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Abstract. The study of the dynamics of an holomorphic map near a fixed point is a central
topic in complex dynamical systems. In this paper, we will consider the corresponding
random setting: given a probability measure ν with compact support on the space of
germs of holomorphic maps fixing the origin, we study the compositions fn ◦ · · · ◦ f1,
where each fi is chosen independently with probability ν. As in the deterministic case,
the stability of the family of the random iterates is mostly determined by the linear part of
the germs in the support of the measure. A particularly interesting case occurs when all
Lyapunov exponents vanish, in which case stability implies simultaneous linearizability of
all germs in supp(ν).
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1. Introduction
An elementary but fundamental result in the theory of local complex dynamical systems is
the following.

Let f : (Cm, 0)→ (Cm, 0) be a neutral germ, i.e., all eigenvalues of d f (0) have norm
one. Then { f n

} is normal in a neighborhood of the origin if and only if f is locally
linearizable and d f (0) is diagonalizable.

Our goal in this paper is to generalize this statement to the random setting, i.e.,
when studying compositions of maps that are chosen to be independent and identically
distributed. Our main result is the following theorem.

THEOREM 1.1. Suppose that ν is a neutral probability measure with compact support on
O(Cm, 0). Then the origin lies in the random Fatou set if and only if all the germs in
supp(ν) are simultaneously linearizable and the semigroup of differentials

d Sν := {d f n
ω (0) | ω ∈ supp(ν)N, n ∈ N}

is conjugate to a sub-semigroup of U (m).
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As an illustration, consider the case where all maps in the support of ν are of the form
z 7→ λz + z2, with |λ| = 1. The fact that all the maps must be simultaneously linearizable
implies that ν is supported at a single point: a germ with a Siegel disk.

Let us be more precise about our setting. Instead of considering normality of a family
of iterates { f n

}, we will consider the family Fω = { f n
ω }. Here ω = ( fn) is a sequence

of germs each chosen independently with a probability ν and f n
ω := fn ◦ · · · ◦ f1. An

important observation in the proof of Theorem 1.1 is that the sequence ( f n
ω )n∈N is almost

certainly normal in a neighborhood of the origin if and only if the induced semigroup Sν ,
generated by the support of ν, is normal in a (possibly smaller) neighborhood of the origin.
In one variable, this equivalence is a quick consequence of the Koebe quarter theorem; in
higher dimensions, one uses Hurwitz’s theorem for the same purpose (see Corollary 4.5).

In the random setting we may introduce Lyapunov exponents κ1 > · · ·> κs , which play
the same role as the (logarithms of absolute values of the) eigenvalues of d f (0) (see [O68]
or [GM89] for more information on Lyapunov exponents). Analogous to the deterministic
case, we say that the measure ν is attracting if κ1 < 0, repelling if κ1 > 0, neutral if the
only Lyapunov exponent is κ1 = 0 and semi-attracting if κ1 = 0 and κ2 < 0.

The equivalence between the normality of the random dynamical system and the
normality of the induced semigroup breaks down when we leave the neutral setting, and the
situation becomes considerably more complicated. In §3, we show that it is not possible to
decide whether the origin lies in the random Fatou set just by looking at the Lyapunov
exponents or at linearizability. In the two-dimensional setting, the fact that the origin
is in the random Fatou set implies the existence of stable manifolds, analogous to their
deterministic setting.

THEOREM 1.2. Let ν be a semi-attracting measure on O(C2, 0) with compact support.
If the origin lies in the random Fatou set, then almost surely every limit germ g =
limk→∞ f nk

ω has rank one and, given z sufficiently close to the origin, its stable set Ws
ω(z)

is locally a one-dimensional complex manifold.

The paper is organized as follows. In §2, we review the background on random matrices
and prove that a neutral measure of linear maps is stable if and only if there is a conjugation
to a sub-semigroup of U (m). In §3, we give a more precise formulation of the problem
and treat several examples showing that our assumptions are necessary. We will study
normality of the family Fω when κ1 6= 0 in §4.1 and for neutral measures in §4.2. Semi-
attracting measures will be considered in §5.

Throughout the paper, we use the inductive limit topology on O(Cm, 0). Its construction
and properties are discussed in the appendix.

1.1. Historical references. The investigation on the random dynamics of holomorphic
maps began with the work of Fornaess and Sibony. In [FS91], they showed that a generic
rational map, with attracting cycles, admits a neighborhood W such that, for almost every
sequence of functions chosen to be independent and identically distributed with respect to
an absolutely continuous probability measure supported in W , the Julia set of the family
Fω has zero measure. Furthermore, for every z ∈ Ĉ, the point z belongs almost certainly to
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the Fatou set of the family Fω. We refer to the paper of Sumi [Su11] for a generalization
of this result.

The local dynamics of a holomorphic germ f fixing the origin is one of the earliest
problems studied in complex dynamics. Determining the linearizability of neutral and
semi-attracting germs is a subtle problem. In one dimension, a complete description of
this phenomenon was given in the works of Cremer [C38], Siegel [Si42], Brjuno [Brj71]
and Yoccoz [Y95].

The local dynamics of germs in several complex variables has many analogies with
the one-dimensional case, but also many differences. We refer to the survey of Abate
[A03] for more details. In this setting, the presence of resonances constitute an obstacle
to linearizability, as studied by Poincaré [P28] for attracting germs. The description
of attracting germs was completed in dimension two by Lattès [La11] and in arbitrary
dimensions independently by Sternberg [Ste57, Ste58] and Rosay and Rudin [RR88].

Neutral and semi-attracting germs in several complex variables have also been
intensively studied, particularly in the parabolic case, where all eigenvalues of norm
one are roots of unity. See, for instance, the works of Écalle [Ec85], Hakim [H98] and
Abate [A01] for germs tangential to the identity and the works of Ueda [U86, U91]
and Rivi [Ri01] for a description of semi-parabolic germs. For the non-parabolic case,
consider, for example, the papers of Bracci and Molino [BM04] and Bracci and Zaitsev
[BZ13] for neutral germs and the recent papers of Firsova, Lyubich, Radu and Tanase
[LRT16, FLRT16] for semi-attracting germs.

2. Products of random matrices
Definition. Let (�,B, µ) be a probability space and let T :�→� be an ergodic
transformation. Given a measurable function M :�→Mat(m, C), the (linear) cocycle
defined by M over T is the skew-product transformation

F :�× Cm
→�× Cm, (ω, v) 7→ (Tω, Mωv).

We will also refer to the triple (�, T, M) simply as a (linear) cocycle.

Observe that Fn(ω, v)= (T nω, Mn
ωv), where

Mn
ω := MT n−1ω · · · Mω.

By elementary properties of measurable functions, the function ω 7→ supn ‖M
n
ω‖ is also

measurable. Therefore the set

�b = {ω ∈� | Mn
ω is bounded}

is measurable and it satisfies T−1�b =�b. By ergodicity of T , we either have µ(�b)= 0
or µ(�b)= 1.

Problem. For which cocycles is the family Mω = {Mn
ω} almost surely bounded?

A cocycle of particular importance for our work is the following.

Definition (independent and identically distributed cocycle). Given a probability measure
ν on Mat(m, C), let�= supp(ν)N equipped with the product metric µ= ν∞, let T :�→
� be the shift map and let M :�→Mat(m, C) be the function that returns the first element
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of the sequence ω. Then the triple (�, T, M) is called the independent and identically
distributed cocycle generated by ν.

Remark. It is well known that T is an ergodic transformation. Furthermore, the map
M is continuous and therefore measurable, showing that the triple (�, T, M) fulfils the
conditions in the definition of cocycle.

We notice that MT n−1ω coincides with the nth element of the initial sequence and
that X i (ω) := MT i−1ω is an independent and identically distributed sequence of random
variables with values in Mat(m, C), each chosen with probability ν. In this case, Mn

ω is
given by the product of the first n elements of the sequence ω.

The problem of the iteration of random matrices was first studied by Furstenberg
and Kesten in [FK60]. An important generalization of their result is the multiplicative
ergodic theorem of Oseledec [O68]. The following version of the theorem can be found in
[Rue79].

THEOREM 2.1. (Multiplicative ergodic theorem) Let (�, T, M) be a cocycle such that

log+ ‖Mω‖ ∈ L1(�, µ).

There exist numbers +∞> κ1 > · · ·> κs ≥−∞, called Lyapunov exponents, and
natural numbers α1, . . . , αs , called Lyapunov multiplicities, satisfying the equation
α1 + · · · + αs = m such that, for almost every ω ∈�, we have the following.
(a) There exists a Hermitian matrix3ω with eigenvalues eκ1 > · · ·> eκs , with respective

multiplicities αi , such that

lim
n→∞

((Mn
ω)
∗Mn

ω)
1/2n
=3ω. (1)

(b) Suppose that U1(ω), . . . , Us(ω) are the eigenspaces of 3ω. Let Vs+1(ω)= {0} and
Vi (ω)= Ui (ω)⊕ · · · ⊕Us(ω). Then, given v ∈ Vi (ω)\Vi+1(ω),

lim
n→∞

n−1 log ‖Mn
ωv‖ = κi . (2)

The set σ = {(κ1, α1), . . . , (κs, αs)} is called the Lyapunov spectrum.

Definition. Let (�, T, M) be a cocycle such that log+ ‖Mω‖ ∈ L1(�, µ), and let κ1 >

· · ·> κs be the Lyapunov exponents. We say that the cocycle is:
attracting if the maximal Lyapunov exponent κ1 < 0;
repelling if the maximal Lyapunov exponent κ1 > 0;
neutral if the Lyapunov spectrum σµ = {(0, m)}; and
semi-attracting if the maximal Lyapunov exponent κ1 = 0 and α1 6= m.

Remark. In the work of Furstenberg and Kesten [FK60], it is proved that, for every
cocycle, we may define

κµ = lim
n→∞

n−1E log ‖Mn
ω‖. (3)

Furthermore, under the assumption that log+ ‖Mω‖ ∈ L1(�, µ) for almost every ω ∈�,

lim
n→∞

n−1 log ‖Mn
ω‖ = κµ. (4)
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Under the hypothesis of Theorem 2.1, we can describe the connection between Lyapunov
exponents and κµ as follows.

LEMMA 2.2. Let (�, T, M) be a cocycle such that log+ ‖Mω‖ ∈ L1(�, µ). Then the
maximal Lyapunov exponent κ1 is equal to κµ. Furthermore,

α1κ1 + · · · + αsκs = E log |det(Mω)|.

Proof. Let κ1 be the maximal Lyapunov exponent and choose ω ∈� such that (1), (2) and
(4) hold. It is not hard to prove that κµ ≥ κ1; thus it remains to prove that κµ ≤ κ1. Let
vn be a unit vector such that ‖Mn

ω‖ = ‖M
n
ωvn‖. We take nk such that vnk → v. By (2), for

some i = 1, . . . , s,

κi = lim
k→∞

n−1
k log ‖Mnk

ω v‖

≥ lim
k→∞

n−1
k log(‖Mnk

ω vnk‖ − ‖M
nk
ω (vnk − v)‖)

≥ lim
k→∞

n−1
k log ‖Mnk

ω ‖ + lim
k→∞

n−1
k log(1− ‖vnk − v‖)

≥ κµ.

Since κi ≤ κ1, the equality κµ = κ1 follows.
If we apply log | · | to both side of (1), we obtain that

α1κ1 + · · · + αsκs = log |det(3ω)|

= lim
n→∞

1
n

log |det(Mn
ω)|

= lim
n→∞

1
n

n−1∑
i=0

log |det(MT iω)|.

By Birkhoff’s ergodic theorem, the last term of this equality converges almost surely to
E log |det(Mω)|. By choosing an appropriate ω, we obtain the desired equality. �

COROLLARY 2.3. Let (�, T, M) be a cocycle such that log+ ‖Mω‖ ∈ L1(�, µ). We have
the following list of equivalences.
(a) The cocycle is attracting if and only if κµ < 0.
(b) The cocycle is repelling if and only if κµ > 0.
(c) The cocycle is neutral if and only if κµ = 0 and E log |det(Mω)| = 0.
(d) The cocycle is semi-attracting if and only if κµ = 0 and E log |det(Mω)|< 0.

When the cocycle is attracting or repelling, (4) gives an answer to the problem of the
boundedness of the family Mω = {Mn

ω}.

COROLLARY 2.4. If a cocycle is attracting, then the family Mω is almost certainly
bounded in Mat(m, C). If a cocycle is repelling, then Mω is almost certainly unbounded.
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2.1. Neutral measures. The stability problem is considerably more complicated in the
neutral setting. However, for independent and identically distributed cocycles generated by
probability measures with compact support, we can give a precise description of the stable
systems in Proposition 2.7 below. In the two examples that follow, we show that no such
statement can hold for all neutral cocycles, when we drop the independent and identically
distributed assumption.

Given a probability measure ν on Mat(m, C) with compact support, let (�, T, M)
be the independent and identically distributed cocycle generated by ν. By Tychonoff’s
theorem, the set � is compact, and thus log+ ‖Mω‖ ∈ L1(�, µ).

Definition. Let ν be a measure on Mat(m, C) with compact support. We say that ν
is attracting (respectively, repelling, neutral and semi-attracting) if the independent and
identically distributed cocycle generated by ν is attracting (respectively, repelling, neutral
and semi-attracting).

LEMMA 2.5. Let ν be a probability measure on Mat(m, C) with compact support, and let
(�, T, M) be the independent and identically distributed cocycle generated by ν. Then
the set

�a := {ω ∈� | ∀n ∈ N and ∀α ∈�, ∃k j : Mn
T k j ω
→ Mn

α}

is a full measure subset of �.

Proof. Let n ∈ N and choose a sequence ε j → 0. We define

�n, j := {ω ∈� | ∀α ∈�, ∃k : ‖Mn
T kω
− Mn

α‖< ε j }.

Is it clear that
⋂

n, j �n, j =�a . Since the sets�n, j are countably many, it suffices to prove
that, for every n, j ∈ N, the set �n, j has full measure.

Suppose that n and j are fixed. Given α ∈�, using the continuity of T and M , we may
find an open neighborhood Uα 3 α so that, given β ∈Uα ,

‖Mn
α − Mn

β‖< ε j/2.

By compactness of supp(ν), the set � is also compact; therefore we may find
α1, . . . , αN such that �= ∪iUαi . For simplicity, we will write Ui for Uαi . Notice that
supp(µ)=�; therefore all the sets Ui have positive measure. Using standard results from
ergodic theory and the fact that the αi are finite in number, we find that

�′n, j = {ω ∈� | ∀i = 1, . . . N , ∃ki : T kiω ∈Ui }

has full measure in �.
Finally, given ω ∈�′n, j and α ∈�, there exists Ui so that α ∈Ui and ki so that T kiω ∈

Ui . By the definition of Ui , we obtain that

‖Mn
T ki ω
− Mn

α‖ ≤ ‖M
n
T ki ω
− Mn

αi
‖ + ‖Mn

αi
− Mn

α‖< ε j ,

which proves that �′n, j ⊂�n, j and thus that �n, j has full measure. �

Remark. The previous lemma is valid in a much more general context. As a matter of fact,
in the proof, we only used that (�, T, M) is a continuous cocycle over a compact space,
meaning that both T and M are continuous functions and � is compact.
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The following lemma is a consequence of [Str06, Theorem 14.35, Remark 14.36].

LEMMA 2.6. Let G be a compact subgroup of GL(m, C). Then G is conjugate to a
subgroup of the standard unitary group U (m).

We define the set
Sν = {Mn

ω | ω ∈�, n ∈ N}.
For the independent and identically distributed cocycles, the set Sν ⊂Mat(m, C) has a
semigroup structure, which is not necessarily true for general cocycles. In later sections,
we will use the same notation Sν for semigroups induced by maps that are not necessarily
linear.

PROPOSITION 2.7. Let ν be a neutral measure on Mat(m, C) with compact support, and
let (�, T, M) be the independent and identically distributed cocycle generated by ν. Then
the following are equivalent.
(a) The family Mω is almost certainly bounded.
(b) The semigroup Sν is relatively compact in GL(m, C) and is conjugated to a sub-

semigroup of the unitary group U (m).

Before proceeding to the proof, we want to discuss why there is no hope that a (similar)
proposition holds for a generic neutral cocycle or even for a continuous neutral cocycle
over a compact space. We will show this by constructing two cocycles for which Mω

is almost certainly bounded but for which S� = {Mn
ω | ω ∈�, n ∈ N} is not relatively

compact in GL(m, C).

Example. Let X = R/Z be the unit circle with the Borel σ -algebra B and Lebesgue
measure λ. Let θ ∈ R\Q and define T : X→ X by T x = x + θ mod 1. It is well known
that the transformation T is ergodic. Given x1, x2 ∈ X , we write

dX (x1, x2)= inf
m∈Z
|x1 + m − x2|.

Let ϕ ∈ L1(X, λ) be a non-negative and unbounded function. The function
M : X→ R+, defined as

log(Mx )= f (x) := ϕ(x)− ϕ(T x),

is measurable and defines a neutral cocycle over T .
Notice that Mn

x = eϕ(x)−ϕ(T
n x)
≤ eϕ(x). Since ϕ(x) <∞ for almost every x ∈ X , it

follows that Mn
x is almost surely a bounded sequence. On the other hand, we can find

K0 > 0 so that the set X K0 = {x ∈ X | ϕ(x) < K0} has positive measure. Since T is
ergodic, for almost every x ∈ X , there exists n0 such that T n0 x ∈ X K0 . We conclude that
Mn0

x > eϕ(x)−K0 . Since ϕ is unbounded, it follows that SX is unbounded in R+.

Example. In the previous example, the function f may be unbounded, in which case
the unboundedness of SX is not particularly surprising. In this second example, we will
construct a function ϕ for which f is continuous and therefore bounded.

Let ωn = (n − 1)θ mod 1= T n−10 and let ak = 2kk. For every k > 0, we may choose
εk > 0 such that;
(a) εk ≤ 1/a2

k ; and
(b) the sets [ω1 − εk, ω1 + εk], . . . , [ω2ak − εk, ω2ak + εk] are pairwise disjoint.
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FIGURE 1. The graphs of the functions f1 and ϕ1.

Write I j,k = [ω j − εk, ω j + εk] and define fk as

fk(x) :=


−

1
2k

(
1−

dX (x, ω j )

εk

)
if x ∈ I j,k for j = 1, . . . , ak,

+
1
2k

(
1−

dX (x, ω j )

εk

)
if x ∈ I j,k for j = ak + 1, . . . , 2ak,

0 elsewhere.

We define a corresponding function ϕk as

ϕk(x) :=


−

j−1∑
i=1

fk(T−i x) if x ∈ I j,k for j = 2, . . . , 2ak,

0 elsewhere,

see Figure 1 for the graphs of f1 and ϕ1.
With some elementary calculations, one can verify that fk(x)= ϕk(x)− ϕk(T x) and

that ∫
X
ϕk dλ= a2

k εk
1
2k ≤

1
2k .

Let f (x)=
∑
∞

k=1 fk(x) and ϕ(x)=
∑
∞

k=1 ϕk(x). Since | fk(x)| ≤ (1/2)k , the function
f (x) is continuous. On the other hand, since all the ϕk are non-negative functions, also
ϕ is non-negative. Furthermore the above estimate on the integral of ϕk implies that
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ϕ ∈ L1(X, λ). Finally, we notice that ϕk(ωak+1)= k and therefore that ϕ is unbounded.
The function ϕ that we constructed satisfies all the hypotheses of the previous example
and f (x)= ϕ(x)− ϕ(T x) is a continuous function.

Proof of Proposition 2.7. The implication b.⇒ a. is trivial. Suppose, on the other hand,
that, for almost every ω ∈�, the family Mω is bounded.

Given ω ∈�, we define f (ω)= log |det(Mω)|. By elementary properties of the
determinant, we obtain that

log |det(Mn
ω)| =

n−1∑
i=0

f (T iω).

Let Yi := f (T i−1ω) and Xn =
∑n

i=1 Yi . The Yi form a sequence of independent and
identically distributed random variables with expected value E(Yi )= 0. If

√
Var(Yi ) > 0,

almost surely there exists a sequence nk so that Xnk →∞, which contradicts the fact
that Mω is almost certainly bounded. It follows that Var(Yi )= 0, which implies that
|det(Mn

ω)| = 1 for all ω ∈� and n ∈ N.
Let �a be as in the Lemma 2.5 and choose ω0 ∈�a for which Mω0 is bounded. We

write M−n
ω0
= (Mn

ω0
)−1. Since |det(Mn

ω)| = 1 for every n, the extended family M̂ω0 :=

{(Mn
ω0
)}n∈Z is also bounded. Let C be a bound on the norms of the matrices of this family.

Let ω ∈� and n ∈ N. Since ω0 ∈�a , there exists k j such that Mn
T k j ω0

→ Mn
ω. Now

‖Mn
T k j ω0
‖ = ‖M

n+k j
ω0 · M

−k j
ω0 ‖< C2.

This proves that the set Sν is bounded in GL(m, C). Its closure Gν = Sν is compact in
GL(m, C).

Given M ∈ Gν , its orbit is also contained in Gν , and thus it is bounded. Since
|det(M)| = 1, the matrix M is diagonalizable and every eigenvalue of M has norm one.
In this case, there exists nk such that Mnk → id. Furthermore, Mnk−1 is a convergent
sequence and its limit coincides with M−1. Hence Gν is a compact subgroup of GL(m, C).
By the previous lemma, it follows that Gν is conjugated to a subgroup of U (m). �

2.2. Semi-attracting measures. Throughout the rest of this section, we assume that ν is
semi-attracting and with compact support, and we consider the independent and identically
distributed cocycle (�, T, M) generated by ν. Almost surely Mn

ω 6= 0 for every n. Let
P�=�× Pm−1 and PF : P�→ P� be the map defined by

PF : (ω, [v])→ (Tω, [Mωv]).

Finally, let 8 : P�→ R be the map 8(ω, [v])= log(‖Mωv‖/‖v‖). For every ω ∈�
and v ∈ Cm ,

n−1∑
k=0

8 ◦ PFk(ω, [v])= log
‖Mn

ωv‖

‖v‖
≤ log ‖Mn

ω‖. (5)

Let 0= κ1 > · · ·> κs be the Lyapunov exponents of the measure ν and let Pm−1
=

V1(ω)⊃ · · · ⊃ Vs(ω) be the collection of vector subspaces introduced in Theorem 2.1,
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defined for almost every ω ∈�. We write P�1, . . . , P�s for the family of disjoint subsets
of P� given by

P� j = {(ω, [v]) : v ∈ V j (ω)\V j−1(ω)}.

We recall the following statement.

THEOREM 2.8. [Le84, V14] Given any PF-invariant ergodic probability measure m on
P� that projects down to µ= ν∞, there exists j ∈ {1, . . . , s} such that∫

8 dm = κ j and m(P� j )= 1. (6)

Conversely, given j ∈ {1, . . . , s}, there exists a PF-invariant ergodic probability measure
m j projecting to µ and satisfying (6).

The following lemma closely resembles [GR85, Lemma 3.6]. We provide a proof for
the sake of completeness.

LEMMA 2.9. Let (X, T, µ) be an ergodic dynamical system and let f : X→ R an
integrable function. Suppose that

∫
X f dµ= 0. Then almost surely there exists a sequence

nk such that

lim
k→∞

nk−1∑
i=0

f ◦ T i x = 0.

Proof. By replacing (X, T, µ) with its natural extension, if necessary, we may assume
that T is invertible. We consider the product Y = X × R and the map S : Y → Y defined
as

S(x, r) := (T x, r + f (x)).

The transformation S preserves the measure ν = µ× λ, where λ is the Lebesgue measure
of R. We can write

Sn(x, r)=
(

T n x, r +
n−1∑
i=0

f ◦ T i x
)
= (T n x, sn(x, r)).

Suppose that there exists a wandering subset A ⊂ Y , i.e., ν(A) > 0, and, for every
couple i 6= j , the sets Si (A) and S j (A) are disjoint up to a set of measure zero. By
ergodicity of µ, for almost every (x, r) ∈ Y ,

lim
n→∞

sn(x, r)
n

= 0.

We can choose B ⊂ A of finite positive measure and such that the limit above
holds on B uniformly. Since ν(

⋃
0≤i≤n Si (B))≤ λ(

⋃
0≤i≤n si (B)), it follows that

limn ν(
⋃

0≤i≤n Si (B))/n = 0. On the other hand, since A is wandering and ν is S-
invariant we find that ν(

⋃
0≤i≤n Si (B))/n = ν(B) > 0, which contradicts the assumption

on A.
Let ε > 0 and Yε = X × [−ε,+ε]. We write Cε for the set of all points of Yε that do not

return to Yε under iterations of the map S. The map S is invertible; therefore if ν(Cε) > 0,
then the set Cε is wandering. Since there are no wandering sets, it follows that ν(Cε)= 0.

https://doi.org/10.1017/etds.2018.138 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.138


2166 L. Guerini and H. Peters

Let Xε ⊂ X be the set of all points x for which there exists n > 0 such that −ε ≤
sn(x, 0)≤ ε. We note that (X\Xε)× [−ε/2, ε/2] ⊂ Cε/2. Thus Xε is a full measure
subset of X . The set

X0 =
⋂

n

T−n
(⋂

k

X1/k

)
is the intersection of countably many full measure sets, and thus it has full measure.
Take x0 ∈ X0. Since X0 ⊂ ∩k X1/k , for every k, there exists a minimal nk > 0 such that
−1/k ≤ snk (x0, 0)≤ 1/k. We notice that nk+1 ≥ nk . Thus either nm→∞, in which case
the lemma is proved, or there exists n′1 such that sn′1

(x0, 0)= 0. If the second case occurs,

we let x1 = T n′1 x0 ∈ X0 and we repeat the argument for x1. It follows that one can always
construct a sequence that satisfies the requirements of the lemma. �

PROPOSITION 2.10. Let ν be a semi-attracting measure on Mat(n, C) with compact
support and let (�, T, M) be the independent and identically distributed cocycle
generated by ν. Suppose that Mω is almost surely bounded. Then, for every Mn

ω ∈ Sν ,

‖Mn
ω‖ ≥ 1.

Proof. Given K > 0, let

�K :=

{
ω ∈�

∣∣∣∣ sup
n

log ‖Mn
ω‖ ≤ K

}
.

The set �b =
⋃

K>0 �K coincides with the set of all ω for which Mω is bounded. It then
follows that limK→∞ ν(�)= 1 and that we can choose K0 > 0 so that ν(�K0) > 0.

Suppose that there exists M N
ω0
∈ Sν with ‖M N

ω0
‖< 1. By the semigroup structure of Sν ,

we may further assume that ‖M N
ω0
‖ ≤ 1/(3K0).

For i = 1, . . . , N we choose Ui ⊂Mat(m, C) such that the set CU1,...,UN has positive
µ-measure and ‖M N

ω ‖ ≤ 1/(2K0) for every ω ∈ CU1,...,UN .
We define the set

U := CU1,...,UN ∩ T−N (�K0)=U1 × · · · ×UN ×�K0 .

It is clear that this set has positive µ-measure.
Let m1 be the PF-invariant ergodic measure on P� defined in Theorem 2.8. Given

(ω, [v]) ∈ U × Pm−1, for every n ≥ N ,

n−1∑
k=0

8 ◦ PFk(ω, [v])≤ log ‖Mn
ω‖

≤ log ‖M N
ω ‖‖M

n−N
σ N (ω)
‖

≤ −log 2.

By (6), we have
∫
�
8 dm1 6= 0 and m1(U × Pm−1)= µ(U) > 0, which contradicts the

previous lemma. It follows that, for every Mn
ω ∈ Sν , we have ‖Mn

ω‖ ≥ 1. �
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3. Compositions of random germs
Let O(Cm, 0) be the space of all germs of holomorphic functions fixing the origin. This
set can be endowed with the so-called inductive limit topology τind (see the appendix of
this paper for more details). Let ν be a Borel probability measure on the set O(Cm, 0).
Let � be the space of all sequences in supp(ν) and let µ= ν∞. Let T :�→� denote
the shift map and let f :�→O(Cm, 0) be the function that returns the first element of
the sequence. As we will see later, the function f defines a (nonlinear) cocycle over T .
Analogous to the previous section, we will write

f n
ω = fT n−1ω ◦ · · · ◦ fω

and Fω = { f n
ω }. Finally, we define

�nor = {ω ∈� | Fω is a normal family near the origin}.

PROPOSITION 3.1. The set �nor is measurable.

Proof. Normality near the origin is equivalent to relative compactness of the set Fω
with respect to τind. Furthermore, by Corollary A.9, the set Fω is relatively compact
in O(Cm, 0) if and only if Fω ⊂ Bn(0, r) for some natural number n and r > 0. The
terminology Bn(0, r) is introduced in the appendix.

Let rn be an increasing sequence of positive real numbers such that rn→∞. Since
Bn(0, r)⊂ Bn+1(0, r), it follows that

�nor =
⋃

n

{ω ∈� | Fω ⊂ Bn(0, rn)}

=

⋃
n

⋂
m

{ω ∈� | f m
ω ∈ Bn(0, rn)}.

The function ω 7→ f m
ω is measurable for every m. By Lemma A.5 and Corollary A.9,

Bn(0, rn) is a closed set in the inductive limit topology. This proves that �nor is the
intersection of countably many measurable sets, and thus that it is a measurable set. �

Problem. Let ω ∈� be a random sequence of germs. What is the probability that Fω is a
normal family?

We notice that the set �nor is backward invariant. The next proposition follows by
ergodicity of T .

PROPOSITION 3.2. Normality of Fω occurs with either probability 1 or 0, depending on
the probability measure µ.

Random Fatou set. We say that the origin belongs to the (local) random Fatou set if �nor

has full measure. If this is not the case, we say that the origin belongs to the (local) random
Julia set.

Now suppose that the measure ν has compact support. By Corollary A.9, there exists R > 0
such that each f ∈ supp(ν) is holomorphic and bounded on BR , the open ball of Cm with
radius R and center the origin. Given ω ∈�, we may define the set

Dω :=
∞⋂

n=0

( f n
ω )
−1(BR). (7)
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Clearly, 0 ∈ Dω, and thus Dω is not empty. We have the invariance relation

f n
ω (Dω)= DT n(ω).

Given z ∈ Dω its orbit { f n
ω (z) | n ∈ N} is well defined and bounded. By the weak Montel

theorem, the family Fω is normal on int(Dω). We will call this set the (local) Fatou set of
the sequence ω and we will denote it by Fω. It is clear that the origin lies in the random
Fatou set if and only if it almost certainly lies in the Fatou set of ω.

We define
D := {(ω, z) ∈�× Cm

| z ∈ Dω}.

Definition. The (nonlinear) cocycle defined by f over T is the skew-product
transformation F : D→ D,

F(ω, z)= (Tω, fω(z)), Fn(ω, z)= (T nω, f n
ω (z)).

We will also refer to the triple (�, T, f ) as a (nonlinear) cocycle.

By Lemma A.1, the map d0 : f 7→ d f (0) is a continuous map. Following the previous
section, we introduce the following classification of probability measures on O(Cm, 0).

Definition. Let ν be a probability measure on O(Cm, 0) so that (d0)∗ν has compact
support. We say that the measure ν is attracting, repelling, neutral or semi-attracting if
(d0)∗ν is, respectively, attracting, repelling, neutral or semi-attracting.

We are now ready to state the central theorem of this paper. Notice that the neutral case
coincides with Theorem 1.1 of the introduction.

THEOREM 3.3. Let ν be a probability measure on O(Cm, 0) with compact support, and
suppose that ν is either attracting, repelling or neutral.
Attracting: the origin lies in the random Fatou set and it is almost surely an attracting

point for the system { f n
ω |Dω }.

Repelling: the origin lies in the random Julia set.
Neutral: the origin lies in the random Fatou set if and only if all the germs in supp(ν) are

simultaneously linearizable, and the semigroup of the differentials

d Sν := {d f n
ω (0) | ω ∈�, n ∈ N}

is conjugate to a sub-semigroup of U (m).

If we drop the compactness hypothesis on supp(ν), then this theorem is false, in general.
We will show a counterexample, for an attracting measure ν with non-compact support.

Example. Let 0< λ1 < 1 and let ai = λ
−3·2i

1 . We consider the family

A := { fi (z)= λ1z + ai z2
}.

Let ν be the probability measure on O(C, 0) such that ν( fi )= 1/2i . The support of ν
coincides with A and is not compact. On the other hand, we have supp((d0)∗ν)= {λ},
which implies that the measure ν is attracting. In this case, the (unique) Lyapunov exponent
is κ1 = log λ1 < 0.

https://doi.org/10.1017/etds.2018.138 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.138


Random local complex dynamics 2169

Let ω = ( fi1 , fi2 , . . .) be a sequence of independent and identically distributed random
germs of A. We write λ(n)2 for the coefficient relative to z2 of f n

ω . It follows that

λ
(n)
2 = λ

n
1

n∑
k=1

λk−1
1 aik ≥ λ

2n
1 ain .

Write pn for the probability that λ2n
1 ain ≥ λ

−n
1 . The inequality holds if and only if in ≥

log n. Thus

pn =
∑

k≥log n

1
2k ∼

2
n
.

Given ω and m > 0, by the independence assumption, the probability that, for every n ≥ m,
the inequality λ2n

1 ain < λ
−n
1 holds is equal to

Pm =
∏
n≥m

(1− pn)= exp
(∑

n≥m

log(1− pn)

)
.

Since the general term of the series above is asymptotic to −2/n, we see that∑
n≥m log(1− pn)=−∞ and therefore Pm = 0. It follows that almost surely there exists

nk→∞ such that λ(nk )
2 →∞ and thus that almost surely Fω is not a normal family.

We conclude this section with the discussion of a particular semi-attracting measure.
The example shows that, in the semi-attracting case, supp(ν) may contains germs that
are not linearizable but, at the same time, the origin can be in the random Fatou set.
Furthermore, the semigroup Sν generated by supp(ν) may not be bounded in O(Cm, 0).
Thus the methods developed in §4.2 for the neutral case do not work for the semi-attracting
one.

Example. Suppose that f and g are given by

f (z, w)= (z, w/2),

g(z, w)= (z + zw, w).

The nth iterate of g has the form gn(z, w)= (z + nzw + O(|z|3), w). Therefore {gn
} is

not normal on any neighborhood of the origin, and thus it cannot be linearized.
Let ν := 1

2δ f +
1
2δg be a probability measure. A short computation gives κ1 = 0 and

κ2 =
1
2 log 1

2 < 0.
Let ω ∈� be a sequence of independent and identically distributed random germs and

write f n
ω = ( f n

ω,1, f n
ω,2). Then

| f n+1
ω,1 (z, w)| ≤

{
| f n
ω,1(z, w)| if fn = f,

| f n
ω,1(z, w)|(1+ | f

n
ω,2(z, w)|) if fn = g,

| f n+1
ω,2 (z, w)| =

{
1
2 | f

n
ω,2(z, w)| if fn = f,

| f n
ω,2(z, w)| if fn = g.
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Let α(n)= #{k ∈ {1, . . . , n}| fk = f }. Using the estimates above, we find that

| f n
ω,2(z, w)| =

|w|

2α(n)
,

| f n
ω,1(z, w)| ≤ |z|

n∏
i=1

(
1+
|w|

2α(i)

)
.

It is a well-known fact that almost surely we have α(n)∼ n/2. It follows that

log | f n
ω,1(z, w)| ≤ log |z| +

n∑
i=1

log
(

1+
|w|

2α(i)

)
.

As n→∞, almost certainly ai := log(1+ |w|/2α(i))∼ |w|/2i/2; therefore
∑
∞

i=1 ai <∞

and f n
ω (z, w) is uniformly bounded for every (z, w) ∈ C2. We conclude that, in this case,

Fω is normal for almost every sequence ω.

4. Proof of Theorem 3.3
We start this section with the simpler attracting and repelling cases; we will cover the
neutral case afterwards.

4.1. Attracting and repelling measures. If the measure ν is repelling, then the sequence
of the differentials d f n

ω (0) diverges almost surely. If this is the case, the origin lies in the
random Julia set.

The following statement implies the attracting case. It is likely to be well known, but
we provide a proof for the completeness.

PROPOSITION 4.1. Let ν be an attracting measure on O(Cm, 0) with compact support.
Then the origin lies in the random Fatou set. Furthermore, there exists almost surely a
neighborhood of the origin on which all orbits converge to the origin.

Proof. By Lemma 2.2 and (4), there exists n0 > 0 such that E log ‖d f n0
ω (0)‖< 0. Without

loss of generality, we may assume that n0 = 1.
We claim that there exists ε > 0 so that

E log(‖d f (0)‖ + ε) < 0. (8)

Given δ > 0, we write

E log ‖d f (0)‖ =
∫
‖d f (0)‖≤δ

log ‖d f (0)‖ dν +
∫
‖d f (0)‖>δ

log ‖d f (0)‖ dν,

= Lδ +Uδ.

Suppose Uδ < 0 for some δ > 0. In this case, we can easily find ε > 0 sufficiently small so
that (8) is satisfied. On the other hand, suppose that Uδ ≥ 0 for every δ > 0. Then∫

d f (0) 6=0
log ‖d f (0)‖ dν ≥ 0.
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It follows that M0 := ν{d f (0)= 0}> 0. We conclude that

E log(‖d f (0)‖ + ε)= M0 log ε +
∫
‖d f (0)‖6=0

(log ‖d f (0)‖ + ε) dµ( f )

≤ M0 log ε + sup
f ∈supp(µ)

log(‖d f (0)‖ + ε).

Therefore, also in this second case, we can choose ε > 0 sufficiently small so that (8) is
satisfied.

Let α f := ‖d f (0)‖ + ε. By the compactness of supp(ν), there exists 0< r < R such
that every f ∈ supp(ν) is holomorphic on BR and

‖ f (z)‖ ≤ α f ‖z‖ for all z ∈ Br .

Since E log α f < 0, for almost every sequence ω ∈�, we have αn
ω := α fT n−1ω

· · · α fω →

0. In particular, there exists 0< δ ≤ r , which depends on ω, such that if ‖z‖< δ, then
αn
ω|z|< r for every n > 0.

Let ‖z‖< δ. A simple induction argument shows that

‖ f n
ω (z)‖ ≤ α

n
ω‖z‖< r for all n ∈ N.

This shows that Bδ ⊂ Dω and that the family Fω is normal at the origin. This is true for
almost every ω ∈�; therefore the origin lies in the random Fatou set. Furthermore since
αn
ω→ 0 as n→∞, the orbits of all points in Bδ converge to the origin. �

4.2. Neutral measures. The following lemma is proved along the lines of Lemma 2.5.

LEMMA 4.2. Let ν be a probability measure on O(Cm, 0) with compact support. Then the
set

�a := {ω ∈� | ∀n ∈ N and ∀α ∈�, ∃k j : f n
T k j ω
→ f n

α }

is a full measure subset of �.

Proof. Unlike the standard topology of Mat(m, C), the inductive limit topology is not
metrizable. However, given n ∈ N, the image of � under the continuous map ω 7→ f n

ω is
a compact set in the inductive limit topology. By Corollary A.9, we can find a natural
number Nn so that, for every ω ∈�, the germ f n

ω belongs to X Nn .
We choose a sequence ε j → 0 and we define

�n, j = {ω ∈� | ∀α ∈�, ∃k : dNn ( f n
ω , f n

α ) < ε j }.

By Theorem A.6, we have �a = ∪n, j�n, j . From this point on, we follows the proof of
Lemma 2.5, replacing the standard metric of Mat(m, C) with the metric dNn . �

THEOREM 4.3. (Hurwitz’s theorem) Suppose that ( fn)n is a sequence of injective
holomorphic maps on a domain U ⊂ Cm converging uniformly on compact subsets to a
function g. Then g is either injective or degenerate.

Given a probability measure ν with compact support, choose R > 0 and define Dω as
explained in §3.
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LEMMA 4.4. Let ν be a neutral measure with compact support. The origin lies in the
random Fatou set if and only if, given ε > 0, there exists ρ > 0 such that, for every ω ∈�,
we have Bρ ⊂ Dω and

f n
ω (Bρ)⊂ Bε for all n ∈ N. (9)

Proof. Suppose that, for every ε > 0, there exists such ρ. Then, by the weak Montel
theorem, the origin lies in the random Fatou set.

Suppose, on the other hand, that the origin lies in the random Fatou set and let ω0 ∈

�a ∩�nor. By the Ascoli–Arzelá theorem, given ε > 0, there exists δ0 > 0 such that Bδ0 ⊂

Dω0 and
f n
ω0
(Bδ0)⊂ Bε for all n ∈ N.

By the compactness of supp(ν), by choosing ε > 0 small enough, we may assume that
every f ∈ supp(ν) is holomorphic and injective on Bε. Therefore f n

ω0
: Bδ0 → Bε is

injective for all values of n.
Suppose that there exists nk so that

B1/k 6⊂ f nk
ω0
(Bδ0). (10)

By taking a subsequence, if necessary, we may assume that f nk
ω0 → g uniformly on

compact subsets of Bδ0 . By Proposition 2.7, we have |det(d f nk
ω0 (0))| = 1 for every k, and

thus |det(dg(0))| = 1. Thanks to Hurwitz’s theorem, we can conclude that g is injective
on Bδ0 .

Since g is an open function, we can choose ρ′ > 0 such that Bρ′ ⊂ g(Bδ0) and thus such
that Bρ′ ⊂ f nk

ω0 (Bδ0) for big enough k, which contradicts (10).
It follows that there exists ρ0 > 0 so that Bρ0 ⊂ f n

ω0
(Bδ0) for every n. By the invariance

relation (7), given n, k ∈ N, we find that Bρ0 ⊂ DT kω0
and

f n
T kω0

(Bρ0)⊂ f n
T kω0
◦ f k

ω0
(Bδ0)

⊂ Bε.

Let ρ < ρ0 be fixed. Given ω ∈� and n ∈ N, there exists a sequence k j so that f n
T k j ω0

converges to f n
ω in the inductive limit topology. On the other hand, by the weak Montel

theorem, we may also assume that f n
T k j ω0

converges to some g uniformly on compact

subsets of Bρ0 . By Theorem A.6, the maps g and f n
ω agree on a small ball containing the

origin, and therefore, by the identity principle, they coincide as germs. We conclude that
f n
ω is holomorphic on Bρ and, since ρ is independent from n and ω, that Bρ ⊂ Dω for

every ω ∈�. Finally, uniform convergence on compact subsets of Bρ0 implies (9). �

We write Sν for the semigroup

Sν := { f n
ω | ω ∈�, n ∈ N}.

The following corollary is an immediate consequence of the previous lemma.

COROLLARY 4.5. Let ν be a neutral measure with compact support. Then the origin lies
in the random Fatou set if and only if Sν is relatively compact in O(Cm, 0).
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Definition. Given f ∈O(Cm, 0), we say that f is linearizable if there exists ϕ ∈
O(Cm, 0), locally invertible at the origin, such that

ϕ ◦ f (z)= d f (0) · ϕ.

If this is the case, we say that f is linearized by ϕ.

COROLLARY 4.6. Let ν be a neutral measure with compact support. If the origin lies in
the random Fatou set, then every element of Sν is linearizable.

Proof. If the semigroup Sν is relatively compact in O(Cm, 0), then, given f ∈ Sν , the
family { f n

} is also relatively compact. It follows that the origin lies in the Fatou set of f
and, therefore, that the germ is linearizable. �

We notice that linearizability of every element of Sν does not imply that the origin lies
in the random Fatou set. Consider the following example.

Example. Let λ= e2π iα be an irrational rotation with α Brjuno number. We define the
maps

f1(z)= λ(z + z2) and f2(z)= λ(z − z2)

and consider a measure such that supp(ν)= { f1, f2}.
In this case, we see immediately that every function in the semigroup Sν = 〈 f1, f2〉 is

linearizable. Nevertheless, f1 and f2 are not simultaneously linearizable.
Let z0 6= 0 and define integers ni ∈ {1, 2} recursively as follows. If Re(zi )≥ 0, then

ni+1 = 1; otherwise, ni+1 = 2. Let ω := ( fn1 , fn2 , . . .) and zi = f i
ω(z0).

We claim that the orbit of z0 converges to infinity. To see this, suppose that Re(zi )≥ 0.
Then it follows that the angle between the vectors zi and z2

i is at most π/2, and hence

|zi+1| = |zi + z2
i | ≥ |zi |.

The irrational rotation guarantees that the norm increases often enough to converge to
infinity, which proves the claim.

We conclude that, in this case, Sν is not relatively compact; therefore the origin does
not lie in the random Fatou set.

Suppose that ν is a neutral measure with compact support for which the origin lies in
the random Fatou set. We write Gν for the closure of Sν in O(Cm, 0).

LEMMA 4.7. The set Gν is a compact topological group. Moreover, there exists an open
subset M ⊂ Cm such that every f ∈ Gν belongs to Aut(M).

Proof. By Lemma 4.4, the set Gν is compact. Furthermore, by Corollary 4.6, every f ∈ Sν
is linearizable and, by Proposition 2.7, the differential d f (0) is conjugated to an element
of U (m). It follows that, for some sequence n j , we have f n j → id. This proves that Gν

contains the identity element. Furthermore, the germ g = lim j→∞ f n j−1 is the inverse of
f in O(Cm, 0), and thus Gν contains also the inverse of f .

Let f ∈ Gν and fn ∈ Sν such that fn→ f . Every fn has an inverse f −1
n ∈ Gν . By

taking a subsequence, if necessary, we may assume that f −1
n → g ∈ Gν . It is not difficult
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to prove that g is the inverse element of f in O(Cm, 0), which finally proves that Gν is a
compact group.

Let ε > 0 and ρ > 0, as in Lemma 4.4. If we choose ε small enough, we may further
assume that all the elements of supp(ν) are univalent on Bε. It follows that every f ∈ Sν is
univalent on Bρ . Since every g ∈ Gν is invertible, by Hurwitz’s theorem, it is also univalent
on Bρ .

By taking a smaller ε, if necessary, we may further assume that every g ∈ Gν is
univalent on Bε. We define the open set

M =
⋃

g∈Gν

g(Bρ)⊂ Bε.

Given g ∈ Gν and x ∈ M , then x = ĝ(z) for some ĝ ∈ Gν and z ∈ Bρ . It follows that
g(M)⊂ M . Furthermore, since g−1

∈ Gν , we obtain the equality g(M)= M , which
proves that g ∈ Aut(M). �

The following result is known as Bochner’s linearization theorem. A proof of the
theorem, valid for a Ck diffeomorphism, can be found in [DK00]. The same proof is
valid also in the holomorphic case, up to small modifications.

THEOREM 4.8. (Bochner’s linearization theorem) Let M be a complex manifold and x0 ∈

M. Let A be a continuous homomorphism from a compact group K to Aut(M) such that
Ak(x0)= x0 for all k ∈ K . Then there exists a K invariant open neighborhood U of x0 in
M and a biholomorphism ϕ from U onto an open neighborhood V ⊂ Tx0 M of 0 such that

ϕ(x0)= 0, dϕ(x0)= id : Tx0 M→ Tx0 M

and
ϕ ◦ Ak(x)= d Ak(x0) · ϕ(x) for all k ∈ K , x ∈U.

Definition. We say that two or more germs are simultaneously linearizable if there exists
a locally invertible ϕ ∈O(Cm, 0) such that all the germs are linearized by ϕ.

LEMMA 4.9. Let ν be a neutral measure on O(Cm, 0) with compact support. If the
origin lies in the random Fatou set, then all the elements f ∈ supp(ν) are simultaneously
linearizable.

Proof. Let Gν be the closure of Sν and let M be the Gν-invariant open set described
in Lemma 4.7. The compact group Gν induces an action on M that satisfies the
hypothesis of Bochner’s linearization theorem. It follows that all the germs f ∈ Gν can
be simultaneously linearized. �

We are finally ready to conclude the proof of Theorem 3.3.

Proof of Theorem 3.3. Suppose that the origin lies in the random Fatou set. By the
previous lemma, it follows that all the germs in supp(ν) are simultaneously linearizable,
which implies that the semigroup Sν is conjugated to the semigroup of the differentials
d Sν . Furthermore, by Proposition 2.7, the semigroup d Sν is itself conjugate to a sub-
semigroup of U (m). The other implication of the theorem is trivial. �
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5. Discussion of semi-attracting measures
Recall from §3 that, for every ω ∈�nor, the origin belongs to the Fatou set Fω := int(Dω).
Let Uω be the connected component of Fω containing the origin.

PROPOSITION 5.1. Let ν be a semi-attracting measure on O(Cm, 0) with compact
support, so that the origin lies in the random Fatou set. Then, almost surely, every limit
map g = limk→∞ f nk

ω is degenerate on Uω.

Proof. By Corollary 2.3, we have E log |det d f (0)|< 0. Along the lines of Proposition
4.1, we can choose ε > 0 such that E log(|det d f (0)| + ε) < 0. In particular, for almost
every ω ∈�,

∞∏
k=1

(|det d fT k−1ω(0)| + ε)= 0. (11)

By compactness of supp(ν), we may choose r > 0 so that, for every ‖z‖< r ,

|det d f (z)|< |det d f (0)| + ε for all f ∈ supp(µ).

Since the origin belongs to the random Fatou set, for almost every ω ∈�, there exists
δω > 0 such that ‖ f n

ω (z)‖< r for every z ∈ Bδω and n ≥ 0. We conclude that, for z ∈ Bδω ,

|det d f n
ω (z)| =

n∏
k=1

|det d fT k−1ω( f k−1
ω (p))|

≤

n∏
k=1

(|det d fT k−1ω(0)| + ε).

Let nk be a sequence such that f nk
ω → g locally uniformly on a neighborhood U of the

origin. Then, on a possibly smaller neighborhood, we have det dg ≡ 0. By the identity
principle, we conclude that the same is true on Uω. �

Given z ∈Uω, we define the stable set

Ws
ω(z) := {w ∈Uω | ‖ f n

ω (z)− f n
ω (w)‖→ 0}.

When m = 2, we will prove that, given ν semi-attracting with compact support and such
that the origin lies in the random Fatou set, the stable set through every point z sufficiently
close to the origin is locally a complex submanifold. It is a natural to ask whether the same
is true when m > 2.

Before proceeding to the proof of this result, we will present two examples of this
phenomenon in the case where the germs in supp(ν) are linear maps.

Example. Suppose ν = 1
2δg +

1
2δh , where

g(z, w)=
(

1/2 0
0 1

) (
z
w

)
, h(z, w)=

(
1/2 1
0 1

) (
z
w

)
.

We notice that, given ω ∈�,

f n
ω (z, w)=

(
1/2n αn

0 1

) (
z
w

)
with αn =


αn−1

2
if fT n−1ω = g,

αn−1

2
+ 1 if fT nω = h.
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The two Lyapunov exponents of the measure ν are κ1 = 0 and κ2 =− log 2; therefore the
measure is semi-attracting. Furthermore, we have 0≤ αn < 2 for every n and every ω,
which implies that the origin lies in the random Fatou set. Given (z0, w0) ∈Uω = C2, we
can write its stable set as

Ws
ω(z0, w0)= {(z, w) ∈ C2

| w = w0},

which is a one-dimensional manifold. We notice that, in this case, the stable manifolds are
independent of the sequence ω ∈� but that this is not true in general.

Consider, for example, the measure ν̃, obtained by taking instead the maps

g(z, w)=
(

1/2 0
0 1

) (
z
w

)
, h(z, w)=

(
1/2 0
1 1

) (
z
w

)
.

This measure has the same Lyapunov exponents and the origin lies in the random Fatou
set. However, the sequence f n

ω converges, for every ω, to a map of the form g̃(z, w)= (z +
βωw, 0). Hence the stable manifolds are again parallel complex planes, but now depend
on ω.

Remark. The last two examples are helpful models in order to understand the random
dynamics of semi-attracting measures. We notice that, in both cases, d f (0) and dg(0)
share an eigenvector. In the theory of linear cocycles, one says that a cocycle is strongly
irreducible if there is no finite family of proper subspaces invariant by Mω for ν-almost
every ω. This raises the following question.

Does there exist a semi-attracting measure such that Mn
ω is almost surely bounded but

such that the corresponding cocycle is strongly irreducible?

LEMMA 5.2. There exists r > 0 and, for almost every ω ∈�, a sequence nk dependent on
ω, so that f nk

ω → g locally uniformly on Uω and so that

Ws
ω(z)= {w ∈Uω | g(w)= g(z)}

for every z ∈Uω that satisfies ‖g(z)‖ ≤ r .

Proof. Given r > 0, we define the measurable sets

Ar := {ω ∈� | Br bUω}.

It is clear that Ar1 ⊃Ar2 when r1 < r2 and that
⋃

r>0 Ar =�nor. Since the latter is a full
measure set, we may choose r > 0 so that µ(Ar ) > 1/2.

Let ε1 > 0. By the Ascoli–Arzelà theorem, the collection of measurable sets

B(1)δ :=
{
ω ∈Ar

∣∣∣∣ ∀z, w ∈ Br with ‖z − w‖< δ :
supn ‖ f n

ω (z)− f n
ω (w)‖< ε1

}
,

defined for δ > 0, covers Ar . Furthermore, it satisfies B(1)δ ⊃ B(1)
δ′

for δ < δ′, and thus we
may choose δ1 > 0 so that µ(B(1)δ1

) > 1/2. We will write B(1) for the set B(1)δ1
.

Given a sequence of positive real numbers εk with limk→∞ εk = 0, we may recursively
define a sequence δk of positive real numbers in such a way that

B(k+1)
:=

{
ω ∈ B(k)

∣∣∣∣ ∀z, w ∈ Br with ‖z − w‖< δk+1 :

supn ‖ f n
ω (z)− f n

ω (w)‖< εk+1

}
has measure strictly greater that 1/2.
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Since the nested sets B(k) all have measure at least 1/2, the intersection, which we will
simply denote by B, satisfies µ(B)≥ 1/2.

By ergodicity of the transformation T , there exists, for almost every ω ∈�nor, a
sequence nk so that T nk (ω) ∈ B. By taking a subsequence, if necessary, we find that f nk

ω

converges locally uniformly on Uω to a function g.
Given z ∈Uω such that ‖g(z)‖< r , it is clear that g(w)= g(z) for every w ∈Ws

ω(z).
On the other hand, given w ∈Uω that satisfies g(w)= g(z), we can find k0 so that
f nk
ω (z), f nk

ω (w) ∈ Br for every k ≥ k0. Furthermore, we may also find a sequence k0 ≤

k1 ≤ k2 ≤ · · · so that, whenever k ≥ ki , we have ‖ f nk
ω (z)− f nk

ω (w)‖< δi .
Since T nkω ∈ B for every k, we conclude that, given n ≥ nki ,

‖ f n
ω (z)− f n

ω (w)‖ = ‖ f
n−nki

T
nki ω

( f
nki
ω (z))− f

n−nki

T
nki ω

( f
nki
ω (w))‖< εi .

This shows that w ∈Ws
ω(z), which proves the desired equality. �

When m = 2 and the measure is semi-attracting, we obtain the following (local) version
of the stable manifold theorem.

COROLLARY 5.3. (Stable manifold theorem) Let µ be a semi-attracting measure on
O(C2, 0) with compact support, for which the origin lies in the random Fatou set. Then
there exists, for almost every ω ∈�, a constant ρ > 0 sufficiently small so that, given
z ∈ Bρ , the set Ws

ω(z) is locally a one-dimensional complex manifold.

Proof. Let ω ∈� be such that the map g described in the previous lemma exists. Since
g(0)= 0, we can choose ρ > 0 sufficiently small so that Bρ ⊂Uω and g(Bρ)⊂ Br . Here
the value of r is again determined by the previous lemma.

By Proposition 5.1, the function g is degenerate. Furthermore, by Proposition 2.10, we
must have ‖dg(0)‖ ≥ 1, and thus we may further assume, by shrinking ρ, if necessary, that
g has rank one on every point of Bρ .

By the constant rank theorem, g(Bρ) is a one-dimensional submanifold and every point
in it is a regular value for the holomorphic map g : Bρ→ g(Bρ). By the implicit function
theorem, given z ∈ Bρ , the level set {w ∈ Bρ | g(w)= g(z)} is a one-dimensional complex
manifold. The level sets of the map g coincide with the stable sets of the sequence ω. It
follows that the latter are locally one-dimensional manifolds. �

A. Appendix. Holomorphic germs and their topology
We write O(Cm, 0) for the space of germs at zero of holomorphic maps from Cm to itself.
Note that, in the main text, we required that the germs fix the origin, but this requirement
plays no role here.

Our goal in this appendix is to define a topology on O(Cm, 0) with the following
property.

Local uniform convergence. A sequence of germs ( fk) converges to a germ f if there exists
r > 0 such that f and all the fn admit a representative that is bounded and holomorphic
on Br and

sup
‖z‖≤r

‖ fk(z)− f (z)‖→ 0 as n→∞.

https://doi.org/10.1017/etds.2018.138 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.138


2178 L. Guerini and H. Peters

The construction of such a topology, given in Theorem A.6 below, resembles very
closely the so-called inductive limit topology of a sequence of nested Fréchet spaces
X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ · · · . See [Rud91] or [Gr09] for an example of this construction
in the case of C∞0 (�). For a discussion of inductive limit topology for holomorphic
germs, see, for instance, [M79], where germs in possibly infinite-dimensional spaces are
considered. While the results presented here are undoubtedly known to experts on the
topic, we include them for the sake of completeness.

Suppose that εn→ 0 is a strictly decreasing sequence. Let Xn be the space of all
bounded and holomorphic functions on Bεn equipped with the distance

dn( f, g) := sup
‖z‖≤εn

‖ f (z)− g(z)‖.

There exists a natural injection of Xn into O(Cm, 0), which we will denote by πn .
Furthermore, it is clear that Xn ⊂ Xn+1.

We write τn for the standard metric topology on Xn . We note that τn is not equivalent
to the compact-open topology. However, it will be clear that the inductive limit topology
on O(Cm, 0) obtained using either sequence of topologies is identical.

Inductive limit topology. The inductive limit topology, which we will denote by τind, is the
finest topology on O(Cm, 0) such that each injection πn : Xn→O(Cm, 0) is a continuous
function.

In other words, a set U is open in the inductive limit topology if and only if, for each n,
Xn ∩ π

−1
n (U ) is open with respect to the topology τn .

Since each map πn is injective, from now on, we will avoid writing the map πn and we
will consider each Xn as a subset of O(Cm, 0).

Remark. In the classical construction of the inductive limit topology of a nested sequence
of Fréchet spaces, X1 ⊂ X2 ⊂ · · · , it is assumed that the topology on Xn is induced by
the topology on Xn+1, which fails in our setting. Consider, for example, the germs fn =

n(z/ε1)
n . This sequence converges uniformly to zero on Br for r < ε1; in particular, we

have d2( fn, 0)→ 0. On the other hand, we see that d1( fn, 0)→∞. This shows that τ1 is
different from τ2|X1 .

LEMMA A.1. Let α ∈ Nm . The derivation Dα : f 7→ ∂α f (0) is a continuous map from
O(Cm, 0), endowed with the inductive limit topology, to C.

Proof. If Dα were not continuous, there would exist U ⊂ C open and a natural number
n such that V := D−1

α (U ) ∩ Xn is not open with respect to the metric topology of Xn .
If so, there exists ( fk)⊂ Xn\V such that fk→ g ∈ V with respect to the metric dn . By
Weierstrass, we have Dα fk→ Dαg, which is not possible since fk 6∈ V . �

COROLLARY A.2. The inductive limit topology on O(Cm, 0) is Hausdorff.

Proof. Given two germs f1 6= f2, there exists α ∈ Nm such that Dα f 6= Dα f2. The
Hausdorff property of τind follows from the continuity of Dα . �
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Recall that a subset U of a topological space X is sequentially open if each sequence
(xk) in X converging to a point of U is eventually in U . We say that X is a sequential
space if every sequentially open subset of X is open.

LEMMA A.3. O(Cm, 0), endowed with the inductive limit topology, is a sequential space.

Proof. First, we notice that if fk→ f with respect to the metric topology of Xn , then the
convergence is valid in τind. If this was not the case, we could find an open set U 3 f in
the inductive limit topology such that ( fk) is not eventually contained in U . However, this
is not possible since U ∩ Xn is open with respect to the metric topology of Xn , and fk

converges to f in this topology.
As a consequence, given U ⊂O(Cm, 0) sequentially open, the set U ∩ Xn is

sequentially open in the metric topology of Xn . Metric spaces are sequential, and thus
U ∩ Xn is open in Xn . By the definition of τind, it follows that U is open, which concludes
the proof. �

Recall that a topological space X is countably compact if, given an open countable cover
of X , there exists a finite subcover. A proof of the following proposition can be found in
[En89, p. 209].

PROPOSITION A.4. Sequential compactness and countable compactness are equivalent in
the class of sequential Hausdorff spaces.

Given r > 0 and f ∈ Xn , we write Bn( f, r) (respectively, Bn( f, r)) for the open
(respectively, closed) ball of radius r and center f with respect to the metric dn .

LEMMA A.5. The closed ball Bn( f, r) is compact in (Xn+1, dn+1).

Proof. It is sufficient to prove the lemma for the case f = 0. Suppose ( fk) is a sequence
in Bn(0, r). Then, by the weak Montel theorem, there exists a subsequence km such
that fkm → f∞ uniformly on every compact subset K ⊂ Bεn . In particular,
dn+1( fkm , f∞)→ 0.

The function f∞ is holomorphic on Bεn . Furthermore, by uniform convergence on
compact subsets of Bεn , we have ‖ f∞(z)‖ ≤ r for every z ∈ Bεn (0). This proves that
f∞ ∈ Bn(0, r), which concludes the proof of the lemma. �

THEOREM A.6. A sequence ( fk) is a convergent sequence with respect to τind if and only
if there exists N such that ( fk)⊂ X N and ( fk) is convergent with respect to the metric dN .

Proof. We have already proved the only if part in Lemma A.3. Suppose now that ( fk)

is a convergent sequence in the inductive limit topology. Write f∞ = limk→∞ fk and let
n0 so that f∞ ∈ Xn0 . First, we prove that there exists N0 such that ( fk)⊂ X N0 . If this
were not the case, by taking a subsequence, if necessary, we may assume that, for every n,
Xn ∩ ( fk) is a finite set and that the intersection is empty when n ≤ n0.

Let U =O(Cm, 0)\( fk). The set Xn\U is finite for every n ∈ N; therefore U is open
in the inductive limit topology. It is clear that f∞ ∈U but that the sequence ( fk) is not
eventually contained in U , which contradicts f∞ = limk→∞ fk . The existence of N0

follows.
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Suppose now that, for every N ≥ N0, we have dN ( fk, f∞) 6→ 0. If ε > 0 is fixed, then
the sequence fk is not eventually contained in BN ( f∞, ε). This follows from the fact that
BN ( f∞, ε) are relatively compact in X N+1, plus the fact that convergence in X N+1 implies
convergence with respect to τind.

Let (k N
n )⊂ N be the subsequence obtained by removing all the indices k for which

fk ∈ BN ( f∞, ε). Since BN ( f∞, ε)⊂ BN+1( f∞, ε), it follows that

(k N+1
n )⊂ (k N

n )⊂ · · · ⊂ (k
N0
n ).

Let kn := kn+N0
n . Then, for every n ≥ N − N0, we have that fkn 6∈ BN ( f∞, ε).

Furthermore, we notice that

dN ( fkn , f∞)→∞ for all N ≥ N0.

Suppose, on the contrary, that there exists (k′n)⊂ (kn) such that dN ( fk′n , f∞)→ M . By the
previous lemma, by taking a subsequence of k′n , if necessary, we may assume that fk′n → g
in X N+1 with g 6= f∞. Convergence in X N+1 implies convergence in τind; therefore this
is not possible.

The set U =O(Cm, 0)\( fkn ) contains f∞ ∈U . Since ( fk)⊂ X N0 , given N ≥ N0, we
have that U ∩ X N = X N\( fkn ). The sequence ( fkn ) is divergent in X N , and thus U ∩ X N

is open in X N for N ≥ N0. Finally, if V is open in X N+1, then V ∩ X N is open in X N .
This proves that U is an open neighborhood of f∞ in the inductive limit topology, which
gives a contradiction. It follows that there exists N1 such that dN1( fk, f∞)→ 0. �

COROLLARY A.7. A set K ⊂O(Cm, 0) is sequentially compact in τind if and only if there
exists N such that K ⊂ X N and it is compact with respect to the metric topology of X N .

Proof. Suppose that K is sequentially compact in τind. First, there exists N0 such that
K ⊂ X N0 . If this were not the case, we could find a sequence ( fk)⊂ K such that fk 6∈ Xk .
By the previous theorem, such a sequence does not have any convergent subsequence with
respect to τind, which contradicts sequential compactness.

Suppose that K is unbounded in X N for every k ≥ N0. We can find fk ∈ K such that
dk( fk, 0) > N . The previous theorem proves that this sequence does not have a convergent
subsequence, which contradicts sequential compactness. This proves that K is bounded in
X N1 for some N1 ≥ N0. By Lemma A.5, the set K is relatively compact in X N1+1. Since
the inductive limit topology is sequential, it follows that K is a closed set in τind. This
shows that K is a compact set in X N1+1.

On the other hand, since convergence in X N implies convergence in τind, a compact set
K ⊂ X N is sequentially compact in τind. �

COROLLARY A.8. Compactness and sequential compactness are equivalent in O(Cm, 0).

Proof. Since O(Cm, 0) is a Hausdorff sequential space, we only have to prove that every
sequentially compact set is compact. By the previous corollary, if K is sequentially
compact, then there exists N such that K ⊂ X N and K is compact in X N . Let {Uα} be
an open cover of K . By the definition of the inductive limit topology, it follows that
{Uα ∩ X N } is an open cover of K in X N . Using the compactness of K in X N , we can
extract a finite open subcover {U1, . . . ,Un}. This proves that K is compact with respect
to the topology τind. �

https://doi.org/10.1017/etds.2018.138 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.138


Random local complex dynamics 2181

The following corollary is an immediate consequence of the previous ones.

COROLLARY A.9. A set K ⊂O(Cm, 0) is compact in τind if and only if there exists N
such that K ⊂ X N is compact with respect to the metric topology of X N .

We conclude this appendix by showing that the inductive limit topology is not
metrizable. Notice that a similar proof also shows that this topology is not even first
countable.

PROPOSITION A.10. The inductive limit topology is not metrizable.

Proof. Suppose, on the contrary, that there exists a metric dind on O(Cm, 0) such that τind

coincides with the metric topology of dind. We will write Bind( f, r) for the open ball of
center f and radius r with respect of this metric.

We note that, for every n, we can construct a sequence ( f n
k )k∈N ⊂ Xn\Xn−1 such that

limk→∞ dn( f n
k , 0)= 0. Since convergence in Xn implies convergence in τind, for every n,

we can find kn such that
f n
kn
∈ Bind(0, 1/n).

Now let gn = f n
kn

. It is clear that dind(gn, 0)→ 0 as n→∞. By Theorem A.6, it follows
that (gn) is contained in some X N , which is not possible by the definition of the f n

k . This
contradicts the fact that τind is metrizable. �
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[Ste58] S. Sternberg. On the structure of local homeomorphisms of Euclidean n-space, II. Amer. J. Math.

80(3) (1958), 623–631.
[Str06] M. Stroppel. Locally Compact Groups (EMS Textbooks in Mathematics). European Mathematical

Society, Zürich, 2006.
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