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In this paper, we study negative classical solutions and stable solutions of the
following k-Hessian equation

Fk(D2V ) = (−V )p in Rn

with radial structure, where n � 3, 1 < k < n/2 and p > 1. This equation is related
to the extremal functions of the Hessian Sobolev inequality on the whole space.
Several critical exponents including the Serrin type, the Sobolev type, and the
Joseph-Lundgren type, play key roles in studying existence and decay rates. We
believe that these critical exponents still come into play to research k-Hessian
equations without radial structure.
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1. Introduction

In 1990, Tso [34] studied the relation between the value of exponent p and the
existence results for the k-Hessian equation Fk(D2V ) = (−V )p in bounded domains.
The critical exponent p = (((n+ 2)k)/(n− 2k)) plays a key role. Those results are
associated with the extremal functions of the Hessian Sobolev inequality for all
k-admissible functions which was introduced by Wang in [37]. Such an inequality
with the critical exponent still holds in the whole space Rn, and the extremal
functions are radially symmetric (cf. [6], [33]).

Consider the Euler–Lagrange equation

Fk(D2V ) = (−V )p, V < 0 in Rn, (1.1)

with a general exponent p > 1, where n � 3, 1 < k < n/2. Here Fk[D2V ] =
Sk(λ(D2V )), λ(D2V ) = (λ1, λ2, . . . , λn) with λi being eigenvalues of the Hessian
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matrix (D2 V ), and Sk(·) is the k-th symmetric function:

Sk(λ) =
∑

1�i1<...<ik�n

λi1λi2 · · ·λik
.

According to the conclusions in [2], we always consider the k-admissible solutions
in the following cone to ensure that the main part of (1.1) is elliptic

Φk := {u ∈ C2(Rn);Fs(D2u) � 0, s = 1, 2, . . . , k}.
Such an equation does not only come into play to study the extremal functions of
the Hessian Sobolev inequality, but also is helpful to investigate the global existence
and blow-up in finite time span for the fully nonlinear parabolic equations (such as
the equations studied in [18,30,38]).

A special case is F1[D2V ] = ΔV , and (1.1) becomes the Lane–Emden equation

− Δu = up, u > 0 in Rn. (1.2)

The existence results of the solutions of this equation have provided an impor-
tant ingredient in the study of conformal geometry, such as the extremal functions
of the Sobolev inequalities and the prescribing scalar curvature problem. It was
studied rather extensively. According to theorem 3.41 in [27], (1.2) has no positive
solution even on exterior domains when p is not larger than the Serrin exponent
(i.e. p ∈ (1, ((n)/(n− 2)))). The Liouville theorem in [15] shows that (1.2) has no
positive classical solution in the subcritical case (i.e. p ∈ [1, ((n+ 2)/(n− 2)))). In
the critical case (i.e. p = ((n+ 2)/(n− 2))), the positive classical solutions of (1.2)
must be of the form

u(x) = c

(
t

t2 + |x− x∗|2
)((n−2)/(2))

(1.3)

with constants c, t > 0, and x∗ ∈ Rn (cf. [3] and the references therein). In super-
critical case (i.e. p > ((n+ 2)/(n− 2))), existence and asymptotic behaviour of
positive solutions are much complicated and not completely understood. In fact,
we can find cylindrically shaped solutions which do not decay along some direc-
tion. In addition, there are radial solutions with the slow decay rates solving (1.2)
(cf. [15,19,36] and many others). Furthermore, those radial solutions are of the
form

u(x) = μ((2)/(p−1))U(μ|x|), x ∈ Rn,

where μ = up−1/2(0), and U(r) is the unique solution of⎧⎨
⎩−(U ′′ +

n− 1
r

U ′) = Up, U(r) > 0, r > 0

U ′(0) = 0, U(0) = 1.

For the study of ‘stable’ positive solutions of (1.2), the Joseph–Lundgren
exponent

pjl(n) := 1 +
4

n− 4 − 2
√
n− 1
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plays an important role (cf. [16]). Such an exponent is also essential to describe how
the radial solutions intersect with the singular radial solution and with themselves
(cf. [19]). In addition, this Joseph–Lundgren exponent can be used to study the
Morse index for the sign-changed solutions of the Lane–Emden equation (cf. [13])
and other nonlinear elliptic equations with supercritical exponents (cf. [7,8,17]).

In this paper, our purpose is to study the relation between the critical exponents
and the existence of kinds of solutions of k-Hessian equation (1.1). As the beginning
of the study, we are concerned about the increasing negative solution of (1.1) with
the radial structure as in [6,26]. Thus, (1.1) is reduced to the following equation

− 1
k
Ck−1

n−1(r
n−k|u′|k−1u′)′ = rn−1up, u(r) > 0 as r > 0. (1.4)

Here u(r) = u(|x|) = −V (x), n � 3, 1 < k < n/2 and p > 1. In fact, in the critical
case (i.e. p = (((n+ 2)k)/(n− 2k))), the extremal functions of the Hessian Sobolev
inequality are radially symmetric (cf. [6,33,37]). In the noncritical case, it is clearer
and more concise to study the critical exponents of the radial solutions. We believe
that the ideas are helpful to investigate the corresponding problems of the solutions
with general form, and those critical exponents still come into play in the study of
k-Hessian equations without radial structure.

1.1. Regular solutions

Clearly, (1.4) has a singular solution

us(r) = Ar−((2k)/(p−k)), with (1.5)

A : =
(

1
k
Ck−1

n−1

)((1)/(p−k))( 2k
p− k

)((k)/(p−k))(
n− 2pk

p− k

)((1)/(p−k))

.

If we write V (x) = −us(|x|), then V (x) only belongs to C2(Rn \ {0}) (even it does
not belong to L∞

loc(R
n)).

We are mainly concerned with the k-admissible solutions of (1.1). Consider the
following boundary values problem

⎧⎨
⎩−1

k
Ck−1

n−1(r
n−k|u′|k−1u′)′ = rn−1up, u(r) > 0, r > 0

u′(0) = 0, u(0) = ρ(:= μ((2k)/(p−k))) > 0.
(1.6)

Definition 1.1. If a solution u(r) of (1.6) satisfies u(|x|) ∈ C2(Rn), then u(r) is
called a regular solution.

Recall two critical exponents: Serrin exponent pse := ((nk)/(n− 2k)), and
Sobolev exponent pso := (((n+ 2)k)/(n− 2k)).

When p is not larger than the Serrin exponent, (1.1) has no negative k-admissible
solution (cf. [21,28,29]). Thus, we always assume in this paper that p is larger than
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the Serrin exponent

p > pse. (1.7)

In the critical case (i.e. p = pso), all the regular solutions of (1.6) can be written
as the explicit form (cf. remark 1.4 in [26])

uρ(r) =
(

1
k
Ck−1

n−1

)((1)/(p−k))

ρ(1 +
k

n1/k(n− 2k)
(ρ((k+1)/(n−2k))r)2)−((n−2k)/(2k)).

(1.8)
Therefore, we will be concerned with the noncritical cases.

Theorem 1.1. When p < pso, (1.6) has no regular solution.

Remark 1.1. By a direct calculation, when pse < p < pso, besides us given by
(1.5), (1.4) has other singular solutions Us(r) satisfying Us(r)/us(r) → 1 as r → 0
and Us(r)r((n−2k)/(k)) → λ > 0 as r → ∞. When k = 1, this result can be found
in [15,19,36].

Theorem 1.2. When p > pso, all the positive regular solutions uμ of (1.6) satisfy
uμ(r) � r−((2k)/(p−k)) for large r. Furthermore, they are the forms of

uμ(r) = μ((2k)/(p−k))u1(μr), r � 0, (1.9)

where u1(r) is the solution of⎧⎪⎨
⎪⎩
−1
k
Ck−1

n−1(r
n−k|u′|k−1u′)′ = rn−1up, u(r) > 0, r > 0

u′(0) = 0, u(0) = 1.

(1.10)

Here, u(r) � r−θ means that there exists C > 1 such that 1/C � u(r)rθ � C for
large r.

Remark 1.2. Problem (1.10) has a entire solution when p > pso. In fact, by a
standard argument of contraction, (1.10) has a unique local positive solution u
(cf. proposition 2.1 in [26]). There holds u′ < 0 as long as u > 0 (see the proof
of Lemma 2.1). Extend this local solution rightwards. Then u > 0 for all r > 0.
Otherwise, it contradicts with the Liouville theorem in [34].

1.2. Stable solutions

Definition 1.2. We say that a positive solution u ∈ C1(0, ∞) of (1.4) is stable if∫ ∞

0

[
1
k
Ck−1

n−1r
n−k|u′|k−1u′ϕ′ − rn−1upϕ

]
dr = 0; (1.11)

Qu(ϕ) := Ck−1
n−1

∫ ∞

0

rn−k|u′|k−1(ϕ′)2dr − p

∫ ∞

0

rn−1up−1ϕ2dr � 0 (1.12)

for all ϕ ∈W∗, where W∗ = {ϕ(r);ϕ(r) = φ(x) ∈ C∞
c (Rn), r = |x|}.
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Similarly, a positive solution u ∈ C1(0, ∞) of (1.4) is stable on a set (R, ∞) for
some R > 0, if (1.11) holds for all ϕ ∈W∗, and (1.12) holds for all ϕ ∈ C∞

c (R, ∞).

Indeed, the fact that the first order Fréchet derivative of the functional J(u) is
equal to zero and the second order Fréchet derivative is nonnegative can lead to
this definition, where

J(u) =
Ck−1

n−1

k(k + 1)

∫ ∞

0

|u′|k+1rn−kdr − 1
p+ 1

∫ ∞

0

up+1rn−1dr.

In addition, Qu(ϕ) � 0 can also be obtained by linearizing (1.4).
It is not difficult to verify that the regular solutions uρ given by (1.8) and uμ

given by (1.9) satisfy (1.11). For the singular solution us expressed by (1.5), p > pse

implies that 0 is not the singular point in integral terms of (1.11) (see the proof of
Theorem 1.4). Therefore, us also satisfies (1.11).

Stable solutions of elliptic equations are important in the qualitative theory of
PDEs. For example, stable solutions of the semilinear equation Δu+ f(u) = 0
can be very simple for f satisfying some mild assumptions. The related conse-
quences are helpful to understand the behaviour of large or small solutions on
bounded domains (cf. [1]), the small diffusion problems and the De Giorgi conjecture
(cf. [9,10]). In 2007, Farina [13] classified the stable solutions and the finite Morse
index solutions of the Lane–Emden equation−Δu = |u|p−1u. Afterwards, those
results were extended to the equations with the negative exponents (cf. [12]) and
with weight (cf. [11]), and also to the γ-Laplace equations [7]. In addition, the sta-
bility of positive solutions of the Brezis-Nirenberg model −Δu = up + λu and the
analogous equation −Δu = λ(1 + u)p can be applied to study the bifurcation the-
ory (cf. [17,19]). Recently, the results of the higher order fractional Lane–Emden
equations were obtained by Fazly and Wei (cf. [14]).

Recall other two critical exponents: the Joseph–Lundgren exponent

pjl =

⎧⎪⎪⎨
⎪⎪⎩
∞, if n � 2k + 8,

k[n2 − 2(k + 3)n+ 4k] + 4k
√

2(k + 1)n− 4k
(n− 2k)(n− 2k − 8)

, if n > 2k + 8;

and

p∗ = k
n+ 2k
n− 2k

.

Clearly, pse < pso < pjl. In addition, pso < p∗ by virtue of 1 < k < n/2. In view of
2k(k2 + 6k + 1)/(k − 1)2 > 2k + 8, we can deduce the relation between p∗ and pjl

as follows
p∗ � pjl, if n � 2k(k2 + 6k + 1)/(k − 1)2;
p∗ < pjl, if n < 2k(k2 + 6k + 1)/(k − 1)2.

Under the scaling transformation, p = pso ensures that equation (1.1) and energy
‖ · ‖p+1 are invariant (cf [21]), and p = p∗ ensures that equation (1.1) and energy
‖ · ‖p+k are invariant (cf [23]). In addition, p∗ is essential to study the separation
property of solutions (see the following remark).
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Remark 1.3. Let uμ(r) be a regular solution of (1.6). Corollary 1.7 in [26] implies
that, when p � max{p∗, pjl}, uμ(r) < us(r) for r > 0, and uμ1(r) < uμ2(r) for r > 0
as long as μ1 < μ2.

The exponent p∗ also appears in the study of γ-Laplace equations (cf. [22,26])
and integral equations involving Wolff potentials (cf. [4,25,32,35]). In particular,
it plays an important role to investigate integrability, decay rates and intersec-
tion properties of the positive entire solutions. In addition, this exponent ensures
that equation and energy ‖ · ‖p+γ−1 are invariant under the scaling transformation
(cf. [23]).

In particular, for the γ-Laplace equation

− div(|∇u|γ−2∇u) = K(x)up, u > 0 in Rn, (1.13)

we write pse(γ) = ((n(γ − 1))/(n− γ)), pso(γ) = ((nγ)/(n− γ)) − 1, p∗(γ) =
((n+ γ)/(n− γ))(γ − 1), pjl = γ − 1 + γ2[n− γ − 2 − 2

√
(n− 1)/(γ − 1)]−1 as

n > ((γ(γ + 3))/(γ − 1)), and pjl = ∞ as n � ((γ(γ + 3))/(γ − 1)).
If γ ∈ (1, 2), pse(γ) < p∗(γ) < pso(γ). When K(x) ≡ 1, according to the Liouville

theorem in [31], (1.13) has no positive solution as p < pso(γ), and p∗(γ) does not
make sense. When K(x) is a double bounded function, according to the result in
[23], (1.13) has positive radial solutions as long as p > pse(γ). Now, p∗ comes into
play in studying integrability and decay rates of positive solutions.

Now, we state the results about the stable solutions.

Theorem 1.3. When p < pjl, (1.4) has no stable solution.

Theorem 1.4. When p � pjl, the singular solution us given by (1.5) is a stable
solution of (1.4).

Theorem 1.5. When p = pso or p � max{p∗, pjl}, all the regular solutions of (1.6)
are stable solutions of (1.4) on (R, ∞) for some R > 0. When pse < p < pso, the
singular solutions introduced in remark 1.1 are stable solution of (1.4) on (R, ∞)
for some R > 0.

Remark 1.4. Theorem 1.4 shows that us is also a stable solution of (1.4) on (R, ∞)
for some R > 0 when p � pjl. Combining with theorem 1.5, we know that (1.4) has
stable solutions on (R, ∞) for some R > 0 when p ∈ (pse, pso] ∪ [pjl, ∞). To our
knowledge, it is unknown whether (1.4) has no stable solution on (R, ∞) for some
R > 0 when p belongs to the gap (pso, pjl).

2. Regular solutions

Lemma 2.1. Let u be a regular solution of (1.6). Then, u′ < 0 for r > 0, and
u(r) → 0 as r → ∞. Moreover, there are positive constants C1, C2 such that for
large r,

C1r
−((n−2k)/(k)) � u(r) � C2r

−((2k)/(p−k)). (2.1)

https://doi.org/10.1017/prm.2018.58 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.58


On critical exponents of a k-Hessian equation in the whole space 1561

Proof. Step 1. Since u is a positive solution of (1.4),

−1
k
Ck−1

n−1(r
n−k|u′|k−1u′)′ > 0, r > 0.

Integrating from 0 to R with R > 0, we obtain

Rn−k|u′(R)|k−1u′(R) < 0

and hence u′ < 0 is verified.
Step 2. By u > 0 and u′ < 0 for r > 0, we know that lim

r→∞u(r) exists and hence

is nonnegative. Suppose that lim
r→∞u(r) > 0, then there exists a constant c > 0 such

that u � c, and hence

−1
k
Ck−1

n−1(r
n−k|u′|k−1u′)′ � cprn−1.

Integrating from 0 to R, we obtain

Rn−k|u′(R)|k−1u′(R) � −CRn.

Here C > 0 is independent of R. This result, together with u′ < 0, implies u′(R) �
−CR. Integrating again yields

u(r) � u(0) − Cr2.

Letting r → ∞, we see a contradiction with u > 0. This shows that u(r) → 0 as
r → ∞.

Step 3. According to the results in [20] or [29], the regular solution of (1.6)
satisfies

c1W((2k)/(k+1)),k+1(up)(x) � u(|x|) � c2[ inf
x∈Rn

u(|x|) +W((2k)/(k+1)),k+1(up)(x)],

(2.2)
where c1, c2 are positive constants, and W((2k)/(k+1)),k+1(up) is the Wolff potential
of up. Namely,

W((2k)/(k+1)),k+1(up)(x) =
∫ ∞

0

(∫
Bt(x)

up(|y|)dy
tn−2k

)1/k
dt
t
.

Therefore, for large |x|,

u(|x|) � c

∫ ∞

|x|+1

(∫
B1(0)

up(|y|)dy
tn−2k

)1/k
dt
t

� c

∫ ∞

|x|+1

t2k−n/k dt
t

= c|x|2k−n/k.

Since u is radially symmetric and decreasing, we can also get

u(|x|) � c

∫ |x|/2

0

(∫
B|x|(0)∩Bt(x)

up(|y|)dy
tn−2k

)1/k

dt
t

� cup/k(|x|)|x|2,

which implies that u(|x|) � c|x|((2k)/(k−p)) for large |x|. �

The proof is complete.
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2.1. Proof of theorem 1.1

Let p < pso. Assume that (1.6) has a positive regular solution u, we will deduce
a contradiction.

Step 1. By (2.1), there exists R > 0 such that u(r) � Cr−((2k)/(p−k)) for r > R.
Thus, ∫ ∞

0

rn−1up+1dr � C(R) +
∫ ∞

R

rn−((2(p+1)k)/(p−k)) dr

r
<∞. (2.3)

Step 2. Let ϕ ∈ C∞(0, ∞) satisfy ϕ(r) = 1 when r ∈ (0, 1], ϕ(r) = 0 when
r ∈ [2, ∞), and 0 � ϕ � 1. Write ϕR(r) = ϕ(r/R). Multiply (1.4) by uϕk+1

R and
integrate on (0, ∞). By the initial value condition in (1.6), we get∫ ∞

0

rn−k|u′|k+1ϕk+1
R dr =

k

Ck−1
n−1

∫ ∞

0

rn−1up+1ϕk+1
R dr

− (k + 1)
∫ ∞

0

rn−kuϕk
R|u′|k−1u′ϕ′

Rdr. (2.4)

By the Young inequality and the Hölder inequality, for a small ε > 0, there holds
that∣∣∣∣
∫ ∞

0

rn−kuϕk
R|u′|k−1u′ϕ′

Rdr
∣∣∣∣ � ε

∫ ∞

0

rn−k|u′|k+1ϕk+1
R dr

+
Cε

Rk+1

(∫ ∞

0

rn−1up+1dr
)((k+1)/(p+1))

×
(∫ 2R

R

rθ+1 dr
r

)((p−k)/(p+1))

,

(2.5)

where ((p− k)/(p+ 1))θ = n− k − (n− 1)((k + 1)/(p+ 1)). Therefore, (θ + 1)((p−
k)/(p+ 1)) − (k + 1) = n((p− k)/(p+ 1)) − 2k < 0 by virtue of p < pso. Letting
R→ ∞, we deduce from (2.3), (2.4) and (2.5) that∫ ∞

0

rn−k|u′|k+1dr <∞. (2.6)

Step 3. Multiplying (1.4) by u and integrating on (0, R), we obtain that

∫ R

0

rn−k|u′|k+1dr −Rn−ku(R)|u′(R)|k−1u′(R) =
k

Ck−1
n−1

∫ R

0

rn−1up+1dr. (2.7)

By (2.6) and (2.3), there exists Rj → ∞ such that

Rn−k+1
j |u′(Rj)|k+1 +Rn

j u
p+1(Rj) → 0. (2.8)

Therefore, by p < pso,

Rn−k
j u(Rj)|u′(Rj)|k−1u′(Rj) → 0, as Rj → ∞.
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Inserting this result into (2.7) and letting R = Rj → ∞, we obtain

∫ ∞

0

rn−k|u′|k+1dr =
k

Ck−1
n−1

∫ ∞

0

rn−1up+1dr (2.9)

Step 4. Multiplying (1.4) by ru′ and integrating on (0, R), we have the Pohozaev
type equality

−n− 2k
k + 1

∫ R

0

rn−k|u′|k+1dr +
k

Ck−1
n−1

n

p+ 1

∫ R

0

rn−1up+1dr

=
k

k + 1
Rn−k+1|u′(R)|k+1 +

k

(p+ 1)Ck−1
n−1

Rnup+1(R).
(2.10)

By (2.8), the right-hand side of (2.10) converges to zero when R = Rj → ∞. Letting
R = Rj → ∞ in (2.10) and using (2.9), we can see ((n− 2k)/(k + 1)) = ((n)/
(p+ 1)), which contradicts with p < pso.

2.2. Proof of theorem 1.2

When k = 1, the proof of the slow decay is based on the comparison principle
(cf. lemma 2.20 and theorem 2.25 in [24]). For the quasilinear equation (1.4), we
use the monotony inequality to replace the comparison principle.

Lemma 2.2. Let u(r) be a regular solution of (1.6). If u(r) = O(r−((2k)/(p−k))−ε)
with some ε ∈ (0, n− 2k/k − ((2k)/(p− k))) for large r, then u(r) = O(r(2k−n)/k)
for large r.

Proof. If u(r) = O(r−((2k)/(p−k))−ε) for large r, we can find a large R > 0 such that
as r > R,

u(r) � Cr−((2k)/(p−k))−ε. (2.11)

By lemma 2.1, inf [0,∞) u(r) = 0. Using (2.2), we have

u(|x|) � C(I1 + I2 + I3),

where

I1 =
∫ ((|x|)/(2))

0

(∫
Bt(x)

up(|y|)dy
tn−2k

)1/k
dt
t
,

I2 =
∫ ∞

((|x|)/(2))

(∫
Bt(x)∩BR(0)

up(|y|)dy
tn−2k

)1/k
dt
t
,

I3 =
∫ ∞

((|x|)/(2))

(∫
Bt(x)\BR(0)

up(|y|)dy
tn−2k

)1/k
dt
t
.
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For sufficiently large |x|, we can deduce from (2.11) that

I1 � C|x|−p/k(((2k)/(p−k))+ε)

∫ |x|/2

0

(∫
Bt(x)

dy

tn−2k

)1/k
dt
t

� C|x|−((2k)/(p−k))−εp/k,

I2 � C(|BR(0)|up(0))1/k

∫ ∞

((|x|)/(2))

t2k−n/k dt

t
� C|x|−((n−2k)/(k)),

I3 �
∫ ∞

|x|/2

(∫
Bt+|x|(0)\BR(0)

up(|y|)dy
tn−2k

)1/k

dt
t

� C|x|−((2k)/(p−k))−εp/k.

These estimates show that u(r) � C(r−n−2k/k + r−((2k)/(p−k))−εp/k) �
Cr−((2k)/(p−k))−εp/k. Replacing (2.11) by this result to estimate I1, I2 and I3 as
we have done above, we get

u(r) � C(r−((n−2k)/(k)) + r−((2k)/(p−k))−ε(p/k)2) � Cr−((2k)/(p−k))−ε(p/k)2 .

By iterating m times, we can obtain

u(r) � C(r−((n−2k)/(k)) + r−((2k)/(p−k))−ε(p/k)m

).

Clearly, there exists a sufficiently large m0 such that n− 2k/k � ((2k)/(p− k)) +
ε(p/k)m0 . Thus, after m0 steps, we derive that,

u(r) � Cr−((n−2k)/(k)) for large r.

Lemma 2.2 is proved. �

Lemma 2.3. Let u(r) be a regular solution of (1.6). If u(r) = o(r−((2k)/(p−k))) for
large r, then u(r) = O(r(2k−n)/k) for large r.

Proof. Step 1. Let ϕ(r) ∈ C1(0, ∞) satisfy limr→∞ rn−((2pk)/(p−k))ϕ(r) = 0. Inte-
grating (1.4) from 0 to r, we have

|u′|k−1u′ = − k

Ck−1
n−1

rk−n

∫ r

0

sn−1up(s)ds. (2.12)

Thus, by u(r) = o(r−((2k)/(p−k))) when r → ∞, it follows that

rn−k|u′(r)|kϕ(r) → 0. (2.13)

Multiply (1.4) by ϕ and integrate from R to ∞. By (2.13), we obtain∫ ∞

R

rn−k|u′|k−1(u′)ϕ′dr

= −Rn−k|u′(R)|k−1u′(R)ϕ(R) +
k

Ck−1
n−1

∫ ∞

R

rn−1upϕdr.

(2.14)

Write h(r) := c∗r−θ, where c∗ is a positive constant determined later, and
θ := ((2k)/(p− k)) + ε0 with suitably small ε0 > 0. By simply calculating and
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integrating by parts, we get∫ ∞

R

rn−k|h′|k−1h′ϕ′dr = −(c∗θ)k

∫ ∞

R

rn−k(θ+2)ϕ′dr

= (c∗θ)k[n− k(θ + 2)]
∫ ∞

R

rn−1−k(θ+2)ϕdr

+ (c∗θ)kRn−k(θ+2)ϕ(R).

Subtracting this result from (2.14) yields∫ ∞

R

rn−k[|u′|k−1u′ − |h′|k−1h′]ϕ′dr

= [(c∗θ)kRn−k(θ+2) +Rn−k|u′(R)|k−1u′(R)]ϕ(R)

+
∫ ∞

R

rn−1

[
kup

Ck−1
n−1

− (c∗θ)k[n− k(θ + 2)]
rk(θ+2)

]
ϕdr.

(2.15)

Step 2. In view of k(θ + 2) = ((2pk)/(p− k)) + kε0, we can find η0 ∈ (0, kε0/p)
such that

k(θ + 2) >
2pk
p− k

+ pη0. (2.16)

Since u ∈ C2 is decreasing and u(r) = o(r−((2k)/(p−k))) for large r, then either
there exist positive constants c1, c2 such that

c1r
−((2k)/(p−k)) � u(r) � c2r

−((2k)/(p−k))−η0 (2.17)

when r is suitably large, or limr→∞ u(r)r((2k)/(p−k))+η0 = 0, which implies that
there exists η ∈ (0, η0) such that for large r,

u(r) � cr−((2k)/(p−k))−(η0−η). (2.18)

If (2.18) is true, lemma 2.3 can be proved easily by lemma 2.2.
In the following, we assume that (2.17) is true. Take ϕ = r−m(u− h)+ in (2.15),

where m > n− ((2pk)/(p− k)) is sufficiently large. Then,∫ ∞

R

rn−k−m[|u′|k−1u′ − |h′|k−1h′][(u− h)+]′dr

= [(c∗θ)kRn−k(θ+2)−m +Rn−k−m|u′(R)|k−1u′(R)][u(R) − h(R)]+

+
∫ ∞

R

rn−m−1

[
kup

Ck−1
n−1

− (c∗θ)k[n− k(θ + 2)]
rk(θ+2)

]
(u− h)+dr

+m
∫ ∞

R

rn−k−m−1[|u′|k−1u′ − |h′|k−1h′](u− h)+dr.

(2.19)

By (2.12), (2.17) and (2.16), for any δ ∈ (0, 1), we can find R0 > 0 such that
as r � R0, |h′|k � δ|u′|k. Therefore, the last term of the right-hand side of (2.19)
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with R = R0 is not larger than m(1 − δ)
∫∞

R0
rn−k−m−1|u′|k−1u′(u− h)+dr. Choose

c∗ = u(R0)Rθ
0 to ensure u(R0) = h(R0). Therefore, the first term of the right-hand

side of (2.19) with R = R0 is zero. Thus, from (2.19) with R = R0 it follows that

∫ ∞

R0

rn−k−m[|u′|k−1u′ − |h′|k−1h′][(u− h)+]′dr

�
∫ ∞

R0

rn−m−1[
kup

Ck−1
n−1

−m(1 − δ)r−k|u′|k](u− h)+dr.
(2.20)

By (2.12) and the monotonicity of u(r), there holds

r−k|u′(r)|k � k

Ck−1
n−1

r−nup(r)
∫ r

0

sn−1ds � kup(r)
nCk−1

n−1

.

Taking m suitably large, we obtain that the right-hand side of (2.20) is not larger
than zero. In view of the monotony inequality (|a|k−1a− |b|k−1b)(a− b) � 2k−1

|a− b|k+1, we obtain from (2.20) that

∫ ∞

R0

rn−k([(u− h)+]′)k+1dr � 0,

which implies [u(r) − h(r)]+ ≡ Constant for r � R0. In view of u(R0) = h(R0), it
follows Constant = 0, which implies u(r) � h(r) for r � R0. Applying lemma 2.2,
we can also see the conclusion of lemma 2.3. �

Proof of Theorem 1.2. Let p > pso.
Step 1. By lemma 2.1, we see that u(r) � Cr−((2k)/(p−k)) for large r. We claim

that there exists c > 0 such that u(r) � cr−((2k)/(p−k)) for large r.
Otherwise, limr→∞ u(r)r((2k)/(p−k)) = 0. By lemma 2.3 it follows that u(r) =

O(r2k−n/k) for large r. Thus, V (x) ∈ Lp+1(Rn) ∩ C2(Rn) (here V (x) = −u(|x|)).
According to theorem 4.4 in [21], we know p = pso, which contradicts with p > pso.

Step 2. We define by scaling a new function

w(r) = μ((2k)/(p−k))u(μr), μ > 0.

By a direct calculation, we see that w still satisfies (1.4). Applying the initial value
conditions, we can obtain the second conclusion of theorem 1.2. �

Remark 2.1. Let uμ(r) be a regular solution of (1.6) with p > pso. When p � p∗,
Miyamoto used the technique of phase plane analysis to show that uμ(r)/us(r) → 1
as r → ∞ (cf. lemma 2.5 in [26]). When p � pso, theorem 1.2 shows that the decay
rate of uμ is the same as that of us. Furthermore, if limr→∞ u(r)r−((2k)/(p−k)) exists,
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then it must be A which is introduced in (1.5). In fact, integrating (1.4) twice yields

u(r) = u(0) −
(

k

Ck−1
n−1

)1/k ∫ r

0

[
tk−n

∫ t

0

sn−1up(s)ds
]1/k

dt.

Write B := limr→∞((u(r))/(r((2k)/(p−k)))). Using the L’Hospital principle twice, we
get

Bk =
k

Ck−1
n−1

(
2k
p− k

)−k ∫ r

0
sn−1up(s)ds
rn−2pk/p−k

=
k

Ck−1
n−1

(
2k
p− k

)−k (
n− 2pk

p− k

)−1

Bp,

which implies B = A.

3. Stable solutions

3.1. Proof of Theorem 1.3

Step 1. We claim that for every γ ∈ [1, 2p+ 2
√
p(p− k) − k/k) and any integer

m � max{((p+ γ)/(p− k)), 2}, there exists a constant C > 0 such that for any
ψ ∈W∗, there holds

∫ R

0

rn−1up+γψm(k+1)dr

� C

∫ R

0

(r(((n−k)(p+γ)−(n−1)(γ+k))/(p+γ))|ψ′|k+1)((p+γ)/(p−k))dr. (3.1)

Proof of (3.1). Let ψ ∈W∗ be a cut-off function such that 0 � ψ � 1 and

ψ(r) =

{
1, if r � R/2,
0, if r � R.

Clearly, there exists a constant C > 0 such that |ψ′| � C/R.
Taking ϕ = uγψm(k+1) in (1.11), we get

γ

k
Ck−1

n−1

∫ R

0

rn−k|u′|k+1uγ−1ψm(k+1)dr

� k + 1
k

Ck−1
n−1

∫ R

0

rn−k|u′|kuγψmk|(ψm)′|dr +
∫ R

0

rn−1up+γψm(k+1)dr.

Using the Young inequality to the first term of the right-hand side, we can obtain
that for any small ε > 0,

(γ
k
Ck−1

n−1 − ε2
)∫ R

0

rn−kuγ−1|u′|k+1ψm(k+1)dr

� Cε

∫ R

0

rn−kuγ+k|(ψm)′|k+1dr +
∫ R

0

rn−1up+γψm(k+1)dr.
(3.2)
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Taking ϕ = uγ+1/2ψm(k+1)/2 in (1.12), we have

p

∫ R

0

rn−1up+γψm(k+1)dr

�
Ck−1

n−1(γ + 1)2

4

∫ R

0

rn−kuγ−1|u′|k+1ψm(k+1)dr

+
Ck−1

n−1(k + 1)2

4

∫ R

0

rn−k|u′|k−1uγ+1ψm(k−1)|(ψm)′|2dr

+
Ck−1

n−1(γ + 1)(k + 1)
2

∫ R

0

rn−k|u′|kuγψmk|(ψm)′|dr.

(3.3)

Using the Young inequality to the second and the third terms of the right-hand
side of (3.3), we get

p

∫ R

0

rn−1up+γψm(k+1)dr

�
(
Ck−1

n−1(γ + 1)2

4
+ ε2

)∫ R

0
rn−k|u′|k+1uγ−1ψm(k+1)dr

+Cε

∫ R

0

rn−k|(ψm)′|k+1uγ+kdr.

(3.4)

Combining (3.2) and (3.4), we obtain by the Hölder inequality that

[
p−

(
Ck−1

n−1(γ + 1)2

4
+ ε2

)
1

(γ/k)Ck−1
n−1 − ε2

]∫ R

0

rn−1up+γψm(k+1)dr

� C

∫ R

0

rn−k|(ψm)′|k+1uγ+kdr

� C

[∫ R

0

(r(n−1)((γ+k)/(p+γ))uγ+kψ(m−1)(k+1))((p+γ)/(γ+k))dr

]((γ+k)/(p+γ))

·
[∫ R

0

(r(((n−k)(p+γ)−(n−1)(γ+k))/(p+γ))|ψ′|k+1)((p+γ)/(p−k))dr

]((p−k)/(p+γ))

.

(3.5)
In view of γ ∈ [1, ((2p+ 2

√
p(p− k) − k)/(k))), lim

ε→0
[p− (Ck−1

n−1(γ + 1)2/4 + ε2)

((1)/((γ/k)Ck−1
n−1 − ε2)] = p− ((k(γ + 1)2)/(4γ)) > 0. Therefore, the coefficient of

the left-hand side of (3.5) is positive as long as ε is sufficiently small. There-
fore, noting (m− 1)(k + 1)((p+ γ)/(γ + k)) � m(k + 1) which is implied by m �
max{((p+ γ)/(p− k)), 2}, we can deduce (3.1) from (3.5) by the Young inequality.

Step 2. By the definition of ψ, from (3.1) we can deduce that

∫ R

0

rn−1up+γψm(k+1)dr � CRn+1−(((2k+1)(p+γ)−(γ+k))/(p−k)). (3.6)
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When n+ 1 − (((2k + 1)(p+ γ) − (γ + k))/(p− k)) < 0, the desired claim follows
by letting R→ ∞.

Proof of (3.6). Consider a real-valued function

f(t) =
(2k + 1)(t+ γ(t)) − (γ(t) + k)

t− k
, t ∈ (k,∞),

where γ(t) = 2t+ 2
√
t(t− k) − k/k. Clearly, we know f(t) is a strictly decreasing

function (by virtue of f ′(t) < 0 on (k, ∞)), satisfying lim
t→k

f(t) = ∞ and lim
t→∞ f(t) =

2k + 9. Therefore, we consider separately two cases: n � 2k + 8, and n � 2k + 9.
Case I: n � 2k + 8. In view of p > pse, there exists γ ∈ [1, 2p+ 2

√
p(p− k) −

k/k) such that n+ 1 − (((2k + 1)(p+ γ) − (γ + k))/(p− k)) < 0 is true.
Case II: n � 2k + 9. In view of p > pse, there exists a unique p0 > k such that

n+ 1 = f(p0) since f(t) is decreasing in (k, ∞). Therefore, p0 satisfies

(n− 2k)(n− 2k − 8)p2
0 − 2k[n2 − 2(k + 3)n+ 4k]p0 + k2(n− 2)2 = 0, (3.7)

and

(n− 2k − 4)p0 − (n− 2)k > 4(p0 − k). (3.8)

The roots of equation (3.7) are

p1 =
k[n2 − 2(k + 3)n+ 4k] + 4k

√
2(k + 1)n− 4k

(n− 2k)(n− 2k − 8)
, (3.9)

p2 =
k[n2 − 2(k + 3)n+ 4k] − 4k

√
2(k + 1)n− 4k

(n− 2k)(n− 2k − 8)
. (3.10)

Inequality (3.8) implies p0 > p2, and hence we take p0 = p1 (it equals exactly pjl).
Thus, when p < pjl, there exists γ ∈ [1, 2p+ 2

√
p(p− k) − k/k) satisfying n+ 1 −

(((2k + 1)(p+ γ) − (γ + k))/(p− k)) < 0.
No matter in Case I or Case II, letting R→ ∞ in (3.6), we can deduce∫ R

0
rn−1up+γdr → 0. This contradiction shows that (1.4) has no positive stable

solution as long as p < pjl.

3.2. Proof of Theorem 1.4

Let us be the singular solution of (1.4) given by (1.5). We will prove that the
singular solution us(r) is stable when n � 2k + 9 and p � pjl.

First, we claim that us satisfies (1.11). In fact, by (1.7), the improper integral∫∞
0
rn−1up

sϕdr � C
∫ R

0
rn−1−((2pk)/(p−k))dr <∞. Similarly, the left-hand side of

(1.11) also makes sense. In addition, us solves (1.4). Multiply by the test func-
tion ϕ ∈W∗ and integrate from 0 to ∞. Noting rn−k|u′s(r)|k → 0 as r → 0, we
know that the claim is true.
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To prove that us satisfies (1.12), we observe firstly that

p

(
2

p− k

)(
n− 2pk

p− k

)
� (n− 2 − ((2p(k − 1))/(p− k)))2

4

⇔ 8n(p2 − kp) − 16kp2 � (n− 2)2(p2 − 2kp+ k2)

+4(k − 1)2p2 − 4(k − 1)(n− 2)(p2 − kp)

⇔ (n− 2k)(n− 2k − 8)p2 − 2k(n2 − 2(k + 3)n+ 4k)p

+k2(n− 2)2 � 0

⇔ p ∈ (−∞, p2]
⋃

[pjl,+∞)

(3.11)

where p2 is defined in (3.10). On the contrary, by definition 1.2, we have that for
any φ ∈ C∞

c (Rn),

Ck−1
n−1

∫
Rn

1
|x|k−1

|u′s|k−1|∇φ|2dx− p

∫
Rn

up−1
s φ2dx

= Ck−1
n−1

∫
Rn

(
1
k
Ck−1

n−1

)((k−1)/(p−k))( 2k
p− k

)(((k−1)p)/(p−k))

×
(
n− 2pk

p− k

)((k−1)/(p−k)) 1
|x|((2p(k−1))/(p−k))

|∇ϕ|2dx

−p
∫

Rn

(
1
k
Ck−1

n−1

)((p−1)/(p−k))( 2k
p− k

)(((p−1)k)/(p−k))

×
(
n− 2pk

p− k

)((p−1)/(p−k)) 1
|x|((2(p−1)k)/(p−k))

ϕ2dx

= C0

(∫
Rn

1
|x|((2p(k−1))/(p−k))

|∇φ|2dx− p

(
2

p− k

)

×
(
n− 2pk

p− k

)∫
Rn

1
|x|((2(p−1)k)/(p−k))

φ2

)
dx,

where

C0 = Ck−1
n−1

(
1
k
Ck−1

n−1

)((k−1)/(p−k))( 2k
p− k

)(((k−1)p)/(p−k))

×
(
n− 2pk

p− k

)((k−1)/(p−k))

. (3.12)
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By p � pjl, (3.11) implies that

∫
Rn

1
|x|((2p(k−1))/(p−k))

|∇φ|2dx− p

(
2

p− k

)(
n− 2pk

p− k

)

×
∫

Rn

1
|x|((2(p−1)k)/(p−k))

φ2dx

�
∫

Rn

1
|x|((2p(k−1))/(p−k))

|∇φ|2dx− (n− 2 − ((2p(k − 1))/(p− k)))2

4

×
∫

Rn

1
|x|((2(p−1)k)/(p−k))

φ2dx.

It follows that

Qus
(ϕ) > 0, ∀ϕ ∈W∗ (3.13)

by the Caffarelli-Kohn-Nirenberg inequality (cf. [5])

∫
Rn

|∇φ|2
|x|2a

dx � C

∫
Rn

φ2

|x|2b
dx, ∀φ ∈ D1,2

a (Rn), (3.14)

where n � 3, 0 � a < n− 2/2 and a � b � a+ 1, where C < Ca,b and the best con-
stant Ca,b is given by Ca,b := (n− 2 − 2a)2/4. Here we take a = ((p(k − 1))/(p−
k)) and b = a+ 1. This result shows that us is a stable solution of (1.4) when
n � 2k + 9 and p � pjl. The proof of Theorem 1.4 is complete.

3.3. Proof of theorem 1.5

Step 1. When p = pso, all regular solutions uρ of (1.6) can be written as the form
given by (1.8). When r is suitably large,

uρ(r) � D1r
−((n−2k)/(k)), |u′ρ| � D2r

−((n−k)/(k)), (3.15)

where D1, D2 are positive constants independent of r. Thus,

pup−1(r) = O(r−(((k−1)n)/(k))−4), as r → ∞.

Therefore, we can find some R > 0 such that for all |x| > R and φ ∈ C∞
c

(Rn \BR(0)), there holds

pup−1
ρ (|x|)φ2(x) < C∗|x|−(((k−1)n)/(k))−2φ2(x),
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where C∗ = 4(((n− 2 − ((k − 1)/(k))n2))/(4))Dk−1
2 Ck−1

n−1(n− 2k/k)k−1. Thus,

Ck−1
n−1

∫
Rn

1
|x|k−1

|u′ρ|k−1|∇φ|2dx− p

∫
Rn

up−1
ρ φ2dx

� Dk−1
2 Ck−1

n−1

(
n− 2k
k

)k−1 ∫
Rn

1
|x|((k−1)/(k))n

|∇φ|2dx

−C∗
∫

Rn

1
|x|((k−1)/(k))n+2

φ2dx

= Dk−1
2 Ck−1

n−1

(
n− 2k
k

)k−1(∫
Rn

1
|x|((k−1)/(k))n

|∇φ|2dx

− (n− 2 − ((k − 1)/(k))n)2

4

∫
Rn

1
|x|((k−1)/((k))n+2

φ2

)
dx,

(3.16)

and the right-hand side is nonnegative by the Caffarelli-Kohn-Nirenberg inequal-
ity (3.14) with a = k − 1/2kn and b = a+ 1. Therefore, Quρ

(ϕ) � 0 for every
ϕ ∈ C∞

c (R, ∞). In addition, uρ also satisfies (1.11). So the regular solution uρ

is stable on (R, ∞).
Step 2. Let uμ (see (1.9)) be a regular solution of (1.6) with p � max{p∗, pjl}.

We claim that uμ is stable on (R, ∞) for some R > 0.
We at first prove limr→∞ u′μ(r)/u′s(r) = 1 when p � max{p∗, pjl}.
Clearly, u′s = −(1/kCk−1

n−1)
((1)/(p−k))(((2k)/(p− k)))((p)/(p−k))(n− ((2pk)/

(p− k)))((1)/(p−k))r−((p+k)/(p−k)).
Combining with (2.12) and using the L’Hospital principle, we get

lim
r→∞

(
u′

μ

u′
s

)k

= lim
r→∞

∫ r

0
sn−1up

μ(s)ds

(1/kCk−1
n−1)

((p)/(p−k))(((2k)/(p− k)))((pk)/(p−k))

(n− ((2pk)/(p− k)))((k)/(p−k))rn−((2pk)/(p−k))

= lim
r→∞

rn−1up
μ(r)

(((1)/(kCk−1
n−1)

((p)/(p−k))(((2k)/(p− k)))((pk)/(p−k))

(n− ((2pk)/(p− k)))((p)/(p−k))rn−((2pk)/(p−k))−1

= lim
r→∞

up
μ(r)
up

s(r)
.

By remark 2.1, there holds lim
r→∞u′μ(r)/u′s(r) = 1 when p � max{p∗, pjl}. Thus,

there exists sufficiently large R > 0 such that as r > R,

|u′μ(r)|k−1 = |u′s(r)|k−1 + o(1)r−(((k−1)(p+k))/(p−k)).
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Therefore, by the strict inequality (3.13), we can find a suitably small δ0 > 0 such
that for any ψ ∈ C∞

c (Rn \BR(0)),

Ck−1
n−1

∫
Rn

|u′μ(|x|)|k−1

|x|k−1
|∇φ|2dx

= Ck−1
n−1

∫
Rn

|u′s(|x|)|k−1 + o(1)|x|−(((k−1)(p+k))/(p−k))

|x|k−1
|∇φ|2dx

� C0

[
p

(
2

p− k

)(
n− 2pk

p− k

)
+ δ0 + o(1)

] ∫
Rn

1
|x|((2(p−1)k)/(p−k))

φ2dx

� p

∫
Rn

us(|x|)p−1φ2dx.

Here C0 is the constant in (3.12). In view of us(r) > uμ(r) for r > R (see
remark 1.3), we can see Quμ

(ϕ) � 0 for any ϕ ∈ C∞
c (R, ∞). In addition, uμ satisfies

(1.11). Thus, uμ is stable on (R, ∞) for some R > 0.
Step 3. Let Us be a singular solution of (1.4) with p ∈ (pse, pso) introduced in

remark 1.1. By the same argument in the proof of Theorem 1.4, Us still satisfies
(1.11) since 0 is not the singular point in the improper integrals of (1.11) which is
implied by limr→0 Us(r)/us(r) = 1.

In addition, by an analogous argument in Step 1, Us still satisfies (1.12). In fact,
limr→∞ Us(r)rn−2k/k = λ implies

Us(r) � Cr−((n−2k)/(k)) for large r. (3.17)

On the contrary, by (2.12), the monotonicity of Us, and (3.17), there holds

|U ′
s|k � crk−nUp

s (r)
∫ r

0

sn−1ds � crk−p((n−2k)/(k))

for large r. Therefore, applying the Caffarelli-Kohn-Nirenberg inequality (3.14) with
a = pn− 2k/kk − 1/2k and b = a+ 1, we obtain by (3.17) and p > pse that∫

Rn

|U ′
s(|x|)|k−1

|x|k−1
|∇φ|2dx � c

∫
Rn

φ2dx
|x|p((n−2k)/(k))((k−1)/(k))+2

� p

∫
Rn

Up−1
s (|x|)φ2dx

for any φ ∈ C∞
c (Rn \BR(0)) with suitably large R.
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