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MARTIN-LÖF RANDOMNESS IN SPACES OF CLOSED SETS

LOGANM. AXON

Abstract. Algorithmic randomness was originally defined for Cantor space with the fair-coin measure.
Recent work has examined algorithmic randomness in new contexts, in particular closed subsets of 2�

([2] and [8]). In this paper we use the probability theory of closed set-valued random variables (RACS) to
extend the definition of Martin-Löf randomness to spaces of closed subsets of locally compact, Hausdorff,
second countable topological spaces. This allows for the study of Martin-Löf randomness in many new
spaces, but also gives a new perspective on Martin-Löf randomness for 2� and on the algorithmically
random closed sets of [2] and [8]. The first half of this paper is devoted to developing the machinery of
Martin-Löf randomness for general spaces of closed sets. We then prove some general results and move on
to show how the algorithmically random closed sets of [2] and [8] fit into this new framework.

§1. Introduction. It is easy to generate a random binary sequence: simply flip a
fair coin and record the outcome of each flip as 0 for heads and 1 for tails. The laws
of probability tell us that in the long run we should expect to get the same number
of 0s and 1s, that we can expect to eventually see any finite sequence of 0s and 1s,
etc. What we certainly do not expect to get is the sequence 10101010 . . . , or any
other sequence with a pattern. However, this sequence is as likely to be the outcome
of our sequence of coin flips as any other particular binary sequence. Algorithmic
randomness (also called effective randomness) formalizes the intuition that some
sequences are “more random” than others by combining computability theory with
probability.
One of the most important definitions in algorithmic randomness is Martin-Löf

randomness, which we introduce in section 2.1. Algorithmically random sequences
have been the subject of a great deal of attention recently and much of the work has
been collected in [9] and [18].
Increasing interest in algorithmically random sequences has led researchers to ask

whether similarly interesting behavior is possible in other settings. One alternative
setting is C [0, 1], the set of continuous functions from the closed unit interval to R.
Algorithmic randomness in this setting was first studied in [11] and [10], and later
in [14] which showed that results about algorithmically random functions could be
obtained by producing a measure algebra homomorphism between 2� and C [0, 1].
As we will see, this basic idea can be used in other settings, in particular in the space
of closed subsets of certain topological spaces.
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Algorithmically random closed subsets of Cantor space were first studied in [2]
which defines algorithmic randomness in this setting by coding each infinite binary
tree without dead ends as a ternary real. Every closed subset of Cantor space can
be uniquely represented as the set of paths through such a tree. In [2] a closed set
is defined to be algorithmically random if the code for the corresponding tree is
Martin-Löf random.
Probability theorists and statisticians have defined a random closed set to be
something quite different. A random closed set as defined in the literature (see [15],
[16], or [17]) is simply a closed set-valued random variable. That is, a random closed
set is ameasurable map from a probability space toF(E), the space of closed subsets
of the topological space E. This is formalized using the hit-or-miss topology (also
known as the Fell topology) on the space F(E). We introduce this probabilistic
theory of random closed sets in section 2.2. This is obviously a very different idea
than that developed in [2], but there are connections. We prove that the coding of
closed sets of Cantor space used in [2] is actually an example of a particularly nice
random closed set (in the probability theory sense). This is lemma 4.5 in section 4.2.
As in the case of real-valued random variables, random closed sets induce a prob-
ability measure on the target space. The connection with algorithmic randomness
comes when we use such a measure to produce Martin-Löf tests in the space of
closed sets. In section 3 we give some general results about how to do this. One
key result here is lemma 3.5, which establishes that Martin-Löf randomness can
be defined in the space of closed subsets of a locally compact, Hausdorff, second
countable space using the hit-or-miss topology. This allows us to study algorithmic
randomness purely from the perspective of the space of closed sets with the hit-or-
miss topology. We note that different random closed sets (in the probability sense)
give rise to different measures and hence different classes of Martin-Löf random
closed sets. Other important results in this section are the technical lemmas 3.6 and
3.7, which are used extensively in the later sections.
Much of this paper is an exploration of examples of specific random closed sets
(in the probability sense) and the Martin-Löf random closed sets they give rise to.
We begin by looking at the example of Martin-Löf random closed subsets of N in
section 4.1. We prove that the Martin-Löf random closed subsets of N are exactly
those subsets with a Martin-Löf random characteristic function (in 2�). This is an
easy result, but it is interesting in that it shows that our approach is a generalization
of “classic” algorithmic randomness.
Our firstmajor example of a randomclosed set is the coding defined in [2]. Having
established in lemma 4.5 that this coding is a measurable map from 3� → F(2�)
we are then able to prove that a closed set is Martin-Löf random in F(2�) if and
only if it is the image of a Martin-Löf random element of 3� (corollary 4.6). This
means that our definition of Martin-Löf random closed sets agrees exactly with
the definition of algorithmically random closed sets given in [2]. Our approach,
however, allows for the use of theorems from probability theory of random closed
sets. In proposition 4.9, for instance, we use one of these tools (Robbins’ theorem) to
prove that for these Martin-Löf random closed sets have measure 0. This is a result
originally proved in [2] (although in less generality) by a different technique. The
main obstacle in that proof is nicely resolved here by our application of Robbins’
theorem.
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Our next example, the Galton–Watson random closed sets of [8], is another map
defined by coding closed subsets of 2� in a Cantor space. This example is explored
in section 4.3. In [8] Diamondstone and Kjos-Hanssen prove that a closed set is
2
3 -Galton–Watson random if and only if it is either ∅ or an algorithmically random
closed set in the sense of [2]. Their proof relies, in part, on lemma 4.21. We also
prove in lemma 4.19 that the coding used in [8] is a random closed set and that it
maps Martin-Löf random reals to Martin-Löf random closed sets.
A sequel to this paper will deal with examples of algorithmically random closed

sets in R. In particular it will focus on algorithmic randomness arising from an
important class of random closed sets from probability theory called generalized
Poisson processes.

§2. Background. This section covers the requisite background in the theory of
algorithmic randomness and the theory of random closed sets.

2.1. Martin-Löf Randomness. This section covers the basics of Martin-Löf ran-
domness for the Cantor space 2�. Much greater detail can be found in [18] or [9].
The Cantor space 2� is the space of infinite binary sequences with the topology
generated from the basis of cylinders, here denoted [�] where � is a finite binary
string. This space is homeomorphic to the Cantor middle thirds set, hence the
name Cantor space. We note that Cantor space is compact, Hausdorff, and second
countable.
We fix a computable enumeration �0, �1, �2, . . . of the set of finite binary strings

2<� . This, of course, gives a computable enumeration of the basis for the topology
on 2�. We will use this to determine the algorithmic complexity of subsets of 2�.

Definition 2.1. Let h ∈ 2� . U ⊆ 2� is Σ0,h1 if there is an h-computably
enumerable f ∈ 2� such that U = ⋃f(n)=1[�n].
Cantor space is usually endowed with a Borel probability measure, m, such that

for each � ∈ 2<� m([�]) = 2−|�|. This measure is often called the fair coin measure
because the probability that a given string � will be the result of flips of a fair coin
(taking heads as 0 and tails as 1, say) is exactly 2−|�|. There are, however,many other
measures on Cantor space and we will eventually wish to consider some of these
measures. All measures under consideration will be Borel, even when not explicitly
stated.
The idea behind Martin-Löf randomness is that the “laws” of probability theory

describe random behavior. For example, the strong law of large numbers says that
f ∈ 2� will m-almost surely satisfy the following equation

lim
n→∞

∑n
i=1 f(i)
n

=
1
2
.

A truly random sequence should obey all such laws. In particular, since each law
describes a set of measure 1, we would like to say that the intersection of all these
measure 1 sets is exactly the set of random sequences. Unfortunately, given any
g ∈ 2� there is a law saying that f ∈ 2� is almost surely not g. Therefore the inter-
section of all these measure 1 sets is exactly the empty set. Algorithmic randomness
solves this problem by restricting the collection of laws that must be obeyed to just
those that are sufficiently effective. It is also traditional to think in terms of the
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complements of these measure 1 sets: laws of probability determine measure 0 sets
of nonrandom sequences and random sequences must avoid all such sets.
Before giving the definition wemust briefly address the use ofmeasures as oracles.
When we use a measure � as an oracle we mean that we have access to an oracle
that allows us compute the measure �([�i ]) uniformly for each i ∈ �. We call such
an oracle a representation of the measure �. In [19] it is shown that the particular
choice of representation is important since arbitrary information can be encoded in
such representations. Moreover, [7] establishes the existence of measures for which
the representations have nominimum Turing degree. The end result is that attention
must be paid to the particular representation of the measure.

Definition 2.2. Let�be aBorelmeasure on 2� and let r ∈ 2� be a representation
of �.
1. An r-Martin-Löf test (r-ML test) is a uniformly Σ0,r1 sequence of subsets of
2� , {Ui}i∈� , such that �(Ui ) ≤ 2−i .

2. f ∈ 2� is r-Martin-Löf random (or r-ML random) if there is no r-Martin-Löf
test {Ui}i∈� such that f ∈ ⋂i∈� Ui .

Definition 2.3. A sequence f ∈ 2� is �-Martin-Löf random (or �-ML random)
if there is some representation r of � such that f is r-ML random.

A fundamental result for Martin-Löf randomness is the existence of a universal
r-Martin-Löf test:
Lemma 2.4. For each r ∈ 2� there is an r-ML test {Ui}i∈� such that f ∈ 2� is
r-ML random if and only if f /∈ ⋂i∈� Ui .
It follows immediately that for anymeasure � and any representation r, �-almost
every element of Cantor space is r-ML random.

2.2. Spaces of closed sets. In this section we cover the basics of random closed
sets in probability theory.Greater detail can be found in either [15] or [16] (we follow
the notational conventions of the latter).
We begin with an arbitrary topological space E.

Definition 2.5.
1. F(E) is the collection of closed subsets of E.
2. K(E) is the collection of compact subsets of E.
3. G(E) is the collection of open subsets of E.
Where the underlying space is clear from context and we will omit E and write only
F , K, and G.
F can be given a variety of topologies but we will focus on the Fell topology. The
Fell topology is also known as the hit-or-miss topology because it is generated from
so-called hitting and missing sets:

Definition 2.6. Let A ⊆ E.
1. FA = {F ∈ F : F ∩ A �= ∅} (the hitting set of A).
2. FA = {F ∈ F : F ∩ A = ∅} (the missing set of A).
Note thatFA is the complement of FA in the spaceF . The following proposition
clarifies how the sets FA and FA combine under unions and intersections.
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Proposition 2.7. If {Ai : i ∈ I } is a collection of subsets of E then:
1.
⋃
i∈I FAi = F⋃

i∈I Ai ;

2.
⋂
i∈I FAi = F

⋃
i∈I Ai ;

3.
⋂
i∈I FAi ⊇ F⋂

i∈I Ai ;

4.
⋃
i∈I FAi ⊆ F

⋂
i∈I Ai .

It is important to realize that in general FA1 ∩ FA2 �= FA1∩A2 . For example, in
the space F(R), {0, 1} ∈ F[0, 12 ] ∩ F[ 12 ,1] but {0, 1} /∈ F{ 12}. It is thus convenient to
introduce the following notation.

Definition 2.8. Let A,B1, . . . , Bn ⊆ E. The set FA ∩ FB1 ∩ · · · ∩ FBn will be
denoted FAB1,...,Bn .
We are now ready to define a topology for F .
Definition 2.9. The Fell topology on F is generated by the sub-base of sets of

the form FK and FG where K is compact and G is open. Hence sets of the form
FKG1,...,Gn with K compact and G1, . . . , Gn open form a basis for the Fell topology.
We now state some of the basic results from the theory of RACS that will help

us to work with the Fell topology. A proof of lemma 2.10 can be found on page 13
of [16] where it is the first step of the first proof of the Choquet capacity theorem.
A complete proof of lemma 2.11 can be found on page 3 of [15].

Lemma 2.10. Let V be a any family of subsets of E. LetB be the family containing
FV and FV for V ∈ V and closed under finite intersections. Then each Y ∈ B can be
represented as

Y = FVn+1∪···∪Vk
V1,...,Vn

for somek ≥ n ≥ 0 andV1, . . . , Vk ∈ V withVi � Vj∪(Vn+1 ∪ · · · ∪ Vk) for i, j ≤ n
with i �= j (such a representation is called reduced). Moreover, if Y = FV

′
m+1∪···∪V ′

l

V ′
1 ,...,V

′
m

is another reduced representation, then Vn+1 ∪ · · · ∪ Vk = V ′
m+1 ∪ · · · ∪ V ′

l , n = m,
and for each i ∈ {1, . . . , n} there is ji ∈ {1, . . . , m} such thatVi ∪Vn+1 ∪ · · · ∪Vk =
V ′
ji ∪Vn+1 ∪ · · · ∪ Vk .
It follows from lemma 2.10 that finding a reduced representation is computable

using only knowledge about intersections and unions of the sets in V : If FVV1,...,Vn is
not reduced, then there are i, j ≤ n such thatVi ⊆ V ∪Vj . Thus removing Vj does
not change the set, i.e.,

FVV1,...,Vn = FVV1,...,Vj−1,Vj+1,...,Vn .

Dropping Vj and iterating the procedure will eventually produce a reduced repre-
sentation of any element ofB. Ultimately we will use this to show that it is possible
to computably determine if two basic open sets of the Fell topology are equal in
certain situations (to be made more precise later). This will be important in our use
of the Fell topology for computable analysis.
Random closed sets in probability are typically limited to closed subsets of

locally compact, Hausdorff, and second countable spaces. One reason for this is
the following lemma.
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Lemma 2.11. Let be E a locally compact, Hausdorff, second countable (LCHS)
space and letB be a countable basis for E such that the closure B is compact for each
B ∈ B. Then F(E) is compact, Hausdorff, and second countable with a sub-basis
consisting of the sets FB and FB , B ∈ B.

We now give the fundamental definition for the probability theory of such spaces.

Definition 2.12. A random closed set (or RACS) is a measurable map from a
probability space to F(E) (where F(E) is equipped with the Borel �-algebra of the
Fell topology).

Because [2] used “random closed set” to refer to something very different, we will
usually use the abbreviation “RACS” for such a measurable map. This abbreviation
is standard in the literature (see [15] and [16]) and should help to avoid confusion. To
further distinguish between these definitions we will use “BBCDW-random closed
set” to describe the objects studied in [2].
In general, any measurable map from a probability space to R is called a random
variable. In the case of a RACS we have something like a random variable except
that the measurable map takes values in F instead of R. Hence the name “random
closed set”. A RACS can, like a random variable, be thought of as an assignment
of probability to each event, where an event is a measurable subset of F .
The fundamental result in the study of RACS is the Choquet capacity theorem.
This theorem completely characterizes all possible measures on F(E) as function-
als from the collection of compact sets of E to the unit interval [0, 1]. From the
probability perspective the interesting part of a RACS is the measure it gives rise
to and so the Choquet theorem is thought of as a characterization of all RACS. A
much more detailed exposition of the Choquet capacity theorem can be found in
Matheron [15], Molchanov [16], or Choquet’s original paper [5].
For the remainder of this section we will consider only locally compact, Haus-
dorff, and second countable (LCHS) topological spaces. In these spaces we find that
the Borel �-algebra of F is generated by the hitting sets of compact sets (FK for
compactK). This suggests that anymeasure onF could be fully characterized by its
behavior on these sets and this is part of what the Choquet capacity theorem proves.
The Choquet capacity theorem also proves that any functional on K with certain
properties will give rise to a RACS. Before we can state the theorem, however, we
need to develop some machinery.
Theword “capacity” comes from the capacity functional associatedwith aRACS.

Definition 2.13. Let (Ω, P) be a probability space, let E be an LCHS space, and
let X : Ω → F(E) be a RACS. Then X induces a functional TX : K(E) → [0, 1]
given by TX (K) = P

(
X−1(FK )

)
, called the capacity functional of X . Where the

RACS X is clear from context we use only T instead of TX .

Note that the capacity functionalTX does not actually depend on the mapX but
instead on the measure P ◦ X−1. This measure on F will show up repeatedly and
we will denote it PX .
The Choquet capacity theorem gives necessary and sufficient conditions for a
functional T : K → R to be the capacity functional of a RACS. Some nec-
essary conditions are obvious: T (∅) = 0; if K1, K2 ∈ K and K1 ⊆ K2 then
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T (K1) ≤ TX (K2), etc. Other properties that turn out to be important are not
so obvious. The completely alternating property in particular takes some work to
even state.

Definition 2.14. Let T : K → R be any functional and let K,K1, K2, . . . , Kn ∈
K. Define:
1. ΔK1T (K) = T (K)− T (K ∪K1);
2. ΔKn . . .ΔK1T (K) = ΔKn−1 . . .ΔK1T (K)− ΔKn−1 . . .ΔK1T (K ∪Kn) for n ≥ 2.

The functional T is completely alternating if for every K,K1, . . . , Kn ∈ K,
ΔKn . . .ΔK1T (K) ≤ 0.

Complete alternation is complicated enough to warrant some explanation. Let
X be a RACS and let PX be the probability measure induced on F by X (so
PX (S) = P

(
X−1(S)) for a measurable S ⊆ F). If TX is the capacity ofX , then for

every K1, . . . , Kn,K ∈ K
ΔKn . . .ΔK1TX (K) = −PX

(FKK1,...,Kn) .
The capacity of any RACS is hence completely alternating simply by virtue of the
fact that any probability measure cannot take negative values.
Weare now ready to state theChoquet capacity theorem.This theoremcompletely

characterizes those functionals T : K → [0, 1] that are the capacities of RACS.
Proofs can be found in [15], [16], or [5]. An effective version of the theorem has
been proved in [4].

Theorem 2.15 (Choquet capacity theorem). Let E be an LCHS space and let
T : K → [0, 1]. Then T gives rise to a Borel probability measure P on F(E) such that
P (FK) = T (K) for K ∈ K if and only if T satisfies the following conditions:
1. T (∅) = 0;
2. T is upper semi-continuous onK: ifK0 ⊇ K1 ⊇ · · · ∈ K such that⋂i∈� Ki = K

∈ K then limi→∞ T (Ki) = T (K);
3. T is completely alternating on K (definition 2.14).

Moreover, the probability measure P is unique.

The proof that these are necessary conditions is straightforward. We outline
briefly the proof of sufficiency. Suppose that T is a functional satisfying conditions
1–3. It can be shown that T may be extended to the class of open subsets of E by
setting

T (G) = sup{T (K) : K ∈ K & K ⊆ G}
for G ∈ G. A Borel probability measure P on F is then defined by assigning
P(FKG1,...,Gn) = −ΔGn . . .ΔG1T (K) for G1, . . . , Gn ∈ G and K ∈ K. This produces a
RACS on F in the sense that F becomes a probability space with the measure P
(and consequently the identity map on F is a RACS).
Definition 2.16. If T : K → [0, 1] satisfies the conditions of the Choquet

Capacity Theorem then we call T a Choquet capacity.

The following theorem, known asRobbins’ theorem, is a basic result in the theory
of RACS which we will find useful. It applies when the underlying topological space
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E is equipped with a measure �. In this case the composition of a RACS X : Ω →
F(E) with the measure � gives rise to a random variable � ◦ X . The expected value
of the resultant random variable is by definition E (� ◦ X ) = ∫Ω (� ◦ X ) (�)d�.
Robbins’ theorem shows how to calculate E (� ◦ X ) as an integral in the space E.
Theorem 2.17 (Robbins’ Theorem). Let (Ω, P) be a probability space. If � is a
�-finite Borel measure on Polish space E and X : Ω → F(E) is a RACS, then the
composite function � ◦ X : Ω→ R is a random variable and

E (� ◦ X ) =
∫
E

P(x ∈ X )d�(x).

Note: it is possible that E(� ◦X ) =∞ and in that case ∫
E
P(x ∈ X )d�(x) =∞.

The notation P(x ∈ X ) as used in the theorem is the standard abbreviation for
P
({� ∈ Ω : x ∈ X (�)}).

§3. A framework for Martin-Löf randomness in spaces of closed sets. In this
section we use the theory of random closed sets to build a framework for Martin-
Löf randomness in the spaces of closed sets of a fairly general class of underlying
spaces. The following sections will deal specifically with the underlying spaces N
and 2� and a sequel to this paper will address the underlying space R.
Our first step is to produce a framework for Martin-Löf randomness which is
general enough to apply to a space of closed sets equipped with the Fell topology.
Our approach is compatible with that of [12] but slightly more tailored to our work
with spaces of closed sets.

Definition 3.1. Let X be a topological space with Borel measure �. We say that
X (together with �) is aMartin-Löf space if it has a countable basis B0, B1, B2, . . .
meeting the following conditions:

1. �(Bi ) <∞ for each i ∈ �;
2. The set {B0, B1, B2, . . .} is closed under finite intersections of its members;
3. For any representation r of � there is an r-computable intersection function

g : �2 → � such that
Bi ∩ Bj = Bg(i,j).

If in addition �(X) = 1, then we call X aMartin-Löf probability space.

In this definition the representation of a measure is relative to the particular
enumeration of the basis B0, B1, B2, . . .. That is, r ∈ 2� is a representation of � if
�(Bi ) is uniformly r-computable. As in the case of measures on Cantor space, there
may not be a canonical representation of a given measure or even a representation
of lowest Turing degree.
We can now define Martin-Löf randomness for general Martin-Löf spaces.

Definition 3.2. Let X be a Martin-Löf space with measure � and basis
B0, B1, B2, . . . and let r ∈ 2� be a representation of � (for this basis).
1. An r-Martin-Löf test (r-ML test) is a uniformly Σ0,r1 sequence of subsets of X,

{Ui}i∈� , such that �(Ui) ≤ 2−i .
2. x ∈ X is r-Martin-Löf random (or r-ML random) if there is no r-Martin-Löf
test {Ui}i∈� such that x ∈ ⋂i∈� Ui .
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Definition 3.3. LetX be aMartin-Löf space with measure �. An element x ∈ X
is �-Martin-Löf random (or �-ML random) if there is some representation r of �
such that x is r-ML random.

If the oracles are omitted in each of the preceding 3 definitions (3.1, 3.2, and
3.3) then we arrive at the definition of �-Hippocrates randomness (Hippocrates
famously ignored the oracles). For computable measures�, an element is �-Martin-
Löf random if and only if it is �-Hippocrates random.However, for noncomputable
measures these two definitions of algorithmic randomness may be different. In gen-
eral the set of Martin-Löf random elements of a space is contained in the set of
Hippocrates random elements of the space (though both have measure 1).
A key result for traditional Martin-Löf randomness in Cantor space is the

existence of a universal Martin-Löf test. Our general framework for Martin-Löf
randomnesswas ensures that this is still the case, as we show in lemma 3.4below.One
important distinction between Martin-Löf randomness and Hippocrates random-
ness is the nonexistence of a universalHippocrates test as proved in [13].Hippocrates
randomness is useful here in part because it allows for an easy statement of theorems.
Adding appropriate oracles to theorems stated in terms of Hippocrates randomness
often gives theorems involving Martin-Löf randomness.

Lemma 3.4. LetX be aMartin-Löf space and let r be a representation of itsmeasure
�. There is a single r-ML test {Ui}i∈� such that x ∈ X is r-ML random if and only if
x /∈ ⋂i∈� Ui (we call such a test a universal r-ML test).
Proof. Definitions 3.1 and 3.2 ensure that the standard proof works in this situ-

ation. Start with an r-computable enumeration of all the uniformly Σ0,r1 sequences.
Modify each Σ0,r1 sequence into an r-ML test to achieve an enumeration of (essen-
tially) all r-ML tests. Then diagonalize as usual. We provide the details of the proof
because of the new, more general context.
Let {Vi}i∈� be a Σ0,r1 sequence. By definition there is f ∈ 2� such that

Vi =
⋃

f(〈i,j〉)=1
Bj.

Recursively define V̂i as follows. Begin with V̂i,0 = ∅ and at stage s + 1 let k be the
least natural number such that all of the following hold:

1. k ≤ s ,
2. f(〈i, k〉) = 1,
3. Bk has not already been added to V̂i,s , and
4. �

(
V̂i,s ∪ Bk

)
�s < 2−i − 2−s .

Let V̂i,s+1 = V̂i,s ∪Bk when such a k exists, otherwise V̂i,s+1 = V̂i,s .We define V̂i =⋃
s∈� V̂i,s .
Wenote that although theoracle r allows us to compute�(V̂i,s∪Bk)with arbitrary

precision (using inclusion-exclusion and the r-computable intersection function
of definition 3.1), this does not mean that the inequality �(V̂i,s ∪ Bk) < 2−i is
r-computable. We avoid this problem by restricting ourselves to just the first s bits
of �(V̂i,s ∪ Bk) and asking whether this rational number is less than 2−i − 2−s , a
question that we can computably answer.When we answer in the affirmative we can
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conclude that �
(
V̂i,s ∪ Bk

)
< 2−i . Consequently �(V̂i ) ≤ 2−i and the sequence

{V̂i}i∈� is Σ0,r1 .
We have thus converted an enumeration of all Σ0,r1 sequences {Vi}i∈� into an
enumeration of some r-ML tests {V̂i}i∈� . If {Ui}i∈� is a r-ML test, then it appears
in our enumeration of r-ML tests as long as � (Ui) < 2−i for all i . If this fails to
be the case, then the equivalent test {Ui+1}i∈� appears in our enumeration (the test
is equivalent because its intersection is the same). We have therefore produced a
r-computable enumeration of r-ML tests {V̂ 0i }i∈�, {V̂ 1i }i∈� . . . that will capture all
non-r-ML random elements of X.
Diagonalize by defining

Ui =
⋃
j∈�
V̂ jj+i+1.

Then {Ui}i∈� is clearly uniformly Σ0,r1 and

� (Ui) ≤
∑
j∈�
�
(
V̂ jj+i+1

)

≤
∑
j∈�
2−(j+i+1)

= 2−i .

Therefore {Ui}i∈� is an r-Martin-Löf test.
Now suppose that x ∈ X is not r-Martin-Löf random. There is a r-Martin-Löf
test {V̂ ji }i∈� such that x ∈ ⋂i∈� V̂ ji . Hence x ∈ V̂ ji+j+1 ⊆ Ui for all i ∈ �. In
other words x ∈ ⋂i∈� Ui . Therefore {Ui}i∈� is universal. �
We now show that F(E) with the Fell topology is a Martin-Löf space for locally
compact, Hausdorff, second countable underlying spaces E.

Lemma 3.5. If E is an LCHS space, then F(E) is a Martin-Löf probability space
under any Borel probability measure.

Proof. The space E is LCHS and so it has a countable basis {B0, B1, . . .} such
that Bi is compact for all i ∈ �. By lemma 2.11 F(E) has a basis consisting of the
sets

FBj1∪...∪BjkBi1 ,...,Bin
.

This basis has an obvious enumeration B0,B1, . . . where Bi corresponds to

FBj1∪...∪BjkBi1 ,...,Bin

exactly when i = 〈〈i1, . . . , in〉, 〈j1, . . . , jk〉〉 (with 〈 , 〉 a computable pairing func-
tion). This collection of sets is closed under finite intersections and a computable
intersection function is then given by

g (〈〈i1, . . . , in〉, 〈j1, . . . , jk〉〉, 〈〈i ′1, . . . , i ′m〉, 〈j′1, . . . , j′l 〉〉) =
〈〈i1, . . . , in, i ′1, . . . , i ′n〉, 〈j1, . . . , jk , j′1, . . . , j′l 〉〉.

Clearly any Borel probability measure P satisfies P(Bi) ≤ 1. Therefore F(E) is a
Martin-Löf space. �
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The preceding lemma and definition 3.3 allow for the study of Martin-Löf ran-
dom closed subsets of LCHS spaces. Given an enumeration of a basis for E, the
lemma produces an enumeration of a basis for F(E) which we will call the standard
enumeration of the standard basis. In fact, all of the following work assumes the use
of the standard enumeration of the standard basis, so we rarely specify either.
There are a great variety of LCHS spaces (of particular interest are 2�, Rn, and

[0, 1]n) as well as a great variety of RACS on the corresponding spaces of closed
sets, so really general results are difficult to state. However, when a RACS is given
as a map X : Ω → F(E) where Ω is a Martin-Löf space, then we can connect
Martin-Löf randomness in Ω to Martin-Löf randomness in F(E). Our first lemma
in this vein looks at when such a RACS maps algorithmically random elements of
Ω to algorithmically random elements of F(E). The second lemma looks at when
algorithmically random elements of F(E) are the image of algorithmically random
elements of Ω. The general statement of each of these lemmas is awkward due in
part to the (possibly) different computational power of themeasures in Ω andF(E).
In many situations these two measures have the same computational power (or one
computes the other) and so adding the measure as an oracle in the lemma gives a
useful statement about Martin-Löf randomness.

Lemma 3.6. Let Ω be a Martin-Löf probability space with measure P. Let E be an
LCHS space with basis B0, B1, . . . such that Bi is compact for every i . Let X : Ω →
F(E) be a map such that X−1(FBi ) and X−1

(
FBi

)
are both uniformly Σ01. Then for

any P-Hippocrates random � ∈ Ω, X (�) is PX -Hippocrates random (where PX is the
probability measure on F(E) induced by X ).
Proof. By lemma 3.5, F(E) with PX is a Martin-Löf space. We prove the equiv-

alent statement that if F ∈ F(E) is not PX -Hippocrates random, then either
X−1({F }) consists entirely of non-P-Hippocrates randomelements ofΩor is empty.
We accomplish this by showing that if {Vi}i∈� is a PX -Hippocrates test, then
{X−1(Vi)}i∈� is a P-Hippocrates test.
Consider a basic open set of F(E): FBj1∪...∪BjkBi1 ,...Bin

. By definition,

X−1
(
FBj1∪...∪BjkBi1 ,...Bin

)
=

X−1
(
FBi1

)
∩ · · · ∩ X−1 (FBin ) ∩ X−1

(
FBj1

)
∩ · · · ∩ X−1

(
FBjk

)
.

The right hand side of this equation is a finite intersection of Σ01 sets. Such a
finite intersection is again Σ01 because Ω has a computable intersection function.
Therefore if B is a basic open of F(E), then X−1(B) is a Σ01 subset of Ω. Moreover,
this correspondence is uniform over the standard enumeration of the standard basis
for F(E).
Let B0,B1, . . . be the standard enumeration of the standard basis for F(E). Let

{Vi}i∈� be a PX -Hippocrates test. By the preceding, {X−1(Bj)} is a uniformly Σ01
sequence of subsets of E. Furthermore, by definition

P(X−1(Vi)) = PX (Vi) ≤ 2−i .
Therefore {X−1(Vi)}i∈� is a P-Hippocrates test.
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Suppose F ∈ F(E) is not PX -Hippocrates random. Then there is an PX -Hippoc-
rates test {Vi}i∈� such that F ∈ ⋂i∈� Vi . Hence

X−1 ({F }) ⊆ X−1
(⋂
i∈�

Vi
)
=
⋂
i∈�
X−1 (Vi) .

But {X−1(Vi)}i∈� is aP-Hippocrates test and thereforeX−1({F }) consists entirely
of non-P-Hippocrates random elements (or is ∅). �
Lemma 3.7. Let Ω be a Martin-Löf probability space with basis B0, B1, . . . and
measure P, let E be an LCHS space, and let X : Ω → F(E) be a measurable map
such that for each i ∈ � there is a uniformly computable Σ01 set Hi ⊆ F(E) with
X−1(Hi) = Bi . Under these conditions, if F ∈ F(E) is PX -Hippocrates random, then
X−1({F }) consists entirely of P-Hippocrates random elements of Ω (or is empty).
Proof. For each i ∈ � let Hi ⊆ F(E) be the Σ01 set such that X−1(Hi ) = Bi .
Let {Ui}i∈� be a P-Hippocrates test. By definition there is a c.e. f ∈ 2� such that
Ui =

⋃
f(〈i,j〉)=1 Bj . Define for each i ∈ �

Vi =
⋃

f(〈i,j〉)=1
Hj .

Our hypotheses ensure that {Vi}i∈� is uniformly Σ01. Furthermore X−1(Vi) = Ui
and thus,

PX (Vi) = P
(
X−1 (Vi)

)
= P (Ui) ≤ 2−i .

Therefore {Vi}i∈� is a PX -Hippocrates test.
Now suppose that F ∈ F(E) is PX -Hippocrates random. Then F /∈

⋂
i∈� Vi .

Equivalently, {F } ∩ (⋂i∈� Vi) = ∅. By applying X−1 to this equation we find that
X−1 ({F })∩

(⋂
i∈� Ui

)
= ∅. This is true for every P-Hippocrates test {Ui}i∈� and

therefore X−1({F }) consists entirely of P-Hippocrates random elements of Ω (or
is empty). �

§4. Martin-Löf randomclosed sets. In this section we apply the framework devel-
oped in the previous section to some specific spaces andRACS.Of particular interest
are RACS in Cantor space, in part because of previous work in the study of algo-
rithmically random closed subsets of Cantor space. We will examine some of these
previous approaches. In sections 4.2 and 4.3 we explore the approaches of [2] and
of [8] and show that they are compatible with the framework developed here. It is
also worth noting that the random fractal constructions of [6] are also compatible,
though we will not address this in any detail here. Greater detail on Martin-Löf
randomness arising from all of these RACS can be found in [1]. We are thus able to
unite all of these definitions for algorithmically closed subsets of 2� under a unified
framework asMartin-Löf randomness arising from different measures on the space
of closed sets F(2�).
Working in this framework we are able to take advantage of the theorems of
probability theory, in particular of the theory ofRACS. This allows for new (simple)
proofs of some existing results as well as some new results. A sequel to this paper
deals with Martin-Löf random closed sets for generalized Poisson processes, an
important measure from the study of RACS. This measure has not been used in
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algorithmic randomness before and its importance as an example in probability
theory makes it worthy of consideration in such a context.

4.1. Martin-Löf random closed subsets of N. We begin with what might be con-
sidered a test-case for the framework we have developed: the closed subsets of N
with the discrete topology. In this case every subset is closed andwe can thus identify
F(N) with 2� . We already have (many) notions of algorithmic randomness for the
space 2� and our new framework potentially gives rise to a new algorithmic ran-
domness for 2�. As it turns out, however, the Fell topology for F(N) is exactly the
standard topology for 2�, even considering computational issues. Consequently, the
Martin-Löf random elements of 2� are identical whether we proceed by the usual
route (as described in section 2.1) or by the novel route developed in section 3.

Proposition 4.1. The topology generated by the cylinders [�] for � ∈ 2<� (the
standard topology) is the same as the Fell topology for F(N) = 2�.
Proof. We begin by proving that the standard topology contains the Fell topol-

ogy. By theorem 2.11 the Fell topology for F(N) = 2� has a sub-basis consisting
of sets of the form F{a} and F{b} where a, b ∈ N. The basic open sets of the Fell
topology are finite intersections of such sets, so it will suffice to prove that F{b} is
clopen in the standard topology. This is sufficient because F{a} = (F{a})� and the
complement of a clopen set is itself clopen. The following calculation shows that
F{b} is a finite union of cylinders and hence clopen:

F{b} =
⋃

{[�] : |�| = b + 1 & �(b) = 1} .
To show that the standard topology is contained in the Fell topology we show

that for any � ∈ 2<� the cylinder [�] is open in the Fell topology.
[�] =

(⋂{
F{n} : �(n) = 0

})
∩
(⋂{F{n} : �(n) = 1

})
.

This set is (basic) open in the Fell topology.

Therefore the two topologies coincide. �
A closer look at the proof reveals that we have shown that [�] is a basic open set

in the Fell topology and that any basic open in the Fell topology is clopen in the
standard topology. Moreover the correspondence is computable (by following the
calculations above). Hence any subset of 2� is Σ01 in the standard topology if and
only if it is Σ01 in the Fell topology. This means that Martin-Löf tests in the Fell
topology are exactly the same as Martin-Löf tests in the standard topology.

4.2. BBCDW-random closed sets. This section deals with the approach to algo-
rithmically random closed subsets of Cantor space taken in [2] which relies on a
coding the closed subsets of 2� as ternary reals. An algorithmically random closed
set is then defined to be any closed set with a Martin-Löf random code (a more
detailed review of [2] follows shortly). Because we wish to discuss other approaches
to algorithmically random closed sets, we will instead call the closed sets of [2]
BBCDW-random closed sets.

We prove (in lemma 4.5) that the coding of closed sets as ternary reals used in
[2] is compatible with the Fell topology and in fact gives rise to a RACS which we
call the “canonical decoding” and denote by Z. We note that this result was also

https://doi.org/10.1017/jsl.2014.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.76


372 LOGANM. AXON

proved (in a different way) in [3]. A direct result of lemma 4.5 is that a closed set
F ⊆ 2� is BBCDW-random if and only if it is PZ -Martin-Löf random, where PZ
is the measure induced by the canonical decoding, Z, on F(2�). This allows us to
explore the BBCDW-random closed sets using the theory of random closed sets.
Thedevelopment ofBBCDW-randomclosed sets depends on the characterization
of the closed sets of Cantor space as the sets of paths through trees. In particular we
use the one-to-one correspondence of extensible trees and closed subsets of Cantor
space.

Definition 4.2 ([2]). Let F ⊆ 2� be nonempty and closed and let TF ⊆ 2<� be
the unique extensible tree such that F = [TF ] (the set of paths through the tree).
We code TF as a ternary real, hF , as follows. Enumerate the nodes of TF in order
(by length and then lexicographically), starting with the empty string, � = �0,
�1, �2, . . ..

hF (n) =

⎧⎪⎨
⎪⎩
2 if��n 0 ∈ TF and ��n 1 ∈ TF ,
1 if��n 0 /∈ TF and ��n 1 ∈ TF ,
0 if��n 0 ∈ TF and ��n 1 /∈ TF .

This coding is called the canonical coding of F as a ternary real.

Proposition 4.3 ([2]). The canonical coding is a bijection between the collection
of nonempty closed subsets of 2� and 3�.

The central definition of [2] is the following.

Definition 4.4 ([2]). A nonempty closed set F ⊆ 2� is BBCDW-random if its
canonical code hF ∈ 3� is Martin-Löf random (with respect to the fair 3-sided coin
measure on 3�).

To bring the canonical coding of a closed set into the probability framework let

Z : 3� → F(2�)
be the inversemapof the canonical coding (the canonical decoding).Wewish toprove
that Z is a RACS. In fact we can do better: we prove that Z is a homeomorphism
between 3� andF(2�)\{∅} andmoreover,Z andZ−1 both preserve the complexity
of sets.
By lemma 3.5 F(2�) is a Martin-Löf space with the standard basis consisting of
the sets

F [�m+1]∪...∪[�n][�1],...,[�m]

for �1, . . . , �m, �m+1, . . . , �n ∈ 2<�. Let B0,B1,B2, . . . be the standard enumeration
of this basis.

Lemma 4.5. Z : 3� → F(2�) \ {∅} is a homeomorphism that preserves the com-
plexity of sets, i.e., if A ⊆ 3� is Σ01, then Z(A) ⊆ F(2�) is Σ01 and if A ⊆ F is Σ01,
then Z−1(A) is Σ01.
Proof. We already know thatZ is a bijection. It remains to be shown thatZ and
Z−1 are both continuous and that both preserve complexity.
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We first prove that for any � ∈ 2<� Z−1 (F[�]) is clopen. The map Z is given by
decoding a real, f, into an extensible tree, Tf , and then taking the paths through
that tree. That is,f �→ [Tf ]. The tree Tf is extensible (has no dead ends) and hence,

Z−1(F[�]) = {f ∈ 3� : � ∈ Tf}.
But � ∈ Tf if and only if ∀n ≤ |�| if k is the coding location for � � n, then
f(k) = �(n) or f(k) = 2. The coding locations for � �n with n ≤ |�| all occur in
the first 2|�|+1 bits of f.
It follows that if g ∈ Z−1(F[�]), then

[g �2|�|+1] ⊆ Z−1 (F[�]) .
Consequently there are �1, . . . , �m ∈ 2|�|+1 such that

Z−1 (F[�]) = [�1] ∪ · · · ∪ [�m].
Therefore Z−1(F[�]) is clopen. Moreover, finding �1, . . . , �m ∈ 2|�|+1 is uniformly
computable (over � ∈ 2<�): we simply decode each � ∈ 2|�|+1 into a (finite) tree
and check to see if � is in that tree.
Now Z−1(F [�]) = [

Z−1(F[�])
]�
and hence is also clopen and uniformly

computable from �. Therefore if B = F [�n+1]∪···∪[�k ]
[�1],...,[�n ]

is a basic open set of F , then
Z−1(B) = Z−1 (F[�1]) ∩ · · · ∩ Z−1 (F[�n ]) ∩ Z−1 (F [�n+1]) ∩ · · · ∩ Z−1 (F [�k ]) ,
a finite intersection of uniformly computable clopen sets in 3�. Such an intersection
is again uniformly computably clopen. Therefore for any basic open set B, Z−1(B)
is clopen and uniformly computable from the canonical index for B. This means
that Z is continuous and that if A ⊆ F is Σ01, then Z−1(A) is Σ01.
We now consider Z([�]) for � ∈ 3<� . We prove by induction on � thatZ([�]) is a

basic open set of F .
Base case: � = � (the empty string).

Z([�]) = F \ {∅} = F2� .
Suppose now that

Z([�]) = F [�m+1]∪···∪[�n]
[�1],...,[�m]

,

where �1, . . . , �m, �m+1, . . . , �n ∈ 2<� . Then ��i codes for the branching at some
node � ∈ 2<� which we can compute uniformly from �. We then have the following:

Z([��0]) = F [�m+1]∪···∪[�n]∪[��1]
[�1],...,[�m],[��0]

,

Z([��1]) = F [�m+1]∪···∪[�n]∪[��0]
[�1],...,[�m],[��1]

,

Z([��2]) = F [�m+1]∪···∪[�n]
[�1],...,[�m],[��0],[��1]

.

HenceZ([�]) is a basic open set for any � ∈ 3� andmoreover, the canonical index
for this basic open set is uniformly computable from �. ThereforeZ−1 is continuous
and so we have shown that Z is a homeomorphism. In addition, it follows that if
A ⊆ 3� is Σ01, then Z(A) is uniformly Σ01. �
We first note that a direct consequence of lemma 4.5 is that the measure PZ

is Turing equivalent to the measure on 3� (in the sense that any representation
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of one of the measures must be a representation of the other). This simplifies
many computability concerns, in particular those in the statements of lemmas 3.6
and 3.7 (which we apply shortly). In this section we are mostly thinking of the
fair-coin measure on 3� since that is what was considered in [2], though we note
that these results hold for other measures. With the fair coin measure on 3� the
following corollary asserts that a closed set is BBCDW-random if and only if it is
PZ -Martin-Löf random.

Corollary 4.6. A element f ∈ 3� is Martin-Löf random if and only if Z(f) is
PZ -Martin-Löf random.

Proof. (⇒) By lemma 4.5 Z−1(F[�]) and Z−1(F [�]) are uniformly Σ01 for � ∈
2<�. Therefore by lemma 3.6, if f ∈ 3� is Martin-Löf random, then Z(f) is
PZ -Martin-Löf random.
(⇐) Suppose that F ∈ F(2�) is PZ -Martin-Löf random. First note that F2� =

{∅} is a basic open set inF(2�). FurthermoreZ−1 (F2�) = ∅ and soPZ
(F2�) = 0.

Therefore ∅ is not PZ -random and hence F �= ∅.
By proposition 4.3 Z is a bijection between 3� and F(2�) \ {∅} and so we know
that Z−1(F ) exists. We now wish to show that Z satisfies the hypotheses of lemma
3.7. Suppose that � ∈ 3<� . Then � codes for a finite tree with terminal nodes
�1, �2, . . . , �n ∈ 2<� (and these nodes are uniformly computable from �). By the
definition of the decoding map

Z([�]) = F ([�1]∪[�2]∪···∪[�n])�
[�1],[�2],...,[�n ]

.

But Z is a bijection and thus

[�] = Z−1
(
F ([�1]∪[�2]∪···∪[�n ])�
[�1],[�2],...,[�n]

)
.

In other words, for each � ∈ 3<� there is a basic open set B such that Z−1(B) = [�]
and this basic open set is uniformly computable from �. Therefore by lemma 3.7
Z−1(F ) is Martin-Löf random. �
By lemma 4.5 and corollary 4.6 any topological property of the Martin-Löf
random elements of 3� must be shared by the PZ -Martin-Löf random closed sets.
For example:

Corollary 4.7. The class ofPZ -Martin-Löf random closed sets is dense inF(2�).
This means that for all �1, . . . �n, �1, . . . , �k ∈ 2<� such thatF [�1]∪···∪[�k ]

[�1],...,[�n]
�= ∅, there

is a PZ -ML random closed set F ∈ F [�1]∪···∪[�k ]
[�1],...,[�n] . In other words, we can specify a

finite number of cylinders and know that there is a PZ -Martin-Löf random closed
set contained in the union of those cylinders. For example, there must be a PZ -
Martin-Löf random closed set whose members all have initial bit 0, another whose
members all have initial bits 00, and so on.
Lemma 4.5 also means that any notion of randomness based on Martin-Löf
tests is the same for the space 3� and the space F(2�) \ {∅} with measure PZ . In
particular, relativizing corollary 4.6 will show that F ∈ F(2�) is PZ -n-Martin-Löf
random relative to oracle g if and only if Z−1(F ) is n-Martin-Löf random relative
to g. If we wish to consider a different measure P on 3� , then we can take the oracle
to be a representation of P (and n = 1) to find the following corollary.
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Corollary 4.8. Let P be any probability measure on 3� and let PZ be defined by
PZ(A) = P

(
Z−1(A)) for measurable A ⊆ F(2�). Then F ∈ F(2�) is PZ-Martin-

Löf random if and only if Z−1(F ) is P-Martin-Löf random.
Proof. Simply add a representation of the measure P everywhere in the proof of

corollary 4.6. As already noted (as a consequence of the proof of lemma 4.5) any
representation of P is also a representation of PZ (and vice versa), so the result
follows. �
The following theorem about the measure of PZ -ML random closed sets was

proved for the fair coin measures on 2� and 3� in [2]. We give a different proof
(relying on Robbins’ theorem) in order to illustrate the utility of our approach to
algorithmically random closed sets. The following proof also works naturally for
noncomputable measures and so we state the theorem in some generality.

Proposition 4.9. Let � be any �-finite Borel measure on 2� and let P be any
computable, Borel, probability measure on 3� such that for �-almost every f ∈ 2�
P
({g ∈ 3� : f ∈ Z(g)}) = 0. If F ∈ F (2�) is PZ -Martin-Löf random relative to a
representation of �, then �(F ) = 0.
Proof. By Robbins’ theorem (2.17):

E (� ◦ Z) =
∫
2�
P
({g ∈ 3� : f ∈ Z(g)}) df

=
∫
2�
0 df

= 0.

Consequently PZ -almost every closed set has measure 0. Then by lemma 4.5, P-
almost every g ∈ 3� maps to a closed set with measure 0. We will use this fact
to build P-Martin-Löf tests that catch each g ∈ 3� such that Z(g) has positive
measure. It will then follow from corollary 4.8 if F has positive measure, then F is
not PZ-Martin-Löf random.
As in the proof of lemma 4.5, let Tg be the extensible tree coded by g ∈ 3�. For

n ∈ � define the level n approximation of [Tg ] = Z(g) as follows:
Ag,n =

⋃
�∈Tg∩2n

[�].

Then Ag,n ⊆ 2� is clopen for each n ∈ � and
⋂
n∈� Ag,n = [Tg ]. Moreover, �(Ag,n)

is computable from any representation of � and

�([Tg ]) = lim
n→∞�(Ag,n).

Fix k ∈ 2�. Define the set
Un =

{
g ∈ 3� : � (Ag,n) > 2−k

}
.

The set Ag,n depends on at most the first 2n+1 bits of g and thus if g ∈ Un , then[
g �2n+1

] ⊆ Un. It follows that Un is clopen and its P-measure is uniformly
computable from any representation of both � and P. In addition, U1 ⊇ U2 ⊇
. . . and

⋂
n∈� Un = {g ∈ 3� : �(Z(g)) ≥ 2−k}. Thus limn→∞ �(Un) =

�
({g ∈ 3� : � (Z(g)) ≥ 2−k}) = 0.
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Let Vi = Un where n is the least number such that P (Un) ≤ 2−i . Then {Vi}i∈�
is a P-Martin-Löf test relative to any representation of � and⋂

i∈�
Vi =

⋂
n∈�
Un =

{
g ∈ 3� : � (Z(g)) ≥ 2−k} .

Suppose that F ∈ F has �(F ) ≥ 2−k . Then Z−1(F ) ∈ ⋂
i Vi . By definition

Z−1(F ) is non P-Martin-Löf random relative to any representation of �. Therefore
by corollary 4.8 F is not PZ -Martin-Löf random relative to any representation
of �.
This holds for any k ∈ � and therefore if F is PZ -Martin-Löf random relative to
a representation of �, then �(F ) = 0. �
Note that the condition that P

({g ∈ 3� : f ∈ Z(g)}) = 0 is simply a way of
writing PZ

(F{f}
)
= 0. This is not a strong condition. For example, any Bernoulli

measure on 3� satisfies this condition.

4.3. Galton–Watson random closed sets. This section explores the approach to
algorithmically random closed sets taken by Kjos-Hanssen and Diamondstone [8].
Our goal once again is to show that this approach is compatible with the framework
developed in section 3. As in the previous section, the correspondence between
binary-branching trees and closed sets of 2� will be used to define a RACS. This
time the trees are coded in 2� (rather than 3�) andKjos-Hanssen andDiamondstone
allow for nonextensible trees. The idea is to construct a tree by extending each node
according to a pair of coin flips.
Let f ∈ 2�. At stage s we determine which strings of length s are members
of the finite tree T (f)[s]. The potentially infinite tree T (f) is then defined as⋃
s∈� T (f)[s]. This gives rise to amapX : 2

� → F(2�) defined byX (f) = [T (f)].
We begin by setting T (f)[0] = {�}. At stage 1 we determine which of the strings
0 and 1 are in T (f)[1]: 0 ∈ T (f)[1] if and only if f(0) = 1; 1 ∈ T (f)[1] if and
only if f(1) = 1.
For later stages we simply continue this process. Let T (f)[s] ⊆ 2<� be the tree
after stage s of the construction. At this point T (f)[s] contains some number of
strings added according to an initial segment of f. The tree T (f)[s] also con-
tains some number of strings of length s : �0, �1, . . . , �k (ordered lexicographically).
The next 2(k+1) bits of f are used to determine which extensions of �0, �1, . . . , �k
are in the tree T (f)[s + 1].

Definition 4.10. The map X : 2� → F(2�) is given by X (f) = [T (f)].
As already mentioned, this map is very similar to the canonical decoding of
section 4.2. In this case, however, not every tree is extensible. Classically these
two maps are almost identical since in this construction the three possible ways of
extending a string given that it does have an extension are equiprobable. The possi-
bility of nonextension does add considerable complication from the computability
perspective, however. In [8] these complications are resolved and it is shown that
if f ∈ 2� is Martin-Löf random, then X (f) is either ∅ or is BBCDW-random
(a version of their result is stated as theorem 4.15 below). We will prove that the
map X is a RACS and use this to translate the results of [8] into the context of
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Martin-Löf random closed sets. We also prove a result, lemma 4.21, that used in [8]
to prove theorem 4.15.
Throughout the following we wish to consider a more general measure on 2�

than the fair coin measure. We will generalize to Bernoulli measures, i.e., measures
generated by flipping a biased coin.

Definition 4.11. Let p ∈ (0, 1). The Bernoulli measure with parameter p is the
Borel measure �p on 2� such that:

1. ∀� ∈ 2<� �p
(
[��1]

)
= p�p([�]) and

2. �p(2�) = 1.

Random trees produced from 2� with the measure �p in the method described
above are called (binary branching) Galton–Watson trees with survival probability
p. Such trees were originally studied in the 19th century (by Sir Francis Galton) in
the context of the extinction of noble surnames. A basic result in the theory of these
trees is the following lemma about the probability of the existence of a path through
a Galton–Watson tree (the existence of such a path means that a surname does not
become extinct). The result that we will actually use is the easy corollary 4.13, also
due to Galton and Watson.

Lemma 4.12 (Galton and Watson). The probability that a (binary branching)
Galton–Watson tree with survival probability p ∈ (0, 1) has no (infinite) paths is the
least positive solution to the equation

x = p2x2 + 2p(1− p)x + (1 − p)2.
Corollary 4.13. If T is a (binary branching) Galton–Watson tree with survival

probabilityp ∈ (0, 1), then the probability thatT has no infinite paths is 1 if and only if
p ≤ 1

2 . Otherwise the probability that T has no infinite paths is
(
1− p
p

)2
.

Having dispensedwith these preliminaries,we are now ready to define theGalton–
Watson random closed sets of [8] and to state the result.

Definition 4.14 ([8]). Let p ∈ (0, 1). A closed set F ⊆ 2� is p-Galton–Watson
random (p-GW random) if there is a �p-ML random f ∈ 2� such that X (f) = F .
Theorem 4.15 ([8]). A closed set F ⊆ 2� is BBCDW-random if and only if F is

2
3 -GW random and F �= ∅.
We wish to bring this result into the context of Martin-Löf random closed sets.

The first step is to apply corollary 4.5. This gives the following.

Corollary 4.16. Let Z : 3� → F(2�) be the canonical decoding map of sec-
tion 4.2. F ∈ F(2�) is PZ -ML random if and only if F is 23 -GW random and
F �= ∅.
Proof. This is a direct consequence of theorems 4.15 and corollary 4.6 which

showed that a closed set F ⊆ 2� is BBCDW-random if and only if F is PZ-ML
random. �
The next step is to prove that the map X is measurable.

Proposition 4.17. The map X is a RACS.
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Proof. ConsiderX−1(F [�]). By definitionX−1(F [�])={f ∈ 2�:[T (f)]∩[�]=∅}.
The cylinder [�] is compact and so

[T (f)] ∩ [�] = ∅ ⇐⇒ (∃n ∈ �)(∀� ∈ 2n)(� � � =⇒ � /∈ T (f)).
Thus

X−1 (F [�]) = {f ∈ 2� : (∃n ∈ �) (∀� ∈ 2n)
(
� � � =⇒ � /∈ T (f))} . (1)

There are 2n+1 − 1 strings of length at most n. Thus, if f ∈ 2� and n ∈ � are
such that (∀� ∈ 2n) (� � � =⇒ � /∈ T (f)), then[

f �2n+1
] ⊆ X−1 (F [�]) .

Hence the set X−1(F [�]) is open (actually Σ01) and thus measurable. Because
sets of the form F [�] generate the Borel �-algebra on F this suffices to prove the
proposition. �
Let PX be the measure induced onF(2�) byX . Ideally the p-GW random closed
sets would be exactly thePX -Martin-Löf random closed sets. Unfortunatelywe have
only been able to show containment in one direction: every p-GW random closed
set is PX -ML random. Before we prove this we must determine the computational
power of PX .

Lemma 4.18. Let �p the Bernoulli measure on 2� with parameter p ∈ ( 12 , 1) and
let PX be the corresponding measure on F(2�). Then p is a representation of minimal
degree of �p and of PX .

Proof. It is clear from the definition of Bernoulli measure that if r is a
representation of �p, then r ≥T p and, conversely, that p is a representation of �p.
Now suppose that r is a representation of the measure PX (with respect to the
standard basis). The quantity c = PX (F2� ) is the measure of a basic open set of
F(2�) and hence computable from r. But F2� = {∅} and so by corollary 4.13
c =

(
1−p
p

)2
. Consequently 1− 2p + (1− c)p2 = 0 and p can be computed from c

using the quadratic equation. Therefore p ≤T r.
Now we wish to show that p is a representation of PX . We claim that it suffices to
show thatp ≥T PX (F[�1],[�2],...,[�n]) for any�1, �2, . . . , �n ∈ 2<� . Recall the definition
of the capacity TX : TX ([�]) = PX (F[�]). Complete alternation (definition 2.14)
gives a recursive algorithm for computing PX for any basic open set of F(2�) from
TX ([�1] ∪ [�2] ∪ · · · ∪ [�n]) for any �1, �2, . . . , �n ∈ 2<�. By applying inclusion-
exclusion to the definition of TX ([�1] ∪ [�2] ∪ · · · ∪ [�k ]) we find

TX ([�1] ∪ [�2] ∪ · · · ∪ [�k ]) = PX (F[�1]∪[�2]∪···∪[�k ])
= PX (F[�1] ∪ F[�2] ∪ · · · ∪ F[�k ])
=
∑
1≤i≤k

PX (F[�1])

−
∑

1≤i<j≤k
PX
(F[�i ],[�j ])+ · · ·

+ (−1)k−1PX (F[�1],...,[�k ]) .
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Therefore the capacity TX ([�1] ∪ [�2] ∪ · · · ∪ [�k]) can be computed if we know
PX (F[�1],[�2],...,[�n]) for every �1, �2, . . . , �n ∈ 2<� . This proves the claim that we need
only to show that p allows us to compute the measures of such sets.
We now find a formula for calculating PX (F[�1],...,[�n]) from p. If there are i, j ∈

{1, . . . , n} with i �= j such that [�i ] ∩ [�j ] �= ∅, then we know that [�i ] ∩ [�j ] = [�i ]
(by swapping indices if necessary). ConsequentlyF[�1],...,[�n] = F[�1],...,[�j−1],[�j+1],...,[�n]
and so we can drop [�j ] from the expression. We can thus assume, without loss of
generality, that [�i ] ∩ [�j ] = ∅ for every i �= j ∈ {1, . . . , n}.
Let S = {� ∈ 2<� : (∃i ≤ n)� � �i}, i.e., the finite tree of all predecessors of

�1, . . . , �n. Let N = |S| − 1 (we subtract 1 because by construction all trees include
the empty string �). In particular, if S ⊆ T (f), then the N bits of f coding for the
nonempty strings of S must be 1. Hence �p({f ∈ 2� : S ⊆ T (f)}) = pN .
Our construction is self-similar in the sense that if we know � ∈ 2<� is in our tree,

then the probability that the sub-tree of extensions of � has an infinite path is exactly

1 −
(
1−p
p

)2
. In addition, the sub-trees of extensions of �1, . . . , �n are (statistically)

independent.
Hence

PX (F[�1],...,[�n]) = �p
(
X−1 (F[�1],...,[�n])

)
= �p

({f ∈ 2� : S ⊆ T (f) & (∀i ≤ n)[T (f)] ∩ [�i ] �= ∅})

= pN
(
1−

(
1− p
p

)2)n
.

(2)

We have thus shown how to compute the measure of the set F[�1],...,[�n] from p.
Therefore p is a representation of PX . �
A direct consequence of this lemma is that computational concerns regarding

representations of the measures �p and PX are greatly simplified. In this case
representations of these measures have the same minimal Turing degree, and hence
the only representation we need to consider is p itself.
We are now ready to prove that thePX -ML random closed sets include the p-GW

random closed sets. Recall that the p-GW random closed sets are exactly the image
underX of �p-ML random elements of 2�. Consequently, we actually need to show
if f ∈ 2� is �p-ML random, then X (f) is PX -ML random. This is very much in
the vein of lemma 3.6, however, the hypotheses of the lemma are not satisfied by the
RACS X .

Lemma 4.19. Let p ∈ (0, 1). If f ∈ 2� is �p-ML random, then X (f) is PX -ML.
Proof. We have two cases to consider: p ≤ 1

2 and p >
1
2 .

Case 1: p ≤ 1
2 . In this case PX ({∅}) = 1 by corollary 4.13. This means that

PX (F2� ) = 0. Every nonempty closed subset of 2� is in F2� and therefore ∅ is the
only PX -ML random closed set. Thus we need to prove that if f ∈ 2� is �p-ML
random, then X (f) = ∅.
Applying equation 1 of proposition 4.17 to {∅} = F2� gives

X−1 ({∅}) = {f ∈ 2� : (∃n ∈ �)(∀� ∈ 2n)� /∈ T (f)}

https://doi.org/10.1017/jsl.2014.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.76


380 LOGANM. AXON

and shows that this set is Σ01. We also know that �p
(
X−1 ({∅})) = 1. A Σ01 set

of measure 1 must contain every �p-ML random f ∈ 2�. Therefore if f ∈ 2� is
�p-ML random, then X (f) = ∅. This finishes case 1.
Case 2: p > 1

2 . In this case 0 < PX ({∅}) =
( 1−p
p

)2
< 1 by corollary 4.13. We

prove the contrapositive: if F ∈ F(2�) is not PX -ML random and X (f) = F ,
then f is not p-ML random. We would like to apply lemma 3.6 but this is not
possible: X−1(F[�]) is Π01 and not Σ01 as required in the hypotheses of the lemma.
The technique of this proof, however, is similar to the technique of the proof of
lemma 3.6. In particular, the goal is to take a PX -ML test in F(2�) and pull it back
via X to a �p-ML test in 2�. As a result of lemma 4.18 it is sufficient to work with
the single oracle p, rather than different representations of the measures �p andPX .
In order to proceed we approximate the Π01 sets X

−1 (F[�]) by clopen sets:
A�,s =

{
f ∈ 2� :

(
∃� ∈ 2|�|+s

)
� � � & � ∈ T (f)

}
.

The construction of T (f) ensures that for each � ∈ 2<� and each s ∈ �, A�,s
is clopen and A�,0 ⊇ A�,1 ⊇ · · · ⊇ X−1 (F[�]). Furthermore, if f ∈ ⋂

s∈� A�,s ,
then T (f) contains an extension of � of every length. Thus [T (f)] ∩ [�] �= ∅. By
definition X (f) = [T (f)] and so it follows that⋂

s∈�
A�,s = X−1 (F[�]) .

Now we wish to calculate �p
(
X−1 (F[�])

)
. We can apply equation 2 from the

proof of lemma 4.18

�p
(
X−1 (F[�])

)
= p|�|

(
1−

(
1− p
p

)2)
,

which is computable using oracle p. Because A�,s is clopen for every s ∈ � we
can compute (using oracle p) the measure �p (A�,s) and the exact error of the
approximation

	(�, s) = �p (A�,s)− p|�|
(
1−

(
1− p
p

)2)
.

Let {Ui}i∈� be a PX -ML test. We produce a �p-ML test {Vi}i∈� . To define Vk
we consider Uk+1. If FC[�1],...,[�n] is the s th basic open set enumerated into Uk+1 then
we find t ∈ � large enough so that

n∑
j=1

	(�j, t) ≤ 2−(k+1+s). (3)

This ensures that the total error of approximating X−1
(
FC[�1],...,[�n]

)
by the Σ01 set

X−1 (FC ) ∩ A�1,t ∩ · · · ∩ A�n,t is sufficiently small.
We then add the Σ01 set X

−1 (FC ) ∩ A�1,t ∩ · · · ∩A�n,t to Vk . By equation 3

�p(Vk) ≤ PX (Uk+1) +
∞∑
s=1

2−(k+1+s) ≤ 2−(k+1) + 2−(k+1) = 2−k.

Furthermore, {Vi}i∈� is uniformly Σ0,p1 and is thus a p-ML test.
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Suppose that F ∈ ⋂i∈� Ui . Then X−1({F }) ⊆ ⋂i∈� Vi by our definition of Vi .
Moreover, this holds for every PX -ML test {Ui}i∈� . Therefore if F ∈ F(2�) is not
PX -ML random and X (f) = F , then f is not �p-ML random. This completes
case 2 and the proof as a whole. �
Because ∅ is an atom of the measure PX it must be PX -ML random. Note that

X−1({∅}) is Σ01 and has positive measure and so must contain both random and
nonrandom elements of 2�. This is worth emphasizing: in this case non-�p-ML
random elements of 2� map to a PX -ML random element of F(2�). Of course, this
PX -ML random closed set is ∅, which is unusual in that it is isolated in F(2�) and
atom of the measure PX . The question of whether other PX -ML random closed
sets are also the image of non-�p-ML random elements of 2� remains open.
The following lemma (4.21) in the proof of theorem 4.15 in [8]. This lemma

connects the mapX and the canonical decoding Z : 3� → F(2�) of section 4.2. As
in section 4.2, let PZ be the measure induced on F(2�) by Z (and the “fair coin”
measure on 3�). We establish this connection by considering the space (F(2�),PZ)
and a measure, �Z , on 2� such that PZ(H) = �Z

(
X−1(H)) for measurable H ⊆

F(2�).
Definition 4.20 ([8]). Define a Borel probability measure �Z on 2� as follows:

1. �Z (2�) = 1.
2. If � has even length, then

�Z
(
[��01]

)
= �Z

(
[��10]

)
= �Z

(
[��11]

)
=
1
3
�Z ([�])

and
�Z
(
[��00]

)
= 0.

Note that this defines �Z on the entire Borel �-algebra since the measure of
the cylinders determined by strings with odd length is implicitly set. For example,
�Z([0]) = �Z([00]) + �Z([01]) = 1

3 and �Z([1]) = �Z([10]) + �Z([11]) =
2
3 .

Lemma 4.21. The following are equivalent:
1. A closed set F ∈ F(2�) is PZ -ML random;
2. There is some �Z -ML random f ∈ 2� such that X (f) = F ;
3. Every f ∈ 2� such that X (f) = F is �Z -ML random.
Proof. We first note that both PZ and �Z are computable measures (the com-

putability of PZ follows from lemma 4.5 and that of �Z is clear from the definition).
The bulk of this proof consists of showing thatX (f) is PZ -ML random if and only
if f is �Z-ML random. Because X is surjective the three statements are then clearly
equivalent.
We begin by proving that if X (f) ∈ F(2�) is not PZ-ML random, then f is

not �Z -ML random. As in the proof of lemma 4.19 we must work around the fact
that X−1 (F[�]) is Π01. As before we approximate this set by clopen sets. This time,
however, the approximation is much easier. Define

A� = {f ∈ 2� : � ∈ T (f)} .
Then A� ⊇ X−1 (F[�]) and A� is clopen. Moreover

�Z (A�) = �Z
(
X−1 (F[�])

)
. (4)
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These measures are equal because under the measure �Z almost every tree is
extensible.
Let {Ui}i∈� be a PZ -ML test inF(2�). Because PZ and �Z are computable we do
not need to worry about the oracles PZ or �Z . We construct a �Z-ML test {Vi}i∈�
as follows. If FC[�1],...,[�n] is enumerated into Ui , then we enumerate

A�1 ∩ · · · ∩A�n ∩ X−1 (FC )
into Vi . It is clear that {Vi}i∈� is a uniformly Σ01 sequence. By equation 4

�Z (Vi) = �Z
(
X−1 (Ui)

)
= PZ (Ui)
≤ 2−i .

Therefore {Vi}i∈� is a �Z -ML test.
By construction, if X (f) ∈ ⋂i∈� Ui , then f ∈ ⋂i∈� Vi . This holds for every
PZ -ML test {Ui}i∈� . Therefore, if X (f) is not PZ -ML random, then f is not
�Z -ML random.
Now we prove the converse: if f ∈ 2� is not �Z -ML random, then X (f) is not
PZ -ML random. Each � ∈ 2<� determines a finite binary tree T (�) as described
in definition 4.10. This tree has a finite number of nodes, �1, �2, . . . , �n, whose
extensions have not yet been completely determined. DefineC� = ([�1]∪ . . .∪ [�n])�.
The set C� is the largest set such that for any f � �, X (f) ∩ C� = ∅. This means
that X ([�]) ⊆ FC� . C� is also clopen and so FC� is a basic open set of F(2�).
Let f ∈ 2� and let {Ui}i∈� be a �Z -ML test such that f ∈ ⋂

i∈� Ui . Con-
struct a PZ-ML test {Vi}i∈� as follows. If [�] is enumerated into Ui , then FC�
is enumerated into Vi . Clearly {Vi}i∈� is a uniformly Σ01 sequence. Additionally,
X−1(Vi) = Ui ∪ E where E ⊆ {f ∈ 2� : T (f) is not extensible}. Nonextensi-
ble trees occur with probability 0 under �Z and hence �Z(E) = 0. Consequently
PZ (Vi) = �Z (Ui ∪ E) = �Z (Ui) ≤ 2−i . Therefore {Vi}i∈� is a PZ -ML test.
Now because f ∈ ⋂i∈� Ui if follows that X (f) ∈ ⋂i∈� Vi . Therefore if f ∈ 2�
is not �Z -ML random, then X (f) is not a PZ -ML random closed set.
We have now shown thatX (f) = F is PZ -ML random if and only if f is �Z -ML
random. Finally, X is a surjection and hence we conclude that statements 1–3 are
equivalent. �
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