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We study the role of hydrodynamic instabilities in the morphogenesis of some typical
karst draperies structures encountered in limestone caves. The problem is tackled using
the long wave approximation for the fluid film that flows under an inclined substrate, in the
presence of substrate variations that grow according to a deposition law. We numerically
study the linear and nonlinear evolution of a localized initial perturbation both in the fluid
film and on the substrate, i.e. the Green function. A novel approach for the spatio-temporal
analysis of two-dimensional signals resulting from linear simulations is introduced, based
on the concepts of the Riesz transform and the monogenic signal, the multidimensional
complex continuation of a real signal. This method allows for a deeper understanding of the
pattern formation. The linear evolution of an initial localized perturbation in the presence
of deposition is studied. The deposition linearly selects substrate structures aligned along
the streamwise direction, as the spatio-temporal response is advected away. Furthermore,
the growth of the initial defect produces a quasi-steady region also characterized by
streamwise structures both on the substrate and the fluid film, which is in good agreement
with the Green function for a steady defect on the substrate, in the absence of deposition.
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1. Introduction

The astonishing beauty of geological patterns has fascinated humanity for centuries
(Hill, Forti & Shaw 1997). Several different geological structures are related to mineral
dissolution (Cohen et al. 2016) and precipitation (Meakin & Jamtveit 2010) in aqueous
systems. A few examples are terraces and steps due to precipitation of dissolved minerals
in flowing fluids on the ground, which find a parallel in the structures arising from
melting and freezing of ice, usually called icicles and crenulations. Another class of
geological patterns is speleothems, which are karst structures encountered in limestone
caves. The most common structures are stalactites, stalagmites, draperies, flutings, to name
a few. The chemical mechanism behind the growth of speleothems is the precipitation of
calcium carbonate dissolved in water which flows on the cave walls. Due to the higher
partial pressure of CO2 in the soil and rock compared with the atmosphere, flowing water
becomes enriched in carbon dioxide. The pH of the solution is lowered and the quantity
of calcium carbonate that can be dissolved in water increases (Short et al. 2005a; Short,
Baygents & Goldstein 2005b). Once the water enriched in CO2 flows through an opening
on the walls of a cave, the CO2 outgases from the solution, the concentration in the air
being lower than in the water. As a result, the solution is supersaturated and calcium
carbonate minerals deposit on the surface (Buhmann & Dreybrodt 1985).

The role of hydrodynamics in the speleothem formation has increased in interest over the
last two decades. Short et al. (2005a) showed that the stalactite shape is self-similar and
results from the coupling of hydrodynamics and the deposition process. In Camporeale
& Ridolfi (2012) the problem of the origin of crenulations on stalactites was tackled
in the context of falling film theory, indicating that the pattern is mainly dictated by
a hydrodynamic instability (Vesipa, Camporeale & Ridolfi 2015). The emergence of
draperies structures in limestone caves is also driven by falling liquid film instabilities
(Bertagni & Camporeale 2017). Falling liquid films are usually described in the context
of the long wave or lubrication approximation (Kalliadasis et al. 2011), in which the
fundamental assumption is that the interface modulation wavelengths are much larger than
the characteristic thickness of the flowing film.

The dynamics of a viscous film underneath a substrate, and for which inertial effects
are negligible, is related to the Rayleigh–Taylor instability. In the presence of gravitational
forces, the flat interface is destabilized when a heavier fluid is placed above a lighter one
(Rayleigh 1882; Taylor 1950). While gravity plays a destabilizing role, pushing the heavier
fluid down, surface tension stabilizes disturbances of small wavelengths. In the case of
a thin film coating the underside of a surface, the problem is solved in the context of
the lubrication approximation (Babchin et al. 1983). When the substrate is horizontal, the
resulting pattern is characterized by drops which organize in regular arrays (Fermigier
et al. 1992) and can grow in time or saturate depending on the initial thickness (Lister,
Rallison & Rees 2010; Marthelot et al. 2018).

If the substrate is inclined, there is a gravity component which is projected along the
substrate, leading to a flow. The growth rate of perturbations decreases due to the reduction
of the gravity component normal to the substrate, and perturbations can be advected away.
A link between the absolute to convective transition of the flow instability and dripping was
shown by Brun et al. (2015). A refined model including inertial and viscous extensional
stresses for high flow rates demonstrated that the occurrence of the absolute instability
does not predict the dripping satisfactorily (Scheid, Kofman & Rohlfs 2016; Kofman
et al. 2018). In Lerisson et al. (2020) and Ledda et al. (2020) the conditions for the
existence of steady patterns and the selection mechanisms for a thin film flowing under
an inclined planar substrate in the absence of inertial effects were experimentally and
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Figure 1. (a) Draperies observed in the Vallorbe caves, Switzerland and (b) their numerical rendering.
(c) Description of the considered problem with the fluid film and substrate thicknesses indicated.

numerically studied. The flow can reach a steady state without dripping, characterized by
elongated structures modulated along the direction perpendicular to the flow (spanwise
direction), called rivulets, also observed experimentally in Charogiannis et al. (2018).
It has been demonstrated that the rivulet profile reaches a state mainly driven by static
arguments, i.e. a pure equilibrium between surface tension and capillary effects. A weakly
nonlinear model highlighted the selection mechanism of streamwise structures, and the
stability analysis of the rivulet profile to streamwise perturbations revealed that short
wavelengths are progressively stabilized as the substrate is more inclined or the liquid
film thinner. Rivulets can therefore be a stable pattern, for certain values of angle, flow
rate and streamwise length of the domain. Outside of this range, lenses appear on rivulets,
and they may merge and eventually drip (Lerisson et al. 2019).

Bertagni & Camporeale (2017) studied the morphogenesis of draperies structures in
limestone caves using the thin film equation, combining a two-dimensional linear stability
analysis and a weakly nonlinear approach to show the emergence of streamwise structures
(i.e. rivulets in the fluid film, draperies on the substrate, see figure 1a,b). The growth rate
of perturbations from a flat condition is slightly larger for streamwise aligned structures
as the inertia of the flow is neglected. However, a complete characterization of the
two-dimensional spatio-temporal dynamics and a description of the key mechanisms and
the physics underlying the selection of streamwise structures on the substrate remain to
be assessed. We will highlight in this work that a small coupling of the hydrodynamic
effects with the deposition effect is already sufficient to induce a significant anisotropy in
the spatio-temporal response, while it has only a minute effect in the temporal dispersion
relation.

The response of a given flow to external perturbations can be characterized through
the large-time asymptotic behaviour of the linear impulse response, the Green function.
The Green function is the most synthetic and complete way to describe the nature of a
forced linear system, since the response to any generic forcing is given by the convolution
between the Green function and the forcing itself. The impulse can be localized only in
space (steady analysis) or both in space and time (spatio-temporal analysis). Considering
the steady case, for a thin film flowing over an inclined planar substrate, the linear Green
function enables the reconstruction of the response which emerges from the presence
of localized defects (Hayes, O’Brien & Lammers 2000; Kalliadasis, Bielarz & Homsy
2000; Decré & Baret 2003). Interestingly, the resulting Green function for a steady
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defect is characterized by a decaying behaviour as the distance from the defect location
increases.

In unstable flows, the spatio-temporal Green function analysis is usually analytically
tackled within the context of the saddle points approach, in which the large-time
asymptotic properties of the response can be retrieved by the research of the saddle points
of the spatio-temporal growth rate in the complex planes of the spatial wavenumbers
which define the response (Briggs 1964; Bers 1975; Huerre & Monkewitz 1990; Carriere
& Monkewitz 1999; Juniper 2007; Brun et al. 2015).

Alternatively, it has been demonstrated that a numerical approach based on the
post-processing of the numerical linear impulse response can well describe the long-time
behaviour of the impulse response (Brancher & Chomaz 1997; Delbende & Chomaz 1998;
Delbende, Chomaz & Huerre 1998; Gallaire & Chomaz 2003; Mowlavi, Arratia & Gallaire
2016; Lerisson 2017; Arratia, Mowlavi & Gallaire 2018). The procedure consists of a
demodulation of the signal along one direction using the Hilbert transform, which leads to
the complex analytic continuation of the real response, the analytic signal. As we detail in
this study, the multidimensional counterpart of the analytic signal is the monogenic signal
(Unser, Sage & Van De Ville 2009), which finds many applications in image analysis
processes and is based on the application of the Riesz transform, the multidimensional
generalization of the Hilbert transform.

In this work, we propose a numerical method for the analysis of the long-time asymptotic
two-dimensional linear impulse response, with the aim of shedding light on the linear
physical mechanisms which may lead to the selection of draperies structures on the
substrate. The paper is organized as follows. In § 2, the equations for the evolution of a
thin film in the presence of substrate variations are defined. To introduce the numerical
procedure for the analysis of the linear response in the presence of a deposition process,
we first validate the algorithm against the results of the linear response in the absence of
the deposition process and on a flat substrate, since in this circumstance the problem can be
solved analytically. We define the theoretical framework of the linear impulse response and
we derive the analytical solution for the thin film in the absence of substrate variations. We
characterize the response, whose results will be used throughout the work as a comparison
with the response in the presence of the deposition process. Subsequently, in § 4 we present
the post-processing algorithm for the analysis of the spatio-temporal impulse response in
two dimensions, which we validate using the theoretical results of the previous part. We
exploit the validated numerical algorithm in § 5, where we focus on the linear impulse
response of a thin film in the presence of a deposition process. The numerical solution
of the linearized flow equations is analysed through the post-processing algorithm. An
additional analytical tool for the validation and interpretation of the results is given in § 6,
focused on the study of the response in the presence of a steady defect without deposition
processes. We compare the numerical results with an analytical approach for the evaluation
of the steady Green function within the framework of spatial stability analysis. To verify
the faithfulness of the results of the performed linear analyses, nonlinear simulations in
the presence of the deposition process are reported in § 7.

2. Thin film model

We study the dynamics of a thin film of a viscous fluid flowing under a plane inclined with
respect to the vertical of an angle θ , in the presence of substrate variations (figure 1c).
The fluid properties are the kinematic viscosity ν, the density ρ and the surface tension
coefficient γ . We denote the fluid film thickness and substrate variation thickness as h̄ and
h̄0, respectively. Thus, the distance of the fluid interface from the reference flat substrate
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is h̄ + h̄0. A coordinate system (x̄, ȳ) is defined, where x̄ and ȳ are the streamwise and
spanwise directions, respectively. We introduce the initial flat film (Nusselt) thickness hN
and the reduced capillary length l∗c as follows:

l∗c = lc√
sin(θ)

, (2.1)

where lc = √
γ /(ρg) is the capillary length. The following non-dimensionalizations are

defined:

x = x̄/l∗c , y = ȳ/l∗c , h = h̄/hN, t = t̄/τRT , (2.2a–d)

where τRT = νl2c/h
3
N sin2(θ)g is the characteristic time scale of the Rayleigh–Taylor

instability.
The problem of the lubrication model in the presence of substrate variations has been

widely studied in the literature, in the context of the long wave approximation (Tseluiko,
Blyth & Papageorgiou 2013) or more involved models based on the introduction of inertia
and viscous extensional effects (Heining & Aksel 2009; D’Alessio et al. 2010). In this
work, we consider the model used in Bertagni & Camporeale (2017), for the inertialess
case, in which the complete curvature is retained (Wilson 1982; Weinstein & Ruschak
2004). The non-dimensional equation for the evolution of the thickness in the presence of
substrate variations reads

∂th + uh2∂xh + 1
3∇ ·

[
χh3∇(h + h0)+ h3∇κ

]
= 0, (2.3)

where ∇ operates in the (x, y) plane and u = cot(θ)l∗c/hN is the linear advection velocity
(Brun et al. 2015). The constant χ is set to χ = 1 for the flow under an inclined substrate,
which is analysed throughout the work, except in the appendix A, where we report the
validation of the numerical procedure against a benchmark case in the literature for the
flow over an inclined flat substrate (χ = −1). The curvature of the free surface is denoted
as κ = −∇ · n, where

n = [−∂xh − ∂xh0,−∂yh − ∂yh0, 1]T√
1 + (∂xh0 + ∂xh)2 + (∂yh0 + ∂yh)2

(2.4)

is the normal to the free surface.
In this paper, we focus on the substrate growth by precipitation of calcium carbonate

in cave walls. The mathematical formulation of the problem involves different chemical
reactions and diffusion processes that occur in the fluid layer (Buhmann & Dreybrodt
1985). Following the derivation of Short et al. (2005b), to which we refer for details, the
flux of calcium carbonate depositing on the substrate, i.e. the variation in time of the
substrate thickness, can be written as follows:

∂t̄ h̄
0 = C̄h̄, (2.5)

where C̄ is the chemistry-dependent constant, of the order of C̄ ∼ 10−7s−1 (Camporeale
2015). Considering the time scale of the Rayleigh–Taylor instability for a horizontal
substrate, τ hor

RT = νl2c/(h
3
Ng), the deposition constant in this dimensionless time scale

is of the order C ∼ 10−4. Introducing the non-dimensionalization (2.2a–d), the
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non-dimensional equation for the deposition reads

∂th0 = Čh, (2.6)

where Č = C/ sin2(θ). Equations (2.3) and (2.6) define the system for the dynamics of a
thin film flowing under (χ = 1) an inclined plane in the presence of substrate variations
due to the deposition of calcium carbonate.

The equations are linearized around the baseflow solution [H,H0]T = [1, Čt]T

introducing the following decomposition:

h = 1 + εη, h0 = Čt + εη0, (2.7a,b)

where ε � 1 and [η, η0] is the perturbation with respect to the baseflow solution. Keeping
O(ε) terms in (2.3) and (2.6), the following system of equations is obtained:

∂tη + u∂xη + 1
3

[
χ∇2(η + η0)+ ∇4(η + η0)

]
= 0, (2.8a)

∂tη
0 = Čη, (2.8b)

which describes the linearized dynamics of the perturbation [η, η0] around the constant
flat film solution H = 1 (2.8a), in the presence of a linear in time substrate growth H0 due
to the deposition law (2.8b), i.e. [H,H0]T = [1, Čt]T. Equations (2.8) are the starting point
for the analysis of the speleothems’morphogenesis, in a linearized dynamics context.

The numerical implementation of the linearized equations (2.8) is based on a Fourier
pseudo-spectral scheme implemented in MATLAB. Henceforth, we consider a rectangular
domain of size 1000 × 1000, with a number of collocation points Nx = Ny = 1001 and
periodic boundary conditions. In appendix A we report the numerical procedure and the
validation against the benchmark case of the response of a thin film flowing over an
inclined flat substrate to a steady localized defect (Hayes et al. 2000; Kalliadasis et al.
2000; Decré & Baret 2003).

3. Linear response in the absence of substrate variations

3.1. Dispersion relation
In this section, we study the linear response in the absence of substrate variations (figure 2).
We therefore impose η0 = 0 in (2.8a), leading to the following equation for the linearized
dynamics of the perturbation:

∂tη + u∂xη + 1
3

[
∇2η + ∇4η

]
= 0. (3.1)

We introduce the ansatz η ∼ exp[i(kxx + kyy − ωt)], where kx and ky are real and

ω is complex, within the temporal approach. Introducing k =
√

k2
x + k2

y , the following
polynomial dispersion relation is obtained:

ω = ukx + i
3

(
k2 − k4

)
, (3.2)

which relates the behaviour in space and time of the perturbation. In the absence
of deposition process, the temporal growth rate Im(ω) does not depend on u, which
influences only the advection of perturbations. The response in the absence of deposition
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Figure 2. (a) Sketch of the flow and substrate configurations adopted in § 3. (b) Sketch of the impulse
response in a spatio-temporal diagram.
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Figure 3. Two-dimensional linear impulse response in the absence of substrate variations, for u = 0.77.
(a) Response in the physical space at t = 200. (b) Temporal evolution of the maximum value of the response.
(c) Temporal growth rate, as a function of kx and ky. The red dot denotes the initial impulse location.

is characterized by concentric circles (see figure 3a) that propagate from a centre that
is advected away with the linear advection velocity u. The maximum value of the
thickness increases exponentially with time (see figure 3b). In the following, we rescale
the fluid thickness using the maximum value, knowing that the growth in amplitude is
exponential. The isovalues of the temporal growth rate are concentric circles propagating
from (kx, ky) = 0 (see figure 3c), i.e. the growth rate is isotropic. The growth rate increases
for small wavenumbers, reaches a maximum at k = 1/

√
2, then decreases and becomes

negative for k > 1, the cut-off wavenumber. Therefore, the linearized dynamics does not
show any preferential direction for the growth of perturbations, which are advected away.

3.2. Large-time behaviour of the impulse response
In this section, we analytically study the linear impulse large-time response. So as to better
characterize the response observed in figure 3(a) and understand the structure when the
deposition process will be introduced, together with the differences with the case in the
absence of substrate variations, we present the theoretical tools to describe the impulse
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response of a linear system, the Green function g̃. The method is a generalization of the
classical one-dimensional approach (Brevdo 1991; Carriere & Monkewitz 1999; Juniper
2007). For t → ∞, the Green function asymptotically reads

g̃(x, y, t) ∼ ĝ exp
[
i
(
kxx + kyy − ωt

)]
/t, t → ∞ (3.3)

where the streamwise wavenumber kx, the spanwise wavenumber ky and the complex
frequency ω are varying in space and time, via their dependence on so-called rays x/t and
y/t. The evaluation of the asymptotic properties along the rays (x/t = const, y/t = const)
for t → ∞ is performed using the method of the steepest descent in the complex kx and ky
planes. At large times, the dominating contribution with group velocity (x/t, y/t) is given
by the following saddle points in the complex kx and ky planes:

∂ω′′

∂kx
= ∂ω′′

∂ky
= 0, (3.4)

where ω′′ = ω − kxx/t − kyy/t. The resulting values of kx, ky and ω′′ for each ray (x/t, y/t)
allow to reconstruct the linearized dynamics of the wavepacket.

The evaluation of the saddle points is performed in MATLAB, by using the built-in
function ‘fsolve’ that solves simultaneously for the saddle points in the two complex planes
kx and ky using the dispersion relation (3.2). The initialization is based on the solution
of the one-dimensional case documented in Brun et al. (2015) for (x/t, y/t) = (0, 0),
which corresponds to the maximum temporal growth rate in the dispersion relation and
is a contributing saddle point according to Barlow, Helenbrook & Weinstein (2017). The
solution at different (x/t, y/t) is obtained using as initial guess the previously calculated
value.

The asymptotic properties for u = 0.77 are reported in figure 4. We report only positive
values of y/t, since ω′′, ω and kx are symmetric with respect the axis y/t = 0, while
ky is antisymmetric. The isocontours of the spatio-temporal growth rate σ = Im(ω′′)
(figure 4a) are concentric circles that propagate from a centre at (x/t = u, y/t = 0). The
maximum value σ = 1/12 is located at the centre and coincides with the maximum of the
dispersion relation (3.2). Increasing the distance from the centre, the values of σ decrease.
At a distance from the centre of ≈ 0.54, the spatio-temporal growth rate is zero, and
becomes negative at larger distances. The full description of the asymptotic properties
is completed with the results in figure 4(b–f ). The real part of the complex frequency
Re(ω) (figure 4b) is characterized by positive values in the upstream part of the wavepacket
and by negative values in the downstream part. The transition region where Re(ω) = 0 is
located at x/t = u, and the transition becomes more abrupt whilst decreasing y/t, with a
discontinuity at y/t = 0. This discontinuity can be observed also in the real parts of the
streamwise (figure 4d) and spanwise (figure 4f ) wavenumbers, while the corresponding
imaginary parts (figure 4c,e) are zero.

According to the spatio-temporal analysis approach (Van Saarloos 2003), the front is
defined by the region where σ = 0. In the one-dimensional case the front is defined only
by a value of x/t, while in two dimensions by couples (x/t, y/t). From the analysis, it
results that the front of the wave packet is a circle of radius ≈ 0.54 centred around (x/t =
u, y/t = 0). This value agrees with the absolute-convective instability transition predicted
by Brun et al. (2015) for the one-dimensional case. Since the centre of the wavepacket is
located at x/t = u, and the front is a circle of radius 0.54 (independent of u), the first case
in which the spatio-temporal growth rate is non-negative at x/t = 0 is when u = 0.54. As
the linear advection velocity decreases, the unstable region invades negative values of x/t,
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Figure 4. Large-time asymptotic properties of the two-dimensional linear impulse response in the absence of
deposition, for u = 0.77, as functions of x/t and y/t. The coloured isocontour plots represent the analytical
results of § 3.2. (a) Spatio-temporal growth rate. (b) Real part of the complex frequency. (c) Imaginary part of
the streamwise wavenumber. (d) Real part of the streamwise wavenumber. (e) Imaginary part of the spanwise
wavenumber. ( f ) Real part of the spanwise wavenumber. The black dashed line identifies the region σ = 0.
The red dashed lines denote the results of the post-processing algorithm described in § 4.

i.e. upstream of the initial impulse position, and the flow is said to be absolutely unstable
(Huerre & Monkewitz 1990).

The above-performed analytical spatio-temporal analysis could be in principle
performed also in the presence of the deposition process. Nevertheless, the possible
presence of multiple saddle points to be identified, and the discrimination of upstream and
downstream propagating branches related to the different saddle points, make the problem
arduous to tackle theoretically. We therefore propose a numerical approach, which presents
some originalities and interesting perspectives. The analytical results of this section will
be used to validate the numerical algorithm and as a reference point when restoring the
coupling with the deposition process.

4. Numerical approach based on the monogenic signal

4.1. The Riesz transform and the monogenic signal
In this section, we introduce the mathematical tools necessary for the spatio-temporal
analysis of the impulse response from the linear simulations. Numerical analyses of
the linear impulse response have been already performed in the literature (Delbende &
Chomaz 1998; Delbende et al. 1998; Gallaire & Chomaz 2003), where the asymptotic
properties along one single direction were studied. The study of the asymptotic properties
of a one-dimensional wavepacket is based on the introduction of the analytic signal
(Delbende et al. 1998), which is the complex continuation of a real signal. The analytic
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signal is derived using the Hilbert transform, which corresponds to a phase shift of −90◦
and +90◦, respectively, to the positive and negative Fourier components of a function g(x),
i.e. the Hilbert transformed signal reads

Hg(x) = Hx � g(x), (4.1)

where Hx is a filter characterized by the Fourier transform Ĥx(kx) = −i sgn(kx), and
the symbol � denotes the convolution operator. In the Fourier domain, the convolution
becomes a product, such that the Fourier transform of the Hilbert transformed signal reads
Ĥg = −i sgn(kx)ĝ(kx), where ĝ is the Fourier transformed signal. The analytic signal
gives access to the envelope and the phase of the wavepacket; indeed, as an alternative
to its representation as the two components function ga(x) = (g(x),Hg(x)), the complex
function ga(x) = g(x)+ iHg(x) can be defined. The analytic signal ga is said to be the
complex continuation of the real signal and can be rewritten in terms of amplitude and
phase ga(x) = A exp(iξ), where A is the instantaneous amplitude (i.e. the envelope) and ξ
the phase of the complex signal. As explained in detail in § 4.2, knowledge of the envelope
of the wavepacket is necessary to analyse the spatial and temporal growth rates, while the
phase gives access to the spatial and temporal frequencies.

Our work aims to generalize the approach of Delbende et al. (1998) to the
two-dimensional case, in the presence of two spatial propagation directions. We introduce
the monogenic signal, the multidimensional generalization of the analytic signal (Unser
et al. 2009). In the literature, there are several attempts to generalize the analytic signal in
two dimensions (Bulow & Sommer 2001; Felsberg & Sommer 2001; Hahn 2003). In this
work, we use the definition given by Unser et al. (2009), based on the multidimensional
generalization of the Hilbert transform, the Riesz transform (Stein & Weiss 2016). In the
two-dimensional case, in analogy to the Hilbert transform, the Riesz operator transforms
the scalar signal g(x, y) to the vector signal gR(x, y) that reads

gR(x, y) =
(

gR1(x, y)
gR2(x, y)

)
=

(
Hx ∗ g(x, y)
Hy ∗ g(x, y)

)
, (4.2)

where ∗ denotes the convolution operator in two dimensions. The functions Hx and Hy are
two filters characterized, respectively, by the Fourier transforms Ĥx(kx, ky) = −ikx/k and
Ĥy(kx, ky) = −iky/k, and they are the generalization of the one-dimensional filter to two
spatial directions. In an analogy to the Hilbert transformed signal, we consider a definition
of the Riesz transformed signal that combines the two components in one scalar signal
(Unser et al. 2009) as follows:

Rg(x, y) = gR1(x, y)+ igR2(x, y), (4.3)

which in the Fourier domain reads

R̂g(kx, ky) =
(−ikx + ky

)
k

ĝ(kx, ky), (4.4)

where ĝ is the two-dimensional Fourier transform of the signal. Note that at kx = ky = 0
the Fourier transform of the Riesz transformed signal is singular and the regularization
assumes zero value at the origin. We then introduce the monogenic signal as the
three-components function, as follows:

gm(x, y) = (g(x, y), Re(Rg(x, y)), Im(Rg(x, y))) = (g, gR1, gR2) . (4.5)

According to Unser et al. (2009), the relation between the Riesz and the Hilbert transforms
along the (x, y) directions can be seen as the equivalent between the definition of gradient
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and partial derivatives. The quantity r =
√

g2
R1 + g2

R2 = |Rg| identifies the maximum
response of the directional Hilbert operator

max
ψ

{Hψg
} = max

ψ

{
Re

(
e−iψRg

)}
(4.6)

along the direction dψ given by the angle ψ = atan(gR2/gR1). The instantaneous
amplitude (i.e. the envelope of the signal) is given by

A =
√

g2 + g2
R1 + g2

R2 (4.7)

and the phase by

ξ = atan
(√

g2
R1 + g2

R2/g
)
. (4.8)

This decomposition allows us to write the monogenic signal along dψ in the form

g̃(x, y, t) = A exp(iξ). (4.9)

The amplitude A represents the envelope of the signal and ξ the phase along the
direction dψ . Note that (4.9) is valid only when amplitude and phase of the signal can
be demodulated (Delbende et al. 1998). This is valid when the variations of the envelope
occur at a scale much larger than that governing the oscillations. The representation in
(4.9) is the two-dimensional equivalent of the analytic signal (Delbende et al. 1998) and
identifies in g̃ the complex continuation of the two-dimensional real signal g.

4.2. Large-time asymptotic properties
In this section, we derive the asymptotic properties of the wavepacket by following the
same procedure outlined in Delbende et al. (1998). According to § 3.2, the complex Green
function reads

g̃ ∼ exp
[
i
(
kxx + kyy − ωt

)]
/t, (4.10)

where the asymptotic properties kx, ky and ω depend on x/t and y/t.
The linear simulations of the impulse response give as a result the real signal g(x, y).

We thus recover the complex Green function by the analytic continuation of g, i.e. the
monogenic signal g̃, as follows:

g̃ ∼ exp
[
i
(
kxx + kyy − ωt

)]
/t = A exp(iξ), (4.11)

where A = |g̃| and ξ = arg(g̃). Thus, by exploiting the last expression, we can use
the monogenic signal g̃ to evaluate the asymptotic properties of the wavepacket.
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The spatio-temporal growth rate

σ = Im(ω′′) = Im(ω)− Im(kx)x/t − Im(ky)y/t = Im(ω)− Im(kx)vx − Im(ky)vy,
(4.12)

which represents the growth of a perturbation along a ray of group velocities (x/t, y/t) =
(vx, vy), is obtained by applying the logarithm operator to the absolute value of (4.11)

|g̃| ∼ exp(σ t)/t = A → σ t − ln(t) ∼ ln(A) (4.13)

and thus by evaluating the derivative with respect to time of the resulting expression (for
x/t = const, y/t = const) as

σ(x = vxt, y = vyt) ∼ d
dt

ln(A(x = vxt, y = vyt, t))+ 1
t
. (4.14)

The definition of the spatio-temporal growth rate (4.12) allows us to evaluate the imaginary
part of the streamwise and spanwise wavenumbers at each ray (x/t, y/t) = (vx, vy) (see
appendix B for details), i.e.

Im(kx(x = vxt, y = vyt)) = −∂vxσ, (4.15)

Im(ky(x = vxt, y = vyt)) = −∂vyσ. (4.16)

The real parts of the spatial wavenumbers are retrieved by considering (4.11) and exploiting
the definition of phase:

Re(kx(x = vxt, y = vyt)) ∼ ∂xξ(x = vxt, y = vyt), (4.17)

Re(ky(x = vxt, y = vyt)) ∼ ∂yξ(x = vxt, y = vyt). (4.18)

Alternatively, still exploiting the logarithm of (4.11), a direct evaluation of the real and
imaginary parts of the spatial wavenumbers from the complex monogenic signal can be
performed giving

kx ∼ −i∂x ln(g̃(x = vxt, y = vyt)), (4.19)

ky ∼ −i∂y ln(g̃(x = vxt, y = vyt)). (4.20)

In this work, we adopted this technique to evaluate the streamwise and spanwise
wavenumbers. The temporal growth rate is obtained from the knowledge of the
spatio-temporal growth rate and the imaginary part of the wavenumbers, as follows:

Im(ω) = σ + Im(kx)x/t + Im(ky)y/t. (4.21)

The real part of the complex frequency is, by definition, the temporal derivative of the
phase ξ , i.e.

Re(ω)(x/t, y/t, t) ∼ −∂tξ(x/t, y/t, t). (4.22)

Note that in this case the derivative with respect to the time is evaluated in a relatively short
time interval, without following the rays x/t = vx and y/t = vy (Delbende et al. 1998).
Moreover, the sign of the spatial frequencies cannot be recovered from the analysis, since
we are post-processing a real signal. In the following, we will consider positive values for
the real parts of the complex frequency and spatial wavenumbers.
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4.3. Numerical procedure and validation
The analytical developments derived in the previous sections aim at describing the
asymptotic behaviour for t → ∞ using numerical simulations at finite times. In addition,
(4.9) assumes that the amplitude and the phase of the signal subject to the Riesz transform
can be demodulated, i.e. that a separation of scales between the variations of the envelope
and the oscillations subsists. In this section, we verify the numerical procedure and the
validity of the assumptions using as a test case the analytical solution described in § 3.2.
The post-processing algorithm is validated against the theoretical results of the impulse
response in the absence of substrate variations. The numerical implementation is based
on MATLAB. The linear response is computed using (3.1) subjected to a Gaussian initial
condition that mimics the Delta function behaviour, as follows:

η(x, y, 0) = η0(x, y, 0) = exp
[
−(x2 + y2)/2ς2

]
, (4.23)

with ς = 1; no appreciable changes in the response have been observed for ς < 1.
The numerical steps for the post-processing are the following. We apply the

two-dimensional Fourier transform to the linear response at different times via the built-in
MATLAB function ‘fft2’. We obtain the Riesz transformed signal by (4.4). The inverse
Fourier transform is applied (via the built-in MATLAB function ‘ifft2’) and we build
the monogenic signal in the physical space, for different times, according to (4.9).
We evaluate the spatio-temporal growth rate by (4.12), using the monogenic signals
evaluated at different times. We then obtain the streamwise and spanwise wavenumbers
by a finite difference expression of (4.19) and (4.20), and then the temporal growth
rate by a finite difference approximation of (4.21). Finally, the real part of the complex
frequency is recovered from (4.22) using the computed monogenic signals at different
times.

We evaluate the derivatives using first-order finite differences. A convergence analysis
has been performed on the number of collocation points and the order of the finite
differences for the derivatives, and we observed the convergence of the results already for
a domain of Lx = Ly = 1000 and Nx = Ny = 1001. The odd number of points is necessary
to have also the zero frequency kx = ky = 0, where the transfer function of the Riesz
transform is singular and has to be regularized imposing the zero value. The results are
averaged at different times (Lerisson 2017). We consider a time step of �t = 15 for the
evaluation of the spatio-temporal growth rate, from t = 200 to t = 350. At each time, the
real part of the complex frequency is evaluated using a time step of δt = 0.01 (Delbende
et al. 1998).

In figure 4 we also report a comparison of the post-processing algorithm (red dashed
lines) against the results of the saddle points analysis (coloured isocontours). The results
agree with those obtained from the saddle-points approach. The spatio-temporal growth
rate (figure 4a) is well described by the numerical post-processing, and the front of
the wavepacket is well captured. The other variables well agree with the analytical
solution. Figure 5 shows the results for the temporal properties and the streamwise
wavenumber as functions of x/t, at y/t = 0. The comparison reveals a good agreement,
except in the centre of the wavepacket where the analytical solution is discontinuous.
The difference can be imputed to a transient effect at the centre of the wavepacket,
which is reduced as time increases. Note that the analytical solution of § 3.2 is rigorously
valid as t → ∞. Nevertheless, in the numerical simulations, there is a practical limit in
the final time related to the numerical noise. The maximum ratio between the smaller
and greater values in the simulations is limited to 16 decades, for the double precision
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Figure 5. Comparison of the long-time asymptotic properties of the two-dimensional linear impulse response
in the absence of deposition (u = 0.77) as functions of x/t, for y/t = 0. The solid lines and the dots denote the
analytical (§ 3.2) and numerical approaches (§ 4), respectively. (a) Spatio-temporal growth rate, imaginary and
absolute value of the real part of the complex frequency. (b) Imaginary and absolute value of the real part of
the streamwise wavenumber. The black dashed line denotes the values of σ .

(Trefethen & Bau 1997). Therefore, we cannot go beyond the final time above defined,
i.e. t = 350. Despite the presence of a discontinuity in the centre of the wavepacket,
the numerical procedure well captures the structure of the solution. Concerning the
spatio-temporal growth rate, the maximum error from the theoretical value is around
Δ = 2 × 10−3, which means a percentage error of 2.5 %. The edges of the wavepacket
agree well with the analytical solution. We conclude that our post-processing algorithm is
able to capture the spatial structure of the asymptotic properties, making it suitable for the
study of the impulse response in the presence of the deposition process.

5. Linear response in the presence of the deposition process

5.1. Dispersion relation
In this section, we briefly study the temporal stability properties in the presence of the
deposition process. Following the linear stability analysis approach, we assume the normal
mode expansion [

η, η0
]T =

[
η, η0

]T
exp

[
i
(
kxx + kyy − ωt

)]
. (5.1)

It is worth underlining that this decomposition for the substrate thickness assumes that
the temporal growth due to the presence of the flat film is much slower than the one
related to the Rayleigh–Taylor instability. The deposition constant C describes the growth
in the absence of patterns in the fluid film. The characteristic time scale of this process
has to be large enough so as the variations of the baseflow are negligible as the instability
occurs. Under these conditions, a separation of scales between the speleothem growth and
the Rayleigh–Taylor instability subsists. Since C is already non-dimensionalized with the
characteristic time scale of the Rayleigh–Taylor instability, we restrict ourselves to the case
C < 10−3. In these conditions, we can safely assume the ansatz (5.1).

We introduce the normal mode decomposition in the equations for the linearized
dynamics (2.8), leading to the dispersion relation which relates the complex frequency
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Figure 6. Temporal growth rate Im(ω) from the dispersion relation in the presence of deposition (5.2) as a
function of (kx, ky) for (a) C = 10−5 and (b) C = 10−3.

ω to the wavenumbers (kx, ky) for the coupled hydrodynamic-deposition problem

ω = ωH

2
±

√(
ωH

2

)2

− Č
3

(
k2 − k4

)
, (5.2)

where ωH is the complex frequency in the absence of substrate variations, (3.2).
The dispersion relation (5.2) is analogous to the one reported in Bertagni & Camporeale

(2017) in the absence of inertial effects. Two branches of the dispersion relation are
identified. One branch is always damped while the other one tends to the hydrodynamic
case as C goes to zero. The dynamics is governed by two non-dimensional parameters, the
linear advection velocity u and the deposition constant C. A preliminary analysis of the
influence on the dispersion relation for a large range of u did not show any appreciable
effect on the temporal growth rate of perturbations, for fixed deposition constants 10−10 <
C < 10−3. For computational reasons, it is not convenient to consider extremely large
values of u, as large as those that can be found in limestone caves (lc/hN ∼ 270, i.e.
u ∼ 102), since the advection of perturbations will require the use of unrealistic extremely
large computational domains for the numerical simulations, while the physics of the
travelling wavepacket would not change significantly. For these reasons we focus on the
case u = 0.77 and θ = 55◦, and we study the effect of the deposition constant C.

In figure 6 we report the temporal growth rate Im(ω) as a function of (kx, ky), for
different values of the deposition constant. For C = 10−5, the temporal growth rate is
analogous to the case without deposition, and no appreciable anisotropies are observed.
At very high values of the deposition constant, C = 10−3, the isovalues are concentric
circles in most of the (kx, ky) plane, but there is a small region located close to kx = 0
where the growth rate is slightly higher (the difference is of order 10−3). The isotropy
is broken, and spanwise structures (rivulets) experience a slightly larger growth than the
streamwise structures (waves), as already pointed out in Bertagni & Camporeale (2017).

Nevertheless, the small anisotropy in the dispersion relation may be not sufficient
to completely characterize a linear selection of streamwise structures in the deposition
process that should arise also for low values of the deposition constant, in the range
defined by Camporeale (2015). Moreover, the complex form of the dispersion relation
does not highlight how the deposition process influences the spatio-temporal growth of
perturbations, and thus it does not shed light on the physics underlying the phenomenon.
We therefore focus on the response of the system to a localized initial perturbation, i.e. the
Green function.
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Figure 7. Linear impulse response (2.8) for u = 0.77 at t = 200. (a,b) Here C = 10−5; (a) fluid film and
(b) substrate thickness. (c,d) Here C = 10−3; (c) fluid film and (d) substrate thickness. Results are rescaled
with the maximum fluid thickness for visualization purposes. The red dots denote the initial impulse location.

5.2. Numerical impulse response
In this section, we focus on the spatio-temporal analysis of the linear impulse response,
both on the substrate and in the fluid film, in the presence of the deposition process (2.8).
We consider two representative values of the deposition constant which cover the physical
range indicated by Camporeale (2015), C = 10−5 and C = 10−3. Figure 7 shows the linear
impulse response in terms of fluid and substrate thickness, at t = 200. We recall that in § 3
we observed that the fluid thickness response in the absence of substrate variations was
characterized by concentric circles. The fluid film thickness (figure 7a,c) is characterized
by a quite similar structure, albeit some differences can be highlighted. While in the
downstream part (I) we observe circular isovalues for η, the pattern in the upstream part
(II) is more intricate.

The substrate thickness (figure 7b,d) presents similar peculiarities. The isovalues in the
downstream part are circular, while in the upstream part streamwise aligned structures are
present. The region in which streamwise structures dominate roughly corresponds to the
region upstream of the maximum film thickness. These structures grow as higher values
of the deposition constant are considered. As a consequence, we observe a more perturbed
pattern in the fluid film.

The isotropy breaking in the fluid film is related to the presence of deposited streamwise
structures in the upstream part of the wavepacket. While in the downstream part the
hydrodynamics dominate the pattern with an isotropic structure reminiscent of the case
without deposition (§ 3), observed also in the substrate thickness, in the upstream part we
observe an interaction between the hydrodynamics and the deposition process.

As the impulse travels, it leaves behind a substrate pattern characterized by predominant
streamwise structures. From a physical point of view, this may be explained by the fact
that waves are structures that are advected away with the flow, while rivulets are not.
Furthermore, it has to be remembered that the deposition law is linear with the film
thickness (see (2.6)). The growth of substrate disturbances is superposed with the classical
growth in the presence of a flat film, i.e. the substrate thickness is always increasing,

910 A53-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
10

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1010


Hydrodynamic-driven morphogenesis of karst draperies

but this is not obvious for the perturbation η0. Since waves are travelling structures
(i.e. they are oscillating at fixed locations), the linearized deposition law is sequentially
increasing and decreasing the substrate perturbation with respect to the linear growth in
time, then leading to a much smaller effect on the deposition process. On the contrary,
rivulets are not travelling structures. The substrate perturbation always increases or
decreases, since there is no advection of the fluid structures along the spanwise direction.
As a consequence of the passage of the wavepacket, predominant streamwise structures
are deposited on the substrate.

5.3. Large-time behaviour of the impulse response
In this section we apply the post-processing algorithm, introduced in § 4, to the two
cases of figure 7. According to the decomposition of (5.1), the analysis of the asymptotic
properties can be applied to both variables. The difference in the patterns observed in
figure 7 are related to the different eigenvectors [η̂, η̂0]. In the following, we consider
the fluid thickness for the evaluation of the asymptotic properties. However, the observed
physical results are not affected by this choice.

In figure 8(a) we report the spatio-temporal growth rate obtained from the
post-processing algorithm, for C = 10−5. The spatio-temporal growth rate is greater
than zero in a region downstream of the initial impulse position (III). The unstable
region spreads in the (x/t, y/t) plane within a region roughly defined by a front angle
ϕ � 36.5◦. In the downstream part of the wavepacket (I), we observe circular isovalues
of the spatio-temporal growth rate, which decreases moving away from the value of
(x/t = u, y/t = 0). The two regions interact in the region just upstream of the maximum
spatio-temporal growth rate position (II). The real part of the complex frequency
(figure 8b) presents the same structure of the spatio-temporal growth rate. In the region
downstream of the initial impulse location, both the real and imaginary parts of the
complex frequency are close to zero.

A complete characterization of the asymptotic behaviour of the impulse response
requires also the evaluation of the spatial asymptotic properties kx and ky, which are
reported in figure 8(c–f ). Downstream of the initial impulse location, all the spatial
properties isovalues are approximately rays that propagate from the initial impulse
position. Interestingly, the real part of the streamwise wavenumber is very small, i.e.
Re(kx) ∼ 10−2. Moreover, at y/t = 0, Re(ky) � 1/

√
2, while in the absence of deposition

it was zero except in the singular point at the centre of the wavepacket.
The same behaviour is found in the case C = 10−3 (reported in appendix C), but the

front downstream of the initial impulse position is more curved. Moreover, the region in
which the two patterns interact is displaced downstream.

The present analysis reveals that there are three regions in the spatio-temporal impulse
response. Region (I) is characterized by asymptotic properties whose distribution is
very similar to the case in the absence of substrate variations, studied in § 3.2. In
region (III) streamwise structures dominate. Since in the region just downstream of the
initial impulse location the complex growth rate is close to zero, the pattern is almost
steady. Moreover, the analysis of the spatial asymptotic properties reveals that streamwise
aligned structures dominate, since Re(kx) ∼ 10−2 and Re(ky) ∼ 1/

√
2. The other spatial

asymptotic properties are almost constant for y/x = const since the isovalues are rays that
propagate from the initial impulse position. In region (II), the two regions (I) and (III)
interact, and it is best observed in the fluid film response (figure 7), where the substrate
presents non-negligible values of the thickness compared with the fluid film. In this region,
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Figure 8. Asymptotic properties from the post-process algorithm (§ 4), for u = 0.77 and C = 10−5.
(a) Spatio-temporal growth rate. (b) Real part of the complex frequency. (c) Imaginary part of the streamwise
wavenumber. (d) Real part of the streamwise wavenumber. (e) Imaginary part of the spanwise wavenumber.
( f ) Real part of the spanwise wavenumber.

due to the high values of the fluid film thickness, we observe a strong deposition and an
increase of the substrate thickness.

We therefore identified two linear mechanisms that could lead to the emergence of
draperies structures on the substrate. First, the advection of oscillating perturbations along
the streamwise direction promotes the deposition of drapery-like structures rather than
wave patterns on the substrate (ripples). This interpretation confirms the observation of
slightly higher growth rates for spanwise perturbations in the two-dimensional dispersion
relation of Bertagni & Camporeale (2017). This first mechanism strongly enhances the
growth of draperies structures in the region just upstream of the maximum thickness,
which is advected away with time. The second mechanism was highlighted thanks to
the post-processing algorithm, which shows the presence of another region in which the
perturbation grows, absent in the case without substrate variations of § 3.2. The presence
of the initial defect that grows without being advected, creates a quasi-steady region
characterized by streamwise structures both in the fluid film and on the substrate. The
second mechanism appears to be dominant in the regions in which the isotropic response
has been advected away. In the following, we investigate the hydrodynamic origin of this
second source of anisotropy.

6. Linear response in the presence of a steady defect without deposition process

6.1. Numerical response and large-time asymptotics
In this section, we provide an additional analytical insight to better understand the
physical mechanisms underlying the response in the presence of the deposition process.
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Figure 9. Linear fluid film response (2.8) (rescaled with the maximum value) in the presence of a steady
defect (i.e. C = 0) located at (x = 0, y = 0), for u = 0.77, (a) t = 100 and (b) t = 200. The black dots denote
the steady defect location.

We consider the linear response of the thin film (2.8) in the presence of a steady defect
(i.e. C = 0) of the form

η0(x, y, t) = exp[−x2/2 − y2/2], (6.1)

together with the initial condition for the fluid thickness, η(x, y, 0) = 0.
The wavepacket (figure 9), in the downstream part (I), is characterized by the isotropic

structure typical of the temporal response (figures 3 and 7), as described in detail in § 3.2.
Nevertheless, in the upstream part (II) we observe streamwise structures more pronounced
than in the case of the impulse response in presence of deposition (described in § 3.2),
since the initial condition differs from a steady defect as it is characterized by an impulse
both in the fluid film and on the substrate.

The asymptotic properties (figure 10) resulting from the post-processing algorithm
present a spatial structure analogous to the case in the presence of deposition reported
in figure 8. In region (III), downstream of the initial impulse location, the isovalues are
rays that propagate from (x/t, y/t) = (0, 0). Both real and imaginary parts of the complex
frequency are zero in the region downstream of the steady defect, and the real part of the
streamwise wavenumber is of order 10−2.

The steady defect analysis confirms that the structure of the wavepacket is mainly
driven by hydrodynamic effects. Moreover, the region downstream of the obstacle is steady
because ω = 0 and originates from the presence of the steady defect. Since the asymptotic
properties are rays that propagate from the centre, the properties of the steady pattern are
constant at fixed y/x. This invariance suggests that the response can be evaluated in the
context of a steady pattern asymptotic analysis, introduced in Lerisson et al. (2020) for
the front analysis of a propagating steady wavepacket, known as spatio-spatial stability
analysis.

6.2. The two-dimensional steady Green function
In this section, we analytically derive the Green function for a steady defect. The
approach is based on the spatio-temporal analysis introduced in § 3.2, but we focus on
the growth in space of a steady wavepacket. We can thus make an analogy to the classical
one-dimensional analysis (Van Saarloos 2003): the (x, y) directions play the role of space
and time.

Following Hayes et al. (2000), we introduce the total free surface elevation ηt = η + η0.
We seek for the solution of the following problem:

u∂xηt + 1
3

[
∇2(ηt)+ ∇4(ηt)

]
= −u∂xη

0 = f (x, y). (6.2)
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Figure 10. Long-time asymptotic properties from the post-process algorithm (§ 4) of the two-dimensional
linear response to steady defect in the absence of deposition, for u = 0.77. (a) Spatio-temporal growth rate.
(b) Real part of the complex frequency. (c) Imaginary part of the streamwise wavenumber. (d) Real part of
the streamwise wavenumber. (e) Imaginary part of the spanwise wavenumber. ( f ) Real part of the spanwise
wavenumber.

The impulse is located in the position y/x = 0, i.e. the Green function g̃s(x, y) solves the
steady problem,

u∂xηt + 1
3

[
∇2(ηt)+ ∇4(ηt)

]
= δ(x)δ( y). (6.3)

The solution in the presence of a localized defect ηt is found using the property of the
Green function, i.e. ηt = g̃s ∗ f , where ∗ is the convolution operator. Since we consider
the response to a steady localized defect f (x, y) = ∂x[δ(x)δ( y)]. Using the properties of
the Delta function and integrating by parts, we obtain the solution that reads

ηt = u∂xg̃s(x, y). (6.4)

The solution g̃s is found using the same approach of the spatio-temporal stability analysis,
where now we have the direction x → ∞. The Green function for steady defect can be
expressed as

g̃s(x, y) ∼ ĝ exp(kxx + kyy)/
√

x ∼ ĝ exp(k′
xx)/

√
x, (6.5)

where k′
x = kx + ky( y/x). The solution reads

ηt = u∂xg̃s(x, y) ∼ iukx exp[i(kxx + kyy)]/
√

x, (6.6)

i.e. the asymptotic properties of the total elevation ηt wavepacket are the same as the Green
function for x → ∞.
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Figure 11. Analytical asymptotic properties for the steady two-dimensional Green function. (a) Spatio-spatial
growth rate as a function of y/x. (b) Streamwise wavenumber and (c) spanwise wavenumber resulting from the
analytical steady response, as functions of y/x.

The spatio-spatial analysis is implemented similarly to the spatio-temporal stability
analysis outlined in § 3.2. We look for the steady (i.e. ω = 0) dispersion relation (3.2)
saddle points of k′

x = kx + ky( y/x) in the complex ky plane, varying y/x. The resulting
asymptotic properties define the response for each y/x. The method is numerically
implemented in MATLAB; we solve for the saddle point using the built-in function
‘fsolve’. The initial guess is given by the maximum in the steady dispersion relation (3.2)
for y/x = 0, which is a contributing saddle point according to Barlow et al. (2017).

In figure 11 we report the spatial asymptotic properties as functions of y/x. The
spatio-spatial growth rate K = −Im(k′

x) (figure 11a) is initially positive and decreases
with y/x. Beyond the critical value of y/x = 0.74 it becomes negative. Both the real and
imaginary parts of the streamwise wavenumber (figure 11b) are negative and decrease with
y/x, in opposition to the real and imaginary parts of the spanwise wavenumber (figure 11c),
which are positive and increase with y/x.

The unstable region in the (x, y) plane is located where the spatio-spatial growth
rate is positive. At low values of y/x, i.e. close to y = 0, we observe a positive
spatio-spatial growth rate, i.e. perturbations are growing (remember that one writes ηt ∼
exp

[
i(kxx + kyy)

]
). When K = 0 we define the value of y/x beyond which perturbations

are damped, that is y/x = 0.74. This value of y/x defines a ray in the (x, y) plane, that
corresponds to an angle with respect to the x axis of ϕ � 36.5◦, in agreement with the
front observed in figures 8 and 10.

These results can be easily visualized in figure 12, in which we report the real part
of the total free surface elevation and the asymptotic properties in the (x, y) plane, in
a similar fashion to the previous plots for the spatio-temporal response. The total free
surface elevation is characterized by predominant streamwise structures. The steady Green
function is growing moving away from the obstacle, in strong contrast to the case of the
flow over an incline, in which it is decaying (Hayes et al. 2000; Kalliadasis et al. 2000;
Decré & Baret 2003). The streamlines of the wavevector k = (Re(kx),Re(ky)) (red dashed
lines in figure 12a) are parallel to the y direction at y = 0 and slightly bend upstream with
y. This slight variation is related to the negative value of the real part of the streamwise
wavenumber. The bending of the wavevector streamlines imply that the wavefronts (black
dashed lines in figure 12a), orthogonal to the wavevector directions, tend to slightly diverge
from the centre going downstream.

We now consider the spatio-temporal response observed in § 6.1. In the steady regions,
the spatio-temporal growth rate (§ 3.2) σ = Im(ω)− Im(kx)x/t − Im(ky)y/t = Im(ω)+
Kx/t coincides with the spatio-spatial growth rate rescaled with x/t, i.e. σ = Kx/t, since
ω = 0. In figure 13 we show the spatio-temporal growth rate obtained from the numerical
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Figure 12. Results of the spatio-spatial analysis in the (x, y) plane. (a) Real part of the total free surface
elevation ηt obtained from the asymptotic properties. The red and black dashed line denote the streamlines
of the wavevector k = (Re(kx),Re(ky)) and the wavefronts, respectively. (b) Spatio-spatial growth rate,
(c) imaginary and (d) real parts of the streamwise wavenumber, (e) imaginary and ( f ) real parts of the spanwise
wavenumber. The red line denotes the value of y/x for which K = 0.
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Figure 13. Linear response to a steady defect: spatio-temporal growth rate from the post-process algorithm of
§ 4 (coloured isocontours) and from the saddle points approach of § 3.2 (black isocontours) and spatio-spatial
growth rate (changed of sign) from the analytical steady approach of § 6.2 (red isocontours).

simulation compared with analytical values of σ and Kx/t, respectively, obtained from the
spatio-temporal (§ 3.2) and spatio-spatial approaches, for t = 350. The comparison shows
a good agreement between spatio-spatial theory and numerical post-processing in the
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Figure 14. Comparison of streamwise (a) and spanwise (b) wavenumbers obtained from the post-process
algorithm of § 4 (dots), the analytical approach (coloured solid lines) for the response to a steady defect of
§ 6.2 and the analytical results of the spatio-temporal analysis of § 3.2 (black solid lines), on the ray y/t = 0.

region downstream of the steady defect. Moreover, the numerical spatio-temporal response
agrees well with the spatio-temporal results, in the region downstream of x/t = u.

We report in figure 14 a comparison of the spatial asymptotic properties, at y/t = 0.
Also in this case, the results are in good agreement; the values of Re(ky) are converging
to the analytic values as x increases. The small difference in the values is due to the fact
that we are considering not large enough values of x close to the obstacle. The saddle point
analysis is rigorously valid for x → ∞, and in this case the steady response is present in the
range 0 < x < 175 for the considered time (t = 350), which explains the small difference.

Our analysis shows that the temporal response to a steady defect is characterized
by the presence of the steady and unsteady contributions which interact. The steady
contribution, which originates from the presence of the steady defect, is not advected
away and spreads in the domain as the streamwise coordinate increases. The presence
of an initial perturbation gives rise also to a temporal response that is advected away. If
we wait for enough time, eventually the temporal response is no longer present in the
field and only the steady response survives, which is characterized by streamwise-aligned
structures.

We then conclude that the emergence of streamwise structures both on the fluid film
and on the substrate in the region just downstream of the initial impulse location is
related to the presence of defects on the substrate and it has a linear hydrodynamic
origin. This mechanism is predominant in the regions in which the temporal response
has been advected away. In the context of morphogenesis of draperies, we thus argue
that the response in the presence of the deposition process contains as fundamental
ingredients two hydrodynamic effects, one related to the isotropic unsteady response in
the absence of substrate variations, and the other one related to the steady response in the
presence of a localized defect in the substrate. The deposition process couples these two
different hydrodynamic mechanisms, giving rise to predominant draperies structures on
the substrate.

7. Nonlinear response

The linear response in the presence of the deposition process is compared with nonlinear
simulations of (2.3) and (2.6), for the case C = 10−3. The system of (2.3) and (2.6) is
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Figure 15. Nonlinear impulse response of (2.3) and (2.6) for u = 0.77 and C = 10−3, at (a,b) t = 40,
(c,d) t = 60, (e, f ) t = 80. (a,c,e) The fluid thickness response and (b,d, f ) the substrate thickness response.
The colourbars are centred around the values h = 1 and h0 = Čt.

subjected to the initial conditions

h = 1 + S exp[−x2/2 − y2/2], (7.1a)

h0 = S exp[−x2/2 − y2/2], (7.1b)

where S = 10−2.
The nonlinear simulations are performed using the finite-element software COMSOL

Multiphysics. The flow equations are solved in a rectangular domain with periodic
boundary conditions, for the variables (h, κ, h0) using third-order finite elements; the time
marching is obtained by a second-order backward differentiation formula. We consider
a domain of size Lx = 310 and Ly = 180 with periodic boundary conditions and largest
mesh element of characteristic size l∗c in the region, leading to a mesh of approximately
56000 elements. A preliminary analysis shows that the numerical convergence is already
achieved with this characteristic size of elements.

In figure 15 we show the results at three different times, for the fluid and substrate
thickness. As a comparison, on the bottom, the results for h = 1 + Sη of the linear
simulation of § 5.2 are reported. The nonlinear patterns are very similar to the
corresponding linear ones, even if some differences can be highlighted. As time increases,
the fluid film increases and the perturbation spreads in concentric circles from the
maximum thickness location. Streamwise structures are selected in the downstream part
of the response close to the maximum value position, while in the linear simulation
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Figure 16. Nonlinear impulse response of (2.3) and (2.6) for u = 2.31 and C = 10−3, at t = 120. (a) The fluid
thickness response and (b) the substrate thickness response. The colourbars are centred around the values h = 1
and h0 = Čt.

the pattern is isotropic in this region. The dominance of streamwise structures in the
downstream part is enhanced as u increases (figure 16).

The upstream part shows the same intricate pattern observed in the linear simulations.
The substrate thickness presents a defect at the origin, which slowly grows in time.
Downstream of the defect at the origin, growing streamwise structures on the substrate
emerge and propagate in the domain, with a front well described by a constant angle.

Under the light of the results of the previous linear analyses, we are able now to
distinguish the different physical mechanisms underlying the selection of streamwise
structures. The selection of streamwise structures both in the fluid film and on the substrate
in the downstream part of the initial impulse location is due to the steady defect mechanism
of § 6.2, while in the region upstream the maximum thickness draperies are purely selected
by the deposition law. In addition, rivulets emerge also in the downstream part of the
wavepacket. This selection is absent in the linearized dynamics and is due to nonlinear
effects (Ledda et al. 2020). The downstream part of the wavepacket is progressively
invaded by rivulets with time, thus enhancing the deposition of streamwise structures
on the substrate. Thanks to the linear analyses, we conclude that the linear effects are
predominant in the upstream part of the wavepacket such that, after all, the selection
of streamwise structures occurs for all the values of the linear advection velocity. The
deposition of streamwise structures in the downstream part is largely dictated by the
nonlinear selection of rivulets in the fluid film, whose dominance is enhanced with u.

In figure 16, we observe that the visible perturbation in the nonlinear simulation spreads
in a larger region compared with the linear simulation. This implies that the linear front
given by the isolevel σ = 0 changes in the nonlinear regime. We thus focus on the
structure of the nonlinear front with time. The analysis performed with the post-process
algorithm could be in principle applied to the results of the nonlinear simulations.
However, nonlinearities generate large wavelengths, altering the band structure of the
spectrum of the perturbation observed in the linear simulations. As a consequence, it is
no more possible to recover the envelope of the response (Melville 1983; Delbende &
Chomaz 1998).

Despite this, following Delbende & Chomaz (1998), it is possible to obtain information
about the front by following the isolevels of the absolute value of the response |η|. We
consider the centreline profile (i.e. y/t = 0) and we extend the linear fronts (red dashed
lines) in the nonlinear regime by following the corresponding isolevel of |η| (figure 17a).
We assume that this isolevel is a good approximation of the nonlinear front. The nonlinear
front follows the linear one until t ≈ 108, beyond which it bends and the perturbation
spreads in a larger region. In the inset, we report the corresponding thickness profile at
t = 108. The maximum thickness location is very close to the linear front. The variation
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Figure 17. (a) Isolevels of |η| as a function of x and t, for y = 0. The red dashed lines denote the linear front,
while the black line the isolevel that well approximates the front at small times. The inset gives the thickness
profile for t = 108. (b) Isolevel of |η| approximating the nonlinear front, for t = 50 (blue line) and t = 125
(green line). The red circle denotes the linear front given by the response in the absence of substrate variations,
and the red lines the front given by the steady defect analysis with u = 3.85 and C = 10−3.

of the isolevel of |η| well approximating the nonlinear front is reported in figure 17(b) as
a function of (x/t, y/t), for t = 50 and t = 125. The isolevel well approximates the linear
prediction, and at t = 125 we observe that the nonlinear front has spread downstream in a
larger region.

The analysis of the nonlinear front shows that, at large times, the perturbation spreads in
a larger region than the one predicted by the linear theory. While in the linear regime the
advection of perturbation is given by u, in the nonlinear regime it is equal to uh2 (Babchin
et al. 1983). As the perturbation grows, regions with thickness h > 1 travel faster than
the flat film and vice versa. Thus, for large enough times, the linear front is eventually
reached (downstream for h > 1, upstream for h < 1). Our case corresponds to panels (c,d)
in figure 3 of Delbende & Chomaz (1998). For the sake of completeness, we report in
appendix D the results of the nonlinear front in the absence of substrate variations. In
conclusion, the nonlinearities tend to favour streamwise structures and to deform the front
in which the perturbation spreads due to the differences in advection.

8. Conclusions and discussion

In this work, we studied the pattern formation of a thin film flowing under an inclined
plane, in the presence of material deposition on the substrate, reminiscent of the
karst structure formation in limestone caves. We tackled the problem theoretically and
numerically studying the linearized dynamics when substrate variations are considered.

The spatio-temporal analysis in the presence of the deposition process was studied in
the context of numerical simulations and a novel approach to retrieve the wavepacket
properties. The numerical study of the impulse response was generalized to the
two-dimensional case with the introduction of the monogenic signal, the two-dimensional
analytic continuation of a real signal, based on the Riesz transform. The monogenic
signal allows us to reconstruct the amplitude and the phase of the numerical response,
and then the asymptotic properties of the wavepacket. This approach, which constitutes
the generalization to two propagation directions of the approach introduced in Brancher
& Chomaz (1997) and Delbende et al. (1998), can be generally used in flows where
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Figure 18. Analytical (a) spatio-temporal response to a localized initial perturbation (§ 3.2) and (b) spatial
response to a localized steady defect (§ 6.2), in the absence of the deposition process. The red lines denote the
limits in which the perturbation spreads.

the dispersion is not known analytically or when the saddle-point tracking becomes
too challenging. In addition, this procedure allows one to proceed to an a posteriori
description of the response, without the necessity to a priori define the unstable branches
of the dispersion relation, making it suitable for the analysis of complex fluid responses.
The numerical procedure aims at deriving the asymptotic behaviour for t → ∞ using
numerical simulations at finite times, and assumes that the amplitude and the phase of the
signal subject to the Riesz transform can be separated (i.e. a separation of scales between
the variations of the envelope and the oscillations subsists). We verified the validity of
the assumptions in the present case by a comparison with the analytical solution in the
absence of substrate variations.

We therefore focused on the study of the linear impulse response in the presence of
a deposition law. The temporal analysis of the dispersion relation showed only a slight
anisotropy which promotes streamwise aligned structures. Motivated by this, we therefore
studied the linear impulse response exploiting the post-processing algorithm. We identified
an isotropic region (I) that is advected away (figure 18a) and a quasi-steady region (III)
propagating downstream (figure 18b) with a front defined by an approximately constant
angle, related to the presence of a growing substrate defect at the initial impulse location.

The analysis of the substrate thickness showed that the deposition law selects
predominant streamwise structures as the wavepacket is advected away, in (II) the upstream
part of the travelling wavepacket. Physically, we related this phenomenon to the fact that,
in opposition to rivulets, waves are travelling structures. Perturbations are oscillating at
fixed locations, thus having a much smaller effect on the substrate topography.

We thus analysed the response to a steady defect, for the pure hydrodynamic problem.
The region just downstream of the steady obstacle coincides with the quasi-steady region
(III) identified in the deposition case, and it is in good agreement with the analytical
Green function for a steady defect (figure 18b). The emergent pattern is characterized by
streamwise structures both in the fluid film and on the substrate thickness.

In the nonlinear simulations, we exploited the results of the linear analyses and we
distinguished the selection mechanisms due to the substrate variations from the nonlinear
mechanism of rivulets selection in the absence of substrate variations. While in the
first case the dominance of streamwise structures is independent of the linear advection
velocity, the latter plays a crucial role in the nonlinear selection mechanism. The latter
promotes the selection of rivulets (in the fluid film) in the downstream part of the travelling
wavepacket (I), thus enhancing the deposition of draperies structures. We analysed the
evolution of the fronts between which the perturbation spreads, concluding that the
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emergence of rivulets modifies the downstream front by nonlinearly increasing the leading
edge front velocity.

We conclude that the different selection mechanisms are dominant in different regions
of the response. The deposition process couples the hydrodynamic mechanisms of the
unsteady response in the absence of substrate variations and the steady response in the
presence of localized substrate variations. In common natural environments, the relative
importance of the mechanisms may depend on the fluid film and substrate conditions,
but always giving rise to predominant draperies structures. The immense diversity of
limestone patterns observed in nature may result from secondary instabilities of these
predominantly selected primary streamwise-oriented structures.
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Appendix A. Numerical method and validation

In this section, we introduce the numerical method to solve (2.8) in a rectangular domain,
with periodic boundary conditions. We consider the Fourier transforms of the functions
(η, η0), i.e.

[
η̂, η̂0

]T =
∫∫ [

η, η0
]T

exp [−ik · x] dx, (A1)

where k = (kx, ky), are the streamwise and spanwise wavenumbers, respectively. Applying
the Fourier transform to (2.8), the following complex ordinary differential equation system
is obtained:

dη̂
dt

= η̂(−iukx)+ (η̂ + η̂0)
1
3

(
χk2 − k4

)
, (A2)

dη̂0

dt
= Čη̂, (A3)

where k = |k|. Introducing the vector η̂ = [η̂, η̂0]T, the system of equations reads

dη̂

dt
=

[1
3

(
χk2 − k4) − iukx

1
3

(
χk2 − k4)

Č 0

]
η̂ = Aη̂. (A4)

With the decomposition η̂ = η̂r + iη̂i, the final system of real ordinary differential
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Figure 19. Two-dimensional linear response in the presence of a localized steady defect for the flow over an
inclined planar substrate at y = 0 as a function of the streamwise coordinate, for u = 16.75. Results are rescaled
using the non-dimensionalization reported in Decré & Baret (2003) (Ld = (γ hN/3ρg cos(θ))1/3). (a) Response
in the (x, y) plane. (b) Comparison between the experimental (red dots) and numerical (black stars) results of
Decré & Baret (2003) and the numerical solution (blue line).

equations reads

dŷ
dt

=

⎡
⎢⎢⎣

dη̂r

dt
dη̂i

dt

⎤
⎥⎥⎦ =

[
Ar −Ai

Ai Ar

] [
η̂r

η̂i

]
= Bŷ. (A5)

The solution of this problem can be written as

ŷ = expm[Bt]ŷ(0), (A6)

where expm stands for the exponential matrix.
The numerical procedure is implemented in MATLAB. A rectangular domain of

size 1000 × 1000 is considered, with a number of collocation points Nx = Ny = 1001.
A convergence analysis on (Nx, Ny) has been performed, concluding that convergence
is already achieved for 1001 collocation points. No significant changes have been
observed when increasing the domain size. The initial condition is transformed in the
two-dimensional Fourier space using the built-in function for the fast Fourier transform
‘fft2’. Subsequently, the linear system of ordinary differential equations is solved using
the built-in function for the exponential matrix, and the solution in the space domain is
obtained through the inverse fast Fourier Transform ‘ifft2’.

The numerical code is validated against a benchmark case present in the literature for
the experimental response in the presence of a steady defect for a thin film flowing over
an inclined plane, i.e. χ = −1 and C = 0. The initial condition is given by η(x, y, 0) = 0
and η0(x, y, 0) = − exp[−(x2 + y2)/2ς2], with ς = 0.17, which gives the same integral
value of the experimental step-down defect used in Decré & Baret (2003) and does not
vary with time. In the inertialess case and with the absence of defects, the flow over an
inclined plane is stable and the solution is a film of constant thickness (Kalliadasis et al.
2011). The presence of a localized steady defect creates a region close to the depression
characterized by a variation of the free surface elevation η + η0 (see figure 19a). In
the region just upstream of the depression, there is a small increase in the free surface
elevation, followed by a strong decrease. Downstream, there is an overshoot greater than
the initial thickness followed by a recovery of the flat film conditions. In figure 19(b) we
show a comparison of the results of our model with the experimental and theoretical results
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Figure 20. Asymptotic properties from the post-process algorithm (§ 4), for u = 0.77 and C = 10−3.
(a) Spatio-temporal growth rate. (b) Real part of the complex frequency. (c) Imaginary part of the streamwise
wavenumber. (d) Real part of the streamwise wavenumber. (e) Imaginary part of the spanwise wavenumber.
( f ) Real part of the spanwise wavenumber.
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Figure 21. (a) Isolevels of |η| as a function of x and t, for y = 0. The red dashed lines denote the linear front,
while the black line the isolevel that well approximates the front at small times. The inset gives thickness profile
for t = 108. (b) Isolevel of |η| approximating the nonlinear front, for t = 50 (blue line) and t = 125 (green line).
The red line denotes the linear front in absence of substrate variations (u = 3.85, no substrate variations).

of Decré & Baret (2003), for the free surface elevation at y = 0. Results are rescaled using
their non-dimensionalization. The comparison shows a good agreement, thus validating
the numerical procedure.
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Appendix B. Evaluation of the imaginary part of the spatial wavenumbers from the
spatio-temporal growth rate

In this appendix, we demonstrate (4.15) and (4.16) by generalizing to the two-dimensional
case the approach outlined in Delbende et al. (1998). We consider

ω′′ (vx, vy
) = ω − kxvx − kyvy. (B1)

We derive (B1) with respect to the group velocity vx along the x direction,

∂ω′′

∂vx
= ∂ω

∂vx
− ∂kx

∂vx
vx − kx − ∂ky

∂vx
vy. (B2)

Since ω = ω(kx, ky), we evaluate the derivative as follows:

∂[ω
(
kx, ky

)
]

∂vx
= ∂ω

∂kx︸︷︷︸
vx

∂kx

∂vx
+ ∂ω

∂ky︸︷︷︸
vy

∂ky

∂vx
, (B3)

where vx and vy are real (Delbende et al. 1998). Substituting in (B2), the imaginary part
of the streamwise wavenumber is obtained as

Im (kx) = − ∂σ

∂vx
. (B4)

Deriving ω′′ with respect to vy and following the same procedure, Im(ky) reads

Im
(
ky

) = − ∂σ

∂vy
. (B5)

Appendix C. Results of the post-processing algorithm for C = 10−3

In this section, for the sake of completeness, we report the results of the post-processing
algorithm of § 4 applied for the case in the presence of the deposition process (§ 5.3), for
C = 10−3. The results, reported in figure 20, are similar to those observed in the case
C = 10−5 (figure 8), with a front downstream of the initial position more curved and the
region where the two contributions (quasi-steady and spatio-temporal) interact displaced
downstream.

Appendix D. Nonlinear front in the absence of substrate variations

In this appendix, we report the results of the evaluation of the nonlinear front for the case
in the absence of substrate variations, for u = 3.85. The results, reported in figure 21, show
a deformation of the front similar to figure 17, without the quasi-steady part propagating
downstream.
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