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The ambient calculus is a process calculus for describing mobile computation. We develop a

theory of Morris-style contextual equivalence for proving properties of mobile ambients. We

prove a context lemma that allows derivation of contextual equivalences by considering

contexts of a particular limited form, rather than all arbitrary contexts. We give an activity

lemma that characterises the possible interactions between a process and a context. We

prove several examples of contextual equivalence. The proofs depend on characterising

reductions in the ambient calculus in terms of a labelled transition system.

1. Motivation

This paper develops tools for proving equations in the ambient calculus.

In earlier work (Cardelli and Gordon 2000b), we introduced the ambient calculus by

adding ambients (mobile, hierarchical protection domains) to a framework for concurrency

extracted from the π-calculus (Milner 1999; Sangiorgi and Walker 2001). The ambient

calculus is an abstract model of mobile computation, including both mobile software

agents and mobile hardware devices. The calculus models access control as well as

mobility. For example, a process may move into or out of a particular ambient only if it

possesses the appropriate capability.

This paper focuses on behavioural equivalence of mobile ambients. In particular, we

study a form of Morris’ contextual equivalence (Morris 1968) for ambients and develop

some proof techniques. Our motivation is to prove a variety of equations. Some of these

equations express and confirm some of the informal principles we had in mind when

designing the calculus. As in other recent work (Abadi et al. 1998; Abadi and Gordon

1999), some of the equations establish security properties of systems modelled within the

calculus.

The inclusion of primitives for mobility makes the theory of the ambient calculus more

complex than that of its ancestor, the π-calculus. The main contribution of this paper is

to demonstrate that some standard tools (a labelled transition system, a context lemma

and an activity lemma) may be recast in the setting of the ambient calculus. Moreover,

the paper introduces a new technique, based on what we call the hardening relation, for

factoring the definition of the labelled transition system into a set of rules that identify

the individual processes participating in a transition, and a set of rules that express how

the participant processes interact.
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We begin, in Section 2, by reviewing the syntax and reduction semantics of the ambient

calculus. The semantics consists of a structural congruence relation P ≡ Q (which says

that P may be structurally rearranged to yield Q) and a reduction relation P → Q (which

says that P may evolve in one step of computation to yield Q).

We introduce contextual equivalence P ' Q in Section 3. We define a predicate, P ⇓ n,
which means intuitively that an observer may eventually detect an ambient named n at

the top-level of the process P . Then we define P ' Q to mean that, whenever P and Q

are placed within an arbitrary context constructed from the syntax of the calculus, any

observation made of P may also be made of Q, and vice versa. We give examples of pairs

of processes that are equivalent and of pairs that are inequivalent.

In Section 4, we describe some techniques for proving contextual equivalence. We

introduce a second operational semantics for the ambient calculus based on a hardening

relation and a labelled transition system. The hardening relation identifies the subprocesses

of a process that may participate in a computation step. We use the hardening relation

both for defining the labelled transition system and for characterising whether an ambient

of a particular name is present at the top-level of a process. Our first result, Theorem 9,

asserts that the τ-labelled transition relation and the reduction relation are the same, up

to structural congruence. So our two operational semantics are equivalent. The labelled

transition system is useful for analysing the possible evolution of a process, since we may

read off the possible labelled transitions of a process by inspecting its syntactic structure.

Our second result, Theorem 12, is a context lemma that allows us to prove contextual

equivalence by considering a limited set of contexts, known as harnesses, rather than

all arbitrary contexts. A harness is a context with a single hole that is enclosed only

within parallel compositions, restrictions and ambients. The third result of this section,

Theorem 15, is an activity lemma that elaborates the ways in which a reduction may be

derived when a process is inserted into a harness: either the process reduces by itself,

or the harness reduces by itself, or there is an interaction between the harness and the

process.

We exercise these proof techniques on examples in Section 5, and conclude in Section 6.

Certain lemmas, propositions and theorems are stated without proof in the main text.

Appendix A contains the omitted proofs.

Earlier versions of this article have appeared as a conference paper and as a technical

report (Gordon and Cardelli 1999). The technical report includes some details omitted

from proofs in Appendix A.

2. The ambient calculus (review)

We briefly describe the syntax and semantics of the calculus. We assume there are infinite

sets of names and variables, ranged over by m, n, p, q and x, y, z, respectively. The syntax

of the ambient calculus is based on categories of expressions and processes, ranged over

by M, N and P , Q, R, respectively. The calculus inherits a core of concurrency primitives

from the π-calculus: a restriction (νn)P creates a fresh name n whose scope is P ; a

composition P | Q behaves as P and Q running in parallel; a replication !P behaves

as unboundedly many replicas of P running in parallel; and the inactive process 0 does
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nothing. We augment these π-calculus processes with primitives for mobility (ambients,

n[P ] and the exercise of capabilities, M.P ) and primitives for communication (input, (x).P

and asynchronous output, 〈M〉).
Here is an example process that illustrates the new primitives for mobility and commu-

nication:

m[p[out m.in n.〈M〉]] | n[open p.(x).Q]

The effect of the mobility primitives in this example is to move the ambient p out of m

and into n, and then to open it up. The input (x).Q may then consume the output 〈M〉 to

leave the residue m[] | n[Q{x←M}]. We may regard the ambients m and n in this example

as modelling two machines on a network, and the ambient p as modelling a packet sent

from m to n. We will now describe the semantics of the new primitives in more detail.

An ambient n[P ] is a boundary, named n, around the process P . The boundary prevents

direct interactions between P and any processes running in parallel with n[P ], but it does

not prevent interactions within P . Ambients may be nested, so they induce a hierarchy.

For example, in the process displayed above, the ambient named m is a parent of the

ambient named p, and the ambients named m and n are siblings.

An action M.P exercises the capabilities represented by M, and then behaves as P . The

action either affects an enclosing ambient or one running in parallel. A capability is an

expression derived from the name of an ambient. The three basic capabilities are in n,

out n and open n. An action in n.P moves its enclosing ambient into a sibling ambient

named n. An action out n.P moves its enclosing ambient out of its parent ambient, named

n, to become a sibling of the former parent. An action open n.P dissolves the boundary of

an ambient n[Q] running in parallel; the outcome is that the residue P of the action and

the residue Q of the opened ambient run in parallel. In general, the expression M in M.P

may stand for a finite sequence of the basic capabilities, which are exercised one by one.

Finite sequences are built up using concatenation, written M.M ′. The empty sequence is

written ε.

The final two process primitives allow communication of expressions. Expressions

include names, variables and capabilities. An output 〈M〉 outputs the expression M. An

input (x).P blocks until it may consume an output running in parallel. Then it binds the

expression being output to the variable x and runs P . In (x).P , the variable x is bound;

its scope is P . Inputs and outputs are local to the enclosing ambient. Inputs and outputs

may not interact directly through an ambient boundary. Hence we may think of there

being an implicit input/output channel associated with each ambient.

We formally specify the syntax of the calculus as follows:

Expressions and Processes:

M,N ::= expressions P ,Q, R ::= processes

x variable (νn)P restriction

n name 0 inactivity

in M can enter M P | Q composition

out M can exit M !P replication

open M can open M M[P ] ambient

https://doi.org/10.1017/S0960129502003742 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003742


A. D. Gordon and L. Cardelli 374

ε null M.P action

M.M ′ path (x).P input

〈M〉 output

The general forms in M, out M and open M allow for the ambient to be an arbitrary

capability M. The only useful cases are for M to be a name, or a variable that gets instanti-

ated to a name. Similarly, the ambient syntax M[P ] allows M to be an arbitrary capability.

The only useful case is for M to be a name, or a variable that gets instantiated to a name.

The following table defines the sets fn(M) and fv (M) of free names and free variables

of a capability M, and the sets fn(P ) and fv (P ) of free names and free variables of a

process P .

Free Names and Variables of Capabilities and Processes

fn(x) = ? fv (x) = {x}
fn(n) = {n} fv (n) = ?
fn(in M) = fn(M) fv (in M) = fv (M)

fn(out M) = fn(M) fv (out M) = fv (M)

fn(open M) = fn(M) fv (open M) = fv (M)

fn(ε) = ? fv (ε) = ?
fn(M.M ′) = fn(M) ∪ fn(M ′) fv (M.M ′) = fv (M) ∪ fv (M ′)
fn((νn)P ) = fn(P )− {n} fv ((νn)P ) = fv (P )

fn(0) = ? fv (0) = ?
fn(P | Q) = fn(P ) ∪ fn(Q) fv (P | Q) = fv (P ) ∪ fv (Q)

fn(!P ) = fn(P ) fv (!P ) = fv (P )

fn(M[P ]) = fn(M) ∪ fn(P ) fv (M[P ]) = fv (M) ∪ fv (P )

fn(M.P ) = fn(M) ∪ fn(P ) fv (M.P ) = fv (M) ∪ fv (P )

fn((x).P ) = fn(P ) fv ((x).P ) = fv (P )− {x}
fn(〈M〉) = fn(M) fv (〈M〉) = fv (M)

In situations where a process is expected, we often just write M as a shorthand for the

process M.0. We also often just write M[] as a shorthand for the process M[0]. We write

(ν~p)P as a shorthand for (νp1) · · · (νpk)P where ~p = p1, . . . , pk .

If a phrase φ is an expression or a process, we write φ{x←M} and φ{n←M} for the

outcomes of capture-avoiding substitutions of the expression M for each free occurrence

of the variable x and the name n, respectively, in φ. We identify processes up to consistent

renaming of bound names and variables. We say an expression M is closed if and only if

fv (M) = ?; similarly, a process P is closed if and only if fv (P ) = ?.

We formally define the operational semantics of ambient calculus in the chemical style,

using structural congruence and reduction relations:

Structural Congruence: P ≡ Q
P | Q ≡ Q | P P ≡ P
(P | Q) | R ≡ P | (Q | R) Q ≡ P ⇒ P ≡ Q
!P ≡ P | !P P ≡ Q,Q ≡ R ⇒ P ≡ R
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(νn)(νm)P ≡ (νm)(νn)P

n /∈ fn(P )⇒ (νn)(P | Q) ≡ P | (νn)Q P ≡ Q⇒ (νn)P ≡ (νn)Q

n 6= m⇒ (νn)m[P ] ≡ m[(νn)P ] P ≡ Q⇒ P | R ≡ Q | R
P | 0 ≡ P P ≡ Q⇒ !P ≡ !Q

(νn)0 ≡ 0 P ≡ Q⇒M[P ] ≡M[Q]

!0 ≡ 0 P ≡ Q⇒M.P ≡M.Q

ε.P ≡ P P ≡ Q⇒ (x).P ≡ (x).Q

(M.M ′).P ≡M.M ′.P

Reduction: P → Q

n[in m.P | Q] | m[R]→ m[n[P | Q] | R] P → Q⇒ P | R → Q | R
m[n[out m.P | Q] | R]→ n[P | Q] | m[R] P → Q⇒ (νn)P → (νn)Q

open n.P | n[Q]→ P | Q P → Q⇒ n[P ]→ n[Q]

〈M〉 | (x).P → P {x←M} P ′ ≡ P , P → Q,Q ≡ Q′ ⇒ P ′ → Q′

For example, the process displayed earlier has the following reductions:

m[p[out m.in n.〈M〉]] | n[open p.(x).P ] → m[] | p[in n.〈M〉] | n[open p.(x).P ]

→ m[] | n[p[〈M〉] | open p.(x).P ]

→ m[] | n[〈M〉 | (x).P ]

→ m[] | n[P {x←M}].
The syntax allows the formation of certain processes that may not participate in any

reductions, such as the action n.P and the ambient (in n)[P ]. The presence of these

nonsensical processes is harmless as far as the purposes of this paper are concerned, and

they may be ruled out by a simple type system (Cardelli and Gordon 1999).

This concludes our brief review of the calculus. Earlier papers (Cardelli 1999; Cardelli

and Gordon 2000b) explain in detail the motivation for our calculus, and give program-

ming examples.

3. Contextual equivalence

Morris-style contextual equivalence (Morris 1968) is a standard way of saying that two

processes have the same behaviour: two processes are contextually equivalent if and

only if they admit the same elementary observations whenever they are inserted inside

any arbitrary enclosing process. In the setting of the ambient calculus, we shall define

contextual equivalence in terms of observing the presence, at the top-level of a process, of

an ambient whose name is not restricted.

Let us say that a process P exhibits a name n just if P is a process with a top-level

ambient named n, that is not restricted:

Exhibition of a Name: P ↓ n
P ↓ n ∆

= there are ~m, P ′, P ′′ with n /∈ {~m} and P ≡ (ν~m)(n[P ′] | P ′′)
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Let us say that a process P converges to a name n just if after some number of

reductions, P exhibits n:

Convergence to a Name: P ⇓ n
(Conv Exh)

P ↓ n
P ⇓ n

(Conv Red)

P → Q Q ⇓ n
P ⇓ n

Next, let a context, C(), be a process containing zero or more holes. We write a hole

as (). We write C(P ) for the outcome of filling each of the holes in the context C with

the process P . Variables and names free in P may become bound in C(P ). For example,

if P = n[〈x〉] and C() = (νn)(x).(), the variable x and the name n have become bound

in C(P ) = (νn)(x).n[〈x〉]. Hence, we do not identify contexts up to renaming of bound

variables and names.

Now we can formally define contextual equivalence of processes:

Contextual Equivalence: P ' Q
P ' Q ∆

= for all n, C() with C(P ), C(Q) closed, C(P ) ⇓ n⇔ C(Q) ⇓ n

This equivalence is a form of the may-testing equivalence studied in De Nicola and

Hennessy (1984). De Nicola and Hennessy also study must-testing equivalence and the

Egli–Milner equivalence; these also could be recast in the setting of the ambient calculus.

The following two propositions state some basic properties enjoyed by contextual

equivalence. Let a relation R be a precongruence if and only if, for all P , Q and C(), if

P R Q, then C(P ) R C(Q). If, in addition, R is reflexive, symmetric and transitive, we say

it is a congruence. For example, the structural congruence relation has these properties.

Moreover, by a standard argument, so has contextual equivalence.

Proposition 1. Contextual equivalence is a congruence.

Structural congruence preserves exhibition of or convergence to a name, and hence is

included in contextual equivalence.

Lemma 2. Suppose P ≡ Q. If P ↓ n, then Q ↓ n. Moreover, if P ⇓ n, then Q ⇓ n with the

same depth of inference.

Proof. For part (1), P ↓ n, by definition, means that there are ~m, P ′, P ′′ with n /∈ {~m}
and P ≡ (ν~m)(n[P ′] | P ′′). Since P ≡ Q, we have Q ≡ (ν~m)(n[P ′] | P ′′), and hence Q ↓ n.
Part (2) follows by a case analysis of the derivation of P ⇓ n.
Proposition 3. If P ≡ Q, then P ' Q.

Proof. Consider any context C() and any name n, such that C(P ) ⇓ n. Since ≡ is a

congruence, P ≡ Q implies C(P ) ≡ C(Q). By Lemma 2, this and C(P ) ⇓ n imply C(Q) ⇓ n.
Similarly, we can show that for all C and n, C(Q) ⇓ n implies C(P ) ⇓ n. Hence P ' Q.
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The following two examples illustrate that to show that two processes are contextually

inequivalent, it suffices to find a context that distinguishes them.

Example 1. If m 6= n, then m[] 6' n[].
Proof. Consider the context C() = (). Since C(m[]) ≡ m[], we have C(m[]) ↓ m. By

(Conv Exh) , we have C(m[]) ⇓ m. On the other hand, the process n[] has no reductions,

and does not exhibit m. Hence, we cannot derive C(n[]) ⇓ m.

Example 2. If m 6= n, then open m.0 6' open n.0.

Proof. Let C() = m[p[]] | (). Then C(open m.0) ⇓ p but not C(open n.0) ⇓ p.
On the other hand, it is harder to show that two processes are contextually equivalent,

since one must consider their behaviour when placed in an arbitrary context. For example,

consider the following contextual equivalence.

Example 3. (νn)(n[] | open n.P ) ' P if n /∈ fn(P ).

The restriction of the name n in the process (νn)(n[] | open n.P ) implies that no context

may interact with this process until it has reduced to P . Therefore, we would expect the

equation to hold. But to prove this and other equations formally, we need some further

techniques, which we develop in the next section. We will return to Example 3 in Section 5.

4. Tools for proving contextual equivalence

In this section we introduce some relations and theorems as tools that help prove

contextual equivalence.

4.1. A hardening relation

In this subsection, we define a relation that explicitly identifies the top-level subprocesses

of a process that may be involved in a reduction. This relation, the hardening relation,

takes the form,

P > (νp1, . . . , pk)〈P ′〉P ′′
where the phrase (νp1, . . . , pk)〈P ′〉P ′′ is called a concretion. We say that P ′ is the prime

of the concretion, and that P ′′ is the residue of concretion. Both P ′ and P ′′ lie in the

scope of the restricted names p1, . . . , pk . The intuition is that the process P , which may

have many top-level subprocesses, may harden to a concretion that singles out a prime

subprocess P ′, leaving behind the residue P ′′. By saying that P ′ has a top-level occurrence

in P , we mean that P ′ is a subprocess of P not enclosed within any ambient boundaries.

In Section 4.2, we use the hardening relation to define an operational semantics for the

ambient calculus in terms of interactions between top-level occurrences of processes.

Concretions were introduced by Milner in the context of the π-calculus (Milner 1999).

For the ambient calculus, we specify them as follows, where the prime of the concretion

must be an action, an ambient, an input, or an output:
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Concretions:

C,D ::= concretions

(ν~p)〈M.P 〉Q action, M ∈ {in n, out n, open n}
(ν~p)〈n[P ]〉Q ambient

(ν~p)〈(x).P 〉Q input

(ν~p)〈〈M〉〉Q output

The order of the bound names p1, . . . , pk in a concretion (νp1, . . . , pk)〈P ′〉P ′′ does not

matter and they may be renamed consistently. When k = 0, we may write the concretion

as (ν)〈P ′〉P ′′.
We now introduce the basic ideas of the hardening relation informally. If P is an

action in n.Q, out n.Q, open n.Q, an ambient n[Q], an input (x).Q, or an output 〈M〉, then

P hardens to (ν)〈P 〉0. Consider two processes P and Q. If either of these hardens to a

concretion, then their composition P | Q may harden to the same concretion, but with

the other process included in the residue of the concretion. For example, if P > (ν)〈P1〉P2,

then P | Q > (ν)〈P1〉(P2 | Q). If a process P hardens to a concretion, then the replication

!P may harden to the same concretion, but with !P included in the residue of the

concretion – a replication is not consumed by hardening. Finally, if a process P hardens

to a concretion C , then the restriction (νn)P hardens to a concretion written (νn)C , which

is the same as C but with the restriction (νn) included either in the list of bound names,

the prime or the residue of C . We define (νn)C by:

Restricting a Concretion: (νn)C where C = (ν~p)〈P1〉P2 and n /∈ {~p}
(1) If n ∈ fn(P1) then:

(a) If P1 = m[P ′1], m 6= n, n /∈ fn(P2), let (νn)C
∆
= (ν~p)〈m[(νn)P ′1]〉P2.

(b) Otherwise, let (νn)C
∆
= (νn,~p)〈P1〉P2.

(2) If n /∈ fn(P1) let (νn)C
∆
= (ν~p)〈P1〉(νn)P2.

Next, we define the hardening relation by the following:

Hardening: P > C

(Harden Action)

M ∈ {in n, out n, open n}
M.P > (ν)〈M.P 〉0

(Harden ε)

P > C

ε.P > C

(Harden .)

M.(N.P ) > C

(M.N).P > C

(Harden Amb)

n[P ] > (ν)〈n[P ]〉0

(Harden Input)

(x).P > (ν)〈(x).P 〉0

(Harden Output)

〈M〉 > (ν)〈〈M〉〉0
(Harden Par 1) (for {~p} ∩ fn(Q) = ?)

P > (ν~p)〈P ′〉P ′′
P | Q > (ν~p)〈P ′〉(P ′′ | Q)

(Harden Par 2) (for {~q} ∩ fn(P ) = ?)

Q > (ν~q)〈Q′〉Q′′
P | Q > (ν~q)〈Q′〉(P | Q′′)
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(Harden Repl)

P > (ν~p)〈P ′〉P ′′
!P > (ν~p)〈P ′〉(P ′′ | !P )

(Harden Res)

P > C

(νn)P > (νn)C

For example, the process P = (νp)(νq)(n[p[]] | q[]) may harden in two ways:

P > (ν)〈n[(νp)p[]]〉(νq)(0 | q[])

P > (νq)〈q[]〉(νp)(n[p[]] | 0)

The following lemma gives a basic property of hardening.

Lemma 4. If P > (ν~p)〈P ′〉P ′′, then {~p} ⊆ fn(P ′) and the names ~p are pairwise distinct.

Proof. The proof is by induction on the derivation of P > (ν~p)〈P ′〉P ′′.
The next two results relate hardening and structural congruence.

Lemma 5. If P > (ν~p)〈P ′〉P ′′, then P ≡ (ν~p)(P ′ | P ′′).
Proposition 6. If P ≡ Q and Q > (ν~r)〈Q′〉Q′′, there are P ′ and P ′′ with P > (ν~r)〈P ′〉P ′′,
P ′ ≡ Q′, and P ′′ ≡ Q′′.

These results follow from inductions on the derivations of P > (ν~p)〈P ′〉P ′′ and P ≡ Q,

respectively. Using them, we may characterise the exhibition of a name independently of

structural congruence.

Proposition 7. P ↓ n if and only if there are ~p, P ′, P ′′ such that P > (ν~p)〈n[P ′]〉P ′′ and

n /∈ {~p}.
Now, we can show that the hardening relation is image-finite.

Lemma 8. For all P , {C : P > C} is finite.

Proof. The proof is by induction on the structure of P .

The proof suggests a procedure for enumerating the set {C : P > C}. Given Proposition 7,

it follows that the predicate P ↓ n is decidable.

4.2. A labelled transition system

The labelled transition system presented in this section allows for an analysis of the

possible reductions from a process P in terms of the syntactic structure of P . The

definition of the reduction relation does not directly support such an analysis, because

of the rule P ′ ≡ P , P → Q,Q ≡ Q′ ⇒ P ′ → Q′, which allows for arbitrary structural

rearrangements of a process during the derivation of a reduction.

We define a family of transition relations P
α−→ Q, indexed by a set of labels, ranged

over by α, which is given in the following table:
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Labels:

α ::= label

τ internal step

in n enter ambient n

out n exit ambient n

open n dissolve ambient n

An M-transition P
M−→ Q means that the process P has a top-level process exercising the

capability M; these transitions are defined by the rule (Trans Cap) below. A τ-transition

P
τ−→ Q means that P evolves in one step to Q; these transitions are defined by the other

rules below.

Labelled Transitions: P
α−→ P ′

(Trans Cap)

P > (ν~p)〈M.P ′〉P ′′ fn(M) ∩ {~p} = ?

P
M−→ (ν~p)(P ′ | P ′′)

(Trans Amb)

P > (ν~p)〈n[Q]〉P ′ Q
τ−→ Q′

P
τ−→ (ν~p)(n[Q′] | P ′)

(Trans In) (where {~r} ∩ fn(n[Q]) = ? and {~r} ∩ {~p} = ?)

P > (ν~p)〈n[Q]〉R Q
in m−→ Q′ R > (ν~r)〈m[R′]〉R′′

P
τ−→ (ν~p,~r)(m[n[Q′] | R′] | R′′)

(Trans Out) (where n /∈ {~q})
P > (ν~p)〈n[Q]〉P ′ Q > (ν~q)〈m[R]〉Q′ R

out n−→ R′

P
τ−→ (ν~p)((ν~q)(m[R′] | n[Q′]) | P ′)

(Trans Open)

P > (ν~p)〈n[Q]〉P ′ P ′
open n−→ P ′′

P
τ−→ (ν~p)(Q | P ′′)

(Trans I/O) (where {~q} ∩ fn(〈M〉) = ?)

P > (ν~p)〈〈M〉〉P ′ P ′ > (ν~q)〈(x).P ′′〉P ′′′
P

τ−→ (ν~p,~q)(P ′′{x←M} | P ′′′)

The rules (Trans In), (Trans Out) and (Trans Open) derive a τ-transition from an

M-transition. We introduced the M-transitions to simplify the statement of these three

rules. (Trans I/O) allows for exchange of messages. (Trans Amb) is a congruence rule for

τ-transitions within ambients.

Given its definition in terms of the hardening relation, we can analyse the transitions
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derivable from any process by inspection of its syntactic structure. This allows a structural

analysis of the possible reductions from a process, since the τ-transition relation corre-

sponds to the reduction relation as in the following theorem, where P
τ−→≡ Q means

there is R with P
τ−→ R and R ≡ Q.

Theorem 9. P → Q if and only if P
τ−→≡ Q.

As corollaries of Lemma 8 and Theorem 9, we get that the transition system is image-

finite, and that the reduction relation is image-finite up to structural congruence.

Lemma 10. For all P and α, the set {R : P
α−→ R} is finite.

Proof. The proof is by induction on the depth of inference of P
α−→ R, with appeal to

Lemma 8, one can see that the set {R : P
α−→ R} is finite.

Lemma 11. For all P , the set {{R : Q ≡ R} : P → Q} is finite.

Proof. By Lemma 10, the set {Q : P
τ−→ Q} is finite. Therefore, the set {{R : Q ≡ R} :

P
τ−→ Q} is finite. But, by Theorem 9 and the transitivity of structural congruence, this

set is the same as {{R : Q ≡ R} : P → Q}.

4.3. A context lemma

The context lemma presented in this section is a tool for proving contextual equivalence by

considering only a limited set of contexts, rather than all contexts. Many context lemmas

have been proved for a wide range of calculi, starting with Milner’s context lemma for

the combinatory logic form of PCF (Milner 1977).

Our context lemma is stated in terms of a notion of a harness:

Harnesses:

H ::= harnesses

− process variable

(νn)H restriction

P | H left composition

H | Q right composition

n[H] ambient

Harnesses are analogous to the evaluation contexts found in context lemmas for some

other calculi. Unlike the contexts of Section 3, harnesses are identified up to consistent

renaming of bound names. We let fn(H) and fv (H) be the sets of names and variables,

respectively, occurring free in a harness H . There is exactly one occurrence of the process

variable − in any harness. If H is a harness, we write H{P } for the outcome of substituting

the process P for the single occurrence of the process variable −. Names restricted in H

are renamed to avoid capture of free names of P . For example, if H = (νn)(− | open n),

then H{n[]} = (νn′)(n[] | open n′) for some n′ 6= n. Similarly, if H and H ′ are harnesses,

we write H{H ′} for the harness obtained by substituting H ′ for the process variable −
in H .
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Let a substitution, σ, be a list x1←M1, . . . , xk←Mk , where the variables x1, . . . , xk are

pairwise distinct, and fv (Mi) = ? for each i ∈ 1..k. Let dom(σ) = {x1, . . . , xk}. Let Pσ be

the process P {x1←M1} · · · {xk←Mk}. Let a harness be closed if and only if it has no free

variables (though it may have free names).

Here is our context lemma.

Theorem 12 (Context). For all processes P and Q, P ' Q if and only if for all substitutions

σ with dom(σ) = fv (P ) ∪ fv (Q), and for all closed harnesses H and names n we have

H{Pσ} ⇓ n⇔ H{Qσ} ⇓ n.
A corollary is that for all closed processes P and Q, we have P ' Q if and only if for

all closed harnesses H and names n we have H{P } ⇓ n⇔ H{Q} ⇓ n.
In general, however, we need to consider the arbitrary closing substitution σ when

using Theorem 12. This is because a variable free in a process may become bound to an

expression once the process is placed in a context. For example, let P = x[n[]] | openy.0 and

Q = 0. Consider the context C() = 〈m,m〉 | (x, y).(). We have C(P ) ⇓ n but not C(Q) ⇓ n.
So P and Q are not contextually equivalent, though they do satisfy H{P } ⇓ n⇔ H{Q} ⇓ n
for all closed H and n.

Some process calculi enjoy stronger context lemmas. Let processes P and Q be parallel

testing equivalent if and only if for all processes R and names n we have P | R ⇓ n⇔ Q |
R ⇓ n. We might hope to show that any two closed processes are contextually equivalent

if and only if they are parallel testing equivalent. This would be a stronger result than

Theorem 12 because it would avoid considering contexts that include ambients. Such

a result is true for CCS (De Nicola and Hennessy 1984), for example, but it is false

for the ambient calculus. To see this, let P = out p.0 and Q = 0. We can show that

P | R ⇓ n ⇔ Q | R ⇓ n for all n and R. Now, consider the context C() = p[m[()]]. We

have C(P ) ⇓ m but not C(0) ⇓ m. So P and Q are parallel testing equivalent but not

contextually equivalent.

4.4. An activity lemma

When we come to apply Theorem 12 we need to analyse judgments of the form H{P } ↓ n
or H{P } → Q. In this section we formalise these analyses.

We begin by extending the structural congruence, hardening and reduction relations to

harnesses as follows:

— Let H ≡ H ′ hold if and only if H{P } ≡ H ′{P } for all P .

— Let H > (ν~p)〈n[H ′]〉Q hold if and only if H{P } > (ν~p)〈n[H ′{P }]〉Q for all P such that

{~p} ∩ fn(P ) = ?.

— Let H > (ν~p)〈Q〉H ′ hold if and only if H{P } > (ν~p)〈Q〉(H ′{P }) for all P such that

{~p} ∩ fn(P ) = ?.

— Let H → H ′ hold if and only if, for all P , H{P } → H ′{P }.
We need the following lemma about hardening.

Lemma 13. If H{P } > (ν~p)〈P1〉P2, then either:

(1) H > (ν~p)〈n[H ′]〉P2 and P1 = n[H ′{P }], or
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(2) H > (ν~p)〈P1〉H ′ and P2 = H ′{P }, or

(3) P > (ν~p)〈P1〉P ′, H ≡ − | R, P2 ≡ P ′ | R, and {~p} ∩ fn(R) = ?.

Intuitively, there are two ways in which H{P } ↓ n can arise: either the process P

exhibits the name by itself, or the harness H exhibits the name n by itself. Proposition 14

formalises this analysis. Similarly, there are three ways in which a reduction H{P } → Q

may arise: either (1) the process P reduces by itself, or (2) the harness H reduces by itself,

or (3) there is an interaction between the process and the harness. Theorem 15 formalises

this analysis. Such a result is sometimes known as an activity lemma (Plotkin 1977).

Proposition 14. If H{P } ↓ n, then either (1) H{Q} ↓ n for all Q, or (2) both P ↓ n and

also for all Q, Q ↓ n implies that H{Q} ↓ n.

Proof. By Proposition 7, H{P } ↓ n means there are ~p, P ′, P ′′ such that H{P } >
(ν~p)〈n[P ′]〉P ′′ with n /∈ {~p}. Hence, the proposition follows from Lemma 13.

Theorem 15 (Activity). H{P } → R if and only if:

(Act Proc) there is a reduction P → P ′ with R ≡ H{P ′}, or

(Act Har) there is a reduction H → H ′ with R ≡ H ′{P }, or

(Act Inter) there are H ′ and~r with {~r} ∩ fn(P ) = ?, and one of the following holds:

(Inter In) H ≡ (ν~r)H ′{m[− | R′] | n[R′′]}, P in n−→ P ′,
and R ≡ (ν~r)H ′{n[m[P ′ | R′] | R′′]}

(Inter Out) H ≡ (ν~r)H ′{n[m[− | R′] | R′′]}, P out n−→ P ′,
and R ≡ (ν~r)H ′{m[P ′ | R′] | n[R′′]}

(Inter Open) H ≡ (ν~r)H ′{− | n[R′]}, P open n−→ P ′,
and R ≡ (ν~r)H ′{P ′ | R′}

(Inter Input) H ≡ (ν~r)H ′{− | 〈M〉}, P > (ν~p)〈(x).P ′〉P ′′,
and R ≡ (ν~r)H ′{(ν~p)(P ′{x←M} | P ′′)}, with {~p} ∩ fn(M) = ?

(Inter Output) H ≡ (ν~r)H ′{− | (x).R′}, P > (ν~p)〈〈M〉〉P ′,
and R ≡ (ν~r)H ′{(ν~p)(P ′ | R′{x←M})}, with {~p} ∩ fn(R′) = ?

(Inter Amb) P > (ν~p)〈n[Q]〉P ′ and one of the following holds:

(1) Q
in m−→ Q′, H ≡ (ν~r)H ′{− | m[R′]}, {~p} ∩ fn(m[R′]) = ?,

and R ≡ (ν~r)H ′{(ν~p)(P ′ | m[n[Q′] | R′])}
(2) Q

out m−→ Q′, H ≡ (ν~r)H ′{m[− | R′]}, {~p} ∩ fn(m[R′]) = ?,

and R ≡ (ν~r)H ′{(ν~p)(n[Q′] | m[P ′ | R′])}
(3) H ≡ (ν~r)H ′{m[R′ | in n.R′′] | −}, {~p} ∩ fn(m[R′ | in n.R′′]) = ?,

and R ≡ (ν~r)H ′{(ν~p)(n[Q | m[R′ | R′′]] | P ′)}
(4) H ≡ (ν~r)H ′{− | open n.R′}, n /∈ {~p},

and R ≡ (ν~r)H ′{(ν~p)(Q | P ′) | R′}.
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5. Examples of contextual equivalence

In this section we give three examples to demonstrate how we can apply Theorem 12 and

Theorem 15 to establish contextual equivalence.

5.1. Opening an ambient

First, we return to and prove Example 3 from Section 3.

Lemma 16. If H{(νn)(n[] | open n.P )} ⇓ m and n /∈ fn(P ), then H{P } ⇓ m.

Proof. The proof is by induction on the derivation of H{(νn)(n[] | open n.P )} ⇓ m:

(Conv Exh) Here H{(νn)(n[] | open n.P )} ↓ m. By Proposition 14, either (1), for all Q,

H{Q} ↓ m, or (2), (νn)(n[] | open n.P ) ↓ m. In case (1), we have, in particular,

that H{P } ↓ m. Hence, H{P } ⇓ m, by (Conv Exh). Case (2) cannot arise, since, by

Proposition 7, (νn)(n[] | open n.P ) ↓ m implies that (νn)(n[] | open n.P ) > (ν~p)〈m[P ′]〉P ′′
with m /∈ {~p}. But the only hardenings of the process (νn)(n[] | open n.P ) are

(νn)(n[] | open n.P ) > (νn)〈n[]〉(0 | open n.P )

(νn)(n[] | open n.P ) > (νn)〈open n.P 〉(n[] | 0).

So case (2) is impossible.

(Conv Red) Here H{(νn)(n[] | open n.P )} → R and R ⇓ m. By Theorem 15, one of three

cases pertains:

(Act Proc) Then (νn)(n[] | open n.P ) → P ′ with R ≡ H{P ′}. By inspection of the

rules of the labelled transition system, it must be that (Trans Open) derives this

transition, with P ′ ≡ P . Therefore R ⇓ m implies that H{P } ⇓ m.

(Act Har) Then H → H ′ with R ≡ H ′{(νn)(n[] | open n.P )}. By Lemma 2, we may

derive H ′{(νn)(n[] | open n.P )} ⇓ m by the same depth of inference as R ⇓ m. By

the induction hypothesis, H ′{P } ⇓ m. From H → H ′ we obtain H{P } → H ′{P } in

particular. By (Act Har), we get H{P } ⇓ m.

(Act Inter) Then there is an interaction between the process (νn)(n[] | open n.P ) and

the harness H . Given the possible hardenings of (νn)(n[] | open n.P ) stated above,

there are no transitions derivable from (νn)(n[] | open n.P ), so none of (Inter In),

(Inter Out) or (Inter Open) is applicable. Similarly, neither (Inter Input) nor (Inter

Output) is applicable. Given (νn)(n[] | open n.P ) > (νn)〈n[]〉(0 | open n.P ), clause

(Inter Amb) might be applicable. Points (1) and (2) are impossible, because 0 has

no transitions, and points (3) and (4) are impossible because n is restricted. We

conclude that none of the possibilities stated in clause (Act Inter) of Theorem 15

pertains. So this case is impossible.

Proof of Example 3. (νn)(n[] | open n.P ) ' P if n /∈ fn(P ).

Proof. By Theorem 12, it suffices to prove H{((νn)(n[] | open n.P ))σ} ⇓ m⇔ H{Pσ} ⇓ m
for all closed harnesses H and names m and for all substitutions σ with dom(σ) = fv (P ).
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Since the name n is bound, we may assume that n /∈ fn(σ(x)) for all x ∈ dom(σ). Therefore,

we have to prove that H{(νn)(n[] | open n.Pσ} ⇓ m⇔ H{Pσ} ⇓ m where n /∈ fn(Pσ).

We will prove each direction separately. First, suppose that H{Pσ} ⇓ m. Then, since

(νn)(n[] | open n.Pσ) → Pσ, we get H{(νn)(n[] | open n.Pσ)} → H{Pσ}. By (Conv Red),

we get H{(νn)(n[] | open n.Pσ)} ⇓ m. Second, suppose that H{(νn)(n[] | open n.Pσ)} ⇓ m.

By Lemma 16, we get H{Pσ} ⇓ m.

5.2. The perfect firewall equation

Consider a process (νn)n[P ], where n is not free in P . Since the name n is known neither

inside the ambient n[P ], nor outside it, the ambient n[P ] is a ‘perfect firewall’ that neither

allows another ambient to enter nor to exit. The following two lemmas allow us to prove

that (νn)n[P ] is contextually equivalent to 0, when n /∈ fn(P ), which is to say that no

context can detect the presence of (νn)n[P ].

Lemma 17. If H{(νn)n[P ]} ⇓ m and n /∈ fn(P ), then H{0} ⇓ m.

Proof. The proof is by induction on the derivation of H{(νn)n[P ]} ⇓ m:

(Conv Exh) Here H{(νn)n[P ]} ↓ m. By Proposition 14, either (1), for all Q, H{Q} ↓ m, or

(2), (νn)n[P ] ↓ m. In case (1), we have, in particular, that H{0} ↓ m. Hence, H{0} ⇓ m,

by (Conv Exh). Case (2) cannot arise, since, by Proposition 7, (νn)n[P ] ↓ m implies

that (νn)n[P ] > (ν~p)〈m[P ′]〉P ′′ with m /∈ {~p}, which is impossible.

(Conv Red) Here H{(νn)n[P ]} → R and R ⇓ m. By Theorem 15, one of three cases

pertains:

(Act Proc) Then (νn)n[P ] → P ′′ with R ≡ H{P ′′}. By Theorem 9, there is Q with

(νn)n[P ]
τ−→ Q and Q ≡ P ′′. Since (νn)n[P ] > (νn)〈n[P ]〉0 is the only hardening

derivable from (νn)n[P ], and since n /∈ fn(P ), the transition (νn)n[P ]
τ−→ Q can

only be derived using (Trans Amb), with P
τ−→ P ′ and Q = (νn)(n[P ′] | 0).

Therefore, there is a reduction P → P ′ and P ′′ ≡ (νn)n[P ′]. By Lemma 21 stated

in the Appendix, P → P ′ implies fn(P ′) ⊆ fn(P ) and so n /∈ fn(P ′). We have

R ≡ H{(νn)n[P ′]} with n /∈ fn(P ′). By Lemma 2, we may derive H{(νn)n[P ′]} ⇓ m
by the same depth of inference as R ⇓ m. By the induction hypothesis, H{0} ⇓ m.

(Act Har) Then H → H ′ with R ≡ H ′{(νn)n[P ]}. By Lemma 2, we may derive

H ′{(νn)n[P ]} ⇓ m by the same depth of inference as R ⇓ m. By the induction

hypothesis, H ′{0} ⇓ m. From H → H ′ we obtain H{0} → H ′{0} in particular. By

(Conv Red), we get H{0} ⇓ m.

(Act Inter) Then there are H ′ and~r with {~r}∩fn(P ) = ? and one of several conditions

must hold. Since the only hardening or transition from (νn)n[P ] is (νn)n[P ] >

(νn)〈n[P ]〉0, only the rule (Inter Amb) applies. According to Theorem 15, there are

four possibilities to consider.

(1) Here, P
in m−→ P ′, H ≡ (ν~r)H ′{− | m[R′]}, {n} ∩ fn(m[R′]) = ? and R ≡

(ν~r)H ′{(νn)(0 | m[n[P ′] | R′])}. We have R ≡ (ν~r)H ′{m[R′ | (νn)n[P ′]]}. By

Lemma 23 (stated in the Appendix), n /∈ fn(P ) and P
in m−→ P ′ imply n /∈ fn(P ′).
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By Lemma 2, we get (ν~r)H ′{m[R′ | (νn)n[P ′]]} ⇓ m with the same depth

of inference as R ⇓ m. By the induction hypothesis, (ν~r)H ′{m[R′ | 0]} ⇓ m.

Moreover, H{0} ≡ (ν~r)H ′{m[R′ | 0]}, and therefore H{0} ⇓ m.

(2) Here, P
out m−→ P ′, H ≡ (ν~r)H ′{m[− | R′]}, R ≡ (ν~r)H ′{(νn)(n[P ′] | m[0 | R′])},

with m /∈ {n}. Since n is bound, we may assume n /∈ fn(H) ∪ {~r}, so that

n /∈ fn(R′), and hence we can derive that R ≡ (ν~r)H ′{m[R′] | (νn)n[P ′]}. By

Lemma 23, n /∈ fn(P ) and P
out m−→ P ′ imply n /∈ fn(P ′). By Lemma 2, we get

(ν~r)H ′{m[R′] | (νn)n[P ′]} ⇓ m with the same depth of inference as R ⇓ m. By the

induction hypothesis, (ν~r)H ′{m[R′] | 0} ⇓ m. Moreover, H{0} ≡ (ν~r)H ′{m[R′] |
0}, and therefore H{0} ⇓ m.

The other possibilities, (3) and (4), are ruled out because the name n is restricted

in the concretion (νn)〈n[P ]〉0.

Lemma 18. If H{0} ⇓ m, then H{P } ⇓ m.

Proof. The proof is by induction on the derivation of H{0} ⇓ m:

(Conv Exh) Here H{0} ↓ m. By Proposition 14, either (1), for all Q, H{Q} ↓ m, or (2),

0 ↓ m. Case (2) is impossible. In case (1), we get, in particular, that H{P } ↓ m. Hence,

H{P } ⇓ m.

(Conv Red) Here H{0} → Q and Q ⇓ m. By Theorem 15, and the fact that 0 has no

reductions and no hardenings, it must be that H → H ′ with Q ≡ H ′{0}. By Lemma 2,

we get that H ′{0} ⇓ m is derivable with the same depth of inference as Q ⇓ m. By

the induction hypothesis, H ′{P } ⇓ m. From H → H ′ we get that H{P } → H ′{P }. By

(Conv Red), H{P } → H ′{P } and H ′{P } ⇓ m imply H{P } ⇓ m.

Using these two lemmas we get the following example.

Example 4. If n /∈ fn(P ), then (νn)n[P ] ' 0.

Proof. By Theorem 12, it suffices to prove that

H{((νn)n[P ])σ} ⇓ m⇔ H{0σ} ⇓ m
for all closed harnesses H and names m and for all substitutions σ with dom(σ) =

fv ((νn)n[P ]). Since the name n is bound, we may assume that n /∈ fn(σ(x)) for any

x ∈ dom(σ). Therefore, we are to prove that

H{(νn)n[Pσ]} ⇓ m⇔ H{0} ⇓ m,
where n /∈ fn(Pσ). This follows from Lemma 17 and Lemma 18.

Our first proof of this equation (which was stated in an earlier paper (Cardelli and

Gordon 2000b)) was by a direct quantification over all contexts. The proof above using

the context lemma is simpler.
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5.3. Crossing a firewall

This example concerns an agent that crosses a firewall using previously arranged pass-

words. We explained this example, but did not give a proof, in an earlier paper (Cardelli

and Gordon 2000b).

Lemma 19. Suppose that (fn(P ) ∪ fn(Q)) ∩ {k, k′, k′′} = ? and w /∈ fn(Q). Consider the

processes defined by

R1
∆
= (νk k′ k′′)(k′[open k.k′′[Q]] |

(νw)w[k[out w.in k′.in w] | open k′.open k′′.P ])

R2
∆
= (νk k′ k′′ w)(k′[open k.k′′[Q]] | k[in k′.in w] | w[open k′.open k′′.P ])

R3
∆
= (νk k′ k′′ w)(k′[k[in w] | open k.k′′[Q]] | w[open k′.open k′′.P ])

R4
∆
= (νk k′ k′′ w)(k′[in w | k′′[Q]] | w[open k′.open k′′.P ])

R5
∆
= (νk k′ k′′ w)w[k′[k′′[Q]] | open k′.open k′′.P ]

R6
∆
= (νk k′ k′′ w)w[k′′[Q] | open k′′.P ]

R7
∆
= (νw)w[Q | P ].

For each i ∈ 1..6, Ri ' Ri+1.

Proof. Suppose that i ∈ 1..6. Without loss of generality, we may assume that the

processes P and Q are closed, and hence that all the Ri are closed. By Theorem 12, we

need to show for all H and m that H{Ri} ⇓ m ⇔ H{Ri+1} ⇓ m. We may calculate that

Ri → Ri+1, for each i. It follows that H{Ri+1} ⇓ m implies H{Ri} ⇓ m.

We now prove that H{Ri} ⇓ m implies H{Ri+1} ⇓ m by induction on the derivation of

H{Ri} ⇓ m.

(Conv Exh) Here H{Ri} ↓ m. By Proposition 14, either (1), for all Q, H{Q} ↓ m, or (2),

Ri ↓ m. In case (1), we have, in particular, that H{Ri+1} ↓ m. Hence, H{Ri+1} ⇓ m, by

(Conv Exh). Case (2) cannot arise, because of the outermost restrictions on each Ri.

(Conv Red) Here H{Ri} → R and R ↓ m. By Theorem 9 and Theorem 15, one of three

cases pertains:

(Act Proc) Then Ri → R′ with R ≡ H{R′}. By inspection of the definitions of Ri and

the labelled transition system, it must be that R′ ≡ Ri+1. Therefore R ⇓ m implies

that H{Ri+1} ⇓ m.

(Act Har) Then H → H ′ with R ≡ H ′{Ri}. By Lemma 2, we may derive H ′{Ri} ⇓ m by

the same depth of inference as R ⇓ m. By the induction hypothesis, H ′{Ri+1} ⇓ m.

From H → H ′ we obtain H{Ri+1} → H ′{Ri+1} in particular. By (Conv Red), we

get H{Ri+1} ⇓ m.

(Act Inter) Then there is an interaction between the process Ri and the harness H ′.
Given that fn(Q) ∩ {k′, k′′, w} = ?, none of the conditions stated in the rule (Act

Inter) of Theorem 15 applies. Therefore this case is impossible.

This completes the proof by induction.
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Example 5. Let us define

Firewall
∆
= (νw)w[k[out w.in k′.in w] | open k′.open k′′.P ]

Agent
∆
= k′[open k.k′′[Q]].

If (fn(P ) ∪ fn(Q)) ∩ {k, k′, k′′} = ? and w /∈ fn(Q), then

(νk k′ k′′)(Agent | Firewall ) ' (νw)w[Q | P ].

Proof. Recall the processes R1 and R7 from Lemma 19. By that lemma, R1 ' R7. This is

exactly the desired equation, since R1 = (νkk′k′′)(Agent | Firewall ) and R7 = (νw)w[Q | P ].

6. Conclusions

We have developed a theory of Morris-style contextual equivalence for the ambient

calculus. We have shown that standard tools such as a labelled transition system, a

context lemma, and an activity lemma, may be adapted to the ambient calculus. We

have then introduced a new technique, based on a hardening relation, for defining the

labelled transition system. We employed these tools to prove equational properties of

mobile ambients.

We have adapted the concretions of Milner (1999) to highlight those subprocesses of a

process that may participate in a computation. This is an alternative to the membranes

and airlocks of the chemical abstract machine of Berry and Boudol (1992). Unlike these

authors, in the definition of our transition relation we use the hardening relation, rather

than the full structural congruence relation, to choose subprocesses to participate in a

transition. In applications of the activity lemma, Theorem 15, and in other situations, our

proof techniques depend on analysing the possible hardenings and the possible transitions

of processes by examining their structure. This is possible because, unlike structural

congruence, the hardening relation is not transitive. Therefore, the use of hardening

rather than structural congruence in the definition of the transition relation is essential

for the techniques we advocate here.

Our use of the hardening relation to define the transition relation for the ambient

calculus is similar to the use by Vitek and Castagna (1999) of a heating relation to define

reduction in their Seal calculus. A difference in style is that Vitek and Castagna use

structural congruence as well as the heating relation to define their reduction relation.

Since the work presented in this paper was completed, several authors have advanced

the study of labelled transition systems and bisimulation for ambient calculi.

— Vigliotti (1999) studies labelled transition systems for the ambient calculus, but not

bisimulation. She proves a completeness result relating reductions and labelled transi-

tions, which is akin to Theorem 9 of this paper.

— Fournet et al. (2000) describes the first distributed implementation of mobile ambients,

based on a translation to the join-calculus (Fournet and Gonthier 1996). They verify

its correctness by adapting the technique of barbed coupled simulations.

— Although in this paper we have developed some novel tools for proving equational
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properties, we have found it difficult to state a very rich collection of equational

properties. Levi and Sangiorgi (Levi and Sangiorgi 2000) attribute this difficulty to

certain interferences between overlapping redexes in the original ambient calculus. To

enable such interferences to be avoided, they add co-capabilities to obtain a calculus of

Safe Ambients (SA). With this addition, they state and prove a richer set of equational

properties than seems to be possible for the unmodified calculus.

— Sangiorgi (2001) studies the equivalence induced by the ambient logic (Cardelli and

Gordon 2000a) on an ambient calculus without replication or restriction. He char-

acterises this equivalence as the bisimulation induced by a certain labelled transition

system, and shows that the equivalence is closely related to structural congruence.

— Merro and Hennessy (Merro and Hennessy 2002) were the first to study the bisimula-

tion induced by a labelled transition system for an ambient calculus with replication

and restriction. They work with a calculus of Safe Ambients with Passwords (SAP),

which has co-capabilities like the SA calculus but synchronisation is additionally con-

tingent on shared knowledge of a secret password. They define a barbed congruence

for the SAP calculus, and show that it equals the bisimulation induced by their labelled

transition system. Hence, they obtain a convenient co-inductive proof technique for

equational reasoning about ambients.

Appendix A. Proofs

In this appendix, we prove all the propositions stated without proof in the main body of

the paper. To do so, we need several auxiliary results.

The appendix consists of several sections.

(1) In Section A.1 we prove the statement in Section 3 that contextual equivalence is a

congruence.

(2) In Section A.2, we prove three important facts about the hardening relation that were

stated in Section 4.1, viz. Lemma 5 and Propositions 6 and Proposition 7.

(3) Section A.3 contains some auxiliary results and a proof of Theorem 9 from Section 4.2,

which states that the reduction and τ-transition relations are the same up to structural

congruence.

(4) In Section A.4 we prove the activity lemma, Theorem 15, stated in Section 4.4.

(5) In Section A.5, we prove some auxiliary results about replication.

(6) Section A.6 is devoted to proving our context lemma, Theorem 12, which was stated

in Section 4.3.

In the main body of the paper, we stated Theorem 12 before Theorem 15, but in fact

we use Theorem 15 in the proof of Theorem 12. Therefore, we will give the proof of

Theorem 15 before the proof of Theorem 12.

Throughout this appendix, we shall refer to the rules of structural congruence and

reduction using the names in the following tables:

Structural Congruence: P ≡ Q
P ≡ P (Struct Refl)

Q ≡ P ⇒ P ≡ Q (Struct Symm)
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P ≡ Q,Q ≡ R ⇒ P ≡ R (Struct Trans)

P ≡ Q⇒ (νn)P ≡ (νn)Q (Struct Res)

P ≡ Q⇒ P | R ≡ Q | R (Struct Par)

P ≡ Q⇒ !P ≡ !Q (Struct Repl)

P ≡ Q⇒M[P ] ≡M[Q] (Struct Amb)

P ≡ Q⇒M.P ≡M.Q (Struct Action)

P ≡ Q⇒ (x).P ≡ (x).Q (Struct Input)

P | Q ≡ Q | P (Struct Par Comm)

(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)

!P ≡ P | !P (Struct Repl Par)

(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)

n /∈ fn(P )⇒ (νn)(P | Q) ≡ P | (νn)Q (Struct Res Par)

n 6= m⇒ (νn)m[P ] ≡ m[(νn)P ] (Struct Res Amb)

P | 0 ≡ P (Struct Zero Par)

(νn)0 ≡ 0 (Struct Zero Res)

!0 ≡ 0 (Struct Zero Repl)

ε.P ≡ P (Struct ε)

(M.M ′).P ≡M.M ′.P (Struct .)

Reduction: P → Q

n[in m.P | Q] | m[R]→ m[n[P | Q] | R] (Red In)

m[n[out m.P | Q] | R]→ n[P | Q] | m[R] (Red Out)

open n.P | n[Q]→ P | Q (Red Open)

〈M〉 | (x).P → P {x←M} (Red I/O)

P → Q⇒ P | R → Q | R (Red Par)

P → Q⇒ (νn)P → (νn)Q (Red Res)

P → Q⇒ n[P ]→ n[Q] (Red Amb)

P ′ ≡ P , P → Q,Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

Many of the proofs in the rest of the appendix depend on the following basic facts

about structural congruence, reduction, hardening, and the transition relation.

Lemma 20. If P ≡ Q, then fn(P ) = fn(Q) and fv (P ) = fv (Q).

Lemma 21. If P → Q, then fn(P ) ⊆ fn(Q) and fv (P ) ⊆ fv (Q).

Lemma 22. If P > C , then fn(P ) = fn(C) and fv (P ) = fv (C).

Lemma 23. If P
α−→ P ′, then fn(α) ∪ fn(P ′) ⊆ fn(P ), fv (α) = ?, and fv (P ′) ⊆ fv (P ).

Lemma 24. If n /∈ fn(P ), then (νn)P ≡ P .

Proof. Using the axioms (Struct Zero Par), (Struct Res Par) and (Struct Zero Res), we

get (νn)P ≡ (νn)(P | 0) ≡ P | (νn)0 ≡ P | 0 ≡ P .
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A.1. Proof omitted from Section 3

Apart from proving transitivity, the proof that contextual equivalence is a congruence is

easy.

Proof of Proposition 1. Contextual equivalence is a congruence.

Proof. Reflexivity and symmetry are trivial.

For transitivity, suppose that P ' P ′ and P ′ ' P ′′. To show that P ' P ′′, consider any

context C() and any name n such that C(P ) and C(P ′′) are closed. It need not be the

case that C(P ′) is closed. Suppose that {x1, . . . , xk} = fv (C(P ′)), and suppose that m1, . . . ,

mk are fresh names. We define a new family of contexts D0, D1, . . . , Dk by induction:

D0 = C and Di+1 = 〈mi+1〉 | (xi+1).Di. The context Dk has two useful properties. First, for

all Q and q,

Dk(Q) ⇓ q ⇔ C(Q){x1←m1} · · · {xk←mk} ⇓ q.
Second, Dk(P ′) is closed. Now, suppose that C(P ) ⇓ n. Since C(P ) is closed, C(P ) =

C(P ){x1←m1} · · · {xk←mk}. Hence, by the first property of Dk , we have Dk(P ) ⇓ n. By the

second property of Dk , and P ' P ′, we have Dk(P ′) ⇓ n. Since C(P ′′) is closed, it follows

that Dk(P ′′) is closed too. Therefore, P ′ ' P ′′ implies that Dk(P ′′) ⇓ n. Since C(P ′′) is

closed, C(P ′′) = C(P ′′){x1←m1} · · · {xk←mk}. Hence, by the first property of Dk , we have

C(P ′′) ⇓ n. A symmetric argument establishes that C(P ′′) ⇓ n implies C(P ) ⇓ n. Hence

P ' P ′′.
For precongruence, consider any P , Q and C() with P ' Q. To show that C(P ) ' C(Q),

consider any context D() and any name n with D(C(P )) ⇓ n. Since D(C()) is a context,

P ' Q implies D(C(Q)) ⇓ n. Similarly, D(C(Q)) ⇓ n implies D(C(P )) ⇓ n. It follows that

C(P ) ' C(Q).

A.2. Proofs omitted from Section 4.1

This section provides proofs of Lemma 5 and Propositions 6 and 7. The main lemma of

the section, Lemma 31, asserts that the hardening relation preserves structural congruence.

To state and prove it, we need three auxiliary definitions.

The first auxiliary definition is a relation P ≡̂ Q on primes, where a prime is an ambient

m[P ], an action M.P where M ∈ {in n, out n, open n}, an input (x).P or an output 〈M〉.
The relation P ≡ Q is the least to satisfy the following rules:

Structural Congruence of Primes: P ≡̂ Q
n[P ] ≡̂ n[Q] if P ≡ Q
M.P ≡̂M.Q if M ∈ {in n, out n, open n} and P ≡ Q
(x).P ≡̂ (x).Q if P ≡ Q
〈M〉 ≡̂ 〈N〉 if M = N

This relation is clearly reflexive, symmetric and transitive, and implies structural con-

gruence.

Lemma 25. For all primes P , Q, R:
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(1) P ≡̂ P .

(2) If P ≡̂ Q, then Q ≡̂ P .

(3) If P ≡̂ Q and Q ≡̂ R, then P ≡̂ R.

(4) If P ≡̂ Q, then P ≡ Q.

We will prove the converse of part (4) at the end of this section.

The second auxiliary definition is a relation C ≡ D on concretions:

Structural Congruence of Concretions: C ≡ D
C ≡ D ∆

= C = (ν~r)〈P 〉P ′, D = (ν~r)〈Q〉Q′, P ≡̂ Q and P ′ ≡ Q′.

Lemma 26. If C ≡ D, then (νn)C ≡ (νn)D.

Proof. From C ≡ D, it follows that C = (ν~r)〈P 〉P ′, D = (ν~r)〈Q〉Q′, P ≡̂ Q and P ′ ≡ Q′.
Now, either n ∈ fn(P ) or not. First, suppose n ∈ fn(P ).

— If P = m[P ′′], m 6= n and n /∈ fn(P ′), then (νn)C = (ν~r)〈m[(νn)P ′′]〉P ′. Since P ≡̂ Q, it

follows that Q = m[Q′′] with P ′′ ≡ Q′′. By Lemma 20, n /∈ fn(P ′) implies n /∈ fn(Q′).
Therefore, (νn)D = (ν~r)〈m[(νn)Q′′]〉Q′, so (νn)C ≡ (νn)D.

— Otherwise, (νn)C = (νn,~r)〈P 〉P ′, and (νn)D = (νn,~r)〈Q〉Q′.
Second, if n /∈ fn(P ), we have n /∈ fn(Q) by Lemma 20. Thus, (νn)C = (ν~r)〈P 〉(νn)P ′ and

(νn)D = (ν~r)〈Q〉(νn)Q′.
By a similar analysis, we can prove the following lemma.

Lemma 27. (νm)(νn)C ≡ (νn)(νm)C .

The third auxiliary definition is a relation M > N on expressions, defined by the

following rules:

Auxiliary Relation on Expressions: M > N

M > M.ε if M ∈ {in n, out n, open n}
ε > ε

M.N > M1.(M2.N) if M > M1.M2

M.N > N ′ if M > ε and N > N ′

Lemma 28. If M.P > C , then either:

(1) M > M1.M2, C = (ν)〈M1.R〉0, and R ≡M2.P , or

(2) M > ε and P > C .

Proof. The proof is by induction on the derivation of M.P > C .

Lemma 29. If M > ε and P > C , then M.P > C .

Proof. The proof is by induction on the derivation of M > ε.

Lemma 30. If M > M1.M2, then M.P > (ν)〈M1.P
′〉0 with P ′ ≡M2.P .

Proof. The proof is by induction on the derivation of M > M1.M2.
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Next, we prove the main lemma of the section.

Lemma 31. If P ≡ Q and Q > D, there is C with P > C and C ≡ D.

Proof. We show by induction on the derivation of P ≡ Q, that P ≡ Q implies:

(1) Whenever P > C there is D with Q > D and C ≡ D;

(2) Whenever Q > D there is C with P > C and C ≡ D.

We proceed by a case analysis of the rule that derives P ≡ Q:

(Struct Refl) In this case P = Q. So parts (1) and (2) are trivial.

(Struct Symm) In this case Q ≡ P . Part (1) follows from part (2) of the induction

hypothesis, and part (2) follows from part (1) of the induction hypothesis.

(Struct Trans) In this case P ≡ R and R ≡ Q. For (1), suppose P > (ν~r)〈P1〉P2. By the

induction hypothesis, R > (ν~r)〈R1〉R2 with P1 ≡̂ R1 and P2 ≡ R2. By the induction

hypothesis, again, Q > (ν~r)〈Q1〉Q2 with R1 ≡̂ Q1 and R2 ≡ Q2. By transitivity, P1 ≡̂ Q1

and P2 ≡ Q2. Part (2) follows by a symmetric argument.

(Struct Res) In this case P = (νn)P ′, Q = (νn)Q′ and P ′ ≡ Q′. For (1), suppose (νn)P ′ > C .

This can only be derived using (Harden Res), so P ′ > C ′ with C = (νn)C ′. By the

induction hypothesis, Q′ > D′ with C ′ ≡ D′. By (Harden Res), Q = (νn)Q′ > (νn)D′.
By Lemma 26, (νn)C ′ ≡ (νn)D′. Part (2) follows by a symmetric argument.

(Struct Par) In this case P = P ′ | R, Q = Q′ | R and P ′ ≡ Q′. For (1), suppose

P ′ | R > (ν~r)〈P1〉P2. This judgment must be derived from one of the following rules:

(Harden Par 1) Here P ′ > (ν~r)〈P1〉P ′2 with P2 = P ′2 | R and {~r} ∩ fn(R) = ?. By the

induction hypothesis, Q′ > (ν~r)〈Q1〉Q′2 with P1 ≡̂ Q1 and P ′2 ≡ Q′2. Let Q2 = Q′2 | R.

By (Harden Par 1), Q = Q′ | R > (ν~r)〈Q1〉Q2. Moreover, P ′2 | R ≡ Q′2 | R, that is,

P2 ≡ Q2.

(Harden Par 2) Here R > (ν~r)〈P1〉P ′2 with P2 = P ′ | P ′2 and {~r} ∩ fn(P ′) = ?. By

Lemma 20, fn(P ′) = fn(Q′), so {~r} ∩ fn(Q′) = ?. Let Q2 = Q′ | P ′2. By (Harden Par

2), Q′ | R > (ν~r)〈P1〉Q2. Moreover, P ′ | P ′2 ≡ Q′ | P ′2, that is, P2 ≡ Q2.

Part (2) follows by a symmetric argument.

We omit the other cases.

Proof of Proposition 6. If P ≡ Q and Q > (ν~r)〈Q′〉Q′′, there are P ′ and P ′′ with

P > (ν~r)〈P ′〉P ′′, P ′ ≡ Q′, and P ′′ ≡ Q′′.
Proof. The proof follows by combining Lemmas 25 and 31.

Proof of Proposition 7. P ↓ n if and only if there exist~p, P ′, P ′′ such that P > (ν~p)〈n[P ′]〉P ′′
and n /∈ {~p}.

Proof. First, suppose P ↓ n, that is, there are ~p, R′, R′′ with n /∈ {~p} and P ≡ R where

R = (ν~p)(n[R′] | R′′). Given (Struct Res Amb) and (Struct Res Par), we may assume that

{~p} ⊆ fn(R′) ∩ fn(R′′). Therefore, we may derive R > (ν~p)〈n[R′]〉(0 | R′′). By Lemma 31,

P ≡ R implies there are P ′, P ′′ such that P > (ν~p)〈n[P ′]〉P ′′, P ′ ≡ R′ and P ′′ ≡ R′′.
Second, suppose P > (ν~p)〈n[P ′]〉P ′′ and n /∈ {~p}. By Lemma 5, P ≡ (ν~p)(n[P ′] | P ′′).

Therefore, P ↓ n.
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We end this section by exploring another consequence of Lemma 31.

Proposition 32. For all primes P and Q, if P ≡ Q, then P ≡̂ Q.

Proof. Since P and Q are primes, their only hardenings are P > (ν)〈P 〉0 and Q >

(ν)〈Q〉0. Then, by Lemma 31, P ≡̂ Q.

A corollary of Lemma 25 and Proposition 32 is that for all primes P and Q, P ≡ Q if

and only if P ≡̂ Q. For example, it follows that m[P ] ≡ n[Q] if and only if m = n and

P ≡ Q.

A.3. Proofs omitted from Section 4.2

This section provides a proof of Theorem 9, that P → Q if and only if there is R with

P
τ−→ R and R ≡ Q. We prove each direction separately, starting with the right-to-left

implication.

First, we need the following lemma.

Lemma 33. If P
M−→ P ′, then P ≡ (ν~p)(P1 | M.P2) with P ′ ≡ (ν~p)(P1 | P2) and fn(M) ∩

{~p} = ?.

Proof. Only (Trans Cap) may derive the judgment P
M−→ P ′. So we have P >

(ν~p)〈M.P1〉P2, P ′ = (ν~p)(P1 | P2), M ∈ {in n, out n, open n} and n /∈ {~p}. By Proposi-

tion 5, P ≡ (ν~p)(M.P1 | P2). Moreover, fn(M) = {n}, so the result follows.

We use the following to establish the right-to-left direction of Theorem 9.

Proposition 34. If P
τ−→ P ′, then P → P ′.

Proof. The proof is by induction on the derivation of P
τ−→ P ′. We examine one case:

(Trans In) In this case we have P > (ν~p)〈n[Q]〉R, Q
in m−→ Q′, R > (ν~r)〈m[R′]〉R′′ and P ′ =

(ν~p,~r)(m[n[Q′] | R′] | R′′) with {~r} ∩ fn(n[Q]) = ?. By Lemma 5, P ≡ (ν~p)(n[Q] | R).

By Lemma 33, Q ≡ (ν~q)(Q1 | in m.Q2), with Q′ ≡ (ν~q)(Q1 | Q2) and n /∈ {~q}. Since

the names ~q are bound, we may assume that {~q} ∩ fn(m[R′]) = ?. By Lemma 5,

R ≡ (ν~r)(m[R′] | R′′). Hence, we have

P ≡ (ν~p)(n[(ν~q)(Q1 | in n.Q2)] | (ν~r)(m[R′] | R′′))
≡ (ν~p,~r)((ν~q)(n[Q1 | in n.Q2] | m[R′]) | R′′)
→ (ν~p,~r)((ν~q)(m[n[Q1 | Q2] | R′]) | R′′)
≡ (ν~p,~r)(m[n[Q′] | R′] | R′′)
= P ′.

The other cases follow similarly.

Next, we prove a couple of lemmas needed for proving the left-to-right direction of

Theorem 9.

Lemma 35. If P ≡ Q and Q
α−→ Q′, there is P ′ such that P

α−→ P ′ and P ′ ≡ Q′.
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Proof. The proof is by induction on the derivation of Q
α−→ Q′:

(Trans Cap) We have Q > (ν~r)〈M.Q1〉Q2, Q′ = (ν~r)(Q1 | Q2) and M ∈ {in n, out n, open n},
with n /∈ {~r}. By Proposition 6, there are P1 and P2 with P > (ν~r)〈M.P1〉P2, P1 ≡ Q1

and P2 ≡ Q2. By (Trans Cap), P
M−→ (ν~r)(P1 | P2), and we have that (ν~r)(P1 | P2) ≡ Q′.

(Trans In) We have Q > (ν~q)〈n[Q1]〉Q2, Q1
in m−→ Q′1, Q2 > (ν~r)〈m[Q′2]〉Q′′2, and Q′ =

(ν~q,~r)(m[n[Q′1] | Q′2] | Q′′2) with {~r}∩fn(n[Q1]) = ? and {~r}∩{~q} = ?. By Proposition 6,

we have P > (ν~q)〈n[P1]〉P2, with P1 ≡ Q1 and P2 ≡ Q2. By the induction hypothesis,

P1
in m−→ P ′1 with P ′1 ≡ Q′1. By Proposition 6, P2 > (ν~r)〈m[P ′2]〉P ′′2 , with P ′2 ≡ Q′2 and

P ′′2 ≡ Q′′2. By Lemma 20, fn(n[P1]) = fn(n[Q1]), and therefore {~r} ∩ fn(n[P1]) = ?.

Let P ′ = (ν~q,~r)(m[n[P ′1] | P ′2] | P ′′2 ). By (Trans In), we have P
τ−→ P ′. Moreover,

P ′ ≡ (ν~q,~r)(m[n[Q′1] | Q′2] | Q′′2), that is, P ′ ≡ Q′.
(Trans Out) We have Q > (ν~p)〈n[Q1]〉Q2, Q1 > (ν~q)〈m[Q3]〉Q4, and Q3

out n−→ Q′3, with

Q′ = (ν~p)(Q2 | (ν~q)(n[Q4] | m[Q′3])) and n /∈ {~q}. By Proposition 6, P > (ν~p)〈n[P1]〉P2,

with P1 ≡ Q1 and P2 ≡ Q2. By Proposition 6, P1 > (ν~q)〈m[P3]〉P4, with P3 ≡ Q3 and

P4 ≡ Q4. By the induction hypothesis, P3
out n−→ P ′3 with P ′3 ≡ Q′3. Let P ′ = (ν~p)(P2 |

(ν~q)(n[P4] | m[P ′3])). By (Trans Out), we have P
τ−→ P ′. Moreover, P ′ ≡ (ν~p)(Q2 |

(ν~q)(n[Q4] | m[Q′3])), that is, P ′ ≡ Q′.
(Trans Amb) We have Q > (ν~r)〈n[Q1]〉Q2, Q1

τ−→ Q′1, Q′ = (ν~r)(n[Q′1] | Q2). By Propo-

sition 6, P > (ν~r)〈n[P1]〉P2 with P1 ≡ Q1 and P2 ≡ Q2. By the induction hypothesis,

P1
τ−→ P ′1 with P ′1 ≡ Q′1. Let P ′ = (ν~r)(n[P ′1] | P2). By (Trans Amb), P

τ−→ P ′.
Moreover, P ′ ≡ (ν~r)(n[Q′1] | Q2), that is, P ′ ≡ Q′.

The other cases, (Trans Open) and (Trans I/O), follow similarly.

Lemma 36.

(1) If P
α−→ P ′ and n /∈ fn(α), there is Q with (νn)P

α−→ Q and Q ≡ (νn)P ′.
(2) If (νn)P

α−→ Q and n /∈ fn(α), there is P ′ with P
α−→ P ′ and Q ≡ (νn)P ′.

Proof. The proof is by inductions on the derivations of P
α−→ P ′ and (νn)P

α−→ Q,

respectively. We omit the details.

The following establishes the left-to-right direction of Theorem 9.

Proposition 37. If P → Q, then P
τ−→≡ Q.

Proof. The proof is by induction on the derivation of P → Q. The only interesting case

is (Red ≡). We omit the other cases, which are routine.

(Red ≡) Here, P ≡ P ′, P ′ → Q′ and Q′ ≡ Q. By the induction hypothesis, P ′ τ−→≡ Q′.
By (Struct Trans), this and Q′ ≡ Q imply P ′ τ−→≡ Q. By Lemma 35, P ≡ P ′ and

P ′ τ−→≡ Q imply that P
τ−→≡ Q.

Proof of Theorem 9. P → Q if and only if P
τ−→≡ Q.

Proof. The proof follows by combining Propositions 34 and 37 and rule (Red ≡).
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A.4. Proofs omitted from Section 4.4

We provide proofs for Lemma 13 and Theorem 15.

Proof of Lemma 13. If H{P } > (ν~p)〈P1〉P2, then either:

(1) H > (ν~p)〈n[H ′]〉P2 and P1 = n[H ′{P }], or

(2) H > (ν~p)〈P1〉H ′ and P2 = H ′{P }, or

(3) P > (ν~p)〈P1〉P ′, H ≡ − | R, P2 ≡ P ′ | R, and {~p} ∩ fn(R) = ?.

Proof. The proof is by induction on the derivation of H{P } > (ν~p)〈P1〉P2:

(Harden Par 1) Then H{P } = Q1 | Q2, Q1 > (ν~p)〈P1〉P3, and P2 = P3 | Q2, with {~p} ∩
fn(Q2) = ?. Given that H{P } = Q1 | Q2, there are three cases to consider:

— Here H = − and P = Q1 | Q2. Case (3) of the lemma pertains, with R = 0.

— Here H = Q1 | H2 and Q2 = H2{P }. By (Harden Par 1) and {~p} ∩ fn(Q2) = ?,

we may derive H{R} > (ν~p)〈P1〉(P3 | H2{R}) for all R with {~p} ∩ fn(R) = ?. Let

H ′ = P3 | H2. We have H > (ν~p)〈P1〉H ′, and, moreover, P2 = P3 | Q2 = P3 |
H2{P } = H ′{P }. So case (2) of the lemma pertains.

— Here H = H1 | Q2 and Q1 = H1{P }. By the induction hypothesis, H1{P } >
(ν~p)〈P1〉P3 implies that one of three cases holds:

(1) H1 > (ν~p)〈n[H ′]〉P3 and P1 = n[H ′{P }]. We can derive H > (ν~p)〈n[H ′]〉(P3 | Q2)

since {~p} ∩ fn(Q2) = ?. Therefore, H > (ν~p)〈n[H ′]〉P2, as required to establish

case (1) of the lemma.

(2) H1 > (ν~p)〈P1〉H ′ and P3 = H ′{P }. We have H > (ν~p)〈P1〉(H ′ | Q2) since

{~p} ∩ fn(Q2) = ?. Moreover, P2 = P3 | Q2 = H ′{P } | Q2. This establishes case

(2) of the lemma.

(3) P > (ν~p)〈P1〉P ′, H1 ≡ − | R, P3 ≡ P ′ | R and {~p} ∩ fn(R) = ?. We have

H ≡ − | R | Q2, P2 ≡ P ′ | R | Q2 and {~p} ∩ fn(R | Q2) = ?. This establishes

case (3) of the lemma.

We omit the remaining cases.

For the purposes of proving Theorem 15, we adopt the following notation.

Interaction between a harness and a process: H • P ; R

Let H • P ; R if and only if there are H ′ and~r with {~r} ∩ fn(P ) = ?,

and one of the following holds:

(Inter In) H ≡ (ν~r)H ′{m[− | R′] | n[R′′]}, P in n−→ P ′,
and R ≡ (ν~r)H ′{n[m[P ′ | R′] | R′′]}

(Inter Out) H ≡ (ν~r)H ′{n[m[− | R′] | R′′]}, P out n−→ P ′,
and R ≡ (ν~r)H ′{m[P ′ | R′] | n[R′′]}

(Inter Open) H ≡ (ν~r)H ′{− | n[R′]}, P open n−→ P ′,
and R ≡ (ν~r)H ′{P ′ | R′}

(Inter Input) H ≡ (ν~r)H ′{− | 〈M〉}, P > (ν~p)〈(x).P ′〉P ′′,
and R ≡ (ν~r)H ′{(ν~p)(P ′{x←M} | P ′′)}, with {~p} ∩ fn(M) = ?
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(Inter Output) H ≡ (ν~r)H ′{− | (x).R′}, P > (ν~p)〈〈M〉〉P ′,
and R ≡ (ν~r)H ′{(ν~p)(P ′ | R′{x←M})}, with {~p} ∩ fn(R′) = ?

(Inter Amb) P > (ν~p)〈n[Q]〉P ′ and one of the following holds:

(1) Q
in m−→ Q′, H ≡ (ν~r)H ′{− | m[R′]}, {~p} ∩ fn(m[R′]) = ?,

and R ≡ (ν~r)H ′{(ν~p)(P ′ | m[n[Q′] | R′])}
(2) Q

out m−→ Q′, H ≡ (ν~r)H ′{m[− | R′]}, {~p} ∩ fn(m[R′]) = ?,

and R ≡ (ν~r)H ′{(ν~p)(n[Q′] | m[P ′ | R′])}
(3) H ≡ (ν~r)H ′{m[R′ | in n.R′′] | −}, {~p} ∩ fn(m[R′ | in n.R′′]) = ?,

and R ≡ (ν~r)H ′{(ν~p)(n[Q | m[R′ | R′′]] | P ′)}
(4) H ≡ (ν~r)H ′{− | open n.R′}, n /∈ {~p},

and R ≡ (ν~r)H ′{(ν~p)(Q | P ′) | R′}
The following lemmas concerning the H • P ; R notation may easily be checked.

(Lemma 40 is not a simple consequence of Lemma 39 since n may occur free in H .)

Lemma 38. If H • P ; R and H ≡ H ′ and R ≡ R′, then H ′ • P ; R′.

Lemma 39. If H • P ; R, then H ′{H} • P ; H ′{R}.
Lemma 40. If H • P ; R and n /∈ fn(P ), then (νn)H • P ; (νn)R.

The following lemma is a simple specialisation of Lemma 13:

Lemma 41. If H{P } > (ν~p)〈n[P1]〉P2, then either:

(1) H ≡ (ν~p)(n[H ′] | P2) and P1 = H ′{P }, or

(2) H ≡ (ν~p)(n[P1] | H ′) and P2 = H ′{P }, or

(3) P > (ν~p)〈n[P1]〉P ′, H ≡ − | R, P2 ≡ P ′ | R, and {~p} ∩ fn(R) = ?.

The next two lemmas follow from the definition of the M-transitions in terms of

hardening.

Lemma 42. If H{P } M−→ R for M ∈ {in n, out n, open n}, then either:

(1) H ≡ (ν~r)(M.R′ | H ′), R ≡ (ν~r)(R′ | H ′{P }), {~r} ∩ ({n} ∪ fn(P )) = ?, or

(2) H ≡ − | R′, P M−→ P ′, and R ≡ P ′ | R′.
Lemma 43. If P | Q M−→ R, then either:

(1) P
M−→ P ′ and R ≡ P ′ | Q, or

(2) Q
M−→ Q′ and R ≡ P | Q′.

The following proposition is the main fact we need to prove in order to establish

Theorem 15.

Proposition 44. If H{P } τ−→ R, then one of the following holds:

(1) there is a reduction P → P ′ with R ≡ H{P ′}, or

(2) there is a reduction H → H ′ with R ≡ H ′{P }, or

(3) H • P ; R.
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Proof. The proof is by induction on the derivation of H{P } τ−→ R:

(Trans Open) Here, H{P } > (ν~q)〈n[Q1]〉Q2 and Q2

open n−→ Q′2 and R = (ν~q)(Q1 | Q′2). We

may assume that {~q}∩ fn(P ) = ?. By Lemma 41, H{P } > (ν~q)〈n[Q1]〉Q2 implies there

are three cases to consider:

(1) H ≡ (ν~q)(n[H ′] | Q2) and Q1 = H ′{P }. Let H ′′ = (ν~q)(H ′ | Q′2). In this case we

can see, for all Q, that H{Q} → H ′′{Q}, which is to say that H → H ′′. Moreover,

R ≡ (ν~q)(H ′{P } | Q′2) ≡ H ′′{P }. Hence, case (2) pertains.

(2) H ≡ (ν~q)(n[Q1] | H1) and Q2 = H1{P }. By Lemma 42, H1{P } open n−→ Q′2 implies

either:

(a) H1 ≡ (ν~r)(open n.R′ | H2), Q′2 ≡ (ν~r)(R′ | H2{P }) and {~r} ∩ ({n} ∪ fn(P )) = ?.

Let H ′ = (ν~q)(Q1 | (ν~r)(R′ | H2)). We have that H{Q} → H ′{Q} for all Q, that

is, H → H ′. Moreover, R ≡ (ν~q)(Q1 | (ν~r)(R′ | H2{P })) ≡ H ′{P }. Hence, case

(2) pertains.

(b) H1 ≡ − | R′, P open n−→ P ′ and Q′2 ≡ P ′ | R′. From H ≡ (ν~q)(R′ | − | n[Q1]),

P
open n−→ P ′ and R ≡ (ν~q)(Q1 | P ′ | R′) ≡ (ν~q)(R′ | P ′ | Q1) we may derive

H • P ; R using (Inter Open). Hence, case (3) pertains.

(3) P > (ν~q)〈n[Q1]〉P ′, H ≡ − | R′, Q2 ≡ P ′ | R′ and {~q} ∩ fn(R′) = ?. From

P > (ν~q)〈n[Q1]〉P ′ we get P ≡ (ν~q)(n[Q1] | P ′). By Lemma 35, Q2 ≡ P ′ | R′ and

Q2

open n−→ Q′2 imply there is Q′′2 such that P ′ | R′ open n−→ Q′′2 and Q′′2 ≡ Q′2. By Lemma 43,

there are two cases to consider:

(a) P ′
open n−→ P ′′ and Q′′2 ≡ P ′′ | R′. We have P → (ν~q)(Q1 | P ′′), H ≡ − | R′ and

R ≡ (ν~q)(Q1 | Q′2) ≡ (ν~q)(Q1 | P ′′ | R′) ≡ (ν~q)(Q1 | P ′′) | R′. Hence, case (1)

pertains.

(b) R′
open n−→ R′′ and Q′′2 ≡ P ′ | R′′. From R′

open n−→ R′′ it follows that R′ ≡ (ν~r)(R1 |
open n.R2) with R′′ ≡ (ν~r)(R1 | R2) and n /∈ {~r}. We have:

H ≡ (ν~r)(R1 | − | open n.R2)

R ≡ (ν~q)(Q1 | Q′2)

≡ (ν~q)(Q1 | P ′ | R′′)
≡ (ν~q)(Q1 | P ′ | (ν~r)(R1 | R2))

≡ (ν~r)(R1 | (ν~q)(Q1 | P ′) | R2),

since we may assume that {~q} ∩ fn(R1 | R2) = ? and {~r} ∩ fn(Q1 | P ′) = ? and

{~q} ∩ {~r} = ?. From {~q} ∩ fn(R′) = ? and R′
open n−→ R′′ it follows that n /∈ {~q}.

From P > (ν~q)〈n[Q1]〉P ′, n /∈ {~q} and the two displayed equations, we may

derive H • P ; R using clause (4) of (Inter Amb). Hence, case (3) pertains.

(Trans Amb) Here, H{P } > (ν~q)〈n[Q1]〉Q2, Q1
τ−→ Q′1 and R = (ν~q)(n[Q′1] | Q2). From

H{P } > (ν~q)〈n[Q1]〉Q2 it follows that {~q} ∩ fn(P ) = ?, since fn(P ) ⊆ fn(H{P }). By

Lemma 13, H{P } > (ν~q)〈n[Q1]〉Q2 implies there are three cases to consider:

(1) H > (ν~q)〈n[H ′]〉Q2 and Q1 = H ′{P }. By the induction hypothesis, we have that

Q1 = H ′{P } τ−→ Q′1 implies one of the following:
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(a) Here P → P ′ with Q′1 ≡ H ′{P ′}. We have R ≡ (ν~q)(n[H ′{P ′}] | Q2) and

H ≡ (ν~q)(n[H ′] | Q2), so case (1) pertains.

(b) Here H ′ → H ′′ with Q′1 ≡ H ′′{P }. From H > (ν~q)〈n[H ′]〉Q2 and H ′ → H ′′ we

can derive H → (ν~q)(n[H ′′] | Q2). We have R ≡ (ν~q)(n[H ′′{P }] | Q2), so case (2)

pertains.

(c) Here H ′ • P ; Q′1. From H > (ν~q)〈n[H ′]〉Q2 we get that H ≡ (ν~q)(n[H ′] |
Q2). Also, R ≡ (ν~q)(n[Q′1] | Q2). By Lemma 39, H ′ • P ; Q′1 implies that

n[H ′] | Q2 • P ; n[Q′1] | Q2. By Lemma 40, {~q} ∩ fn(P ) = ? implies that

(ν~q)(n[H ′] | Q2) • P ; (ν~q)(n[Q′1] | Q2). By Lemma 38, H • P ; R. Hence case

(3) pertains.

(2) H > (ν~q)〈n[Q1]〉H1 and Q2 = H1{P }. Let H ′ = (ν~q)(n[Q′1] | H1). Since H ≡
(ν~q)(n[Q1] | H1) and Q1

τ−→ Q′1, we get that H → H ′. Moreover, R ≡ (ν~q)(n[Q′1] |
H1{P }) ≡ H ′{P }. Hence case (2) pertains.

(3) P > (ν~q)〈n[Q1]〉P ′, H ≡ − | R′, Q2 ≡ P ′ | R′ and {~q} ∩ fn(R′) = ?. Let P ′ =

(ν~q)(n[Q′1] | P ′). From Q1
τ−→ Q′1 and P ≡ (ν~q)(n[Q1] | P ′), we get that P → P ′.

Moreover, R ≡ (ν~q)(n[Q′1] | P ′ | R′) ≡ H{P ′}. Hence case (1) pertains.

The cases for the rules (Trans In), (Trans Out) and (Trans I/O) are proved by arguments

similar to that for (Trans Open). Since the rule (Trans Cap) cannot derive a τ-transition,

this completes the analysis of all the rules that may derive H{P } τ−→ R.

We now prove Theorem 15, which we restate in terms of the interaction predicate,

H • P ; R.

Proof of Theorem 15. H{P } → R if and only if:

(Act Proc) P → P ′ with R ≡ H{P ′}, or

(Act Har) H → H ′ with R ≡ H ′{P }, or

(Act Inter) H • P ; R.

Proof. The right-to-left direction is a routine calculation. For the left-to-right direction,

suppose that H{P } → R. By Theorem 9, there is Q with H{P } τ−→ Q and Q ≡ R. By

Proposition 44, there are three cases to consider:

(1) There is a reduction P → P ′ with Q ≡ H{P ′}. From Q ≡ R we get R ≡ H{P ′}, so

(Act Proc) applies.

(2) There is a reduction H → H ′ with Q ≡ H ′{P }. From Q ≡ R we get R ≡ H ′{P }, so

(Act Har) applies.

(3) We have H • P ; Q. By Lemma 38, Q ≡ R implies that H • P ; R. Therefore, (Act

Inter) applies.

A.5. Proofs about replication

In this section, we prove a series of lemmas about replicated processes. These lemmas are

needed in the next section, in the proof of Proposition 61, that the equivalence implicit in

the context lemma is a congruence with respect to replication.
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We use the notation Pk as an abbreviation for k copies of P running in parallel: we

inductively define P 0 ∆
= 0 and Pk+1 ∆

= P | Pk .

Lemma 45. If !P > (ν~p)〈Q〉R, there is P ′ such that P > (ν~p)〈Q〉P ′ with R = P ′ | !P and

{~p} ∩ fn(P ) = ?.

Proof. The judgment !P > (ν~p)〈Q〉R can only be derived using the rule (Harden Repl),

from a judgment P > (ν~p)〈Q〉P ′ such that R = P ′ | !P . By Lemma 22, P > (ν~p)〈Q〉P ′
implies that fn(P ) = fn((ν~p)〈Q〉P ′), and therefore that {~p} ∩ fn(P ) = ?.

Lemma 46. If !P
M−→ Q, there is R such that P

M−→ R and Q ≡ R | !P .

Proof. The judgment !P
M−→ Q can only be derived using (Trans Cap) from a judgment

!P > (ν~p)〈M.P ′〉P ′′ with fn(M) ∩ {~p} = ? and Q = (ν~p)(P ′ | P ′′). By Lemma 45, there is

P ′′′ with P > (ν~p)〈M.P ′〉P ′′′, P ′′ = P ′′′ | !P and {~p} ∩ fn(P ) = ?. Let R = (ν~p)(P ′ | P ′′′).
By (Trans Cap), we have P

M−→ R. Moreover, Q = (ν~p)(P ′ | P ′′′ | !P ) ≡ R | !P .

Lemma 47. If !P
τ−→ Q, there is R with P | P τ−→ R and Q ≡ R | !P .

Proof. We use a case analysis of the derivation of !P
τ−→ Q:

(Trans Amb) Here, !P
τ−→ (ν~p)(n[Q′] | P ′) derives from !P > (ν~p)〈n[Q]〉P ′ and Q

τ−→ Q′.
By Lemma 45, !P > (ν~p)〈n[Q]〉P ′ implies there is R′ such that P > (ν~p)〈n[Q]〉R′,
P ′ = R′ | !P and fn(P ) ∩ {~p} = ?. By (Harden Par 1), P > (ν~p)〈n[Q]〉R′ and

{~p} ∩ fn(P ) = ? imply that P | P > (ν~p)〈n[Q]〉(R′ | P ). By (Trans Amb), this and

Q
τ−→ Q′ imply that P | P τ−→ R, where R = (ν~p)(n[Q′] | R′ | P ). Finally, we may

calculate (ν~p)(n[Q′] | P ′) = (ν~p)(n[Q′] | R′ | !P ) ≡ (ν~p)(n[Q′] | R′ | P | !P ) ≡ R | !P .

(Trans In) Here, !P
τ−→ (ν~p,~r)(m[n[Q′] | R1] | R2) derives from the judgments !P >

(ν~p)〈n[Q]〉R, Q
in m−→ Q′ and R > (ν~r)〈m[R1]〉R2, with {~r}∩ fn(n[Q]) = ? and {~r}∩{~p} =

?. By Lemma 45, !P > (ν~p)〈n[Q]〉R implies there is R′ such that P > (ν~p)〈n[Q]〉R′
and R ≡ R′ | !P with {~p} ∩ fn(P ) = ?.

By Proposition 6 and (Struct Symm), R > (ν~r)〈m[R1]〉R2 and R ≡ R′ | !P imply there

are R′1 and R′2 such that R′ | !P > (ν~r)〈m[R′1]〉R′2, R1 ≡ R′1 and R2 ≡ R′2. Only two

rules may derive the judgment R′ | !P > (ν~r)〈m[R′1]〉R′2:

(Harden Par 1) In this case R′ > (ν~r)〈m[R′1]〉R′′ with R′2 = R′′ | !P and {~r} ∩ fn(!P ) =

?. By (Harden Par 1), P > (ν~p)〈n[Q]〉R′ and {~p} ∩ fn(P ) = ? imply that P | P >

(ν~p)〈n[Q]〉(R′ | P ). By (Harden Par 1), R′ > (ν~r)〈m[R′1]〉R′′ and {~r} ∩ fn(P ) = ?
imply that R′ | P > (ν~r)〈m[R′1]〉(R′′ | P ). By (Trans In), P | P > (ν~p)〈n[Q]〉(R′ | P ),

Q
in m−→ Q′ and R′ | P > (ν~r)〈m[R′1]〉(R′′ | P ) imply that P | P τ−→ (ν~p,~r)(m[n[Q′] |

R′1] | R′′ | P ). We know that fn(P ) ∩ {~p,~r} = ?, and hence we may calculate

(ν~p,~r)(m[n[Q′] | R1] | R2) ≡ (ν~p,~r)(m[n[Q′] | R′1] | R′2)

= (ν~p,~r)(m[n[Q′] | R′1] | R′′ | !P )

≡ (ν~p,~r)(m[n[Q′] | R′1] | R′′ | P ) | !P .
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(Harden Par 2) In this case !P > (ν~r)〈m[R′1]〉R′′ with R′2 = R′ | R′′ and {~r} ∩
fn(R′) = ?. By Lemma 45, !P > (ν~r)〈m[R′1]〉R′′ implies there is R′′′ such that

P > (ν~r)〈m[R′1]〉R′′′ with R′′ = R′′′ | !P and {~r} ∩ fn(P ) = ?. By (Harden Par 1),

P > (ν~p)〈n[Q]〉R′ and {~p} ∩ fn(P ) = ? imply that P | P > (ν~p)〈n[Q]〉(R′ | P ). By

(Harden Par 2), {~r} ∩ fn(R′) = ? and P > (ν~r)〈m[R′1]〉R′′′ imply that R′ | P >

(ν~r)〈m[R′1]〉(R′ | R′′′). By (Trans In), P | P > (ν~p)〈n[Q]〉(R′ | P ), Q
in m−→ Q′ and

R′ | P > (ν~r)〈m[R′1]〉(R′ | R′′′) imply P | P τ−→ (ν~p,~r)(m[n[Q′] | R′1] | R′ | R′′′). We

know that fn(P ) ∩ {~p,~r} = ?, and hence we may calculate

(ν~p,~r)(m[n[Q′] | R1] | R2) ≡ (ν~p,~r)(m[n[Q′] | R′1] | R′ | R′′)
= (ν~p,~r)(m[n[Q′] | R′1] | R′ | (R′′′ | !P ))

≡ (ν~p,~r)(m[n[Q′] | R′1] | R′ | R′′′) | !P .
The other cases – (Trans Out), (Trans Open) and (Trans I/O) – follow by similar

arguments.

Lemma 48. If H{!P } → R, there is H ′ such that R ≡ H ′{!P } and for all k, H{Pk+2} →
H ′{Pk}.

Proof. The proof is a case analysis induced by Theorem 15. We omit the details.

Lemma 49. If H{!P } ⇓ n, there is k such that H{Pk} ⇓ n.
Proof. The proof is by induction on the derivation of H{!P } ⇓ n:

(Conv Exh) Here, H{!P } ↓ n. By Proposition 14, this implies that either (1) H{Q} ↓ n
for all Q, or (2) !P ↓ n, and for all Q, we have Q ↓ n implies that H{Q} ↓ n. In

case (1), let k = 1 and we have H{P } ↓ n. In case (2), Proposition 7 implies that

!P > (ν~p)〈n[P ′]〉P ′′ with n /∈ {~p}, for some names ~p and processes P ′ and P ′′. By

Lemma 45, it follows that there is P ′′′ such that P > (ν~p)〈n[P ′]〉P ′′′ with P ′′ = P ′′′ | !P
and {~p} ∩ fn(P ) = ?. Proposition 7 now yields P ↓ n. Let k = 1 and we get H{P } ↓ n.

(Conv Red) Here, H{!P } → Q and Q ⇓ n. By Lemma 48, H{!P } → Q implies there is

H ′ such that Q ≡ H ′{!P } and, for all j, H{P j+2} → H ′{P j}. By Lemma 2, there

is a derivation of H ′{!P } ⇓ n with the same depth of inference as the derivation of

Q ⇓ n. By the induction hypothesis, there is k such that H ′{Pk} ⇓ n. Now, we have that

H{Pk+2} → H ′{Pk}. By (Conv Red), this and H ′{Pk} ⇓ n imply that H{Pk+2} ⇓ n.

A.6. Proofs omitted from Section 4.3

The purpose of this section is to prove our context lemma, Theorem 12. Roughly speaking,

the context lemma asserts that the distinctions made by all contexts are the same as the

distinctions made by harnesses. To prove the context lemma, it is convenient to introduce

the following auxiliary equivalence, defined in terms of harnesses. Recall that a substitution,

σ, is a list x1←M1, . . . , xk←Mk , where the variables x1, . . . , xk are pairwise distinct and

fv (Mi) = ? for each i ∈ 1..k.
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The equivalence implicit in the context lemma: P ∼ Q
Let P ∼ Q if and only if for all substitutions σ with dom(σ) = fv (P ) ∪ fv (Q),

and for all closed harnesses H and names n, we have H{Pσ} ⇓ n⇔ H{Qσ} ⇓ n.

Next, we prove a series of lemmas, which taken together imply Proposition 64, that the

auxiliary equivalence P ∼ Q is a congruence. The context lemma then follows easily.

Proposition 50. The relation P ∼ Q is an equivalence, that is, reflexive, transitive and

symmetric. Moreover, if P ≡ Q, then P ∼ Q.

Proof. That P ∼ Q is an equivalence follows easily from its definition. Suppose that P ≡
Q. Consider any substitution σ such that fv (P )∪ fv (Q) = dom(σ). Structural congruence is

preserved by substitutions, so Pσ ≡ Qσ. Moreover, structural congruence is a congruence,

so H{Pσ} ≡ H{Qσ}. By Lemma 2, it follows that for all n, we have H{Pσ} ⇓ n ⇔
H{Qσ} ⇓ n. Therefore, P ∼ Q.

Proposition 51. If P ∼ P ′, then P | Q ∼ P ′ | Q.

Proof. Consider any substitution σ with dom(σ) = fv (P | Q)∪ fv (P ′ | Q), and any closed

harness H and any name n. Let H ′ = H{− | Qσ}. Since fv (Q) ⊂ dom(σ), the harness H ′
is closed. Let σ′ be the restriction of σ to the domain fv (P ) ∪ fv (P ′). We have

H{(P | Q)σ} = H ′{Pσ′}
H{(P ′ | Q)σ} = H ′{P ′σ′}.

Now, suppose H{(P | Q)σ} ⇓ n, that is, H ′{Pσ′} ⇓ n. This and P ∼ P ′ imply that

H ′{P ′σ′} ⇓ n, which is to say, H{(P ′ | Q)σ} ⇓ n. A symmetric argument establishes that

H{(P ′ | Q)σ} ⇓ n implies H{(P | Q)σ} ⇓ n. Therefore, P | Q ∼ P ′ | Q.

Lemma 52. If m 6= n, then (νn)P ⇓ m⇔ P ⇓ m.

Proof. An induction on the derivation of P ⇓ m establishes that (νn)P ⇓ m, using

(Harden Res) and Proposition 7. On the other hand, an induction on the derivation of

(νn)P ⇓ m establishes that P ⇓ m, using Lemma 2, Theorem 9 and Lemma 36.

Proposition 53. If P ∼ P ′, then (νn)P ∼ (νn)P ′.

Proof. Consider any substitution σ with dom(σ) = fv ((νn)P ) ∪ fv ((νn)P ′), that is,

dom(σ) = fv (P ) ∪ fv (P ′). Consider any closed harness H and any name m. Since the

name n is bound, we may assume that n /∈ fn(σ(x)) for all x ∈ dom(σ), that n /∈ fn(H) and

that m 6= n. We have

H{((νn)P )σ} = (νn)(H{Pσ})
H{((νn)P ′)σ} = (νn)(H{P ′σ}).

By definition of P ∼ P ′, it follows that H{Pσ} ⇓ m ⇔ H{P ′σ} ⇓ m. By Lemma 52, it

follows that (νn)(H{Pσ}) ⇓ m ⇔ (νn)(H{P ′σ}) ⇓ m, which is to say that H{((νn)P )σ} ⇓
m⇔ H{((νn)P ′)σ} ⇓ m. It follows that (νn)P ∼ (νn)P ′.
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Lemma 54. If M is not a name and H{M[P ]} ⇓ m, then H{0} ⇓ m.

Proof. The proof is by induction on the derivation of H{M[P ]} ⇓ m, with appeal to

Proposition 14, and the activity lemma, Theorem 15. An ambient M[P ], where M is not

a name, cannot participate in any transitions.

Proposition 55. If P ∼ P ′, then M[P ] ∼M[P ′].

Proof. Consider any substitution σ with dom(σ) = fv (M[P ]) ∪ fv (M[P ′]), that is,

dom(σ) = fv (M) ∪ fv (P ) ∪ fv (P ′). Consider any closed harness H and any name m.

Either Mσ is a name n, or not. If not, we get that H{(M[P ])σ} ⇓ m ⇔ H{0} ⇓ m ⇔
H{(M[P ′])σ} ⇓ m from Lemma 18 and Lemma 54. On the other hand, suppose that Mσ

is the name n. Let H ′ = H{n[−]}. Given that H is closed, so is H ′. We have

H{(M[P ])σ} = H ′{Pσ}
H{(M[P ′])σ} = H ′{P ′σ}.

Now, suppose H{(M[P ])σ} ⇓ m, that is, H ′{Pσ} ⇓ m. This and P ∼ P ′ imply that

H ′{P ′σ} ⇓ m, which is to say, H{(M[P ′])σ} ⇓ m. A symmetric argument establishes that

H{(M[P ′])σ} ⇓ m implies H{(M[P ])σ} ⇓ m. Therefore, whether or not M is a name,

M[P ] ∼M[P ′].

The relation M > ε in the following lemma is as defined in Appendix A.2.

Lemma 56. M.P → Q if and only if M > ε and P → Q.

Proof. The right-to-left direction follows from the fact that M > ε implies that M.P ≡
P . For the other direction, M.P → Q implies, by Theorem 9, that there is R with

M.P
τ−→ R and R ≡ Q. An inspection of the rules for deriving τ-transitions reveals that

the first step in deriving M.P
τ−→ R is a hardening M.P > C , where the prime of the

concretion C is either an ambient or an output. Therefore, the second case of Lemma 28

must hold, and we have that M > ε and P > C . It follows that P
τ−→ R, and therefore

that P → Q.

Lemma 57. If M.P
N−→ P ′, then either:

(1) M > N.N ′ and P ′ ≡ N ′.P , or

(2) M > ε and P
N−→ P ′.

Proof. By definition, M.P
N−→ P ′ implies that M.P > (ν~p)〈N.P1〉P2 with P ′ = (ν~p)(P1 |

P2) and fn(N) ∩ {~p} = ?. By Lemma 28, one of two cases arises. In the first case,

M > N.N ′, (ν~p)〈N.P1〉P2 = (ν)〈N.R〉0 and R ≡ N ′.P . So ~p = ?, P1 = R and P2 = 0.

Therefore, P ′ ≡ R | 0 ≡ N ′.P . In the second case, M > ε and P > (ν~p)〈N.P1〉P2. By

(Trans Cap), P
N−→ (ν~p)(P1 | P2) = P ′.

Lemma 58. Consider any closed P and P ′ such that P ∼ P ′. If H{M.P } ⇓ n, then

H{M.P ′} ⇓ n.
Proof. The proof is by induction on the derivation of H{M.P } ⇓ n:
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(Conv Exh) Here H{M.P } ↓ n, and we are to show that H{M.P ′} ⇓ n. By Proposition 14,

either (1) H{Q} ↓ n for all Q, or (2) M.P ↓ n, and for all Q, we have Q ↓ n implies that

H{Q} ↓ n. In case (1), we immediately get that H{M.P ′} ↓ n, and hence H{M.P ′} ⇓ n
by (Conv Exh). In case (2), M.P ↓ n implies that M.P > (ν~r)〈n[R1]〉R2 with n /∈ {~r}
by Proposition 7. By Lemma 28, M.P > (ν~r)〈n[R1]〉R2 implies that M > ε and

P > (ν~r)〈n[R1]〉R2. (The first clause of Lemma 28 cannot apply since the prime of

the concretion (ν~r)〈n[R1]〉R2 is an ambient and not an action.) By Proposition 7 and

(Conv Exh), we get that P ⇓ n. Since P ∼ P ′, it follows that P ′ ⇓ n. So there is

P ′′ such that P ′ →∗ P ′′ and P ′′ ↓ n. We have H{M.P ′} ≡ H{P ′} from M > ε, and

H{P ′} →∗ H{P ′′}, and H{P ′′} ↓ n, by the property of H obtained from Proposition 14

above. These three facts imply that H{M.P ′} ⇓ n.
(Conv Red) Here H{M.P } → R and R ⇓ n. By Theorem 15, one of the following cases

must hold:

(Act Proc) Then M.P → R′ with R ≡ H{R′}. By Lemma 56, we have that M > ε and

P → R′. If M > ε, then H{M.P } ≡ H{P }, so H{P } ⇓ n. Since P ∼ P ′, H{P } ⇓ n
implies that H{P ′} ⇓ n. From M > ε, we get that H{M.P ′} ≡ H{P ′}, and therefore

that H{M.P ′} ⇓ n.
(Act Har) Then H → H ′ with R ≡ H ′{M.P }. By Lemma 2, R ≡ H ′{M.P } implies

that H ′{M.P } ⇓ n with the same depth of inference as R ⇓ n. By the induction

hypothesis, we get H ′{M.P ′} ⇓ n too. From H → H ′ we get that H{M.P ′} →
H ′{M.P ′}, and hence that H{M.P ′} ⇓ n.

(Act Inter) Then there are H ′ and~r with {~r} ∩ fn(M.P ) = ?, and one of several cases

holds. We consider just one; the others follow by similar arguments.

(Inter In) Here we have H ≡ (ν~r)H ′{m[− | R′] | n[R′′]}, M.P
in n−→ P ′′ and R ≡

(ν~r)H ′{n[m[P ′′ | R′] | R′′]}. By Lemma 57, M.P
in n−→ P ′′ implies that one of two

cases must hold.

In the first case, M > in n.N ′ and P ′′ ≡ N ′.P . Here, M.P ′ in n−→ N ′.P ′, and

therefore we have

H{M.P ′} τ−→ (ν~r)H ′{n[m[N ′.P ′ | R′] | R′′]}
R ≡ (ν~r)H ′{n[m[N ′.P | R′] | R′′]}.

By the induction hypothesis, R ⇓ n and Lemma 2 imply that

(ν~r)H ′{n[m[N ′.P ′ | R′] | R′′]} ⇓ n
and therefore that H{M.P ′} ⇓ n.
In the second case, M > ε and P

in n−→ P ′′. In this case, H{M.P } ≡ H{P }
and H{M.P ′} ≡ H{P ′}. Therefore H{M.P } ⇓ n and P ∼ P ′ imply that

H{M.P ′} ⇓ n.

Proposition 59. If P ∼ P ′, then M.P ∼M.P ′.
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Proof. Consider any substitution σ with dom(σ) = fv (M.P ) ∪ fv (M.P ′), and any closed

harness H and any name m. By Lemma 58, we get that H{Mσ.Pσ)} ⇓ m if and only if

H{Mσ.P ′σ)} ⇓ m. Hence, M.P ∼M.P ′.

Lemma 60. If H{P } ⇓ n, then H{P | Q} ⇓ n.
Proof. Suppose H{P } ⇓ n. Let H ′ = H{P | −}. We have that H{P } ≡ H{P | 0} =

H ′{0}. Hence, by Lemma 2, H{P } ⇓ n implies H ′{0} ⇓ n. By Lemma 18, this implies

H ′{Q} ⇓ n, which is to say that H{P | Q} ⇓ n.
Proposition 61. If P ∼ P ′, then !P ∼ !P ′.

Proof. Consider any substitution σ with dom(σ) = fv (!P ) ∪ fv (!P ′), that is, dom(σ) =

fv (P )∪fv (P ′). Consider any closed harness H and any name n. Suppose that H{(!P )σ} ⇓ n.
By Lemma 49, there is k such that H{(Pσ)k} ⇓ n, which is to say H{Pkσ} ⇓ n. By

Proposition 51, Pk ∼ P ′k . Therefore, H{Pkσ} ⇓ n implies H{P ′kσ} ⇓ n, which is to say

H{(P ′σ)k} ⇓ n. By Lemma 60, this implies H{(P ′σ)k | !(P ′σ)} ⇓ n. Since H{!P ′σ} ≡
H{(P ′σ)k | !(P ′σ)}, it follows that H{!P ′σ} ⇓ n, that is, H{(!P ′)σ} ⇓ n. By symmetric

reasoning, H{(!P ′)σ} ⇓ n implies H{(!P )σ} ⇓ n.
Lemma 62. Consider any P and P ′ such that P ∼ P ′ and fv (P ) ∪ fv (P ′) ⊆ {x}. If

H{(x).P } ⇓ n, then H{(x).P ′} ⇓ n.
Proof. The proof is by induction on the derivation of H{(x).P } ⇓ n:

(Conv Exh) Here H{(x).P } ↓ n. By Proposition 14, either H{Q} ↓ n for all Q, or (x).P ↓ n.
In the first case, we get H{(x).P ′} ↓ n. In the second case, Proposition 7 implies that

(x).P hardens to a concretion whose prime is an ambient. This is impossible, so the

second case cannot arise.

(Conv Red) Here H{(x).P } → R and R ⇓ n. By Theorem 15, one of the following cases

must hold:

(Act Proc) Then (x).P → R′ with R ≡ H{R′}. This case cannot arise, since (x).P has

no τ-transitions.

(Act Har) Then H → H ′ with R ≡ H ′{(x).P }. By Lemma 2, R ≡ H ′{(x).P } implies

that H ′{(x).P } ⇓ n with the same depth of inference as R ⇓ n. By the induction

hypothesis, we get H ′{(x).P ′} ⇓ n too. From H → H ′ we get that H{(x).P ′} →
H ′{(x).P ′}, and hence that H{(x).P ′} ⇓ n.

(Act Inter) Then H • (x).P ; R. By analysing the rules of interaction, H • (x).P ; R

can only be derived using (Inter Input) given that H ≡ (ν~r)H ′{− | 〈M〉}, (x).P >

(ν~p)〈(x).P1〉P2 and R ≡ (ν~r)H ′{(ν~p)(P1{x←M} | P2)}, with {~p} ∩ fn(M) = ? and

{~r} ∩ fn(P ) = ?. From (x).P > (ν~p)〈(x).P1〉P2, it follows that ~p = ?, P1 = P ,

P2 = 0. Therefore, R ≡ (ν~r)H ′{P {x←M}}. We have that (ν~r)H ′{P {x←M}} ⇓
n. By assumption, this implies that (ν~r)H ′{P ′{x←M}} ⇓ n. Now, H{(x).P ′} ≡
(ν~r)H ′{(x).P ′ | 〈M〉} → (ν~r)H ′{P ′{x←M}}. Therefore, H{(x).P ′} ⇓ n.

Proposition 63. If P ∼ P ′, then (x).P ∼ (x).P ′.
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Proof. Consider any substitution σ with dom(σ) = fv ((x).P ) ∪ fv ((x).P ′), that is,

dom(σ) = (fv (P ) ∪ fv (P ′)) − {x}. From P ∼ P ′ it follows that Pσ ∼ P ′σ and that

fv (Pσ) ∪ fv (P ′σ) ⊆ {x}. Consider any closed harness H and any name n. By Lemma 62,

we get H{(x).Pσ)} ⇓ n if and only if H{(x).P ′σ)} ⇓ n. Hence, (x).P ∼ (x).P ′.

Proposition 64. If P ∼ P ′, then C(P ) ∼ C(Q).

Proof. The proof follows by combining Propositions 50, 51, 53, 55, 59, 61 and 63.

Finally, we prove that the relations P ∼ Q and P ' Q are one.

Proposition 65. If P ∼ Q, then P ' Q.

Proof. We must show for all names n and contexts C with C(P ) and C(Q) closed,

that C(P ) ⇓ n ⇔ C(Q) ⇓ n, assuming that P ∼ Q. By Proposition 64, P ∼ Q implies

that C(P ) ∼ C(Q). Therefore C(P ) ⇓ n ⇔ C(Q) ⇓ n follows from the definition of

C(P ) ∼ C(Q), given that C(P ) and C(Q) are closed.

To show the converse implication, we need the following combinator.

A substitution combinator: subst xM P

subst xM P
∆
= (νm)(νn)(open n | m[〈M〉 | (x).n[out m.open m.P ]])

for {m, n} ∩ fn(M.P ) = ?

Lemma 66. For all P and M, subst xM P ∼ P {x←M}.
Proof. Consider the processes defined by the following, where {m, n} ∩ fn(M.P ) = ?.

R1
∆
= (νm)(νn)(open n | m[〈M〉 | (x).n[out m.open m.P ]])

R2
∆
= (νm)(νn)(open n | m[n[out m.open m.P {x←M}]])

R3
∆
= (νm)(νn)(open n | n[open m.P {x←M}] | m[])

R4
∆
= (νm)(open m.P {x←M} | m[])

R5
∆
= P {x←M}.

We will omit the details, but using the activity lemma we can show that Ri ∼ Ri+1 for

i ∈ 1..4, much as in the proof of Lemma 19. By transitivity, we obtain R1 ∼ R5, that is,

subst xM P ∼ P {x←M}.
Lemma 67. If P ' Q, then P {x←M} ' Q{x←M}.

Proof. From P ' Q it follows that subst x M P ' subst x M Q. By Lemma 66 and

Proposition 65, we get that subst x M P ' P {x←M} and subst x M Q ' Q{x←M}.
Combining these equations yields P {x←M} ' Q{x←M}.
Proposition 68. If P ' Q, then P ∼ Q.

Proof. Suppose P ' Q. Consider any substitution σ with dom(σ) = fv (P ) ∪ fv (Q), and

any closed harness H and name n. By Lemma 67, P ' Q implies that Pσ ' Qσ. Since '
is a congruence, Proposition 1, we get that H{Pσ} ' H{Qσ}. By definition of H{Pσ} '
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H{Qσ}, the fact that H{Pσ} and H{Qσ} are closed implies that H{Pσ} ⇓ n⇔ H{Qσ} ⇓ n.
Therefore P ∼ Q.

Proof of Theorem 12. For all processes P and Q, P ' Q if and only if for all substitutions

σ with dom(σ) = fv (P ) ∪ fv (Q), and for all closed harnesses H and names n, that

H{Pσ} ⇓ n⇔ H{Qσ} ⇓ n.
Proof. By definition of P ∼ Q, this is equivalent to showing that P ' Q if and only if

P ∼ Q, for all P and Q, which follows from Propositions 65 and 68.
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