have∣∣∣∣∣∣
∑
j>0

Cj(x)

∣∣∣∣∣∣ 6 De|Im[R2( 1
ε
)]|∑

j>0

Mj

j!|√λ| =
De|Im[R2( 1

ε
)]|

|√λ| exp (M) , (6.36)

where M = De|Im[R2( 1
ε
)]|
(
‖pε‖∞ +

‖qε‖∞
|√λ|

)
. Note that (6.36) is bounded for fixed ε and λ.

In a similar way, ∣∣∣∣∣∣
∑
j>0

C ′j(x)

∣∣∣∣∣∣ 6 De|Im[R2( 1
ε
)]|∑

j>0

Mj

j!
= exp(M) (6.37)

which is also bounded for fixed ε and λ.

To check that
∑

j>0 Cj(x) is actually the only solution of (6.1) we observe that we have

constructed Ci precisely to guarantee that the series satisfies the integral equation (6.28).

q

By Proposition 6.1 the solution yε of system (6.1) can be written in the form

yε(x) = C0(x) +
∑
j>1

Cj(x), (6.38)

C0 being yε,N .

We now study the range of ε and λ in which the second term
∑

j>1 Cj(x) is small in

W 1,∞(0, 1). Assume that the imaginary part of λ is bounded so that the term | Im [R2(x/ε)]|
is bounded (see Remark 6.5). From estimate (6.37) there exists a constant D > 0 such that
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if M = De|Im[R2( 1
ε
)]|
(
‖pε‖∞ +

‖qε‖∞
|√λ|

)
then∣∣∣∣∣∣

∑
j>1

Cj(x)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
j>1

C ′j(x)

∣∣∣∣∣∣ 6
(

1 +
1

|√λ|
)
De|Im[R2( 1

ε
)]| [exp (M)− 1]

=

(
1 +

1

|√λ|
)
De|Im[R2( 1

ε
)]|O (M) . (6.39)

To estimate M we observe that pε and qε can be estimated from their definition in

terms of L1
N and L2

N ((6.21) and (6.22)), the definition of L1
N and L2

N ((6.17) and (6.18))

and the estimates for R′1 and R′2 (see (B 5)). Indeed,

pε(x) =
L2
N(x/ε)

εR′2(x/ε)
=

O((|√λ|ε)−N+1)

ε
[
(ε
√
λ)
√
ρ(x/ε) + O(|√λ|ε)−2

] =
O((|√λ|ε)−N)

ε
,

qε(x) =
L1
N(x/ε)

ε2
− L2

N(x/ε)R′1(x/ε)

ε2R′2(x/ε)

=
O(|√λε|−N)

ε2
+

O(|√λε|−N+1)

ε2
[
(ε
√
λ)
√
ρ(x/ε) + O(|√λε|−2)

] =
O(|√λε|−N)

ε2
. (6.40)

Then,

M = De|Im[R2( 1
ε
)]|
(
‖pε‖∞ +

‖qε‖∞
|√λ|

)
= e|Im[R2( 1

ε
)]|O(|λ|−N/2εN−1).

Substituting in (6.39), we obtain∥∥∥∥∥∥
∑
j>1

Cj(x)

∥∥∥∥∥∥
W 1,∞(0,1)

=

(
1 +

1

|√λ|
)
e2|Im[R2( 1

ε
)]|O
(
|λ|−N/2εN−1

)
,

which is small when |Im (
√
λ)| is bounded and (|√λ|ε)−Nε−1 is bounded above by a

sufficiently small positive constant, i.e. |√λ| > BNε−1−1/N with BN large enough.

STEP 4. Asymptotic formula for the eigenvalues. The eigenvalues λεk of (1.1) are the roots

of the map λ→ yε(1, λ) where yε(x, λ) is the solution of (6.1). Note that we have changed

the notation for yε (which now is a function of two variables x and λ) to make explicit

the dependence of yε on λ.

Observe also that

yε(1, λ) = C0(1, λ) +
∑
j>1

Cj(1, λ), (6.41)

where the second term on the right is small when |Im √λ| is bounded and |√λ| > Bε−1−1/N

for a sufficiently large B. In (6.41) we also make explicit in the notation the dependence

on λ.

We use Rouché’s Theorem to show that the zeros of (6.41) are close to the zeros of

λ→ C0(1, λ) = yε,N(1, λ) when |√λ| > Bε−1−1/N for a large enough constant B. Note that
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the zeros of λ→ C0(1, λ), (λ̃εk)k∈IN satisfy√
λ̃εkε

i
S0(1/ε) +

√
λ̃εkε

i

N/2∑
n=1

S2n(1/ε)(√
λ̃εkε

)2n
= kπ, k ∈ IN. (6.42)

To simplify the notation we introduce the function

hε(z) =
zε

i
S0(1/ε) +

zε

i

N/2∑
n=1

S2n(1/ε)

(zε)2n
, (6.43)

so that (6.42) takes the form

hε(

√
λ̃εk) = kπ, k ∈ IN. (6.44)

Note that, when |z| > B1ε
−1−1/N (B1 large enough), hε(z) is an injective (and therefore

invertible) function which transforms the square roots of the zeros of C0(1, λ) into (kπ)k∈IN .

We set

Γj = {λ ∈ CI : |hε(
√
λ)− jπ| = rj}

where rj is such that the sets enclosed by Γj do not intersect and

|yε(1, λ)− C0(1, λ)| < |C0(1, λ)|, λ ∈ Γj. (6.45)

From formula (6.41) and estimates (6.39) and (6.40), we obtain

|yε(1, λ)− C0(1, λ)| =
∣∣∣∣∣∣
∑
j>1

Cj(1, λ)

∣∣∣∣∣∣ 6 D exp(2| Im [R2(1/ε)]|)
|√λ| |λ|−N/2ε−N−1, (6.46)

for a constant D > 0.

Then, to obtain the inequality (6.45), it suffices to show that

|C0(1, λ)| > D exp(2| Im [R2(1/ε)]|)
|√λ| |λ|−N/2ε−N−1, λ ∈ Γj. (6.47)

In view of (B 2) and (B 3) in Appendix B, there exist constants α and B2 > B1 such that

|C0(1, λ)|= |Aε| exp |R1(1/ε)| | sin(hε(
√
λ))| > α

|√λ| | sin(hε(
√
λ))|, when |√λ| > B2ε

−1. (6.48)

This last inequality is a consequence of (B 3) and the uniform boundedness in ε of |R1(1/ε)|
(Recall that |R1(1/ε)| is a linear combination of S2n+1(x/ε) which are uniformly bounded

in ε due to the periodicity S2n+1(t) stated in Lemma 6.1.)

On the other hand, if λ ∈ Γj then hε(
√
λ) = πj + rje

iθ , 0 6 θ < 2π and we have

|C0(1, λ)| > α

|√λ| | sin(rje
iθ)| > αrj

π|√λ| , when λ ∈ Γj, |
√
λ| > B2ε

−1 and rj < π/2. (6.49)

This last inequality comes from the fact that | sin(rje
iθ)| > | sin(rj/2)| > rj/π when rj 6 π/2

and θ ∈ [0, 2π). Therefore, to guarantee (6.47) we must consider rj so that

π

2
> rj >

πD exp(2| Im [R2(1/ε)]|)
2α

|λ|−N/2ε−N−1, (6.50)

for λ ∈ Γj and |√λ| > B2ε
−1−1/N .
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Note that when λ ∈ Γj we have

jπ+ rje
iθ = hε(

√
λ) =

√
λ
εS0(1/ε)

i
+
√
λ

N/2∑
n=1

εS2n(1/ε)

i
(√

λε
)2n

=
√
λ
εS0(1/ε)

i
+
√
λO(|√λ|ε)−2 =

√
λ

∫ 1

0

√
ρ(s/ε)ds(1 + O(

√
λε)−2), θ ∈ [0, 2π).

From this identity we deduce in particular that

|Im(
√
λ)| =

∣∣∣∣∣ rj sin θ∫ 1

0

√
ρ(s/ε)ds(1 + O(jε)−2)

∣∣∣∣∣ 6 D1,

with D1 independent of j, for all λ ∈ Γj and then | Im [R2(1/ε)]| in (6.46) is uniformly

bounded by a constant D1 independent of λ (see Remark 6.5). On the other hand, we also

deduce that

|√λ| = |h−1
ε (πj + rje

iθ)| = |jπ+ rje
iθ|

ε|S0(1/ε)| (1 + O((jε)−2))

<
jπ+ π/2√

ρm
(1 + O((jε)−2)), when λ ∈ Γj. (6.51)

Then, there exists B3 > B2 such that for j > B3ε
−1−1/N

π

2
>
πD exp(2| Im [R2(1/ε)]|)

2α
|λ|−N/2ε−N−1, ∀λ ∈ Γj,

and we can chose rj so that (6.50) holds.

By Rouché’s Theorem, the number of roots of yε,1(1, λ) and C0(1, λ) inside Γj (j >
B3ε

−1−1/N) coincides. The circles Γj (j > B3ε
−1−1/N) contain the j-root of C0(1, λ) and

therefore each one contain one and only one root of yε(1, λ), say λεmj+j (mj ∈ Z).

Note that a priori we cannot guarantee that mj = 0 because we have not yet proved

that the root of yε(1, λ) inside Γj is exactly the j-root of yε(1, λ).

We chose rj = π/2 so that the circles Γj cover the real line

RJ =
{
λ ∈ IR such that hε(

√
λ) > Jπ− π/2

}
,

where J is the minimum integer such that J > B3ε
−1−1/N . As the roots of yε(1, λ) are real

there exists m ∈ ZZ such that λεm+j ∈ RJ for all j > J and they must be inside any of the

circles Γj . Therefore, two consecutive roots of yε(1, λ) (λεm+j and λεm+j+1) must be inside

two consecutive circles (Γj and Γj+1) and we have proved the following: There exists

m ∈ ZZ (independent of j) such that λεm+j is inside Γj for all j > J.
Observe that if we chose rj = O(j−Nε−N−1) the estimate (6.45) still holds and by

Rouché’s Theorem λεm+j remains inside Γj for all j > J. Then, the distance between

hε(
√
λεm+j) (for j > J) and jπ is at most rj = O(j−Nε−N−1), i.e.∣∣∣hε (√λεm+j

)
− jπ

∣∣∣ 6 Dj−Nε−N−1, j > J. (6.52)

We now investigate hε(
√
λ) defined in (6.43) in order to obtain a more precise estimate

for
√
λεm+j .
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From (6.52), and taking into account that ε
i
S0(1) =

∫ 1

0

√
ρ(s/ε)ds, we have∣∣∣∣∣√λεm+k −

kπ∫ 1

0

√
ρ(s/ε)ds

∣∣∣∣∣ 6 D(k)−Nε−N−1∫ 1

0

√
ρ(s/ε)ds

+

N/2∑
n=1

|S2n(1)|∫ 1

0

√
ρ(s/ε)ds

(√
λεkε
)2n−1

= O((λεm+k)
−1/2ε−2) = O(k−1ε−2). (6.53)

From this first-order approximation we deduce that(√
λεm+kε

)2n

=

(
kπ∫ 1

0

√
ρ(s/ε)ds

ε+ O(k−1ε−2)

)2n

=

(
kπ∫ 1

0

√
ρ(s/ε)ds

ε

)2n

(1 + O(k−2ε−3)), ∀n > 1, (6.54)

where we have written down only the higher order terms. Dividing equation (6.52) by
1
i
εS0(1) =

∫ 1

0

√
ρ(s/ε)ds and taking into account (6.54) we deduce∣∣∣∣∣∣∣

√
λεm+k −

kπ∫ 1

0 ρ(s/ε)ds
−

N/2∑
n=1

S2n(1)

i (kε)2n−1 π2n−1
(∫ 1

0

√
ρ(s/ε)ds

)−2n

(1 + O(k−2ε−3)

∣∣∣∣∣∣∣
= O(k−Nε−1−N). (6.55)

Now we observe that

S2n(1) =

∫ 1/ε

0

S2n
t (t)dt =

1

ε

∫ 1

0

S2n
t (s/ε)ds

which is of the order ε−1 because of the periodicity of S2n
t and the fact that S2n

t does not

depend on ε. Substituting in (6.55) we obtain∣∣∣∣∣∣∣
√
λεm+k −

kπ∫ 1

0

√
ρ(s/ε)ds

+

N/2∑
n=1

(∫ 1

0

√
ρ(s/ε)ds

)2n

i
∫ 1

0
S2n
t (s/ε)ds

k2n−1ε2nπ2n−1

∣∣∣∣∣∣∣ = O(k−Nε−1−N),

which is valid for
√
λεm+k > Bε

−1−1/N with B large enough, i.e. taking k > Bε−1−1/N . We

deduce then that

√
λεm+k =

kπ∫ 1

0

√
ρ(s/ε)ds

−
N/2∑
n=1

(∫ 1

0

√
ρ(s/ε)ds

)2n

i
∫ 1

0 S
2n
t (s/ε)ds

k2n−1ε2nπ2n−1
+ O(k−Nε−1−N).

To finish the proof of (2.1) it remains to see that m = 0.

Consider ε > 0 and K ∈ IN such that∣∣∣∣∣√λεm+k −
kπ∫ 1

0

√
ρ(s/ε)ds

∣∣∣∣∣ < π

4
, for all k > K. (6.56)

Note that due to (6.53) we can consider K > Bε−2 with B large enough. Let us introduce

the curve

ΓK =

{
λ ∈ C :

∣∣∣√λ∣∣∣ =
Kπ∫ 1

0

√
ρ(s/ε)ds

+
π

4

}
.
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We prove that the number of roots of yε(1, λ) and yε,1(1, λ) inside ΓK is the same when

K > Bε−2 with B large enough. Observe that this is enough to prove that m = 0, because

the number of zeros of yε(1, λ) inside ΓK is m+K while

yε,1(1, λ) =
sin
(√

λ
∫ 1

0

√
ρ(s/ε)ds

)
√
λρ(0)

, (6.57)

which is an analytic function in λ, has exactly K zeros inside ΓK .

To prove that the number of roots of yε(1, λ) and yε,1(1, λ) inside ΓK coincides we use

Rouché’s Theorem. First, observe that formula (6.41) gives us

|yε(1, λ)− yε,1(1, λ)| = |yε(1, λ)− C0(1, λ)| =
∣∣∣∣∣∣
∞∑
j=1

Cj(1, λ)

∣∣∣∣∣∣ . (6.58)

Here we can estimate the coefficients Cj using the results of Lemma 6.4 with N = 1. Then,∣∣∣∣∣∣
∞∑
j=1

Cj(1, λ)

∣∣∣∣∣∣ 6 D√
λ
e| Im [

√
λ]| ∫ 1

0

√
ρ(s/ε)ds

∞∑
j=1

M
j
1

j!
=

D√
λ
e| Im [

√
λ]| ∫ 1

0

√
ρ(s/ε)dsO(M1), (6.59)

where M1 = D
(
‖pε‖∞ +

‖qε‖∞
|√λ|

)
= O(|λ|−1/2ε−2) (see estimates (6.40)).

On the other hand,

|yε,1(1, λ)| > e| Im [
√
λ]| ∫ 1

0

√
ρ(s/ε)ds

4
√
λρ(0)

. (6.60)

This last inequality comes from the following simple lemma which is proved in Poschel &

Trubowitz [10] (Lemma 1, Ch.2).

Lemma 6.7 If |z − nπ| > π/4 for all integers n then sin z > e|Im z|/4.

From formulas (6.59), (6.60) and the definition of ΓK , we deduce that there exists

K > Bε−2 (with B large enough) such that

|yε(1, λ)− yε,1(1, λ)| < |yε,1(1, λ)| , for all λ ∈ ΓK.

Then, by Rouché’s Theorem, the number of roots of yε(1, λ) inside ΓK is the same as

the number of roots of yε,1(1, λ) (which is K), and therefore m = 0.

STEP 5. Asymptotic formula for the eigenfunctions. Now we prove the formula (2.2) for the

eigenfunctions. Recall that we are assuming that the eigenfunctions (1.1) are normalized

so that (ϕεk)
′(0) = 1. Then, the eigenfunctions ϕεk are the solutions of (6.24) with λ = λεk

and can be developed in the form (6.25):

ϕεk(x) = C0(x, λεk) +
∑
j>1

Cj(x, λ
ε
k).

Define λ̃εk , as in (2.3), which is the approximate eigenvalue given by formula (2.1). We
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have to estimate∥∥∥∥∥∥∥∥∥ϕ
ε
k − Aεk exp


N/2−1∑
n=0

S2n+1(x/ε)(√
λ̃εkε

)2n

 sin


√
λ̃εkε

N/2∑
n=0

S2n(x/ε)(√
λ̃εkε

)2n


∥∥∥∥∥∥∥∥∥
W 1,∞(0,1)

=

∥∥∥∥∥∥C0(x, λεk) +
∑
j>1

Cj(x, λ
ε
k, pε)− C0(x, λ̃εk)

∥∥∥∥∥∥
W 1,∞(0,1)

6
∥∥∥C0(x, λεk)− C0(x, λ̃εk)

∥∥∥
W 1,∞(0,1)

+

∥∥∥∥∥∥
∑
j>1

Cj(x, λ
ε
k)

∥∥∥∥∥∥
W 1,∞(0,1)

. (6.61)

To finish the proof of (2.2) we have to see that the two terms in (6.61) converge to zero

as ε→ 0. We start with the second one. By Lemma 6.4 we have:

‖∑
j>1

C ′j(x, λεk)‖∞ 6
∑
j>1

‖C ′j(x, λεk)‖∞ 6
∑
j>1

2jDj

(
‖pε‖∞ +

‖qε‖∞√
λ

)j
j!

=

(
1− exp

(
2D ‖pε‖∞ + 2D

‖qε‖∞√
λ

))
which can be done small, uniformly in x ∈ [0, 1], taking λεk > Bε−2−2/N with B large

enough as we showed in the proof of Proposition 6.1. We deduce that the quantity

‖∑j>1 Cj(x, λ
ε
k)‖W 1,∞(0,1) can be made as small as we want if k > Bε−1−1/N with B large

enough.

Concerning the first term in (6.61), observe that

C0(x, λ) = Aεk exp

N/2−1∑
n=0

S2n+1(x/ε)(√
λε
)2n

 sin

√λε N/2∑
n=0

S2n(x/ε)(√
λε
)2n

 .

We deduce that both C0(x, λ) and ∂C0

∂x
(x, λ) are C1 functions of

√
λ near the points

√
λεk

so that the result is a consequence of (2.1) and the mean value theorem.

7 Conclusions

We have deduced an asymptotic expansion for the high frequency eigenvalues and eigen-

functions of the one-dimensional problem associated to the vibration of a string with

rapidly oscillating periodic density. Our expansions provide good approximations when

the frequency of the eigenfunctions (
√
λε) is larger than the frequency of the density

1/ε. This result complements a previous one where an asymptotic expansion of the low

frequencies is given, i.e. those frequencies
√
λε lower than 1/ε (see Castro & Zuazua [7]).

The case where
√
λε ∼ 1/ε is critical (see Avellaneda et al. [2] and Castro & Zuazua [7])

and we know of no asymptotic formulae which describe the behaviour of the spectra.

To illustrate the behaviour of the high frequencies a numerical example is given.
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As an application we prove the following two spectral properties for the high frequen-

cies:

• There is an asymptotic spectral gap between two consecutive eigenvalues.

• A uniform boundary observability property for the eigenfunctions.

These two properties constitute the two key points to establish the boundary control-

lability of the high frequencies of the string (see Castro [5]).

Our results can be also applied to the eigenvalue problem{
(a(x/ε)u′)′ + λu = 0, x ∈ (0, 1),

u(0) = u(1) = 0,
(7.1)

where a(x) is a bounded periodic function.

Appendix A

In this section we prove a technical result (Lemma 6.1) that we have used in §6. Let us

recall it.

Lemma 6.1 The coefficients S2n+1(t) with n > 0 are 1-periodic functions.

Proof of Lemma 6.1 We are going to prove the following formula by induction:

S2n+1
t =

n∑
k=1

∑
i1 ,...,ik>1
i1+...+ik=n

(−1)k

2k

[
S2i1
t · · · S2ik

t(
S0
t

)k
]
t

, n > 1. (A 1)

Observe that formula (A 1) is enough to prove the lemma because S2n
t are all 1-periodic

functions.

Consider n = 1. Using (6.6) we easily obtain

S3
t = −

[
S2
tt

2S0
t

+
S2
t S

1
t

S0
t

]
= −

[
S2
tt

2S0
t

− S2
t S

0
tt

2
(
S0
t

)2

]
= −

[
S2
t

2S0
t

]
t

.

Now, assume that formula (A 1) holds for all j < n. We are going to see that it also holds

for n:

S2n+1
t = − S

2n
tt

2S0
t

−
∑n

i=1 S
2i
t S

2(n−i)+1
t

S0
t

= −
[
S2n
tt

2S0
t

+
S2n
t S

1
t

S0
t

]
−
∑n−1

i=1 S
2i
t S

2(n−i)+1
t

S0
t

= −
[
S2n
t

2S0
t

− S2
t S

0
tt

2
(
S0
t

)2

]
t

−
n−1∑
i=1

S2i
t

S0
t

n−i∑
k=1

∑
i1 ,...,ik>1

i1+...+ik=n−i

(−1)k

2k

[
S2i1
t · · · S2ik

t(
S0
t

)k
]
t

= −
[
S2n
t

2S0
t

]
t

−
n−1∑
k=1

n−k∑
i=1

∑
i1 ,...,ik>1

i1+...+ik=n−i

(−1)k

2k

S2i
t

S0
t

[
S2i1
t · · · S2ik

t(
S0
t

)k
]
t

= −
[
S2n
t

2S0
t

]
t

+

n−1∑
k=1

∑
i1 ,...,ik+1>1

i1+...+ik+ik+1=n

(−1)k+1

2(k + 1)

[
S2i1
t · · · S2ik+1

t(
S0
t

)k+1

]
t

(A 2)
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Here the last identity is the most delicate one. Indeed we have to check that

n−k∑
i=1

∑
i1 ,...,ik>1

i1+...+ik=n−i

1

k

S2i
t

S0
t

[
S2i1
t · · · S2ik

t(
S0
t

)k
]
t

=
∑

i1 ,...,ik+1>1

i1+...+ik+ik+1=n

1

k + 1

[
S2i1
t · · · S2ik+1

t(
S0
t

)k+1

]
t

(A 3)

for all 1 6 k 6 n− 1.

The following formula holds:

k

[
S2i1
t · · · S2ik+1

t(
S0
t

)k+1

]
t

=
S2i1
t

S0
t

[
S2i2
t · · · S2ik+1

t(
S0
t

)k
]
t

+
S2i2
t

S0
t

[
S2i1
t S2i3

t · · · S2ik+1

t(
S0
t

)k
]
t

+ · · ·

+
S

2ik+1

t

S0
t

[
S2i1
t · · · S2ik

t(
S0
t

)k
]
t

. (A 4)

Indeed, if we define fj = S
2ij
t /S0

t formula (A 4) is just

k
[
f1 · · · fk+1

]
t

= f1
[
f2 · · · fk+1

]
t
+ f2

[
f1f3 · · · fk+1

]
t
+ fk+1

[
f1 · · · fk]

t

that may be easily checked.

Then, we obtain∑
i1 ,...,ik+1>1

i1+...+ik+ik+1=n

k

[
S2i1
t · · · S2ik+1

t(
S0
t

)k+1

]
t

=
∑

i1 ,...,ik+1>1

i1+...+ik+ik+1=n

S2i1
t

S0
t

[
S2i2
t · · · S2ik+1

t(
S0
t

)k
]
t

+
∑

i1 ,...,ik+1>1

i1+...+ik+ik+1=n

S2i2
t

S0
t

[
S2i1
t S2i3

t · · · S2ik+1

t(
S0
t

)k
]
t

+ · · ·+ ∑
i1 ,...,ik+1>1

i1+...+ik+ik+1=n

S
2ik+1

t

S0
t

[
S2i1
t · · · S2ik

t(
S0
t

)k
]
t

= (k + 1)
∑

i1 ,...,ik+1>1

i1+...+ik+ik+1=n

S
2ik+1

t

S0
t

[
S2i1
t · · · S2ik

t(
S0
t

)k
]
t

= (k + 1)

n−k∑
i=1

∑
i1 ,...,ik>1

i1+...+ik=n−i

S2i
t

S0
t

[
S2i1
t · · · S2ik

t(
S0
t

)k
]
t

as we wanted to prove. Now, from (A 2) we deduce

S2n+1
t = −

[
S2n
t

2S0
t

]
t

+

n−1∑
k=1

∑
i1 ,...,ik+1>1

i1+...+ik+ik+1=n

(−1)k+1

2(k + 1)

[
S2i1
t · · · S2ik+1

t(
S0
t

)k+1

]
t

= −
[
S2n
t

2S0
t

]
t

+

n∑
k=2

∑
i1 ,...,ik>1

i1+...+ik+ik=n

(−1)k

2k

[
S2i1
t · · · S2ik

t(
S0
t

)k
]
t

=

n∑
k=1

∑
i1 ,...,ik>1

i1+...+ik+ik=n

(−1)k

2k

[
S2i1
t · · · S2ik

t(
S0
t

)k
]
t

and the proof of formula (A 1) is finished. q
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Appendix B

This appendix is devoted to prove Lemma 6.4.

Proof All along this proof D will denote a constant which depends upon ρ and N, but

which can change from one line to the other. Observe that

|C0(x)| = |yε,N(x)| 6 |Aε| exp
(|R1(x/ε)|) ∣∣sin (R2(x/ε)

)∣∣
6 |Aε| exp

(|R1(x/ε)|+ | Im [R2(x/ε)]|) . (B 1)

We now estimate these two terms as follows:

|R1(x/ε)| =
∣∣∣∣∣∣
N/2−1∑
n=0

S2n+1(x/ε)

(
√
λε)2n

∣∣∣∣∣∣ =

∣∣∣∣∣∣S1(x/ε) +

N/2−1∑
n=1

S2n+1(x/ε)

(
√
λε)2n

∣∣∣∣∣∣
=

1

4

∣∣∣∣log
ρ(x/ε)

ρ(0)

∣∣∣∣+ O((|√λ|ε)−2). (B 2)

This holds because we are dealing with a finite sum of periodic (and therefore bounded)

functions |S2n+1(x/ε)| multiplied by powers of (|√λ|ε)−1 which are bounded in the range

of ε and λ that we are considering.

We now estimate the first term in (B 1). From formula (6.12) we obtain

|Aε,N | = 1

|√λ|

∣∣∣∣∣∣
N/2∑
n=0

S2n
t (0)

(
√
λε)2n

∣∣∣∣∣∣
−1

6
1

|√λ|

∣∣∣∣∣∣√ρ(0) +

N/2∑
n=1

S2n
t (0)

i(
√
λε)2n

∣∣∣∣∣∣
−1

=
1

|√λ|√ρ(0)

(
1 + O(|√λ|ε)−1)

)
, (B 3)

which can be bounded uniformly in ε taking (|√λ|ε)−1 6 bN = B−1
N with bN small enough

(i.e. BN large enough). From (B 1) and (B 3) we easily obtain the first inequality in (6.30).

Note that the constant BN depends upon N because we do not have any uniform estimate

(independent of n) for Snt (0).

Finally, we deduce that

|C0(x)| 6 D

|√λ|e
| Im [R2(x/ε)]|.

Now we are going to estimate C ′0(x). Observe that due to the definition of C0(x) we

have:

|C ′0(x)| =
∣∣∣∣Aε,N 1

ε
R′1(x/ε)] exp

(
R1(x/ε)

)
sin
(
R2(x/ε)

)
+Aε,N

1

ε
R′2(x/ε) exp

(
R1(x/ε)

)
cos
(
R2(x/ε)

)∣∣∣∣
6 2 |Aε,N | exp

(|R1(x/ε)|+ | Im [R2(x/ε)]|) |R′1(x/ε)|+ |R′2(x/ε)|
ε

. (B 4)

The first two factors on the right-hand side of (B 4) have been estimated in (B 3) and
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(B 2), respectively. Concerning the third factor in (B 4), we have

|R′1(x/ε)|+ |R′2(x/ε)|
ε

6
1

ε

N/2∑
n=0

|Snt (x/ε)|(
|√λ|ε

)n−1
6 |√λ|

N/2−1∑
n=0

|Snt (x/ε)|∣∣∣√λε∣∣∣n 6 D|
√
λ|, (B 5)

since it is a finite sum of periodic functions Snt multiplied by powers of |√λε|−1 which is

bounded in the region of ε and λ we are considering. Obviously, the constant D in (B 5)

depends upon N.

From (B 2)–(B 5), we easily deduce the uniform estimate for C ′0(x) in (6.30).

Consider now the coefficients Cj with j > 1. We start analysing the kernel arising in

(6.29):

K(x, s) =
yε,N(x)zε,N(s)− zε,N(x)yε,N(s)

yε,N(s)z′ε,N(s)− y′ε,N(s)zε,N(s)
=
e2R1(x/ε) sin

(
R2(x/ε)− R2(s/ε)

)
R′2(x/ε)

ε
exp

(
2R1(x/ε)

) . (B 6)

The first factor in the numerator can be estimated using (B 2), while for the denominator

we have two terms: the first one is

R′2(x/ε)

ε
=
√
λ
S0
t (x/ε)

i
+

√
λ

ε
√
λ

N/2∑
n=1

Snt (x/ε)

i(
√
λε)n−1

=
√
λ
√
ρ(x/ε)(1 + O(|√λε|−1)), (B 7)

and the second one is uniformly bounded below in view of (B 2).

Then, we deduce that

|K(x, s)| 6 D ∣∣sin (R2(x/ε)− R2(s/ε)
)∣∣ 6 De|Im[R2( x−s

ε
)]|

√
λ

(B 8)

in the region of ε and λ that we are considering. The last inequality comes from the

following identity:

R2(x/ε)− R2(s/ε) =
√
λε

N/2∑
n=0

(
√
λε)−2n

(∫ x/ε

0

S2n
t (r)dr −

∫ s/ε

0

S2n
t (r)dr

)

=
√
λε

N/2∑
n=0

(
√
λε)−2n

∫ (x−s)/ε

0

S2n
t (r)dr

=
√
λε

N/2∑
n=0

(
√
λε)−2nS2n(

x− s
ε

)dr = R2((x− s)/ε), (B 9)

and the fact that | sin(z)| 6 e|Im[z]| for all z ∈ CI .
In a similar way, we deduce that∣∣∣∣ ∂∂xK(x, s)

∣∣∣∣ 6 De|Im[R2( x−s
ε

)]|. (B 10)

Now observe that:

Im[R2(t)] 6 |Im[R2(0)]|+ |Im[R2(1/ε)]| = |Im[R2(1/ε)]| , ∀t ∈ [0, ε−1], (B 11)

which is due to the fact that Im[R2(t)] is a monotone function, because the leading term
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in the derivative Im [R′2(t)] is Im [
√
λ]
√
ρ(t)� 0 when Im [

√
λ]� 0, while Im [R2(t)] = 0

when Im [
√
λ] = 0.

Combining (B 11) with estimates (B 8) and (B 10) we have the following:

|K(x, s)| 6 De|Im[R2( 1
ε
)]|

√
λ

,

∣∣∣∣ ∂∂xK(x, s)

∣∣∣∣ 6 De|Im[R2( 1
ε
)]|.

To simplify the notation, we introduce M = De|Im[R2( 1
ε
)]|
(
‖pε‖∞ +

‖qε‖∞
|√λ|

)
. We have then

|Cj(x)| =
∣∣∣∣∫ x

0

K(x, s)(pε(s)C
′
j−1(s) + qε(s)Cj−1(s))ds

∣∣∣∣
6

M

|√λ|
∫ x

0

(
|C ′j−1(s)|+ |√λ| · |Cj−1(s)|

)
ds, (B 12)

∣∣C ′j(x)
∣∣ =

∣∣∣∣∫ x

0

∂

∂x
K(x, s)(pε(s)C

′
j−1(s) + qε(s)Cj−1(s))ds

∣∣∣∣
6M

∫ x

0

(
|C ′j−1(s)|+ |√λ| · |Cj−1(s)|

)
ds. (B 13)

Finally, we have

|√λ||Cj(x)| 6M
∫ 1

0

(
|C ′j−1(s)|+ |√λ||Cj−1(s)|

)
ds

6 2M2

∫ 1

0

∫ s1

0

(
|C ′j−2(s2)|+ |√λ||Cj−2(s2)|

)
ds2ds1

6 2j−1Mj

∫ 1

0

∫ s1

0

· · ·
∫ sj−1

0

(
|C ′0(sj)|+ |

√
λ| · |C0(sj)|

)
dsj · · · ds1

= 2jDe|Im[R2( 1
ε
)]|Mj

∫ 1

0

∫ s1

0

· · ·
∫ sj−1

0

dsj · · · ds1 6 2jDe|Im[R2( 1
ε
)]|Mj

j!
. (B 14)

Estimate (B 14) concludes the proof for Cj . The estimates for C ′j can be derived in a

similar way from (B 10) and (B 13).

Now we consider the case N = 1 where we can improve the estimates for |K| and
∣∣ ∂K
∂x

∣∣.
Note that we have proved the following:

|K(x, s)| 6 D√
λ
e|Im[R2( x−s

ε
)]| =

D√
λ
e|Im[

√
λ]| ∫ x−s0

√
ρ(r/ε)dr,∣∣∣∣ ∂∂xK(x, s)

∣∣∣∣ 6 De|Im[R2( x−s
ε

)]| = De|Im[
√
λ]| ∫ x−s0

√
ρ(r/ε)dr.

Then, if we denote M1 = D
(
‖pε‖∞ +

‖qε‖∞
|√λ|

)
we have

|√λ||Cj(x)| 6M1

∫ 1

0

e|Im[
√
λ]| ∫ x−s0

√
ρ(r/ε)dr

(
|C ′j−1(s)|+ |√λ| · |Cj−1(s)|

)
ds

6 2M2
1

∫ 1

0

∫ s1

0

e|Im[
√
λ]| ∫ x−s20

√
ρ(r/ε)dr

(
|C ′j−2(s2)|+ |√λ||Cj−2(s2)|

)
ds2ds1

6 2j−1Mj

∫ 1

0

∫ s1

0

· · ·
∫ sj−1

0

e|Im[
√
λ]| ∫ x−sj0

√
ρ(r/ε)dr

(
|C ′0(sj)|+ |

√
λ||C0(sj)|

)
dsj · · · ds1

6
2jDMj

j!
e|Im[

√
λ]| ∫ x0 √ρ(r/ε)dr.

The estimates for C ′j can be derived in a similar way. q
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