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We investigate spanwise-coherent structures in the turbulent flow around airfoils,
motivated by their connection with trailing-edge noise. We analyse well-resolved
large-eddy simulations (LES) of the flow around NACA 0012 and NACA 4412 airfoils,
both at a Reynolds number of 400000 based on the chord length. Spectral proper
orthogonal decomposition performed on the data reveals that the most energetic coherent
structures are hydrodynamic waves, extending over the turbulent boundary layers around
the airfoils with significant amplitudes near the trailing edge. Resolvent analysis was
used to model such structures, using the mean field as a base flow. We then focus on
evaluating the dependence of such structures on the domain size, to ensure that they are
not an artefact of periodic boundary conditions in small computational boxes. To this
end, we performed incompressible LES of a zero-pressure-gradient turbulent boundary
layer, for three different spanwise sizes, with the momentum-thickness Reynolds number
matching those near the airfoils trailing edge. The same coherent hydrodynamic waves
were observed for the three domains. Such waves are accurately modelled as the most
amplified flow response from resolvent analysis. The signature of such wide structures
is seen in non-premultiplied spanwise wavenumber spectra, which collapse for the three
computational domains. These results suggest that the spanwise-elongated structures are
not domain-size dependent for the studied simulations, indicating thus the presence of very
wide structures in wall-bounded turbulent flows.
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1. Introduction

Coherent structures play an important role in turbulent flows, related for instance to noise
generation. The modelling of these structures using a linearisation of the Navier—Stokes
system, for flows such as jets, boundary layers and wakes, has been attempted by Schoppa
& Hussain (2002), del Alamo & Jimenez (2006), McKeon & Sharma (2010), Cavalieri
et al. (2013) and Abreu et al. (2020a,b), to cite a few examples. Usually such linearised
models lead to a definition of a set of modes that together describe coherent turbulent
structures. Some of these may play an important role for aeroacoustics (Cavalieri et al.
2013; Jeun, Nichols & Jovanovi¢ 2016; Sano et al. 2019). More specifically, when one
considers sound radiation by airfoils, wings and blades at low angles of attack, the
dominant aeroacoustic mechanism is referred to as trailing-edge noise. In a turbulent
flow, the presence of an edge results in a scattering of turbulent fluctuations into acoustic
waves, which leads to a large increase in the noise generated by that fluid at low Mach
numbers (Ffowcs Williams & Hall 1970). It is thus natural to use the cited linearised
models to study how coherent turbulent structures may be associated with trailing-edge
noise.

To educe coherent structures in experimental or numerical data, a useful, data-driven
approach, is proper orthogonal decomposition (POD) (Lumley 2007). POD is a
quantitative method often applied to instantaneous fields in order to analyse coherent
structures in turbulent flows. POD provides a basis for the modal decomposition as an
ensemble of functions, called POD modes, which are extracted from a set of data. In
terms of energy, the leading POD modes capture the most energetic structures. Thus,
if the dynamics of the flow has a few predominant flow structures, the data can often
be well represented using just some of the first modes. The most energetic modes will
then represent the dominant flow structures. This method has been successfully used
in various types of flows, such as mixing layers (Wei & Freund 2006), jets (Freund &
Colonius 2009), channel flows (Alfonsi et al. 2001), cylinder wakes (Noack et al. 2003)
and boundary layers (Aubry et al. 1988a), the last case being closest to the present
study.

POD in the frequency domain, also labelled spectral POD, or SPOD (Picard & Delville
2000), has been used to obtain coherent structures in the turbulent flow over an airfoil
(Sano et al. 2019), seeking modes that are coherent in space and time (Towne, Schmidt
& Colonius 2018). Recent works have explored the connection of SPOD modes with
the linearised flow responses from resolvent analysis (Towne ef al. 2018; Lesshafft et al.
2019; Abreu et al. 2020a,b), which are obtained using the resolvent operator from the
linearised Navier—Stokes system (McKeon & Sharma 2010). These linearised responses
can often be related to results of hydrodynamic stability theory, with modes corresponding
to instability waves or to non-modal mechanisms such as lift-up (Jovanovic & Bamieh
2005), but in recent years resolvent analysis has been used to study coherent structures in
turbulent wall-bounded flows (see the review of McKeon (2017) and references therein).
An important result is that, if the forcing is white noise, a direct correspondence between
SPOD and resolvent modes is expected; furthermore, whenever the resolvent operator has
an optimal gain much larger than suboptimals, the leading flow response, predicted by
resolvent analysis, often dominates the flow statistics and appears as the first SPOD mode
(Beneddine et al. 2016; Towne et al. 2018; Cavalieri, Jordan & Lesshafft 2019). Thus, a
combined analysis of the flow, with SPOD serving for the signal processing of snapshots
of the field and resolvent analysis as a theoretical framework, enables a reduced-order
model of the dynamically relevant flow features. For this reason, SPOD will be used
in this work to study turbulent near-wall structures, coupled with resolvent analysis as
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a modelling framework. This approach was followed in recent works by our group on
turbulent pipe (Abreu et al. 2020b) and channel flow (Abreu et al. 2020a).

The recent study by Sano eral. (2019) used post-processing techniques, such as
flow acoustic correlations and SPOD, to analyse the compressible turbulent flow
over a NACA 0012 airfoil. The results showed spanwise-coherent disturbances in the
boundary layer strongly correlated to the acoustic field; also, the leading SPOD modes
showed spanwise-elongated wavy structures along the airfoil surface, characterising a
non-compact source akin to wavepackets seen in turbulent jets (Cavalieri et al. 2013).
Such structures have not received much attention in wall turbulence due to their relatively
low energy content as opposed to the more familiar inner/outer peaks as identified
by the use of premultiplied spectra (Jiménez 1998). Even though streaky structures
(elongated in the streamwise direction) are dominant in wall turbulence (Jiménez 2013),
such spanwise-coherent structures are relevant for aeroacoustics (Amiet 1976; Nogueira,
Cavalieri & Jordan 2017) in spite of a comparably lower-energy content. Thus, structures
of low spanwise wavenumber are the main focus in the current paper. This departs from
earlier studies of wall-bounded flows using POD (Aubry et al. 1988b; Hellstrom, Marusic
& Smits 2016) or SPOD (Abreu et al. 2020a,b), where the focus was on streaky structures
due to their dominance in the turbulent kinetic energy.

Nevertheless, the presence of spanwise-coherent structures in wall-bounded turbulent
flows is still not fully established, since the computational domain-size independence and
the physical sources of such waves have not been demonstrated. Therefore, the goal of the
present study is to assess whether the studied boundary-layer spanwise-coherent structures
are not just an artefact of the finite numerical domain, with periodic boundary conditions
imposed in the spanwise direction. We anticipate that spanwise-coherent disturbances
are found in all simulations considered in this work. Because of this, we also study
corresponding physical mechanisms using resolvent analysis.

In the present study, we analyse two different airfoils, a NACA 0012 and NACA
4412, at 0° and 5° angles of attack, respectively. Numerical databases are obtained
using large-eddy simulations (LES) of incompressible flow at chord Reynolds number
of Re. = 400000 (Tanarro, Vinuesa & Schlatter 2020). The boundary layers around the
airfoils are mostly turbulent, with transition resulting from a numerical tripping procedure.
In order to study the dependence of coherent structures on the size computational domain,
LES are carried out for flat-plate turbulent boundary layers, with a similar numerical
tripping. We employ the incompressible approximation (with no sound radiation) due to
its comparably lower computational cost, allowing a more complete study of the present
flows. The focus of the study is the characteristics of the turbulence structures in the
boundary layer, which are expected to not depend strongly on compressibility effects.
These structures, however, are relevant for trailing-edge noise. This knowledge can be
used to better understand mechanisms of trailing-edge noise, which can lead to wing
modifications in order to reduce sound radiation. Understanding and modelling such
coherent hydrodynamic waves can point to novel approaches to the design of more silent
aircraft.

The paper is organised as follows: in § 2 we present information about the numerical
simulations for both airfoils and the flat-plate boundary layer used in the present analysis.
In §3 we present the techniques used to analyse the numerical databases: the SPOD
method, the resolvent formulation and the relation between them. The modelling of
the coherent structures found in the airfoil boundary layers is shown in §4. Finally,
the domain-size effect on the spanwise-averaged disturbances is demonstrated in § 5 for
the flat-plate turbulent boundary-layer simulation.
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Figure 1. Illustration of the two-dimensional domain for both airfoils, showing the spectral-element mesh in
grey, without the GLL points, and the instantaneous streamwise velocity field. The airfoil NACA 0012 is at zero
angle of attack, and the NACA 4412 is at 5°. The domain considered here is a C-mesh with streamwise length
L, = 6c, wall-normal length L, = 4c¢ and periodic spanwise length Lz = 0.1¢, where c is the wing chord. (a)
NACA 0012. (b) NACA 4412.

2. Databases
2.1. NACA 0012 and NACA 4412 airfoils

The NACA 0012 and NACA 4412 airfoil databases analysed in this work are described
in Tanarro et al. (2020). In this study, a well-resolved LES was performed to analyse
the incompressible turbulent flow around the airfoils at a chord Reynolds number of
Re. = 400000 for both wing sections, with 0° and 5° angles of attack for the NACA 0012
and NACA 4412, respectively. The effect of the unresolved turbulent scales is modelled by
a subgrid-scale model based on a relaxation-term approach (Schlatter, Stolz & Kleiser
2004), as validated in e.g. Eitel-Amor, Orlii & Schlatter (2014). An unsteady volume
force was used to force transition to turbulence, at 10 % of the chord on both the top
and bottom sides of the wing, for both simulations. The incompressible spectral-element
Navier—Stokes solver Nek5000 (Fischer, Lottes & Kerkemeier 2008) was used to carry out
the simulations.

For both cases, the spatial discretisation is performed by means of Lagrange interpolants
of polynomial order N = 11, where the points within the element are distributed as tensor
products of the Gauss—Lobatto—Legendre (GLL) quadrature rule. The spatial resolution in
the boundary layer is designed to reach a target resolution in wall units of Ax;” = 18,
Ay =0.64-11 and Az" =9 in the middle of the airfoil. Here, x, and y, indicate
tangential and normal directions to the wing surface, respectively, and z the spanwise
direction. The scaling in wall units, denoted by the + superscript, is in terms of the
friction velocity u; and kinematic viscosity v. The domain considered here is a C-mesh
with streamwise length L, = 6c¢, wall-normal length L, = 4c¢ and periodic spanwise length
L, = 0.1c, where c is the wing chord (see figure 1). Note that x and y in figure 1 denote
the directions parallel and perpendicular to the chordline.

A Reynolds-averaged Navier—Stokes (RANS) simulation with a largely extended
domain was used to obtain the velocity distributions used as boundary conditions in the
LES. The domain size of the NACA 0012 profile is discretised using a total of 220 000
spectral elements, which amounts to approximately 380 million grid points, whereas the
mesh of the NACA 4412 profile has 270 000 spectral elements, giving a total of 466 million
grid points. Figure 1 shows the domain for both airfoils, showing the spectral-element
mesh, without the GLL points, and the instantaneous streamwise velocity field. See
Tanarro et al. (2020) for more details about the airfoil databases.
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x/c 0.50 0.55 0.60 065 070 075 0.80 0.8 0.90

NACA 0012  Reg 440 515 600 690 790 910 1060 1240 2170
Aty 9.12 .75 670 581 506 440 380 3.20 1.85
NACA 4412 Reg 310 400 520 650 835 1055 1375 1745 2240
Aty 13.00 1005 771 615 480 380 290 230 1.80

Table 1. Momentum-thickness Reynolds number, Reg, and the respective timestep, Aty, for the airfoils
stations 0.50 < x/c < 0.90 on the suction side.
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Figure 2. ZPG TBL simulation results: (a) instantaneous field of the streamwise velocity component in the
computational coordinate, for the ZPG TBL simulation with L, = 1928 (or 1440y); (b) the friction coefficient
as a function of Rey for the three ZPG TBL simulations compared with results from the equation deduced by
Osterlund et al. (2000) (red dotted line).

We extracted from the simulations of the NACA 0012 and NACA 4412 airfoils 515 and
801 snapshots of the full three-dimensional flow fields, respectively, separated in time by
At. = 0.01, a normalised time step using the free-stream velocity U, and the wing chord
¢, for both cases. Table 1 shows the momentum-thickness Reynolds numbers, Rey, and
the respective timesteps between snapshots scaled with the momentum thickness, Aty, for
both airfoils at stations 0.50 < x/c < 0.90; for the NACA 4412 airfoil, the suction side is
considered.

2.2. Zero-pressure-gradient turbulent boundary layer

Due to the large cost of the airfoil simulations, an additional set of simulations of a
flat-plate boundary layer is performed to assess the influence of the spanwise domain
width. The more canonical setting can then be discretised with more specialised methods.
We use the pseudo-spectral solver Simson (Chevalier, Lundbladh & Henningson 2007)
to simulate a zero-pressure-gradient turbulent boundary layer (ZPG TBL), as in Schlatter
et al. (2014). The horizontal and vertical lengths for all the three simulations are L, =
10008* and L, = 905*, respectively, and simulations are carried out for three spanwise
lengths, L, = 965*, L, = 192§* and L, = 3846*, where §* is the displacement thickness
of the laminar Blasius boundary layer at the inflow boundary, a location at which the
displacement-thickness Reynolds number is set to 450 for all cases. The inflow boundary
is located at x/8* = 0, as shown in figure 2(a), where the instantaneous field of the
streamwise velocity component u for the ZPG TBL simulation with L, = 1925 is plotted.
Note that x/8* and y/§* represent the computational coordinate, with §* as a reference
parameter.
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Reg  (Ax*, Ayt (1), Az")  L/6  L./dgo

NACA 0012 600 (18, 0.64,9) 57 8.3
NACA 4412 520 (18, 0.64,9) 59 9.3
ZPGTBL fine 1-L; 600 (26,0.1, 13) 72 9
ZPGTBL1-L, 600 (78, 0.2, 40) 72 9
ZPGTBL2- L, 600 (78, 0.2, 40) 144 18
ZPGTBL4-L, 600 (78, 0.2, 40) 288 36

Table 2. Characteristics of the numerical simulations, using as reference the station x/c = 0.60 at the top
side for the airfoil simulations and the station where Reg = 600 for the ZPG TBL simulations.

The spatial resolution in the boundary layer in wall units is given by Ax™ = 78, Ayt =
0.2-9 and Az" = 40, considering a reference position with Resx = 450. In addition, a
fringe-region technique is used in order to employ a (periodic) Fourier discretisation in
the streamwise direction: a volume force acts at the end of physical domain to reduce the
boundary-layer thickness and damp out the outflowing boundary-layer disturbances. The
fringe region is located at x/8* > 900, indicated by the right side of the red dashed line in
figure 2(a).

Since we are dealing with wall-bounded turbulent flows, it is more convenient to use
the momentum thickness to normalise the flow-field variables. Therefore, we choose as
a reference parameter the momentum thickness where Rey = 600, which corresponds
approximately to the same Reynolds number at the station x/c = 0.60 of the NACA
0012 airfoil, as shown in table 1. This reference momentum thickness will be represented
here by 6p. At this boundary-layer position, the horizontal and vertical domain lengths
become L, = 7500p and L, = 676y, respectively, and the three spanwise lengths become
L, =726y, L, = 14460y and L, = 2886y. For these databases we extracted 1111 snapshots
from the simulations, with a non-dimensional separation of Atg, = 6.7, normalised by the
free-stream velocity U, and 6p.

A LES with a finer mesh was also computed for the smallest spatial domain, L, = 726,
in order to show that the results throughout this paper regarding the ZPG TBL simulations
do not depend on the resolution of the LES. Using the same Reynolds number as reference,
Res+ = 450, the spatial resolution in the boundary layer in wall units is given by Ax™ =
26, Ayt = 0.1-4.5 and Az" = 13 for this simulation.

Figure 2(b) shows the friction coefficient as a function of the local momentum-thickness
Reynolds number, Rey, for the three ZPG TBL simulations, which is essentially identical in
the three cases, as expected. These results are also in agreement with the equation deduced

by Osterlund et al. (2000) (red dotted line), given by

)
cf =2 [% In(Reg) + C:| 2.1

where the value of the von Kdrméan constant is ¥ = 0.384 and the additive constant
C = 4.08. Note that the initial part of the domain, with Rey < 550, comprises not fully
developed turbulence, and the sponge zone is located at Rey > 990.

To allow comparisons between airfoils and the ZPG TBL simulations, table 2 shows the
characteristics of all the numerical database analysed in this work. Note that the ZPG
TBL simulation with the smallest L; has approximately the same span as the airfoils
simulations.
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3. Methods
3.1. Spectral POD

POD consists in finding, within an ensemble of realisations of the flow field, orthogonal
basis functions that maximise the mean square energy assuming an appropriate inner
product (Berkooz, Holmes & Lumley 1993). In this study, POD in the frequency domain,
or SPOD (Picard & Delville 2000; Towne et al. 2018), was employed to analyse all the
numerical databases described in § 2.

Prior to the SPOD, we compute a spanwise Fourier transform of the velocity field.
Since the simulations described here use periodic boundary conditions in the spanwise
direction z, the span can be considered as a homogeneous direction and the corresponding
Fourier modes become the optimal orthogonal basis functions in this direction (Berkooz
et al. 1993); we obtain a Fourier series, with discrete spanwise wavenumbers k, =
2nn/L;, with n =0, 1,2, ..., where L; is the domain size in z. Focus is given to the
two-dimensional mode, k; = 0, which is propagative for all frequencies, since a necessary
condition for trailing-edge scattering is k; < ko, where ko is the acoustic wavenumber
(Amiet 1976; Nogueira et al. 2017; Sano et al. 2019). For low values of ko, the only
radiating wavenumber in a simulation with spanwise periodicity is k; = 0. Thus, for most
analyses we consider spanwise-averaged velocity and pressure fluctuations.

The truncation of computational boxes is well studied for turbulent channel flow, and
it is known that accurate statistics can be obtained with relatively small domains, with
structures larger than the domain size appearing as constant along a given direction. This
was characterised by Lozano-Durdn & Jiménez (2014), with a focus on the streamwise
dependence of the computational domain. In a finite computational domain with periodic
boundary conditions in z, the two-dimensional mode k; = 0 becomes representative of the
limit k, — 0, of disturbances of large spanwise wavelength. Thus, we consider that the
two-dimensional mode extracted from the databases represents structures whose spanwise
coherence is large with respect a local length scale, such as the boundary-layer thickness.
This will be further developed in § 5 with the analysis of boundary-layer simulations with
varying domain size.

A further decomposition can be applied to the fields prior to computation of SPOD
modes. Since the NACA 0012 airfoil at zero angle of attack is symmetric about the
streamwise x-axis, the flow along upper and lower surfaces of the airfoil should have the
same statistics; accordingly, fluctuations can be split into parts that are even (symmetric) or
odd (antisymmetric) with respect to the airfoil chord. Since acoustic radiation by trailing
edges is known to be antisymmetric (Amiet 1976; Sandberg & Sandham 2008; Sano et al.
2019), focus is given to the tangential velocity fluctuations, which are odd with respect to
the chord, and to the wall-normal velocity, which must in turn be symmetric to satisfy the
continuity equation. For the cambered NACA 4412 airfoil, with angle of attack of 5°, such
decomposition is not possible, and thus we apply SPOD to the whole field.

We consider the standard Reynolds decomposition of the flow parameters, i.e. g =
q + ¢, where g is time average, ¢’ is the corresponding fluctuation and ¢ = [u; v] is a
vector composed by the tangential and wall-normal velocity components, respectively.
SPOD is applied to the fluctuating spanwise-averaged velocity, ¥’ and v’. Thus, the norm
used here is the turbulent kinetic energy (TKE). First, a windowed Fourier transform is
performed on the velocity field in time to obtain the field for a specific frequency f,

;17 (x,f) = [t (x,[); V' (x, )], where hats denote Fourier-transformed quantities. We then
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apply SPOD to the transformed field, which amounts to solving the integral equation
/Q Clx,x, NH¥(x, NHdx = ANV (x, /), (3.1

where £2 denotes the spatial domain of the flow; ¥ represents the basis functions, or SPOD
modes; A is the corresponding SPOD eigenvalue; and C is the two-point cross-spectral
density tensor, given by

Clx, x,f) = 5{t;'(x,f)t?H(5€,f)}, (3.2)

where the expected value operator £(-) is an ensemble average over different flow
realisations, and the superscript H denotes a conjugate transpose; C is Hermitian, and
thus its eigenvalues are real and eigenfunctions are orthogonal.

The realisations of the flow, which in the frequency domain amount to windowed Fourier
transforms taken at segments of data, can be expanded as

q6.f) =Y a(H¥rx.f), (33)

k=1

where a;(f) = (g’ (x, ), Wr(x,f)), with (, ) denoting the inner product given by
(a,b) = / b (x. a(x.f)dx ~ b Wa, (3.4)
Q

where a and b are realisations of the velocity field, considered as elements of a Hilbert
space; Np is the total number of flow realisations, here taken as successive segments of the
time series of the simulations; W is a positive definite matrix of quadrature weights that
approximate the integral in the computational grid.

For lower computational cost, the snapshot method (Sirovich 1987) is applied, as
described by Towne et al. (2018). In all the analyses studied here we have used Hamming
and Hann windows for Welch’s method, since they are commonly used in narrowband
applications. For both cases, the SPOD results were similar, indicating that the results do
not depend on the choice of the window, for the present datasets. We present here SPOD
results obtained with the Hamming window.

The choice of domain of interest 2 is flexible, and we will in some cases restrict SPOD
to a subdomain of the database. Computationally, this amounts to setting some of the
quadrature weights in W to zero. Equation (3.4) remains an inner product in the subdomain
of interest. However, SPOD modes may be obtained even outside the subdomain, as linear
combinations of flow realisations following the extended POD approach of Borée (2003).
This leads to the reconstruction of fluctuations that are coherent with a given SPOD mode.
Such a procedure was used in Sano et al. (2019) to obtain pressure fluctuations that are
related to a given SPOD mode. We will also proceed accordingly here to obtain pressure
fluctuations for the leading SPOD modes.

For both airfoils the short-time fast Fourier transform (FFT) required for SPOD have
been taken considering blocks of 64 snapshots with 75 % overlap, leading to a total number
of blocks N, = 29 for the NACA 0012 and N, = 47 for the NACA 4412 profile. These
choices lead to a Strouhal number discretisation of ASt = 1.61 for both cases, where
the Strouhal number is defined as St = fc/Ux,, where f is the frequency and Uy, is the
free-stream velocity. For the ZPG TBL databases, blocks of 64 snapshots were considered
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with 75 % overlap, leading to a total number of blocks of N, = 66 and a Strouhal number
discretisation of AStyg, = 0.021. In order to verify the dependence of the block size and
the overlapping segments in all the results, the SPOD was also evaluated for both airfoils
and for the ZPG TBL databases using blocks containing 32 and 48 snapshots, with 50 %
and 75 % of overlap in each case, leading to very similar results. In general, the changes in
leading eigenvalues did not exceed 0.1 % for most of the frequencies, indicating that the
SPOD results are reliable and can be meaningfully analysed.

3.1.1. Convergence analysis

In order to further verify the robustness of the computed SPOD modes, for both airfoils,
we carry out a convergence analysis, by dividing the total dataset into two equal parts each
corresponding to 75 % of the original dataset, and performing the SPOD on each part. We
can then define a correlation coefficient between the two data sets,

(Y, Vi)

—_——, (3.5)
IEZIRRILZR)

Mik =
where i = (1; 2) indicates each subset, k =1, ..., N, each SPOD mode and w is the
normalised projection of ¥ into ¥; x; note that (-, -) denotes the inner product given by
(3.4). Thus, u = 1 indicates a perfect alignment between both vectors, and u = 0 indicates
that the modes are orthogonal. For well-converged statistics, the SPOD modes for each
subset should be nearly identical, and thus the normalised projection of (3.5) leads to 1; k
close to 1.

The first three SPOD modes were found to be well converged in all analysed cases
studied in this paper, with p;x > 0.95 for k =1, 2 and 3. Thus, we conclude that the
first three modes are well converged and can be meaningfully analysed. In this paper we
focus our analysis on the first mode, as it is more amenable to analysis. The leading SPOD
mode of turbulent wall-bounded flows (Abreu et al. 2020a,b) and jets (Schmidt ez al. 2018;
Lesshafft et al. 2019) may be modelled using resolvent analysis, as discussed next, whereas
higher-order modes often display worse agreement with corresponding resolvent modes.
However, in § 4.1 we show the second and the third SPOD modes for the airfoils and we
discuss qualitatively the higher SPOD modes features, focusing on their similarities and
differences with respect to the first mode.

3.2. Resolvent analysis

The present resolvent analysis follows the procedure outlined by Towne et al. (2018).
Considering again an L>-inner product, resolvent analysis provides two orthonormal
bases, one for forcings and the other one for the associated flow responses, and each
pair of forcing and response modes is related by a gain. This provides a hierarchy of
forcing—response pairs, ordered by the gain. If the largest gain from the optimal forcing
is much larger than the others, the corresponding flow response is expected to dominate
the flow statistics in the turbulent field (Beneddine et al. 2016; Towne et al. 2018; Cavalieri
et al. 2019).

Resolvent analysis requires the linearisation of the Navier—Stokes equations (N-S)
moving the nonlinear terms to the right-hand side. For most analyses we will for
simplicity consider the locally parallel problem, where the mean flow g1 = [u; v; p] has
its variation in x neglected and thus varies only in y. Such a simplification is appropriate
for mild mean-flow variations in x at length scales that are large compared with the
streamwise wavelength. In this case, the base flow u(y) becomes thus independent of
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the x coordinate and time #, and the linearised equations are homogeneous along these

directions, which allows the parallel-flow ansatz q’1 (x,y,0) = q’l(y) exp(i(wt — kyx)),
where hats now denote quantities that are Fourier transformed in both x and 7, = 2nf is
the angular frequency and ky is the streamwise wavenumber. For the ZPG TBL analysis,
we will also consider a global resolvent analysis, with a mean flow dependent on x and y.
In this case, the appropriate normal mode ansatz becomes ¢ (x, y, 1) = ¢ (x, y) el

Notice that, as discussed in the previous section, we will focus on two-dimensional
disturbances representative of spanwise-elongated structures (Sano et al. 2019), and thus
the ansatz above has no z-dependence. Substitution of the above ansatz in the linearised
N-S and continuity equations, retaining the nonlinear terms on the right-hand side and
considering that the Reynolds number, frequency @ and streamwise wavenumber ky
are given, leads to a forced linear problem. The problem can be written in state-space
formulation, in operator notation

Lq, = Bf
~ =B (3.6)
Ichll

where £ = (iwZ — \A) is the linear operator applled to q1 = [u v p’ 1; f represents the
nonlinear terms from the N-S equations; ¢’ = [u v ]; C is the lmear operator used to
select certain flow variables/regions of interest, in this case «’ and v’; and B is the linear
operator that enforces known properties of nonlinearity in certain flows; in the present
case;

I 0
B=|0 I|, (3.7)
0 0

where [ is the identity and 0 is the null operator. Thus, BB guarantees that no force will
be applied in the continuity equation. The linear operators B and C impose restrictions in
forcing terms, and in some quantities of interest in the output, respectively.

The problem is closed with homogeneous Dirichlet boundary conditions for the velocity
fluctuations. At the wall we enforce u'(y =0) =v'(y =0) =0. In the far field, we
have u'(y — 00) = v/(y — o0) = 0. The resolvent problem requires us to write (3.6) in
input—output form, as

g = C(iwT — A)~'Bf = Rf, (3.8)

where R is the resolvent operator. Now we can obtain a relationship between input and
output by applying singular-value decomposition of the resolvent operator. Thus, we will
deal with the discretised problem such that the resolvent operator becomes a matrix. In the
simplest case of a Euclidean inner product, resolvent analysis amounts to a singular value
decomposition of the discretised resolvent matrix R, given by

R=UXVH, (3.9)

which decomposes R into two orthonormal bases: the output basis, or response modes
U, and the input basis, or forcing modes V. The matrix of gains X is diagonal with real
positive values, with gains in decreasing order o7 > 03 > - -+ > 0y,.

The analyses here were discretised using a Chebyshev pseudo-spectral method
(Trefethen 2000). For the parallel-flow problems, a total of 301 Chebyshev polynomials
have been used in the discretisation, and we have verified that increasing the number of
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polynomials does not modify the results. The global analysis of the ZPG TBL employed
fourth-order finite differences, using 121 points in the wall-normal direction and 128 points
in the streamwise direction. Lagrange interpolants were used to build sparse differentiation
matrices, following Pérez-Saborid (2019). Changes in the discretisation were seen to lead
to very similar results. The domain included a fringe zone matching the numerical set-up
of the LES. The B matrix in resolvent analysis restricted the forcing to lie in the physical
domain, and the C matrix was defined similarly in order to define an output solely in the
physical domain. The global problem was solved using an Arnoldi method, as described
in Kaplan et al. (2021).

3.3. SPOD vs resolvent analysis

The mathematical relationship between SPOD and resolvent analysis can be expressed as
the relation between the realisations ¢’ and the resolvent operator R for a problem with

harmonic forcing j' as
7 =Rf. (3.10)

The analysis of stochastic fields requires a formulation in terms of two-point statistics. This
can be obtained by multiplying (3.10) by its Hermitian and taking the expected value £(-).
This leads to

w AWt = REGFTRY, 3.11)

where the eigenvalue decomposition of the cross-spectral density £ (&&H) was applied
to the left-hand side, leading to SPOD modes. If the forcing is white noise in space, or

S(ffH) =T, (3.11) becomes
vAvl = ux?U”, (3.12)

meaning that the SPOD modes are equal to the response modes ¥ = U, and SPOD
eigenvalues equal to the square of resolvent gains A = X2,

The expressions above consider an Euclidean inner product, which is appropriate for
matrices. The non-uniform grids used in this work require the use of integration weights
for the discretisation of the inner product. Resolvent analysis and SPOD need to be
modified to account for integration weights; appropriate expressions are presented by
Towne et al. (2018) and Lesshafft er al. (2019) and are not repeated here for brevity.

4. Spanwise-coherent hydrodynamic waves in the flow around the airfoils
4.1. SPOD results

In this section we will analyse both airfoil databases using SPOD to highlight the dominant
spanwise-coherent structures in the flow. Figures 3(a) and 3(b) show the square root of the
first five SPOD eigenvalues as a function of the Strouhal number for the NACA 0012
and NACA 4412 airfoils, respectively. Note that SPOD modes have unit norm, and thus
the square root of the eigenvalues corresponds to the amplitude that each mode has in
the flow. We see from the results that the amplitudes are larger for the NACA 4412, as
expected, since this is a cambered airfoil with an angle of attack of 5°, which induces the
appearance of structures with larger amplitudes of velocity fluctuations in the suction side.
We can also observe a peak in St ~ 7 for both airfoils, which is more pronounced for the
first eigenvalue.

In order to evaluate the dominance of the first SPOD mode, we analysed the ratio of
the first SPOD eigenvalue and subsequent ones, and the results are shown in figures 3(c)
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Figure 3. Contribution of the leading five SPOD eigenvalues as a function of the Strouhal number for the
airfoils: NACA 0012 (a,c,e) and NACA 4412 (b.d,f). The relative contributions are shown using: eigenvalues
square root (a,b), ratios of the first SPOD eigenvalue and subsequent ones (c,d) and the contribution of each
mode to the total TKE (e, f).

and 3(d), for the NACA 0012 and NACA 4412 airfoils, respectively. Note that the largest
difference between first and second eigenvalues corresponds to the same Strouhal number
of the peak, St ~ 7; such a difference indicates the dominance of the leading mode in
the flow fluctuations, with an amplitude that is at least twice larger than the amplitudes
of higher-order modes. We also evaluated the contribution of each mode to the total
TKE, shown in figures 3(e) and 3(f), for both NACA 0012 and NACA 4412 airfoils,
respectively. Here, we consider the TKE of spanwise-averaged fluctuations. Results show
the dominance of the first SPOD mode at St &~ 7, which comprises approximately 60 % of
the total TKE for both airfoils. The recent study by our group (Sano et al. 2019) using
a compressible LES of a NACA 0012 airfoil showed a peak of trailing-edge noise at
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Figure 4. First SPOD mode at St = 7 for the NACA 0012 airfoil, representing approximately 56 % of the total
kinetic energy of spanwise-averaged fluctuations; (a), (b) and (c) show fluctuations of u, v and p, respectively:

(@) VA1 - W1 (b) VA1 - Wyr; and (¢) VA1 - Y1

approximately St & 7, which is the same peak frequency found here for the velocity fields
of both analysed airfoils. Therefore, we focus our analysis on St = 7 for both airfoils.
Figures 4 and 5 show the first SPOD mode of the velocity and pressure fields at St = 7
for the NACA 0012 and NACA 4412 airfoils, respectively. The real part of the modes is
shown; the imaginary part forms a 90° phase shifted pattern, indicating a downstream
travelling wave. All the SPOD results here are multiplied by the square root of the
eigenvalue, /Ay, as in Sinha et al. (2014), such that these correspond to fluctuation
amplitudes in the flow. We can see that all the results shown in figures 4 and 5 exhibit
a coherent wave through most of the airfoil, which begins just after the boundary-layer
tripping, with increasing amplitude as it gets closer to the trailing edge, and peak
amplitudes in the wake. Comparing the two airfoils, the leading SPOD mode of the 4412
profile has larger fluctuation amplitudes in the wake, but both airfoils have leading SPOD
modes with nearly the same amplitudes inside the boundary layer considering the region
x/c < 0.85, where the tangential velocity fluctuation amplitude reaches |u/| ~ 0.0025 for

both airfoils. This amplitude scaled in wall units corresponds to |J+| ~ 0.055, normalised
by u; and v, for the station x/c = 0.65, where the momentum-thickness Reynolds number
is approximately 690 and 650 for the NACA 0012 and NACA 4412 airfoils, respectively.
Note that the amplitude of the SPOD modes in viscous scaling is very small with respect
to dominant turbulent structures, with fluctuation amplitudes of order unity when scaled in
inner units. Therefore, these leading SPOD modes show dominant structures of the TKE
of spanwise-averaged fluctuations, as shown in figure 3, but these are only a small part of

927 Al1-13


https://doi.org/10.1017/jfm.2021.718

https://doi.org/10.1017/jfm.2021.718 Published online by Cambridge University Press

L.I. Abreu and others

@ 4, _
5

y 0.1 |
yic - 0

0 = :.3}

=5
-0.1 . . . . . 1
0 0.2 0.4 0.6 0.8 1.0

(<107

®) o, - - _I5
ylc o L (o
0\(/_;»1
I
1.0

0 02 0.4 0.6 0.8

(x10°%)
© s - - _I2
0.1 {
S <—— 1) )
0 ..IZ

0 0.2 0.4 0.6 0.8 1.0
x/c

Figure 5. First SPOD mode at St = 7 for the NACA 4412 airfoil, representing approximately 60 % of the total
kinetic energy of spanwise-averaged fluctuations; (a), (b) and (c) show fluctuations of u, v and p, respectively:

(@) VA1 - Wur; (0) VA1 - Wy1; and (0) Ay - Yp1.

the bulk of turbulence. Such structures are nonetheless expected to play a significant role
in trailing-edge noise, as discussed in the introduction.

In order to identify such coherent structures in the flow, we show in figures 6(a)
and 6(b) sample instantaneous flow realisations of the spanwise-averaged fluctuations of
the tangential velocity and pressure, respectively, for the NACA 0012 airfoil database.
Results show that the coherent structures found in the first SPOD mode can be more
clearly observed in the pressure field, as figure 6(b) displays instantaneous structures that
resemble the pressure fluctuations of the leading SPOD mode shown in figure 4(c). For
the velocity field, the coherent structures corresponding to the leading SPOD mode can be
observed more clearly in positions further from the wall; for instance, the fluctuations in
y positions further from the wall have a more organised wave behaviour, which is close to
the result for the leading SPOD mode of figure 4(a). The clearer observation of coherent
waves further from the wall is reminiscent of wavepackets in turbulent jets (Tinney &
Jordan 2008; Cavalieri et al. 2019), which have a clearer structure in the near pressure
field. The NACA 4412 airfoil has similar behaviour and results have not been shown here
for brevity.

Figures 7 and 8 show the second and third SPOD modes of the tangential velocity
component at St =7 for the NACA 0012 and NACA 4412 airfoils, respectively. Such
SPOD modes also display coherent hydrodynamic waves. However, as we increase the
order of the mode, the amplitudes of the overall wavy structures decrease, as expected,
since their contribution to the total TKE decreases significantly. In particular, differently
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Figure 6. Instantaneous flow realisations taken from the NACA 0012 airfoil database. (@) Tangential velocity
fluctuations u’ and (b) pressure fluctuations p’.
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Figure 7. Second and third SPOD modes of the tangential velocity component at St = 7 for the NACA 0012
airfoil; (a) /Ao - W and (b) /A3 - ¥3.

from the first mode, the amplitudes of velocity fluctuations for the second mode are higher
in the turbulent boundary-layer region than in the wake. The third SPOD mode has higher
amplitudes near the trailing-edge region, but the wavy structures are noisier due to a worse
convergence of higher modes.

Such coherent hydrodynamic waves appear in the first SPOD mode of the airfoils
even though the boundary layer is at an already fully developed turbulent state. The
trailing-edge region features a larger adverse pressure gradient in the boundary layer,
which is known to enhance boundary-layer instability for laminar flows (Schmid &
Henningson 2001), and the present results suggest that a similar mechanism may be at
work in the turbulent boundary layers near the trailing edge, especially for the cambered
NACA 4412 airfoil. Furthermore, the SPOD results for the tangential velocity component
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Figure 8. Second and third SPOD modes of the tangential velocity component at St = 7 for the NACA 4412
airfoil; (a) /Ao - W and (b) /A3 - V3.

in all cases (see figures 4(b) and 5(b)) show near-wall fluctuations with phase opposition
to disturbances towards the boundary-layer edge, which is similar to the behaviour of
Tollmien—Schlichting waves, although this is a region of turbulent boundary layer. A
similar behaviour was found by Sano et al. (2019) for the NACA 0012 airfoil and by Kaplan
et al. (2021) for a turbulent boundary layer inside a jet nozzle. The present results indicate
that such structures are not just an artefact of a particular database.

In order to further highlight the structures in the boundary-layer region, the wake
contribution is neglected in SPOD by imposing zero integral weights W in the wake
region, where x/c > 1. This amounts to considering a subdomain £2 in (3.1) that excludes
the wake. We refer to these as boundary-layer-weighted SPOD modes. The results in that
case are shown in figures 9(a) and 9(b) for the NACA 0012 and in figures 10(a) and
10(b) for the NACA 4412 airfoil. The SPOD results now emphasise the hydrodynamic
waves near the airfoils, inside the boundary layer. Since the wake region typically has a
Kelvin—Helmholtz mode which is much more energetic than the ones from the turbulent
boundary layer, which has just stable modes, boundary-layer-weighted SPOD modes
highlight more clearly structures within the boundary layer; inspection of the figures shows
that these are the same global SPOD modes, but convergence-related noise is lower when
the wake is discarded. As the wake dynamics is more thoroughly studied in the literature
(see for instance Araya, Colonius & Dabiri 2017), we will thus focus for the remainder of
our analysis on the boundary-layer-weighted modes.

4.2. Comparison between SPOD and resolvent modes

In this section we will compare the SPOD results obtained in § 4.1 for both airfoils with
the most amplified responses from resolvent analysis. To do so, we will make a locally
parallel assumption for the resolvent analysis, and compare the first resolvent mode with
the first SPOD mode for some specific stations x/c of the airfoil by taking a ‘slice’ from
the boundary-layer-weighted SPOD results obtained for the entire field in figures 9 and 10.
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Figure 9. First boundary-layer-weighted SPOD mode at St =7 for the NACA 0012 airfoil, representing

approximately 40 % of the kinetic energy of spanwise-averaged fluctuations; (a) «/4; - ¥1 tangential velocity
component &', (b) /41 - ¥ wall-normal velocity component 7’.
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Figure 10. First boundary-layer-weighted SPOD mode at St =7 for the NACA 4412 airfoil, representing
approximately 30 % of the kinetic energy of spanwise-averaged fluctuations; (a) /4 - ¥; tangential velocity
component i/, (b) /4; - ¥; wall-normal velocity component .

4.2.1. The base flow

The base flow u( y,) was extracted from the simulations considering a time and spanwise
average. Here, the mean profiles are taken in the wall-normal direction, in the overall
x—y coordinate system. For the NACA 0012 airfoil we analysed three different stations:
x/c =0.6, 0.7 and 0.9. For the NACA 4412 airfoil we also analysed three different
stations: x/c = 0.6 and 0.9 for the suction side () and 0.5 on the pressure side (b), since
this airfoil has no symmetry with respect to y = 0. These choices allow consideration
of boundary-layer profiles with various degrees of adverse pressure gradient, which is
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Figure 11. Mean streamwise velocity around the airfoils, with x/c = 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 stations
marked by the dashed red lines. (a) NACA 0012 and (b) NACA 4412.
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Figure 12. Mean velocity profiles at different positions x/c for (a) NACA 0012 and NACA 4412 on (b)
suction and (c) pressure sides, scaled in outer units.

stronger close to the trailing edge, particularly for the NACA 4412 profile, and close to zero
for the pressure side of the same airfoil. For all stations considered here, in both airfoils,
the boundary-layer profiles are turbulent. Figure 11 shows the mean streamwise velocity
around the airfoils, with various x/c stations marked by the dashed red lines. The mean
velocity profiles at these x/c positions for both airfoils are shown in figure 12, scaled in
outer units (wing chord ¢ and free-stream velocity Us,). Figure 13 shows the mean velocity
profiles for the same stations in inner units, denoted with a + superscript; quantities are
made non-dimensional using the friction velocity u; and the kinematic viscosity v. The
mean velocity profiles in figure 13 show the expected shape of wall-bounded turbulent
flows when plotted in inner scale as a function of wall distance y*. Adverse pressure
gradients lead to departures of the typical zero-pressure-gradient profiles, as evident for
the NACA 4412 results (see also Vinuesa et al. 2016).

4.2.2. Resolvent parameters
Resolvent analysis was performed for St = 7 for comparison with the SPOD results of
§4.1. The streamwise wavenumber k, is also a parameter of resolvent analysis, and is not
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Figure 13. Mean velocity profiles at different positions x/c for (¢) NACA 0012 and NACA 4412 on (b) suction
and (c) pressure sides, scaled in inner units. In all panels, the blue dashed line represents the linear law, u* =
yT, and the red dashed line is the log law, #™ = (1/«) In(y™) + B, where k = 0.41 and B = 5.2.
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Figure 14. First three resolvent gains as a function of the streamwise wavenumber at St = 7 for the NACA

0012 airfoil; (a) x/c = 0.6, (b) x/c = 0.7 and (¢) x/c = 0.9.
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Figure 15. First three resolvent gains as a function of the streamwise wavenumber at St = 7 for the NACA
4412 airfoil; (a) x/c = 0.5, (b) x/c = 0.6 and (¢) x/c = 0.9.

known a priori, since different wavelengths may appear in the forcing. To study the effect
of k, in the resolvent analysis, we first varied k, and studied the leading gains for the three
analysed stations of each airfoil. These results are shown in figure 14 for the respective
stations analysed in the NACA 0012 airfoil, and in figure 15 for the NACA 4412.

We notice a sharp peak in all results, which corresponds to disturbances outside the
boundary layer, where the phase velocity is equal to the free-stream velocity. Analysis
of forcing and response modes for these wavenumbers shows that they correspond to
free-stream modes, similar to the observations of Dergham, Sipp & Robinet (2013) for a
backward-facing step. We have verified that forcing and response modes in these cases
have spatial support mostly outside the boundary layer. Such free-stream modes were
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Figure 16. First SPOD mode (red dashed line) compared with the optimal response from resolvent analysis
(black solid line) of the streamwise velocity component u, for the NACA 0012 airfoil, at stations x/c = 0.6, 0.7
and 0.9; (a) u© ~ 0.80, (b) u ~ 0.83 and (c) u ~ 0.85.
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Figure 17. First SPOD mode (red dashed line) compared with the optimal response from resolvent analysis
(black solid line) of the wall-normal velocity component v, for the NACA 0012 airfoil, at stations x/c = 0.6,
0.7 and 0.9; (a) n ~ 0.80, (b) u =~ 0.83 and (c) u ~ 0.85.

studied by Nogueira et al. (2020) and are not of immediate interest for the boundary-layer
dynamics. Besides the sharp peak, we can also notice smooth peaks in all stations for the
first gain o7. These peaks correspond to disturbances inside the boundary layer, where the
phase velocity is lower than the free-stream velocity. Moreover, for the smooth peaks there
is a clear dominance of the optimal forcing, which leads to a response with a gain that is at
least one order of magnitude higher than the suboptimals. To perform the resolvent analysis
we thus used the k, corresponding to the larger smooth peaks in each analysed section for
both airfoils. For the NACA 0012 airfoil we notice that the value used in resolvent analysis,
ky = 50, corresponds to a wavelength A, = 0.12, which closely matches the wavelength
of the first SPOD mode shown in figure 4.

4.2.3. Comparison between SPOD and resolvent modes

Results of the comparison between first boundary-layer-weighted SPOD mode and optimal
response from resolvent analysis are shown in figures 16 and 17 for the NACA 0012 airfoil
for horizontal and vertical velocity components, respectively; and in figures 18 and 19 for
the NACA 4412 airfoil, also for horizontal and vertical velocity components, respectively.
As commented before, the boundary-layer-weighted SPOD modes were taken to minimise
statistical noise.

The comparisons show that the resolvent modes have overall features that correspond
to the leading SPOD modes from the databases. In order to perform a quantitative
comparison between the first SPOD mode and the optimal response from resolvent
analysis, we quantified the agreement between the SPOD eigenfunction ¥ and optimal
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Figure 18. First SPOD mode (red dashed line) compared with the optimal response from resolvent analysis
(black solid line) of the streamwise velocity component u, for the NACA 4412 airfoil, at stations x/c = 0.5 in
the pressure side, x/c = 0.6 and 0.9 in the suction side; (a) u = 0.75, (b) n = 0.67 and (¢) p = 0.70.
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Figure 19. First SPOD mode (red dashed line) compared with the optimal response from resolvent analysis
(black solid line) of the wall-normal velocity component v, for the NACA 4412 airfoil, at stations x/c = 0.5 in
the pressure side, x/c = 0.6 and 0.9 in the suction side; (a) u ~ 0.75, (b) u =~ 0.67 and (c¢) n ~ 0.70.

response from the resolvent analysis U; using the normalised projection given by (3.5),
as in Abreu et al. (2020a,b). Values of p close to 1 are indicative of agreement of both
amplitudes and phases for both velocity components. The agreement between resolvent
and SPOD is closer for the 0012 airfoil, with normalised projections higher than 0.8 for
all stations. The comparison for the 4412 airfoil has the best agreement at the pressure
side, with a normalised projection of ; = 0.75. The suction side has agreement metrics
close to 0.7. These results can be explained by the fact that the locally parallel resolvent
analysis is based on properties in the near wall, which are simpler in the lower adverse
pressure gradient from the NACA 0012 than in the complex adverse pressure gradient of
the NACA 4412 (interaction of a wider range of scales with stronger adverse pressure
gradients), which leads to a stronger inhomogeneity in x, such that the accuracy of the
locally parallel assumption becomes questionable. However, the general features of the
SPOD mode are captured by the optimal response for all cases presented in figures 16—19.
The double peak structure of the streamwise velocity is related to a phase jump in y, which
may be observed in figure 4(a). Such phase jump is also obtained in the leading resolvent
mode, as exemplified in figure 20, which shows phase comparisons for a station of the
NACA 0012 airfoil. Other stations show similar results and are not shown here for brevity.

Since we deal with a turbulent boundary layer, an exact match is not expected, but the
comparisons presented here show that resolvent analysis provides a good reduced-order
model for the spanwise-coherent disturbances considered here, which play an important
role in the radiation of trailing-edge noise (Sano et al. 2019). There is close agreement
with streamwise velocity fluctuations of the leading SPOD mode, which has an amplitude
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Figure 20. Phase of the first SPOD mode (red dashed line) compared with the phase of the optimal response
from resolvent analysis (black solid line) for the streamwise (@) and wall-normal velocity components (b), at
the station x/c = 0.7 of the NACA 0012 airfoil. («) Phase of u (rad) and (b) Phase of v (rad).

distribution similar to that of Tollmien—Schlichting waves, with a phase jump at a position
with vanishing amplitude, also visible in the SPOD fields in figures 4-10. The relatively
low amplitude of the two-dimensional disturbances within the boundary layer tends to ease
the application of linearised models.

Resolvent analysis also shows consistent trends when the two airfoils are compared. The
comparison of figures 14 and 15 shows that resolvent gains are larger for boundary-layer
stations with adverse pressure gradient. This is observed in the SPOD modes of
figures 4-10, which display larger amplitudes at the suction side of the NACA 4412 airfoil,
particularly close to the trailing edge. The NACA 0012 airfoil fluctuation amplitudes are
less significant, and the lowest levels are seen at the pressure side of the NACA 4412
profile. These trends are also observed in the resolvent gains.

5. Domain-size effect on coherent hydrodynamic waves

We have found coherent structures on the airfoil surfaces using SPOD, which were
modelled using resolvent analysis. However, the use of spanwise-periodic boundary
conditions may be a concern, as it may lead to artificially coherent structures. For instance,
in earlier works, computational boxes with short streamwise lengths led to artificially
streamwise-coherent structures that remained straight throughout the domain, and the use
of larger boxes creates a meandering behaviour (Komminaho, Lundbladh & Johansson
1996). We here investigate this issue using simulations of the flow over a flat plate, forming
a ZPG TBL, with computational domains of different spanwise lengths.

5.1. Turbulence statistics and spectral analysis
Using standard Reynolds decomposition u = u + 1/, the mean horizontal velocity profiles

ut and the variance profiles of the horizontal velocity fluctuations (7+)2 in inner scaling
are shown in figures 21(a) and 21(b), respectively, for the position with Rey = 990,
which corresponds to approximately the station x/c & 0.80 of the NACA 0012 airfoil
and x/c =~ 0.75 of the NACA 4412 profile. The mean velocity profiles for all the three
simulations collapse as expected, and show the typical shape of wall-bounded turbulent
flows when plotted as a function of wall distance y*, following linear and log laws.
Variance profiles also collapse for the three simulations, and have the expected pattern
characteristic of wall-bounded turbulent flows, with a near-wall peak in the buffer layer
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Figure 21. (a) The mean flow and (b) horizontal velocity fluctuations at Reg = 990, scaled in inner units. In
both panels, the blue dashed line represents the linear law, ut = y*; and the red dashed line is the log law,
ut = (1/k)In(y™) + B, where k = 0.41 and B = 5.2.

at y* ~ 15 (Eitel-Amor et al. 2014). Note that, despite the moderate resolution of the
7ZPG TBL simulation, the results presented below do not depend on this choice of lower
resolution, which was due to the computational efficiency. In order to verify this statement,
results for a finer LES for the smallest spatial domain are shown in Appendix.

The inner-scaled premultiplied power-spectral density of horizontal velocity fluctuations
kFE}, as a function of spanwise wavelength A7 = 2m/k} is shown in figure 22(a) at
position Rey = 990, for all the three simulations. Similarly to the mean profile and the
variance, the premultiplied spectra for the three simulations collapse, showing further
indication of independence of domain size. Results in figure 22(a) show a peak in the
spanwise wavelength corresponding to ﬂj ~ 100, which is representative of the signature
of the near-wall cycle of streaks and quasi-streamwise vortices. This has been documented
in many studies across a range of Reynolds numbers and flow types (Jiménez 2013).
The same inner-scaled power-spectral density of horizontal velocity fluctuations, without
premultiplication E;, is shown in figure 22(b) at the same position, Rey = 990, for
all the three simulations. Figure 22(c) shows the power-spectral density of figure 22(b)
for selected wall-normal positions, highlighting the low-wavenumber behaviour. Results
show that the power-spectral density contours do not close when premultiplication is
not considered, even with the increasing spanwise length L;, indicating that there is
non-zero power-spectral density for very low wavenumbers kj — 0, or, equivalently, very
large values of 2. We can see that there are structures with k&~ = 0, which correspond
to two-dimensional perturbations in the computational domain, corresponding to the
structures studied for the airfoils for kj =0.

The spectrum converges to a finite value at kK = 0 and there is no evidence in the current
results, which already include much wider domains than usual, that the power of k7 = 0
will decay to zero. The wavenumber kI~ — 0 corresponds to spanwise-coherent velocity
fluctuations, which have not been studied in detail in the literature and are the main focus
of this study. This limit is thus independent of domain size for the computations shown
here. As discussed by Lozano-Durdn & Jiménez (2014), two-dimensional fluctuations in
the simulation, for k" = 0, represent disturbances whose spanwise length scale is larger
than the size of the computational box; they should be thus understood as fluctuations
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Figure 22. Spanwise power-spectral density of the streamwise velocity fluctuation u’ at location Rey = 990

for the three ZPG TBL simulations: (a) with premultiplication kjE;ru and x-axis as /lz+ shown in log scale; and

(b) without premultiplication E;, and k" shown in linear scale; and (c) without premultiplication E;, and k"

uu
at specific y* positions.

with A; > §, which are responsible for the low-wavenumber behaviour of power-spectral
density shown in figure 22(b).

5.2. SPOD and resolvent results

As discussed previously, in order to compare the results obtained with the ZPG TBL
simulations with those from the airfoils, we normalised the parameters using the
momentum thickness of reference, 6y, corresponding to the one taken at 60 % of the NACA
0012 airfoil chord, where the momentum-thickness Reynolds number is approximately
600. The region of interest in the ZPG TBL was considered to be the one corresponding
to the trailing-edge region, i.e. between 60 % and 80 % of the airfoil chord length, where
the hydrodynamic waves have larger amplitudes. Moreover, the frequency used to perform
the SPOD in the airfoils, St &~ 7, corresponds to Sty &~ 0.010 at 60 % of the NACA 0012
airfoil chord. We will then perform the SPOD in the region of interest of the ZPG TBL
databases, by proper selection of a domain of interest £2, considering Stg, = 0.010.
Similarly to the analysis of the airfoil databases, we have taken a spanwise average of
flow fluctuations before performing the SPOD, to focus our analysis on spanwise-coherent
structures. SPOD for the three ZPG TBL databases was performed in a fully turbulent
region delimited by 600 < Reyp < 990, which corresponds approximately to the NACA
0012 airfoil stations 0.60 < x/c < 0.80 (see table 1 for the correspondent NACA 4412
airfoil stations). The focus on the region of interest ensures that only fluctuations in the
developed turbulent region are considered, with minimal influence from the upstream
tripping. Furthermore, the size of the region ensures that disturbances are able to travel
across the entire region within the duration of each time segment used in Welch’s method.
Figure 23 shows the SPOD eigenvalues for the three ZPG TBL simulations for k, = 0,
which show nearly no change among the three domain sizes. We thus conclude that the
coherent structures in all cases have nearly the same amplitude. Figures 24(a—c) and
25(a—c) show the first SPOD mode for horizontal and vertical velocity components,
respectively, for all the three ZPG TBL simulations. We can observe the presence of
coherent waves for all the cases, with minimal changes as the spanwise length of the
domain is varied. The SPOD results for the ZPG TBL databases in these figures display
nearly the same mode shapes and amplitudes for the three considered domain sizes, and
the structures are very similar to those around the airfoils, shown in figures 9 and 10.
For the ZPG TBL modes, the amplitude of the horizontal velocity fluctuation reaches
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Figure 23. SPOD eigenvalues for the three ZPG TBL simulations.
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Figure 24. First SPOD mode of the horizontal velocity fluctuations (a,b) compared with the optimal response
from resolvent analysis (c,d) for the three analysed ZPG TBL simulations at k; = 0; (a) ¥,,1 L; = 726y, (b) ¥,1
L, = 1446y, (c) ¥,,1 L; = 2880 and (d) optimal response.

|J| ~ (0.0028, or |J+| ~ 0.061 in wall units, normalised by u; and v from the beginning
of the domain, x/6p = 0, where Reg = 600. Note that the amplitudes of the SPOD mode
of the ZPG TBL are very close to those from the airfoils, and they also make a small
contribution to the overall turbulence, but have a potential effect in sound radiation. The
present SPOD results indicate that the coherent hydrodynamic waves found in the present
study, corresponding to spanwise-coherent disturbances in turbulent boundary layers, have
a physical meaning and are not an artefact from the simulations.

Figures 24(d) and 25(d) show the optimal response from resolvent analysis for
horizontal and vertical velocity components, respectively, for k, = 0. In this case, a global
resolvent analysis was carried out, allowing a better quantitative comparison with the
SPOD modes, since the streamwise wavenumber k, is no longer specified, and appears
naturally in the structure of the optimal flow response. As the mean flows of the three
simulations are nearly identical, resolvent analysis was computed using the mean velocity
for the smallest computational domain. The frequency used to compute the resolvent
analysis here was Stg, = 0.010. We observe a very close agreement between the SPOD
modes and the optimal response from resolvent analysis, for both velocity components.
The observed agreement further confirms that spanwise-coherent structures in turbulent
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Figure 25. First SPOD mode of the vertical velocity fluctuations (a,b) compared with the optimal response
from resolvent analysis (c¢,d) for the three analysed ZPG TBL simulations at k, = 0; (a) ¥,1 L, = 7269, (b) ¥y1
L, = 1446y, (c) ¥y1 L, = 2886 and (d) optimal response.

(a) (x103)  (b) (x1073)
70 70
s x: r:
g 35 0 35 0
IS ——————) ] E——— ] ]
0 100 200 300 0 100 200 300
() o (x1073)  (d) o (x1073)
B Lk
< 3 o 35 I
L ———— | —— I -2 —-..;--.:-—.."“""'_-'-‘-‘- ' -2
0 100 200 300 0 100 200 300
x/0, x/0,

Figure 26. First SPOD mode of the horizontal velocity fluctuations (a,b) compared with the optimal response
from resolvent analysis (c,d) for the three analysed ZPG TBL simulations at k; = 27t/L;; (a) ¥,1 L, = 726,
(b) W1 L, = 1446y, (c) ¥,,1 L, = 2886 and (d) optimal response.

boundary layers can be modelled as the most amplified flow response, obtained using the
linearised N—S operator.

We now examine non-zero spanwise wavenumbers in order to evaluate if the
spanwise-averaged fluctuations of k, = 0 are representative of disturbances for other
low spanwise wavenumbers. Figures 26, 27 and 28 show the first SPOD mode and the
optimal response from resolvent analysis of the ZPG TBL simulations for the horizontal,
vertical and spanwise velocity components, respectively, for k, = 2w /L., with L, taken
for the smallest domain size, such that this non-zero wavenumber is obtained for the three
simulations. We can observe that these results are very similar to the results for k, = 0, also
showing a coherent wave with similar features. As these are no longer two-dimensional
modes, they display a spanwise velocity component, which also has a wave structure. All
three velocity components are similarly matched by the leading resolvent mode, which
confirms the pertinence of resolvent analysis to model such structures. The observed
similarity of u and v fluctuations of non-zero k, to the k, = 0 counterparts strongly
suggests that two-dimensional fluctuations in the simulations are not spurious modes, and
are actually representative of a range of low wavenumbers, or, alternatively, of disturbances
with large spanwise coherence.

Figures 29(a) and 29(c) show the corresponding forcing from the optimal response
presented in figures 24(d) and 25(d), considering k, = 0, for the horizontal and vertical

927 A1-26


https://doi.org/10.1017/jfm.2021.718

https://doi.org/10.1017/jfm.2021.718 Published online by Cambridge University Press

Spanwise-coherent waves around flat plates and airfoils

(@) (x103) ()
70
T 35 Ig
= - e ke
0 100 200 300
(©) (x1073) (@)
70 l 5
QO 35 0
= - - |
0 100 200 300
x/90

(x107%)
70 .2
35 0
“_-_—-- e
0 100 200 300
(x1073)
70 .2
35 1l O
- - - ) - .—2
0 100 200 300

x/6,,

Figure 27. First SPOD mode of the vertical velocity fluctuations (a,b) compared with the optimal response
from resolvent analysis (c,d) for the three analysed ZPG TBL simulations at k, = 2n/L;; (a) Wy1 L; = 7260,
(b) W1 L; = 14460, (c) ¥y1 L; = 28806y and (d) optimal response.
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Figure 28. First SPOD mode of the spanwise velocity fluctuations (a,b) compared with the optimal response
from resolvent analysis (c,d) for the three analysed ZPG TBL simulations at k, = 27t/L;; (a) W1 L, = 720,
(b) Y1 L; = 14460, (¢) Y1 L; = 2886 and (d) optimal response.
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Figure 29. Optimal forcing from the resolvent analysis for the ZPG TBL simulations; (a) f; for k; = 0, (b) f;
for k; = 2n /L, (c) fy for k; = 0, (d) f, for k; = 27/L; and (e) f; for k; = 271/L..

927 A1-27


https://doi.org/10.1017/jfm.2021.718

https://doi.org/10.1017/jfm.2021.718 Published online by Cambridge University Press

L.I. Abreu and others

velocity components, respectively. Figures 29(b), 29(d) and 29(e) show the corresponding
forcing from the optimal response presented in figures 26(d) and 27(d), considering k, =
21 /L,, for the horizontal, vertical and spanwise velocity components, respectively. Notice
that, whereas the domain of interest for the flow response was taken in the downstream
region of the computational domain, corresponding to the region analysed using SPOD,
the optimal forcing was determined throughout the physical domain, as it is known
that the optimal forcing typically appears upstream of the flow response. The forcing
modes also display a wave structure, with fluctuations inclined against the shear, which
suggests that the forcing exploits the Orr mechanism, similar to the optimal excitation
of Tollmien—Schlichting waves (Akervik et al. 2008), and to coherent boundary-layer
disturbances inside a nozzle (Garnaud et al. 2013; Kaplan et al. 2021).

6. Conclusions

In the current work we have used SPOD to extract the most energetic spanwise-coherent
structures from the turbulent flow around two different airfoils: NACA 0012 with zero
angle of attack and NACA 4412 with an angle of attack AoA = 5°, both for chord Reynolds
number Re. = 400000. We found in the leading SPOD mode of spanwise-averaged
fluctuations, which is statistically converged in our database, a coherent wave that
propagates all the way from the transition region to the trailing edge. The study by
Sano et al. (2019), shows that such structures are a dominant non-compact source in
trailing-edge noise. Thus, although these spanwise-coherent structures are not much
studied in the literature of wall-bounded turbulence, they are relevant for aeroacoustics
(Amiet 1976; Nogueira et al. 2017).

The observed hydrodynamic waves in the leading SPOD modes were modelled using
locally parallel resolvent analysis, where turbulent mean profiles from specific stations x/c
in both airfoils were used as base flows. Results of comparisons for all the cases presented
here for both airfoils show a fair agreement between the optimal flow response and the
leading SPOD mode. Moreover, the optimal response has a gain which is at least an order
of magnitude larger than the suboptimals, which explains its presence in the data series
for the turbulent boundary layers. The results indicate that resolvent analysis is a pertinent
reduced-order model for the relevant fluctuations, leading to predictions of the structure of
advecting waves reaching the edge.

In order to show the domain-size independence and ensure the physical relevance of
such structures found around the airfoils, we run three simulations of a ZPG TBL for
three different spanwise domain lengths: L, = 726, L, = 1446 and L, = 2886y, where
6o is a reference momentum thickness, taken towards the end of the computational
domain. A spectral analysis of the flow, considering a power-spectral density of the
horizontal velocity fluctuations without the usual premultiplication adopted in wall
turbulence, showed the presence of spanwise-coherent structures with kj — 0, which
have no signature in standard premultiplied spectra. SPOD results also showed the
presence of such hydrodynamic waves for all three computational domains, with nearly
the same amplitude. Thus, our results indicate that these coherent hydrodynamic waves
have physical meaning and are not just an artefact from the simulation. They should be
understood as spanwise-coherent disturbances, the characteristic length of which is much
larger than the boundary-layer thickness. Such disturbances appear as two-dimensional
disturbances in the considered numerical simulations with periodic boundary conditions
in z. Coherent structures in the ZPG TBL were modelled with global resolvent analysis,
and the leading resolvent mode closely matches the first SPOD mode of the simulations.
Consideration of low, but non-zero, spanwise wavenumbers also leads to similar wavy
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Figure 30. (a) The mean flow and (b) horizontal velocity fluctuations at Reg = 990, scaled in inner units,
compared with results of ZPG TBL from Schlatter & Orlii (2012) for Rey = 1000. In both panels, the blue
dashed line represents the linear law, & = y™; and the red dashed line is the log law, i = (1/k) In(y") + B,
where k = 0.41 and B = 5.2.
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Figure 31. First SPOD mode of the horizontal (a,b) and vertical velocity fluctuations (c,d) of the finer LES of
the ZPG TBL at k; = 0 (a,c) and k; = 27t/L; (¢,d); (a) ¥,1 k; = 0, (b) ¥y k; = 271t/L., (c) Wy1 k; = 0 and (d)
U, k; =27/L,.

disturbances in the first SPOD mode, which are accurately modelled using resolvent
analysis.

In summary, the present work reveals that, among the dominant features in the turbulent
boundary layers around the airfoil, such as streaky structures with the usual spanwise
spacing of 100 viscous units, there are also well-defined spanwise-coherent hydrodynamic
waves, with peak at St & 7, i.e. the same frequency found to be correlated to the acoustic
radiation in Sano ef al. (2019). The structures studied in this work are not the standard
streaky structures of turbulent boundary layers; these are instead low-energy, coherent
spanwise-elongated waves reminiscent of those identified by Hussain & Reynolds (1972)
in their early work on forced oscillations in turbulent channel flow. In this paper we have
shown the presence of such structures in various wall-bounded turbulent flows, and these
are appropriately modelled as the optimal flow response from resolvent analysis. Further
numerical and experimental work aiming at the characterisation of such structures is
promising.

Funding. The authors acknowledge the financial support received from Conselho Nacional de
Desenvolvimento Cientifico e Tecnoldgico, CNPq, under grant No. 310523/2017-6, and by CAPES through the
PROEX program. Financial support provided by the Knut and Alice Wallenberg Foundation is also gratefully

927 A1-29


https://doi.org/10.1017/jfm.2021.718

https://doi.org/10.1017/jfm.2021.718 Published online by Cambridge University Press

L.I. Abreu and others

acknowledged. We also acknowledge funding from Centro de Pesquisa e Inovagdo Sueco-Brasileiro (CISB) and
from the Swedish Research Council through grant agreement no. 2018-05973. The simulations were performed
on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the PDC Center for
High Performance Computing at KTH, Stockholm.

Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Leandra I. Abreu https://orcid.org/0000-0002-3899-6144;

André V.G. Cavalieri https://orcid.org/0000-0003-4283-0232;
Philipp Schlatter https://orcid.org/0000-0001-9627-5903;
Ricardo Vinuesa https://orcid.org/0000-0001-6570-5499;
Ardeshir Hanifi https://orcid.org/0000-0002-5913-5431;

Dan S. Henningson https://orcid.org/0000-0001-7864-3071.

Appendix

In order to evaluate the dependence of the results on the LES resolution, we analysed a
finer LES of the ZPG TBL. Figures 30(a) and 30(b) show the mean horizontal velocity

profiles #™ and the variance profiles of the horizontal velocity fluctuations (JJF)2 in inner
scaling, respectively, for the position with Rey = 990. The mean velocity profile shows the
expected shape of a turbulent boundary layer, which matches the results from Schlatter &
Orlii (2012). The variance profile has the expected pattern characteristic of wall-bounded
turbulent flows. The SPOD modes for the ZPG TBL database considering a finer mesh is
shown in figure 31. We can notice that the SPOD results are nearly the same as those from
§5.2.
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