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PRESERVATION OF SUSLIN TREES AND SIDE CONDITIONS

GIORGIO VENTURI

Abstract. We show how to force, with finite conditions, the forcing axiom PFA(T ), a relativization of
PFA to proper forcing notions preserving a given Suslin tree T . The proof uses a Neeman style iteration
with generalized side conditions consisting of models of two types, and a preservation theorem for such
iterations. The consistency of this axiomwas previously knownusing a standard countable support iteration
and a preservation theorem due to Miyamoto.

§1. Introduction. In this article,1 using the techniques introduced by Neeman in
[2], we give a consistency proof of the Forcing Axiom for the class of proper forcings
that preserve a given Suslin tree T , i.e., PFA(T )2. The consistency of this axiom is
already known ([3]), using a preservation result due toMiyamoto ([1]), who showed
that the property “is proper and preserves every �1-Suslin tree” is preserved under
a countable support iteration of proper forcings. The novelty of this proof is that
PFA(T ) is forced with finite conditions, using a forcing that acts like an iteration.
The main preservation theorem presented here, Theorem 4.13, can be seen as
a general preservation schema for properties, like being a Suslin tree, that have
formulations similar to Lemma 2.2, in terms of the possibility to construct a generic
condition for a product forcing, bymeans of conditions that, individually, are generic
for their respective forcings. As a matter of fact, in the proof of Theorem 4.13, no
use is made of the fact that T is a tree.
In Section 2 we review some basic results connecting the property of being Suslin
and properness. In Section 3 we show, as a warm up, that the method of side
conditions—with just countable models—does not influence the fact that a proper
forcing preserves a Suslin treeT . Then in Section 4 we use themethod of generalized
side conditions with models of two types to construct a model where PFA(T ) holds
and T remains Suslin. We refer to [2] and [4] for a detailed presentation of a pure
side conditions poset with both countable and uncountable models.
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§2. Suslin trees and properness. We will use the following reformulation of the
definition of Suslin tree.
Lemma 2.1. A treeT is Suslin iff for every countableM ≺ H (�), with � sufficiently
large such that T ∈M , and for every t ∈ T�M , where �M =M ∩ �1,

t is an (M,T )-generic condition,

i.e., for every maximal antichain A ⊆ T in M , there is a � < M ∩ �1 such that
t � � ∈ A.
Proof. On the one hand, let T be a Suslin tree,M ≺ H (�) as above, t ∈ T�M and
A ∈M a maximal antichain of T . Since T is Suslin, A is countable. Then there is a
α < �M such that for all � ≥ α, the set A ∩ T� is empty. Hence there is an element
h ∈ A compatible with t � α. Then t � ht(h) = s ∈ A. Moreover s ∈ A ∩M , since
all levels of T are countable.
For the other direction ifA ∈M is an uncountable maximal antichain of T , then
A \M is not empty. For x ∈ A \M , let t = x � �M . If there is a � < �M such that
t � � ∈ A, then x and t � � would be compatible and both in A: a contradiction. �
The following lemma connects preservation of Suslin trees and properness.
Lemma 2.2 (Miyamoto, Proposition 1.1 in [1]). Fix a Suslin treeT , a proper poset

P and some regular cardinal �, large enough. Then the following are equivalent:
(1) �P “T is Suslin.”,
(2) givenM ≺ H (�) countable, containing P and T , if p ∈ P is an (M,P)-generic
condition and t ∈ T�M , with �M =M ∩�1, then (p, t) is an (M,P×T )-generic
condition,

(3) givenM ≺ H (�) countable, containing P and T and given q ∈ P∩M , there is
a condition p ≤ q such that for every condition t ∈ T�M , with �M = M ∩ �1,
we have that (p, t) is an (M,P× T )-generic condition.

§3. Preservation of T and countable models. We define the scaffolding operator
from an idea of Veličković.

Definition 3.1. Given a proper poset P and a sufficiently large cardinal � such
that P ∈ H (�), letM(P) be the poset consisting of conditions p = (Mp, wp) such
that
(1) Mp is a finite ∈-chain of countable elementary substructures ofH (�),
(2) wp ∈ P,
(3) wp is an (M,P)-generic condition for everyM inMp.
Moreover, we let q ≤ p iffMp ⊆ Mq and wq ≤P wp.

Remark 3.2. Notice that the definition of M(P) depends on �. However this
notation causes no confusion as long as � depends on P and its choice is a standard
negligible part of all arguments involving properness. Then, without any specifica-
tion, � will always denote a cardinal that makes possible the definition ofM(P).

Remark 3.3. By abuse of notationwe will identify an∈-chainMp with its range.

Our aim now is to show that properness is preserved by the scaffolding operator.
Lemma 3.4. LetP be a proper poset,M ≺ H (�) andp ∈ M(P)∩M . Then there is a
conditionpM = (MpM ,wpM ) ∈ M(P) that is weaken thanp and such thatM ∈ MpM .
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Proof. First of all notice that since p ∈M , we haveMp ⊆M . In particular the
largest model inMp belongs toM . SoMp ∪ {M} is a finite ∈-chain of elementary
substructures of H (�). Moreover wp ∈ M ∩ P and, by properness, there is a
wq ≤ wp that is (M,P)-generic. Now, since wq ≤ wp and wp is (N,P)-generic, for
every N ∈ Mp, so is wq . Then we have that wq is a generic condition for every
model inMp ∪{M}. Finally setMpM =Mp ∪ {M} andwpM = wq to see that the
conclusion of the lemma holds. �
Theorem 3.5. Let P be a proper poset. ThenM(P) is proper.

Proof. LetM∗ be a countable elementary submodel ofH (�∗), for some �∗ > �,
where � is the corresponding cardinal in the definition ofM(P). If p is a condition
in M(P) ∩ M∗ we need to find a condition q ≤ p that is (M∗,M(P))-generic.
Fix then a dense open D ⊆ M(P) inM∗ and letM = M∗ ∩H (�). We claim that
pM = (Mp ∪ {M}, wMp ) is an (M,M(P))-generic condition.
Thanks toLemma 3.4 we have thatpM is a condition.We now prove its genericity.
Let r ≤ pM and without loss of generality assume it to be in D. Define

E = {ws ∈ P : ∃Ms such that (Ms , ws) ∈ D ∧Mr ∩M ⊆ Ms}
and notice that E ∈M∗ and wr ∈ E.
The set E may not be dense in P, but

E0 = {wt ∈ P : ∃ws ∈ E such that wt ≤ ws or ∀ws ∈ E(wt ⊥ ws)}
is a dense subset of P that belongs toM∗.
Then thanks to the (M∗,P)-genericity ofwMp and the fact thatwr ≤ wMp , we have
that there is a condition wt ∈ M∗ ∩ E0 that is compatible with wr . Since wr ∈ E
there is a condition ws ∈ E such that wt ≤ ws . By elementarity we can find ws
inM∗. Moreover, by definition of E, there is anMs such that (Ms , ws ) ∈ D and
such thatMr ∩M ⊆ Ms . Again by elementarity we can findMs in M . Hence
(Ms , ws) ∈ D ∩M∗.
Finally notice thatws is compatible with wr, because wt is so and wt ≤ ws ; let t∗
be the witness of it, i.e., t∗ ≤ ws,wr . BesidesMs ⊆M and it extendsMr ∩M , so
we have thatM =Ms ∪{M}∪Mr \M is a finite ∈-chain of elementary submodel
of H (�). Then, in order to show that (M, t∗) is a condition in M(P) we need to
show that t∗ is (N,P)-generic, for every N ∈ M. But this is true because on one
hand s ∈ M(P) and so ws is (N,P)-generic for every N ∈ Ms and on the other
hand r ∈ M(P) and so wr is (N,P)-generic for every N ∈ Mr . Since t∗ extends
both ws and wr , we have that t∗ is generic for all the models inM. Hence (M, t∗)
extends both s and r, inM(P), and witnesses their compatibility. �
We now want to show that the scaffolding operation does not effect the preserva-
tion of a Suslin tree T . In order to show this fact we will use the characterization of
Lemma 2.2.

Lemma 3.6. Let T be a Suslin tree and let P be a proper forcing such that �P

“T is Suslin”. Moreover let M∗ be a countable elementary submodel of H (�∗), for
some �∗ > �, where � is the corresponding cardinal in the definition of M(P). If
p ∈ M(P),M =M∗ ∩H (�) ∈ Mp and t ∈ T�M , with �M =M ∩ �1, then (p, t) is
an (M∗,M(P)× T )-generic condition.
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Proof. Fix a set D ⊆ M(P) × T dense and open in M∗ and fix a condition
(r, t′) ≤ (p, t), that without loss of generality we can assume to be in D. Then
define

E =
⋃

{(wq, h) : (q, h) ∈ D,Mr ∩M ⊆ Mq}
and notice thatE ∈M and (wr, t′) ∈ E. Again the set E may not be dense, but the
set Ē = E≤ ∪ E⊥, where

E≤ =
⋃

{(ws, u) : ∃(wq, h) ∈ E such that (ws , u) ≤ (wq, h)} and
E⊥ =

⋃
{(ws, u) : ∀(wq, h) ∈ E(ws, u) ⊥ (wq, h)},

is a dense subset of P× T that belongs toM∗.
Now, since M ∈ Mr , the condition wr is (M,P)-generic, by definition ofM(P).
Moreover since �P “T is Suslin” we have that (wr, t′) is (M∗,P×T )-generic. Then
there is a (ws, u) ∈ Ē ∩M∗ that is compatible with (wr, t′). This latter fact then
implies that (ws, u) ∈ E≤ ∩ M∗ and so there is a condition (wq, h) ∈ E such
that (ws, u) ≤ (wq, h). By elementarity we can find (wq, h) ∈ M∗ and again, by
elementarity we can assume q = (Mq, wq) to be in M∗ and so (q, h) ∈ D ∩M∗.
Finally lettingMe =Mq∪{M}∪Mr\M , andwe be thewitness of the compatibility
between wq and wr , we have that e = (Me , we) ∈ M(P) and that (e, t′) extends
both (r, t′) and (q, h). �
Corollary 3.7. Let T be a Suslin tree and let P be a proper forcing. Then �P

“T is Suslin” implies �M(P) “T is Suslin”.

§4. PFA(T ) with finite conditions. We now show that it is possible to force an
analog of the Proper Forcing Axiom for proper posets that preserve a given Suslin
tree T . We will follow Neeman’s presentation of the consistency of PFA with finite
conditions, from [2], arguing that a slight modification of his method is enough for
our purposes. Then we will argue that in the model we build T remains Suslin
Recall Neeman’s definition of the forcing A (Definition 6.1 from [2]). Fix a
supercompact cardinal � and a Laver function F : � → H (�) as a book-keeping for
choosing the proper posets that preserveT . Moreover defineZ as the set of ordinals
α, such that (H (α), F � α) is elementary in (H (�), F ). Then let Z� = Z�0 ∪ Z�1 ,
where Z�0 is the collection of all countable elementary substructures of (H (�), F )
and Z�1 is the collection of all H (α), such that α ∈ Z has uncountable cofinality -
henceH (α) is countably closed. Moreover, for α ∈ Z, letf(α) be the least cardinal
such that F (α) ∈ H (f(α)). Notice that, by elementarity, f(α) is smaller than the
next element of Z above α.

Definition 4.1. If M is a set of models in Z� , let �0(M) = M ∩ Z�0 and
�1(M) =M∩Z�1 .
With an abuse of notation we will identify an ∈-chain of models with the set of
models that belong to it.

Definition 4.2. Let M2� be the poset whose conditions Mp are ∈-chains of
models inZ� closed under intersection. If p, q ∈ M2� , we definep ≤ q iffMq ⊆ Mp.

See Claim 4.1 in [2] for the proof thatM2� is Z� -strongly proper.
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Definition 4.3. Let T be a Suslin tree and let A(T ) be the poset consisting of
pairs p = (Mp, wp) so that:

(1) Mp ∈ M2� .
(2) wp is a partial function on �, with domain contained in the (finite) set {α < � :
H (α) ∈ Mp and �A(T )∩H (α) “F (α) is a proper poset, that preserves T}.

Moreover, for α ∈ dom(wp),
(3.1) wp(α) ∈ H (f(α));
(3.2) �A(T )∩H (α) wp(α) ∈ F (α);
(3.3) If M ∈ �0(Mp) and α ∈ M , then (Mp ∩ H (α), wp � α) �A(T )∩H (α)

“wp(α) is an (M [Ġα ], F (α))-generic condition”, where Ġα is the canonical
name for the generic filter on A(T ) ∩H (α).

The ordering on A(T ) is the following: q ≤ p iff Mp ⊆ Mq and for every
α ∈ dom(wp), (Mq ∩H (α), wq � α) �A(T )∩H (α) “wq(α) ≤F (α) wp(α)”.
Remark 4.4. This inductive definition makes sense, since A(T ) ∩ H (α) is
definable in anyM ∈ Z�0 , with α ∈M .
Remark 4.5. Condition (5) holds for α andM iff it holds for α andM ∩H (	),
whenever 	 ∈ Z ∪ {�}, is larger than α.
Definition 4.6. Let � be an ordinal in Z ∪ {�}. The poset A(T )� consists of
conditions p ∈ A(T ) such that dom(wp) ⊆ � .
Remark 4.7. In order to simplify the notation, if p ∈ A(T ), then we define (p)α
to be (Mp, wp � α), while by p � H (α) we denote (Mp ∩H (α), wp � α). Notice
that (p)α ∈ A(T )α and p � H (α) ∈ A(T ) ∩H (α).
FollowingNeeman it is possible to prove the following facts. See [2] for their proofs
in the case of the forcing A, i.e., the poset that forces PFA with finite conditions.
Indeed, the only difference between A and A(T ) is that the Laver function F picks
up posets from a smaller class; namely the class of proper posets that preserve T .

Theorem 4.8 (Neeman, Lemma 6.7 in [2]). Let � ∈ Z ∪ {�}. Then A(T )� is
Z�1 -strongly proper.
Claim 4.9 (Neeman, Claim 6.10 in [2]). Let p, q ∈ A(T ). LetM ∈ �0(Mp) and
suppose that q ∈ M . Suppose that for some � < �, p extends (q)� and dom(wq) \ �
is disjoint from dom(wp). Suppose further that (Mp ∩ M ) \ H (�) ⊆ Mq . Then
there is wp′ extending wp so that dom(wp′) =dom(wp) ∪ (dom(wq) \ �) and so that
p′ = (Mp, wp′) is a condition in A(T ) extending q.

Theorem 4.10 (Neeman, Lemma 6.11 in [2]). Let � ∈ Z ∪ {�}. Let p be a
condition in A(T )� . Let �∗ > � and letM∗ ≺ H (�∗) be countable with F, � ∈ M∗.
LetM =M∗ ∩H (�) and suppose thatM ∈ �0(Mp). Then:

(1) for every D ∈ M∗ which is dense in A(T )� there is q ∈ D ∩M∗ which is
compatible with p. Moreover there is r ∈ A(T )� extending both p and q, so
thatMr ∩M \H (�) ⊆ Mq , and every model in �0(Mr) above � and outside
M is either a model inMp or of the form N ′ ∩W , where N ′ is a model in
�0(Mp) andW ∈ �1(Mq).

(2) p is an (M∗,A(T )� )-generic condition.
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Theorem 4.11 (Neeman, Lemma 6.13 in [2]). After forcing with A(T ), PFA(T )
holds.

In order to show that A(T ) preserves T , we need the following claim.

Claim 4.12. If �A(T )α “T is Suslin”, then �A(T )α∩H (α) “T is Suslin”.

Proof. In order to show that A(T )α ∩H (α) preserves T , we use the equivalent
formulation in Lemma 2.2. For this, fix a countable M∗ ≺ H (�∗), with �∗ > �
and α,T ∈ M∗. Then, following Remark 4.4, both A(T )α ∩H (α) and A(T )α are
definable inM∗. If p ∈ (A(T )α ∩H (α))∩M∗ , then we want to show that there is a
condition p′ ≤ p such that for every t ∈ T�M∗ , with �M∗ =M∗ ∩�1, the condition
(p′, t) is (M∗, (A(T )α ∩H (α)) × T )-generic.
LetM =M∗∩H (�) andMpM be the closure under intersection ofMp∪{M}.We
can find a function wpM with the same domain as wp such that pM = (MpM ,wpM )
is a condition in A(T )α and such that pM � H (α) ≤ p. We claim that pM � H (α) is
the condition we need: i.e., (pM � H (α), t) is an (M∗, (A(T )α∩H (α))×T )-generic
condition, for every t ∈ T�M∗ .
To this aim fix a set D ∈M∗ dense in (A(T )α ∩H (α))× T , let t ∈ T�M∗ and let
(pM � H (α), t∗) ∈ D, for some t∗ that might extends t properly. By Theorem 4.10,
pM is an (M∗,A(T )α)-generic condition. Then, thanks to our hypothesis, (pM , t)
is an (M,A(T )α × T )-generic condition and so is (pM , t∗).
Now define E to be the set of conditions (q, h) ∈ A(T )α × T such that
(q � H (α), h) ∈ D and such thatMpM ∩M ⊆ Mq . Notice that (pM, t∗) ∈ E
and E ∈M∗. The set E may not be dense, but E0 = E

≤
0 ∪E⊥

0 , where

E≤
0 = {(q0, h0) : ∃(q, h) ∈ E such that (q0, h0) ≤ (q, h)},

and

E⊥
0 = {(q0, h0) : ∀(q, h) ∈ E (q0, h0) ⊥ (q, h)},

is a dense subset of A(T )α × T belonging toM∗.
Then there is (q0, h0) ∈ E0 ∩ M∗ that is compatible with (pM , t∗). Since
(pM , t∗) ∈ E , by definition of E0, there is a condition (q, h) ∈ E that is com-
patible with (pM, t∗). By elementarity we can assume (q, h) ∈ E ∩M∗. Now, the
key observation is that by strong genericity of the pure side conditions if (r, t∗)
witnesses that (pM, t∗) and (q, h) are compatible, then (r � H (α), t∗) witnesses that
(p � H (α), t∗) and (q � H (α), h) are compatible. This is sufficient for our claim,
because by definition of E and since q is finite, (q � H (α), h) ∈ D ∩M∗. �
We can now state and proof the main preservation theorem of this section.

Theorem 4.13. If G is a generic filter for A(T ), then in V [G ] the tree T is Suslin.

Proof. We proceed by induction on � ∈ Z ∪ {�}, proving that A(T )� preserves
T . If � is the first element of Z, then A(T )� =M2� . �
Claim 4.14. The forcingM2� preserves T .

Proof. LetM∗ ≺ H (�∗) be a countable model with �∗ > �, containingM2� and
T , and letMp ∈ M2� be an (M

∗,M2� )-generic condition, withM = M
∗ ∩H (�) ∈

Mp.Moreover, let t ∈ T�M , with �M =M∩�1. Thanks toLemma 2.2, it is sufficient
to show that (Mp, t) is an (M∗,M2� × T )-generic condition.
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To this aim, let D ∈ M∗ be a dense subset ofM2� × T and assume, by density of
D, that (Mp, t) ∈ D. Then define

E = {h ∈ T : ∃Mq ∈ M2� such that (Mq, h) ∈ D ∧Mp ∩M ⊆ Mq}.
Since M2� ,D,Mp ∩M ∈ M∗, we have E ∈ M∗. The set E may not be dense in T
but

Ē = {h̄ ∈ T : ∃h ∈ E(h̄ ≤ h) ∨ ∀h ∈ E(h̄ ⊥ h)}.
belongs toM∗ and it is dense in T .
By (M∗, T )-genericity of t, there is an h̄ ∈ Ē ∩M that is compatible with t.
Moreover, since (Mp, t) ∈ D, we have that t ∈ E. Since t ∈ E and h̄ ∈ Ē are
compatible, by definition of Ē , there is h ∈ E, with h̄ ≤ h. By elementarity pick
such an h inM∗. Then, by definition ofE, there isMq ∈ M2� , withMp∩M ⊆ Mq ,
such that (Mq, h) ∈ D. By elementarity we can find Mq ∈ M∗. Then, since
Mp is (M,M2� )-strong generic andMp ∩M ⊆ Mq , we have thatMp andMq

are compatible. Finally, t and h̄ are compatible because t ≤ h̄ and h̄ ≤ h. Hence
(Mp, t) and (Mq , h) are compatible inM2�×T and this compatibility, together with
the fact that (Mq, h) ∈ D ∩M∗, witnesses that (Mp, t) is (M∗,M2� × T )-generic.
If � is the successor of α in Z, then, by inductive hypothesis A(T )α , preserves
T . In order to show that A(T )� also preserves T , we use the characterization
of Lemma 2.2. For this, let M∗ ≺ H (�∗) be a countable model, with �∗ > �,
containing �, F , andT . Notice thatA(T )� is definable inM∗, with � as a parameter.
Moreover let p ∈ A(T )� be an (M∗,A(T )� )-generic condition, with M = M∗ ∩
H (�) ∈ Mp, and let t ∈ T�M , with �M =M ∩�1. Then we want to show that (p, t)
is an (M∗,A(T )� × T )-generic condition.
By elementarity ofM∗, α ∈M∗. Now, fix a V -generic filter G over A(T )α , with
(p)α ∈ G . By Theorem 4.10 (p)α is an (M∗,A(T )α)-generic condition forM∗ and
soM∗[G ] ∩ V =M∗.
If H (α) /∈ Mp and p cannot be extended to a condition containing H (α),
then A(T )� below p, is equivalent to A(T )α below p. Then, forcing below p, the
conclusion follows by inductive hypothesis. Hence, we may assumeH (α) ∈ Mp.
Let Gα = G ∩ H (α). Then, by Theorem 4.8, we have that Gα is a V -generic
filter on A(T ) ∩ H (α), because A(T )α ∩H (α) = A(T ) ∩ H (α). Without loss of
generality, we can assume �A(T )∩H (α) “F (α) is a proper poset that preserves T”,
because otherwise A(T )� is equal to A(T )α and again the conclusion follows by
inductive hypothesis. Let Q = F (α)[Gα ]. Then, by properness of Q in V [Gα],
modulo extending p, we can assume α ∈dom(wp).
Fix D ⊆ A(T )� × T dense and in M∗. Moreover, let (p, t∗) ∈ D, for some t∗
that might extends t properly. Since we will work in V [Gα], we need to ensure that
�A(T )∩H (α) “T is Suslin”. But this is true, by inductive hypothesis, as the Claim 4.12
shows.
Now, in V [Gα], define E to be the set of couples (u, h) ∈ Q × T for which there
is a condition (q, h) ∈ A(T )� × T such that
(1) wq(α)[Gα ] = u,
(2) Mp ∩M ⊆ Mq ,
(3) (q, h) ∈ D, and
(4) q � H (α) ∈ Gα .
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Notice that E ∈ M∗[Gα] and that (wp(α)[Gα ], t∗) ∈ E. The set E may not be
dense, but if we define E0 = E

≤
0 ∪ E⊥

0 , with

E≤
0 = {(u0, h0) ∈ Q× T : ∃(u, h) ∈ E (u0, h0) ≤ (u, h)}

and
E⊥
0 = {(u0, h0) ∈ Q× T : ∀(u, h) ∈ E (u0, h0) ⊥ (u, h)},

we have that E0 is dense in Q × T . Moreover, notice that by elementarity E0 is in
M∗[Gα ].
Now, since M ∈ �0(Mp) and α ∈ M∗ ∩ H (�) = M , we have that �A(T )∩H (α)
“wp(α) is an (M∗[Ġα], F (α))-generic condition”, where Ġα is a A(T ) ∩ H (α)-
name for Gα . Moreover, �A(T )∩H (α) “F (α) is a proper poset that preserves T”
and, by inductive hypothesis and Lemma 4.12, �A(T )∩H (α) “T is Suslin”. Then
by Lemma 2.2 applied in V [Gα] we have that (wp(α)[Gα ], t) is an (M∗[Gα],Q ×
T )-generic condition and so is (wp(α)[Gα ], t∗).
Hence, there is a condition (u0, h0) ∈ E0 ∩ M∗[Gα ] that is compatible with
(wp(α)[Gα ], t∗). Moreover, since (wp(α)[Gα ], t∗) ∈ E we have that (u0, h0) ∈ E≤

0 .
This means that there is (u, h) ∈ E such that (u0, h0) ≤ (u, h). By construction (u, h)
is compatible with (wp(α)[Gα ], t∗) and by elementarity we can find such a condition
in M∗[Gα]. Let uα ∈ Q be a witness of the compatibility between wp(α)[Gα ]
and u. Notice that uα is an (N [Gα ],Q)-generic condition for all N ∈ �0(Mp)
with α ∈ N , because uα ≤ wp(α)[Gα ]. Since (u, h) ∈ E, there is a condition
q ∈ A(T )� with Mp ∩ M ⊆ Mq and wq(α)[Gα ] = u such that (q, h) ∈ D.
By elementarity let q ∈ M∗[Gα] and so (q, h) ∈ M∗[Gα ] ∩ D. Since M∗[Gα ] ⊆
M∗[G ] andM∗[G ]∩V =M∗, we have (q, h) ∈ D∩M∗. Now, by strong genericity
of the pure side conditions, lettingMr be the closure under intersection ofMp∪Mq ,
we have thatMr witnesses thatMp andMq are compatible. Moreover every model
in �0(Mr) above � and outsideM is either a model inMp or of the form N ′ ∩W ,
whereN ′ is amodel in �0(Mp) andW ∈ �1(Mq). Then uα is an (N [Gα ],Q)-generic
condition, for all N ∈ �0(Mr), with α ∈ N , because of Remark 4.5 together with
the fact that uα extends both wp(α)[Gα ] and u.
Finally, back in V , let u̇ and u̇α beA(T )α ∩H (α)-names for u and uα. Moreover,
let e ∈ A(T )α ∩H (α) be sufficiently strong to force all the properties we showed
for q, u̇, and u̇α . We can also assume that e extends both q � H (α) and p � H (α).
Now notice thatMe ∪Mr is already an ∈-chain closed under intersection and so
ifMs =Me ∪Mr and ws = we ∪ (α, u̇α), we have that s is a condition in A(T )� .
Hence (s, t∗) witnesses that (p, t) and (q, h) are compatible.
If � is a limit point ofZ, let againM∗ ≺ H (�∗) be a countable model containing

A(T )� and F . Then if p ∈ A(T )� , withM∗ ∩H (�) =M ∈ Mp, and t ∈ T�M , with
�M = M ∩ �1, then, thanks to Lemma 2.2, it is sufficient to show that (p, t) is an
(M∗,A(T )� ×T )-generic condition, in order to prove thatA(T )� preserves that T
is Suslin.
To this aim, let �̄ = sup(� ∩ M∗) and let � < �̄ , in Z ∩ M∗, be such that
dom(wp) ⊆ �. Moreover fix D ∈ M∗ dense in A(T )� × T and let (p, t∗) ∈ D, for
some t∗ that might extends t properly.
Now, define E as the set of conditions ((q)� , h) ∈ A(T )� × T that extend to
conditions (q, h) ∈ D, withMp ∩M ⊆ Mq . The set E belongs toM∗, but it may
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not be dense in A(T )� ×T . However the set E0 = E≤
0 ∪E⊥

0 is dense in A(T )� × T
and belongs toM∗; where

E≤
0 = {(q0, h0) ∈ A(T )� × T : ∃((q)� , h) ∈ E such that (q0, h0) ≤ ((q)� , h)},

and

E≤
0 = {(q0, h0) ∈ A(T )� × T : ∀((q)� , h) ∈ E (q0, h0) ⊥ ((q)� , h)}.

Then, by the inductive hypothesis, find a condition (q0, h0) ∈ E0 ∩M∗ that is
compatible with ((p)� , t∗). Moreover, since ((p)� , t∗) ∈ E and it is compatible with
(q0, h0), we have that (q0, h0) ∈ E≤

0 . Then, by definition of E
≤
0 , there is a condition

((q)� , h) ∈ E such that (q0, h0) ≤ ((q)� , h) and which therefore is compatible with
((p)� , t∗). By elementarity pick such a condition in M∗. Moreover, thanks to the
fact thatMp ∩M ⊆ Mq and thatMp ∩M witnesses theM -strong genericity of
Mp, we have that the compatibility between ((p)� , t∗) = ((p)� , t∗) and ((q)� , h) is
witnessed by a condition

(
(Mr , w1), t∗

)
, whereMr is the closure under intersection

ofMp ∪Mq . Then we have thatMr ∩M \H (�) ⊆ Mq , and that every model in
�0(Mr) above � and outside M is either a model inMp or of the form N ′ ∩W ,
where N ′ is a model in �0(Mp) andW ∈ �1(Mq).
Now, let (q, h) ∈ D witness that ((q)� , h) ∈ E. By elementarity, we can assume
(q, h) ∈ D∩M∗. Then, thanks to the fact thatMr ∩M \H (�) ⊆ Mq we can apply
Claim 4.9 and find a function w2, extending w1, defined as dom(w2) = dom(w1) ∪
(dom(wq)\�), such that

(
(Mr , w2), t∗

)
extends (q, h). Settingwr = w2∪wp � [�̄ , �),

we claim that r belongs to A(T )� .
In order to show that this latter claim holds, it is sufficient to show that
if α ∈dom(wp) � [�̄ , �), then p � H (α) forces that wr(α) = wp(α) is an
(N [Ġα ], F (α))-generic condition, where Ġα is the canonical name for a V -generic
filter over A(T ) ∩H (α) and N ∈ �0(r), with α ∈ N . Notice that α ∈ N implies
N /∈ M . Then, since p is a condition, the claim follows thanks to Remark 4.5 and
the fact that every model in �0(Mr) above � and outsideM is either a model inMp

or of the formN ′ ∩W , where N ′ is a model in �0(Mp).
Hence, finally we have that (r, t∗) belongs toA(T )�×T and that, by construction,
it extends both (q, h) and (p, t). �
§5. Conclusions. As stated in the introduction, Theorem 4.13 could be in prin-
ciple generalized to other forcing notions. Indeed the argument patterns of all new
results of this paper are similar and in proving them we just used, on the one hand,
the fact that the product of a strong proper forcing with a proper forcing pro-
duces a proper forcing (see Claim 3.8 in [2]), while on the other hand we did not
use essential properties of the tree T , except the characterization of Lemma 2.2.
As a consequence we can state a more general theorem that extends both Theorem
4.11 and Theorem 4.13.

Definition 5.1. LetQbe a proper forcing.Wedefine the classΓQ as the collection
of all proper forcing notions P such that for every countable M ≺ H (κ), with κ
sufficiently large and such that Q,P ∈ M , if p ∈ P is (M,P)-generic and q ∈ Q is
(M,Q)-generic, then (p, q) is (M,P×Q)-generic.

Definition 5.2. If Q is a proper forcing we let PFA(Q) be the forcing axiom,
relative to collections of ℵ1-many dense sets, for the class ΓQ.
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Theorem 5.3. Given a proper forcingQ, there is a proper forcingA(Q) that,modulo
the existence of a supercompact cardinal, forcesPFA(Q).Moreover, the forcing notion
A(Q) belongs to the class ΓQ.

Indeed if we define A(Q) appropriately along the lines of Definition 4.3, then a
slight modification of Neeman’s consistency proof for PFA ([2]) shows that A(Q)
is proper and that it forces PFA(Q).
Moreover, we can summarize the proof of Theorem 4.13 as showing that the
following property holds for all α ∈ Z ∪ {�}.
(∗)α : if M is a countable elementary substructure of H (�) such that A(T )α ,
T ∈ M , then if p is (M,A(T )α)-generic and t is (M,T )-generic, then (p, t) is
(M,A(T )α × T )-generic.
Theorem 4.13 then shows that (∗)� holds. Hence, we can also conclude thatA(T )
belongs to the class ΓT . Since Theorem 4.13 makes no use of the tree structure of
T—nor of the fact that T is c.c.c.—but only of its properness, the same argument
can be adapted in order to show that A(Q) belongs to the class ΓQ.
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