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Ostwald ripening is a pore-scale phenomenon that coarsens a dispersed phase
until thermodynamic equilibrium. Based on our previous finding that multi-bubble
equilibrium is possible and likely in complex porous media, we develop a new
continuum-scale model for Ostwald ripening in heterogeneous porous media. In this
model, porous media with two different capillary pressure curves are put into contact,
allowing only diffusive flow through the aqueous phase to redistribute a trapped gas
phase. Results show that Ostwald ripening can increase the gas saturation in one
medium while decreasing the gas saturation in the other, even when the gas phase
is trapped in pore spaces by capillary forces. We develop an analogous retardation
factor to show that the characteristic time for Ostwald ripening is about 105 times
slower than a single-phase diffusion problem due to the fact that separate-phase gas
requires a much larger amount of mass transfer before equilibrium is established.
An approximate solution has been developed to predict the saturation redistribution
between the two media. The model has been validated by numerical simulation
over a wide range of physical parameters. Millimetre to centimetre-scale systems
come to equilibrium in years, ranging up to 10 000 years and longer for metre-scale
systems. These findings are particularly relevant for geological CO2 storage, where
residual trapping is an important mechanism for immobilizing CO2. Our work
demonstrates that Ostwald ripening due to heterogeneity in porous media is slow
and on a similar time scale compared to other processes that redistribute trapped CO2

such as convective mixing.

Key words: bubble dynamics, multiphase flow, porous media

1. Introduction

Ostwald ripening is a phase coarsening phenomenon that has been observed in
various systems where a dispersed second phase is present (Greenwood 1956; Lifshitz
& Slyozov 1961; Plesset & Sadhal 1982; Voorhees 1985, 1992). In a bulk liquid, the
dispersed phase in the form of bubbles is coarsened by growth of large bubbles at
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the expense of small bubbles. Capillary pressure of a bubble can be expressed as a
function of its radius according to Laplace’s law, i.e.

Pc =
2σ
r
, (1.1)

where Pc is the pressure difference between the two phases, σ is the interfacial
tension and r is the interfacial radius. Coexistence of bubbles of different sizes
leads to capillary pressure gradients within the system, serving as the driving force
for Ostwald ripening. The mass fraction of dissolved gas species in the continuous
phase adjacent to an interface is proportional to local capillary pressure according to
Henry’s law, i.e.

X =
Pw + Pc

H
, (1.2)

where X is the mass fraction of dissolved gas species in the adjacent continuous phase,
Pw is the pressure of the continuous phase and H is Henry’s constant. This mass
fraction gradient drives mass flux from the bubbles with high capillary pressure toward
regions of low capillary pressure.

In a bulk liquid, the interfacial radius is equivalent to the bubble radius because the
interface is spherical and can grow without spatial restriction. In a porous medium,
however, the presence of a solid matrix adds complexity to the Ostwald ripening
process. The shape of each individual ganglion is strongly restricted by local pore
topography, and interfacial radii at free interfaces are strongly dependent on pore
geometry (Bear 2013). Given the circumstances, capillary pressure of a ganglion is
rather a complex function of local pore topography and pore size instead of its volume
(Garing et al. 2017). This fact leads to difficulty when predicting mass redistribution
of dispersed ganglia by Ostwald ripening due to capillary pressure gradients.

Past studies of Ostwald ripening in porous media have dealt with this complexity
in a number of ways. For example, Ostwald ripening has been neglected because
concentration gradients imposed by the rate of change of the supersaturation
were significantly larger than those driving Ostwald ripening (Li & Yortsos 1995;
Tsimpanogiannis & Yortsos 2002). Other studies on Ostwald ripening in porous media
neglected capillary pressure gradients (Dominguez, Bories & Prat 2000; Goldobin &
Brilliantov 2011). In recent years, Ostwald ripening in porous media driven by
capillary pressure gradients has gained researchers’ attention due to its potential
application to geological carbon sequestration (Garing et al. 2017; Xu, Bonnecaze &
Balhoff 2017; de Chalendar, Garing & Benson 2018). In particular, one important
mechanism of immobilizing CO2 is referred to as residual trapping, where injected
CO2 is residually trapped in the form of disconnected ganglia by capillary forces
(Hesse, Orr & Tchelepi 2008; Bear 2013). If residual CO2 ganglia coexist at different
capillary pressures, the resulting capillary pressure gradients will initiate Ostwald
ripening. Consequently, ganglia may shrink or grow resulting in redistribution of
residual CO2 and potentially, re-aggregation of initially disconnected CO2.

To evaluate the potential for Ostwald ripening in porous media, it is necessary
to determine the capillary pressure of a single ganglion. Andrew, Bijeljic & Blunt
(2014) imaged trapped CO2 ganglia in a limestone sample at reservoir conditions and
calculated curvatures of CO2–brine interfaces. The measured curvatures over a single
ganglion display a well-defined peak, indicating that a single ganglion is present at a
single value of capillary pressure. This observation is also supported by an analysis
on interfacial curvatures in an air–brine system performed by Garing et al. (2017).
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Ostwald ripening at the continuum scale in porous media 889 A14-3

In addition to a single ganglion, studies have shown that a group of adjacent
ganglia can reach local capillary equilibrium. de Chalendar et al. (2018) developed a
pore-network model for simulating Ostwald ripening accounting for capillary effects
using conically-shaped pore throats. The authors demonstrated that CO2 ganglia
across several pores with initially different capillary pressures could eventually
approach capillary equilibrium by inter-ganglion diffusion on the time scale of
years. This finding was supported by a two-and-a-half-dimensional micro-model
experiment (Xu et al. 2017), where the authors reported that trapped gas ganglia
with initially different sizes can eventually approach a uniform size. Furthermore,
Garing et al. (2017) showed that the equilibrium capillary pressure of trapped air
ganglia is roughly at the same order of the entry pressure of the porous medium. This
observation implied that not only is there a potential for Ostwald ripening among
local ganglia across several pores, but also among the groups of ganglia in porous
media with different entry pressures.

The above findings of Garing et al. (2017) and de Chalendar et al. (2018) give rise
to a new scenario of Ostwald ripening in the context of geological CO2 sequestration.
Supercritical CO2 is injected into a reservoir and forms a CO2 plume that flows
laterally and upward driven by viscous and buoyancy forces. After injection stops,
reservoir water imbibes into the CO2 plume and traps CO2 in the form of residual
CO2. Residually trapped CO2 could reach local capillary equilibrium rapidly at the
same order of the local entry pressure. Capillary heterogeneity can be observed at
various spatial scales above the representative elementary volume (REV) such as
from the sub-core scale to the reservoir scale and results in variation of local entry
pressure (Van Genuchten 1980; Pini, Krevor & Benson 2012). Therefore, different
sections of a heterogeneous reservoir have different capillary pressure curves. These
capillary pressure gradients can initiate Ostwald ripening among locally equilibrated
residually trapped CO2 and may result in CO2 redistribution in the reservoir even
though the CO2 ganglia are completely trapped. Therefore, it is crucial to evaluate
the impact of Ostwald ripening in this scenario on residual CO2 and evaluate the
time scale for redistribution, owing to the fact that redistribution may re-aggregate
disconnected CO2 and remobilize the trapped CO2.

To this end, we investigate the consequences of Ostwald ripening on the equilibrium
of residually trapped CO2 driven by reservoir heterogeneity. Three contributions
are made in this paper. Firstly, we use a continuum-scale multi-physics numerical
model to demonstrate redistribution of residually trapped CO2 by Ostwald ripening.
Secondly, we develop an analogous retardation factor based on the mathematical
model of Ostwald ripening to compare the time scale of capillary equilibrium to
that of single-phase diffusion. Lastly, we develop a new approximate solution for
predicting the redistribution of residually trapped CO2 over the entire course of
evolution, serving as a tool to evaluate the importance of Ostwald ripening at various
spatial scales and over a wide range of reservoir properties and initial conditions.

2. Continuum-scale numerical simulation of Ostwald ripening
2.1. The conceptual model

The conceptual model underlying this work is defined by re-equilibration between
several adjacent domains of residual CO2 ganglia that are locally equilibrated within
each domain, but are out of capillary equilibrium with the adjacent domains. During
the re-equilibration period, residual CO2 redistributes between the domains by
diffusion of CO2 through the aqueous phase, causing the capillary pressures of
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FIGURE 1. A continuum-scale conceptual representation of Ostwald ripening of residually
trapped CO2. (a) An illustration of the initial condition. The CO2 ganglia are trapped
in pore spaces and at local capillary equilibrium. Their interfacial curvatures are uniform
within a domain and different between domains. (b) Capillary pressure distribution at the
initial condition. The initial condition is at the end of imbibition where capillary pressures
of residual CO2 are represented by the endpoints of imbibition capillary pressure curves.
(c) An illustration at equilibrium. Trapped CO2 ganglia shrink or grow due to Ostwald
ripening, and their interfacial curvatures approach the same value between domains. (d)
Capillary pressure distribution at equilibrium. The CO2 saturation within the two domains
redistributes due to Ostwald ripening and approach capillary equilibrium between domains.

all domains to eventually approach the same value. When the spatial scale that
ganglia groups expand over is above the REV, this pore-scale phenomenon manifests
its effects at the continuum scale, where residual CO2 saturation changes among
domains. Here, we develop a continuum-scale model to link this redistribution to its
pore-scale origins.

This model focuses on the supercritical CO2–water system, but could equally
well be used for other pairs of immiscible fluids. The model is horizontal and
one-dimensional with closed boundaries and consist of two domains. As shown in
figure 1(a), the two domains are homogeneous respectively, while their capillary
pressure curves are different as shown in figure 1(b). The two domains are connected
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Ostwald ripening at the continuum scale in porous media 889 A14-5

to allow the aqueous phase to move freely between them so that the pressure in the
aqueous phase is the same across the entire model.

The initial condition for this model is assumed to be shortly after imbibition,
after pore-scale capillary equilibrium of the ganglia within each domain has been
established, as shown in figure 1(b). The CO2 is assumed to be completely immobile
with zero relative permeability at any saturation. The capillary pressure of the trapped
CO2 is assumed to be slightly above the entry pressure of the rock, as found in Garing
et al. (2017). The capillary pressure gradient between the two domains creates a CO2
mass fraction gradient in the aqueous phase to drive CO2 to diffuse from the high
capillary pressure domain to the low capillary pressure domain. The saturation of
CO2 within the two domains redistributes during equilibration, and the two capillary
pressures eventually approach equilibrium, as shown in figure 1(c,d).

We simply choose two imbibition capillary pressure curves to link residual CO2
saturation to capillary pressure for each domain. In the high capillary pressure domain,
capillary pressure will decrease as it equilibrates with the other domain. We assume
that this decrease in capillary pressure follows an extension of the imbibition curve, as
shown in figure 1(d). The extension fulfils two requirements. Firstly, capillary pressure
should decrease as CO2 ganglia retreat from the pore throats towards the pore body.
Secondly, the capillary pressure curve should not fall below the entry pressure of the
rock. For the low capillary pressure domain, the capillary pressure will increase as
Ostwald ripening occurs. We assume that during this period, the capillary pressure
will follow the imbibition curves shown in figure 1(b). It should be noted that the
imbibition capillary pressure curves chosen here only describe the mathematical
relationship between residual CO2 saturation and its capillary pressure instead of
indicating the process to be imbibition. Conventionally, capillary pressure hysteresis
only applies to the continuous non-wetting phase, and the residual non-wetting phase
is excluded from the measurement of capillary pressure (Bear 2013). Therefore, we
do not adopt the concept of hysteresis to describe the capillary pressure change
for residual CO2 due to Ostwald ripening, and choosing imbibition curves is only
for convenience as it represents a reasonable trend. The actual capillary pressure
changes due to continuum-scale Ostwald ripening of residually trapped CO2 could,
in principle, be acquired by measuring the interfacial curvature through micro-CT
imaging, although the long time scales would make this very challenging (Garing
et al. 2017).

2.2. Description of the numerical model
The numerical simulator used for this problem is TOUGH2, a widely used simulator
in problems relevant to flow in porous media such as geological CO2 sequestration
and nuclear waste disposal (Pruess, Oldenburg & Moridis 1999). The equation-of-
state ECO2N is adopted to describe the thermodynamic properties of CO2–water–NaCl
systems. This equation-of-state reproduces mutual solubility in the CO2–brine system
within experimental accuracy and covers a wide range of temperatures (10–110 ◦C),
pressure (6600 bar) and salinity (up to full halite saturation) (Spycher & Pruess 2005;
Pruess & Spycher 2007).

The model is horizontal and one-dimensional with two equal-length domains as
shown in figure 1 with two closed boundaries. Each domain is discretized into 8 grid
cells of equal size, for a total of 16 grid cells in the model. The closed boundaries
on the left- and right-hand side of the model can be interpreted as the region around
the connection between two domains in a periodic heterogeneous system. The initial
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FIGURE 2. An example of the relative permeability model used in the conceptual model
and numerical simulation. The CO2 relative permeability is set to 0 at all saturation to
ensure that separate-phase CO2 is immobile over the entire course of evolution.

condition assumes the presence of a completely trapped residual CO2 phase within
each domain. As shown in figure 2, the relative permeability of the CO2 phase is
set to be zero over the entire saturation range, which ensures that the CO2 phase
stays immobile no matter how the saturation changes. In principle, the CO2 phase
may become mobile when its saturation increases. However, for this study we choose
to investigate the particular case where the separate-phase CO2 remains immobile to
isolate the effects of Ostwald ripening on the non-wetting phase redistribution. Future
work will explore the implications of remobilizing the CO2 phase.

The two domains are assigned two different capillary pressure curves. The relative
permeability and the capillary pressure characteristic curves are provided in table 1.
These models and their parameters are picked because they represent experimentally
measured properties of sandstone (Krevor et al. 2012). In addition, these models are
flexible enough to adjust the curve characteristics such as entry pressure, irreducible
saturation and curve steepness to represent a wide variety of rock types.

One example case is set up with its input parameters in table 1. For the full set
of simulations, the input parameters are randomly generated within the ranges that
are representative of typical reservoir conditions and reservoir properties for geological
CO2 sequestration. For the initial condition, the residual CO2 within each domain is
at local capillary equilibrium, resulting in a sharp gradient initially at the boundary
between the two domains.

2.3. Results of numerical simulation
Results from the example case of the numerical simulation are presented in figure 3.
During the early stages, a sharp gradient of CO2 capillary pressure and resulting CO2
mass fraction gradient can be seen at the interface between the two domains. Here,
the CO2 mass fraction in the aqueous phase X is defined as

X =
mass of dissolved CO2

mass of dissolved CO2 +mass of water
. (2.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

53
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.53


Ostwald ripening at the continuum scale in porous media 889 A14-7

Category Parameter Domain 1 Domain 2 Unit Description

Rock property k 1.08× 10−13 5.62× 10−14 m2 Permeability
φ 0.165 0.198 — Porosity

Capillary
pressure
model

Pc = Pe + P0

(
1− Sw

Sw − Swi

)1/λ

Narasimhan et al. (1978)

Pe 3063 4248 Pa Entry pressure

P0 7659 10621 Pa Fitting parameter 1

λ 0.78 0.78 — Fitting parameter 2

Swi 0.04 0.04 — Irreducible water

Relative
permeability
model

krw = S3, krCO2 = 0, where S=
Sw − Swi

1− Swi
Verma et al. (1985)

Domain size L/2 0.005 0.005 m Domain length

Initial condition Pw 13.9 MPa Reservoir pressure
T 70 ◦C Temperature

Dw 5.04× 10−9 m2 s−1 Diffusion coefficient of CO2

in the aqueous phase
(Cadogan et al. 2014)

TABLE 1. Simulation input parameters of the example case shown in figure 3.

This mass fraction gradient initiates diffusion of CO2 in the aqueous phase from the
high capillary pressure domain to the other. Over time, the gradients of CO2 mass
fraction and capillary pressure decrease, and CO2 saturation redistributes between the
two domains even though the separate-phase CO2 is set to be immobile over the entire
simulation period (e.g. the relative permeability is zero). The results show that Ostwald
ripening is capable of changing the saturation distribution of CO2 between the two
domains.

For the example shown here, establishing equilibrium between the two domains
requires a period of about 10 years, even though the domain size is very small
(0.01 m).

3. Mathematical model for residual CO2 redistribution by Ostwald ripening
Numerical simulation shows that residual CO2 can be redistributed by Ostwald

ripening even though the residual CO2 is completely immobile. However, the
redistribution by Ostwald ripening is extremely slow. The characteristic time for
diffusion is usually expressed as

tc =
l2

D
, (3.1)

where l is the characteristic length of the model and D is the diffusion coefficient.
For a single-phase diffusion problem (only the aqueous phase and dissolved CO2)
with the same size of the numerical model shown in the last section, the characteristic
time should be of the order of hours. However, the time to approach equilibrium
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FIGURE 3. An example of numerical simulation on redistributing residually trapped CO2
by Ostwald ripening in the aqueous phase. The evolution of (a) capillary pressure, (b) CO2
mass fraction in the aqueous phase and (c) CO2 saturation are shown. The CO2 saturation
increases in the low capillary pressure domain due to Ostwald ripening even though the
separate-phase CO2 is immobile.

for Ostwald ripening is about 10 years. In this section, we develop a mathematical
model to explain the large difference between the single-phase diffusion problem
and the Ostwald ripening problem. This model is expected to provide insights on
the retardation of the equilibration, and assumptions will be made in this model to
reduce complexity such as reducing variables to constants that have little impacts on
the diffusion problem.

As shown in figure 1, the low capillary pressure domain (domain 1) is receiving
the diffusive flux of CO2 from the high capillary pressure domain (domain 2). The
diffusive flux is responsible for both the increase of CO2 mass fraction in the aqueous
phase and the growth of separate-phase CO2. By assuming diffusion only, without any
advection of the CO2 phase, the mass conservation equation for CO2 is

∂(XSwρwφ)

∂t
+
∂(YSgρgφ)

∂t
=
∂

∂x

[
φDwSw

∂(Xρw)

∂x

]
, (3.2)

where X and Y are the CO2 mass fractions in the aqueous phase and in the CO2 phase,
respectively, Sw and Sg are the water saturation and CO2 saturation, ρw and ρg are the
water density and CO2 density, and x is the distance. The term φDwSw can be viewed
as the effective diffusion coefficient accounting for the area open to diffusion.

Equation (3.2) can be simplified by assuming some variables are constants. First,
the water density ρw, CO2 density ρg, diffusion coefficient Dw and porosity φ can be
assumed constant and equal to the values in domain 2 due to constant temperature and
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a negligible change of pressure during the evolution compared to reservoir pressure.
Second, the CO2 mass fraction in the gaseous phase Y can be assumed to be equal
to 1. Although Y is a complex function of X and local reservoir conditions as shown
in equations 1 and 2 in Spycher & Pruess (2005), figure 2 of their paper shows that
the water mole fraction in the CO2 phase is near 1 %–2 % for reservoir conditions.
Therefore, Y can be expected to be larger than 99 %. Third, water saturation can be
assumed to be 1 for simplicity. The first and second terms in (3.2) represent the CO2
mass in the aqueous phase and in the CO2 phase, respectively. Considering Y (around
99 %) is much larger than X (around 5 %) (Spycher & Pruess 2005) and there is a
high saturation of residual CO2 (Burnside & Naylor 2014), the amount of CO2 in the
aqueous phase is significantly smaller than that in the CO2 phase. Therefore, it is safe
to assume that Sw= 1 with minimal impact on the total amount of CO2 in the system.
Based on the above assumptions, equation (3.2) becomes

∂X
∂t
+
ρg

ρw

∂Sg

∂t
=Dw

∂2X
∂x2

. (3.3)

Changes in Sg can be expressed as a function of changes in local CO2 mass fraction
X by

∂Sg

∂t
=

dSg

dPc

dPc

dX
∂X
∂t
. (3.4)

In (3.4) the term dSg/dPc can be calculated from the capillary pressure model
for the rock. The term dPc/dX can be estimated based on the data from Spycher &
Pruess (2005) for specific reservoir conditions. Detailed estimation of this term will
be described in the following section.

Substituting (3.4) into (3.3), equation (3.3) can be written in the form

RCO2

∂X
∂t
=Dw

∂2X
∂x2

, (3.5)

where
RCO2 = 1+

ρg

ρw

dSg

dPc

dPc

dX
. (3.6)

Here, RCO2 is analogous to the concept of the ‘retardation factor’ commonly used
in convection–dispersion problems with absorptive materials where the advance of the
solute is retarded due to adsorption of the solute onto the matrix (Bear 2013). The
term (ρg/ρw)(dSg/dPc)(dPc/dX) is equivalent to the ‘adsorption’ term that retards the
progress of CO2 diffusion in the aqueous phase by absorbing CO2 into the CO2 phase.
The time scale of residual CO2 redistribution by Ostwald ripening can be estimated
based on the time scale of the retarded diffusion process, such as the magnitude of
RCO2 .

To summarize, the mathematical model of residual CO2 distribution by Ostwald
ripening can be expressed by re-arranging equation (3.5) to give

∂X
∂t
=Dequiv

∂2X
∂x2

, (3.7)

with the equivalent diffusion coefficient

Dequiv =
Dw

RCO2

. (3.8)
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FIGURE 4. A conceptual illustration of a homogeneous case with a CO2-saturated
aqueous phase and only one domain initially containing separate-phase CO2. The system
approaches equilibrium through diffusive flux of CO2 in the aqueous phase transporting
CO2 to increase CO2 saturation in the other domain. Eventually, the CO2 saturation will
approach the same at equilibrium.

4. Exact solution for Ostwald ripening in a homogeneous system and characteristic
time

4.1. Exact solution for Ostwald ripening in a homogeneous system
Equations in the form of (3.7) have been solved extensively for particular represen-
tations of Dequiv (Fokas & Yortsos 1982; Kashchiev & Firoozabadi 2003). However,
the problem we are interested in for this paper is defined as a two-domain system
with different capillary pressure curves in each domain. This situation may cause
the term dSg/dPc in the diffusion coefficient to be in nonlinear and discontinuous
forms that make the differential equation non-solvable. Therefore, we define a
homogeneous system to illustrate the Ostwald ripening process while preserving
the key characteristics of the problem in a heterogeneous system.

The system is a one-dimensional homogeneous porous medium with length L with
two closed boundaries. The initial condition is that the CO2 saturation is non-zero in
the left half of the system and 0 in the right half. The mass fraction in the aqueous
phase in the right half of the system is set such that any increase in CO2 will result
in the formation of separate-phase CO2. On the left-hand side, the separate-phase CO2
is at the residual saturation and kept immobile over the entire evolution. Over time,
CO2 will diffuse from the left domain to the right through the aqueous phase, and
CO2 saturation in the two domains will approach the same value. The entire system
shares the identical capillary pressure curve so that the equivalent diffusion coefficient
is continuous. In figure 4 we illustrate the defined system at its initial condition and
equilibrium state.

To solve (3.7) and (3.8) for the above system, it is necessary to find a specific form
of RCO2 . Firstly, the derivative dPc/dX can be estimated from the equation-of-state for
the CO2–water–NaCl system for each temperature and pressure. For example, it can
be estimated from the tangent of the molar fraction-pressure curves at a temperature
and near the reservoir pressure in figure 2 of Spycher & Pruess (2005). To make
the estimation more convenient, the tangent can be linked to the reservoir condition.
Define

H0 =
Pw

X0
, (4.1)
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FIGURE 5. Values of Htangent/H0 between 12 and 18 MPa and 55 and 95 ◦C.

Htangent =
dPc

dX
, (4.2)

where X0 denotes the background saturated CO2 mass fraction. The derivative can be
expressed by the reservoir condition through

dPc

dX
=

Pw

X0

Htangent

H0
. (4.3)

The values of the ratio Htangent/H0 can be found by interpolating figure 5 within a
range of typical reservoir conditions for CO2 sequestration. These values are generated
by the equation-of-state ECO2N developed by Spycher & Pruess (2005).

Secondly, the derivative dSg/dPc can be found by assigning a specific form for the
capillary pressure model, for example,

Pc = a+ bSc
g, a > 0, b 6= 0, c > 1, (4.4)

where a, b and c are constants. The term dSg/dPc can be written as

dSg

dPc
=

1
bc

S1−c
g . (4.5)

The retardation factor can be written as

RCO2 = 1+
ρg

ρw

Pw

X0

Htangent

H0

1
bc

S1−c
g . (4.6)

Here, we consider a special case where c=1. The capillary pressure model becomes
linear. The retardation factor becomes

RCO2 = 1+
ρg

ρw

Pw

X0

Htangent

H0

1
b
, (4.7)
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and the equivalent diffusion coefficient becomes a constant, i.e.

Dequiv =
Dw

1+
ρg

ρw

Pw

X0

Htangent

H0

1
b

. (4.8)

The boundary conditions and initial conditions are defined as

∂X
∂x

(
x=−

L
2
, t
)
= 0, (4.9)

∂X
∂x

(
x=

L
2
, t
)
= 0, (4.10)

X
(
−

L
2
< x 6 0, t= 0

)
= X1, (4.11)

X
(

0< x 6
L
2
, t= 0

)
= X0, (4.12)

where X1 is the saturated CO2 mass fraction at Pw+Pc1 , with the subscript 1 denoting
the domain where the initial CO2 saturation is non-zero. The exact solution to (3.7)
is given by equation (2.17) in Crank (1975):

X(x, t)− X0 =
1
2
(Xc1 − X0)

∞∑
n=−∞

{
erf

L/2+ 2nL− x
2
√

Dequivt
+ erf

L/2− 2nL+ x
2
√

Dequivt

}
. (4.13)

The CO2 saturation can be computed by combining (3.4) and (4.5),

Sg =
dPc

dX
X − X0

b
. (4.14)

In figure 6 we compare the exact solution with detailed numerical simulation
of an example homogeneous case. The results of the numerical solution achieve a
close agreement with the exact solution. The slight deviation may result from the
nonlinearity of the capillary pressure–CO2 mass fraction relationship and pressure
redistribution during the evolution. The time scale of equilibration is over ten years.

4.2. Characteristic time of Ostwald ripening
The characteristic times of a single-phase diffusion problem and a two-phase diffusion
problem discussed above are

tc,single-phase =
l2

Dw
, (4.15)

tc,two-phase =
l2

Dequiv
. (4.16)

Combining (3.8), the characteristic time of a two-phase diffusion problem (the aqueous
phase and the CO2 phase) can be expressed as

tc,two-phase = RCO2 tc,single-phase. (4.17)
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FIGURE 6. The comparison of the exact solution and detailed numerical simulation on an
homogeneous case. The two results achieve close agreement. The reservoir condition is at
15 MPa and 75 ◦C. The initial CO2 saturation is 0.4 in the left half of the system. The
capillary pressure model is Pc = 3000Sg.

Therefore, it is meaningful to figure out the order of magnitude of the retardation
factor as shown in (4.7) to evaluate how the characteristic time changes when the
separate-phase CO2 is involved. Firstly, the term ρg/ρw is typically on the order of
10−1, where the CO2 density is about several hundred kg m−3 and the water density
is about 1000 kg m−3 at reservoir conditions. Secondly, the term Pw/X0 is of the order
of 109, where reservoir pressure Pw is of the order of 107 Pa and the CO2 solubility in
mass fraction X0 is of the order of 10−2. Thirdly, the term Htangent/H0 is of the order of
1 at reservoir conditions according to figure 5. Finally, the term 1/b is of the order of
10−3, where the capillary pressure values of sandstone typical for CO2 sequestration
is about several thousand Pascal when CO2 saturation is close to residual saturation
(Krevor et al. 2012). Integrating all the above terms, the order of magnitude of the
retardation factor is

RCO2 ∼ (1+ 10−1
× 109

× 1× 10−3)∼ 105. (4.18)

The large value for the retardation factor indicates that the existence of separate-
phase CO2 significantly slows down the equilibration process, compared to single-
phase problems. For example, taking the characteristic length of the heterogeneous
system shown in figure 3 (0.005 m), the resulting characteristic time of a single-phase
diffusion problem is 4600 s, which is around an hour. However, the characteristic time
for the two-phase diffusion problem is increased by 105, which is around 15 years.
This estimation also agrees closely with the homogeneous case with an exact solution
shown in figure 6. In general, CO2 redistribution by Ostwald ripening can be expected
to be a very slow process for typical reservoir properties.

5. Approximate solution for time scale estimation of residual CO2 redistribution
by Ostwald ripening in heterogeneous systems
The above sections discuss the mathematical model for residual CO2 redistribution

by Ostwald ripening and the exact solution for a homogeneous system. In more
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general cases, the system is highly likely to be heterogeneous where the two adjacent
domains are characterized by different capillary pressure curves. In this section, an
approximate solution to estimate the time scale for Ostwald ripening is developed for
heterogeneous systems.

5.1. Derivation of the approximate solution
The diffusive flux of CO2 in the aqueous phase J can be written as

J =−ρwDw
∂X
∂x
. (5.1)

Assuming that the diffusion equation can be approximated by a step function at the
interface between the two domains, the CO2 diffusive flux becomes

J2→1 = ρwDw
X2 − X1

αL
, (5.2)

where α is a scaling factor of the characteristic length L with its value varying
during equilibration. The term α will be further defined in the next subsection. The
subscripts 1 and 2 refer to the low capillary pressure domain and the high capillary
pressure domains, respectively. This notation will be used throughout the derivation.
The assumption of a step function achieves a first-order accuracy on predicting the
diffusive flux. Since the main purpose of the approximate solution is to track the
progress towards equilibrium between the two domains instead of capturing the
accurate CO2 saturation profile, this assumption is sufficient to serve such a purpose
with reduced complexity.

The CO2 mass conservation equation for domain 1 is given by

∂(X1Sw1ρwφ1AcL1)

∂t
+
∂(Y1Sg1ρgφ1AcL1)

∂t
= AJ2→1, (5.3)

where Ac is the cross-section area of the domain in the YZ plane and A is the available
cross-section area open to diffusion. The term A is estimated by the harmonic mean
of the two domains’ initially available area,

A=
2Ac

1
φ1(1− Sinit

CO2,1)
+

1
φ2(1− Sinit

CO2,2)

, (5.4)

where Sinit
CO2

is the initial CO2 saturation.
Similar assumptions discussed in § 3 are applied to the derivation here including

Y1 = 1 and porosities and densities are constants. In addition, the rate of change of
the CO2 mass fraction in the aqueous phase is negligible because the supersaturation
of the CO2 mass fraction is only about 10−5 for such a slow process (figure 3).
Combining (5.2) and (5.3) gives

ρgφ1L1Ac
∂(Sg1)

∂t
= AρwDw

X2 − X1

αL
. (5.5)

The term X2 − X1 can be found by applying a first-order approximation to (4.3),
yielding

Pc2(SCO2,2)− Pc1(SCO2,1)

X2 − X1
=

Pw

X0

Htangent

H0
. (5.6)
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Here, the capillary pressures Pc1 and Pc2 are functions of SCO2,2 and SCO2,1, respectively.
The CO2 saturation in the two domains can be linked through a mass conservation
equation by neglecting the concentration change in the aqueous phase, i.e.

Sinit
CO2,1φ1L1 + Sinit

CO2,2φ2L2 = SCO2,1φ1L1 + SCO2,2φ2L2. (5.7)

This relationship holds over the course of the entire evolution. For simplicity, we
choose that L1 = L2 = L/2.

Therefore, the diffusion equation is reduced by combining equations (5.4)–(5.7) to
give

d(SCO2,1)

dt
=

4ρwDwX0H0[
1

φ1(1− Sinit
CO2,1)

+
1

φ2(1− Sinit
CO2,2)

]
ρgφ1L2αPwHtangent

×{Pc2(SCO2,2(SCO2,1))− Pc1(SCO2,1)}. (5.8)

Finally, the equation can be solved by integrating (5.8) from the initial CO2 to any
CO2 saturation S∗CO2,1 before equilibrium is achieved, i.e.

t =

[
1

φ1(1− Sinit
CO2,1)

+
1

φ2(1− Sinit
CO2,2)

]
ρgφ1L2αPwHtangent

4ρwDwX0H0

×

∫ S∗CO2,1

Sinit
CO2,1

1
Pc2(SCO2,2(SCO2,1))− Pc1(SCO2,1)

d(SCO2,1). (5.9)

Equation (5.9) is a complete form of the approximate solution. It predicts the time
required for the CO2 saturation in domain 1 to evolve from Sinit

CO2,1 to S∗CO2,1 when
the initial conditions and reservoir properties are known. The integration part in (5.9)
can be solved by numerical integration or Taylor series. A complete form of the
approximate solution by Taylor series is shown in (A 15) of appendix A. The value for
the scaling factor α is determined by simulation results in the following subsection.

5.2. Values of length scaling factor α
Although the initial and equilibrated CO2 saturation may vary from case to case over
a wide range, all cases exhibit the same trend, that is, the capillary pressure gradient
between the two domains declines from the initial value to zero. We define a term F
to represent the remaining fraction of the driving force, e.g. capillary pressure gradient,
during equilibration as follows:

F=
Pc2(t)− Pc1(t)

Pinit
c2 − Pinit

c2
. (5.10)

Here, Pinit
c is the initial capillary pressure in each domain and Pc(t) is the capillary

pressure at an arbitrary time t during equilibration. The term F represents the
remaining capillary pressure gradient normalized by its initial gradient. It is an
indication of the progress of the equilibration by demonstrating the decline of the
driving force of Ostwald ripening. The value of F is 1 at the beginning of the
evolution and declines over time to 0 at equilibrium.
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FIGURE 7. Values of α as a function of F. A total of 1000 simulations with 16 grid cells
are summarized. A second-order polynomial function is fitted to the mean of α.

The value of α varies throughout the process of equilibration, and, thus, the scaled
length αL that the capillary pressure difference applies to varies over time. As can be
observed in the numerical solutions shown in figures 3 and 6, the capillary pressure
gradient is sharp at the boundary between the two domains at the early stages of
equilibration, leading to a strong diffusive flux. At later stages, the capillary pressure
gradient smears out as the capillary pressure becomes more uniform within each
domain. Therefore, the parameter α is adjusted to correct the diffusion length to take
into consideration the strong diffusive flux at the early stages of equilibration.

Numerical simulation with various resolutions is performed to find a functional form
for α. A thousand cases with randomly sampled physical parameters are run with 2
grid cells and 16 grid cells respectively. The two-grid-cell cases correspond to the
assumption of step function with no spatial variation within each domain and the 16-
grid-cell cases correspond to cases with spatially resolved gradients. The value of α
can be found by numerical simulation based on the equation

α(F)=
t16−grid−cell(F)
t2−grid−cell(F)

× 0.5, (5.11)

where t16−grid−cell(F) and t2−grid−cell(F) are the times required by a 2-grid-cell case and
a 16-grid-cell case to evolve to a certain F. The number 0.5 denotes that the 2-grid-
cell case takes the diffusion length to be 0.5L. Here, α is a function of F that varies
at different stages during equilibration.

In figure 7 we summarize α from the 1000 cases as a function of F. The value of
α starts out smaller than 0.5 and increases as the system evolves towards equilibrium.
A fitted mean of α is shown figure 7.

The capillary pressure gradient decline curves over time for the example case listed
in table 1 are shown in figure 8. As shown in figure 8(a), grid sensitivity simulations
indicate that the capillary pressure gradient declines faster in models with higher
resolution. This is consistent with the fact that the capillary pressure gradient is
initially very steep between the two domains. In figure 8(b) we show the capillary
pressure decline curve predicted by the approximate solution with and without the
corrected diffusion length by α. Without the correction (α = 0.5), the prediction of
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FIGURE 8. Capillary pressure decline curves of the example case shown in figure 3.

Category Parameter Lower bound Upper bound Unit Description

Rock property k 1 1000 mD Permeability
φ 0.02 0.31 — Porosity

Capillary
pressure model Pe 100 25 000 Pa Entry pressure

P0 100 30 000 Pa Fitting parameter 1
λ 0.4 0.99 — Fitting parameter 2

Swi 0 0.3 — Irreducible water
Model size L 0.001 1 m Size of the entire model
Initial condition Pw 12 18 MPa Reservoir pressure

Sinit
CO2

0.1 0.4 — Initial CO2 saturation
T 55 95 ◦C Temperature

Dw 4× 10−9 7× 10−9 m2 s−1 Diffusion coefficient
of CO2 in the aqueous
phase (Cadogan et al.

(2014))

TABLE 2. Numerical simulation input parameters and ranges for sampling.

the approximate solution agrees well with the numerical solutions with two grid cells,
corresponding to the assumption of step function. With correction by fitted mean
of α, the approximate solution captures the time-varying diffusion length and, thus,
achieves an excellent agreement with the numerical simulation with high resolution.

5.3. Validation of the approximate solution
The approximate solution is validated through comparison with detailed numerical
simulations. To test the robustness of the solution, each physical parameter of a single
case is randomly sampled from a wide range that is representative of geological CO2
storage parameters, as shown in table 2. Correlations of key physical parameters are
shown in figure 9. A total of 1000 simulations are performed.

In figure 10(a) we compare the simulation results from 1000 randomly sampled
cases (performed with 16 grid cells) with predictions from the approximate solution
at various values of F. The agreement is excellent at both early and late stages of
evolution. Errors are measured by the difference of capillary pressure decline curves
predicted by the approximate solution and numerical simulation in both the horizontal
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FIGURE 9. Input parameters and correlations for the 1000 runs used to test the
approximate solution. (a) Porosity and permeability are positively correlated. (b) Entry
pressure and permeability are negatively correlated. (c) The majority of cases have initial
capillary pressure differences below 5000 Pa.
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FIGURE 10. (a) The comparison of evolution time between numerical simulations with
16 grid cells and predictions by the approximate solution (5.9). The agreement is fairly
close. (b) The relative error of time for the system to evolve to a range of F values. (c)
The error of F values predicted by the approximate solution and numerical simulation
measured at a range of F from numerical simulation.

and vertical directions. In figure 10(b) we measure the horizontal difference, which
is the relative error of time for the system to evolve to a range of F values. In
figure 10(c) we measure the vertical difference, which is the difference between F
predicted by the solution and numerical simulation. The lower and upper quartile of
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FIGURE 11. The time scale of residual CO2 redistribution by Ostwald ripening within a
range of model sizes at selected F values. The results are predicted by the approximate
solution and validated by numerical simulation. The time scale of redistribution increases
with the increase of model size (∼L2). For example, millimetre-scale models may have an
evolution time scale ranging from months to years. Models over metre scales may take
thousands of years or longer to equilibrate.

both errors are within ±0.02, indicating that the approximate solution achieves a close
agreement with numerical simulation.

6. Discussion
6.1. Implications for the long-term fate of residual CO2

We have demonstrated and quantified the time scale for a new mechanism for
redistribution of residually trapped CO2 due to reservoir heterogeneity. The CO2
saturations will increase in portions of the rocks with lower capillary pressure and
decrease in those with higher capillary pressures. Such are the conditions expected
to be present after imbibition of reservoir brine into the CO2 plume during the
post-injection period. As shown in figure 11, for millimeter-scale systems, the time
scale of mass redistribution ranges from days to years, varying by several orders of
magnitude depending on the total mass of CO2, capillary heterogeneity and reservoir
conditions. The time scale increases with the increase of model size L following a
power law (∼L2), such that a metre-scale model may take thousands of years or more
to redistribute residually trapped CO2.

The time period for continuum-scale Ostwald ripening depends on the nature of the
capillary pressure curves during redistribution of the CO2. We have assumed particular
parametric forms for these curves, based on a plausible understanding of the pore-
scale processes that are occurring. To date, there are no direct measurements of the
capillary pressure curves during Ostwald ripening. It would be valuable to make these
measurements to include them in model calculations. This would be a challenging but
worthwhile pursuit, ideally done by combining both pore-scale and continuum-scale
measurements. In addition, we assume that the relative permeability to CO2 phase
is zero for all times and throughout both domains. For the domain with increasing
saturations, it is certainly possible that the CO2 phase would become mobile. If this
occurs, we would expect that Ostwald ripening would be slightly faster, due to the
redistribution of CO2 away from the interface between the two domains.

This study seeks to evaluate the impact of Ostwald ripening on trapped CO2,
and, thus, geological gradients other than the capillary pressure gradient such
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as pressure gradients by regional flow and other potential mechanisms of mass
transfer in a geological storage site are neglected. In reality, other processes such as
brine advection, CO2 dissolution and mineralization will take place simultaneously.
For example, advection and buoyancy-driven flows may increase the risk of
remobilization of aggregated CO2, while dissolution of trapped CO2 may mitigate
CO2 aggregation by reducing the total amount of residually trapped CO2. Coupling
of these mechanisms would be another interesting topic that may affect the fate of
trapped CO2 significantly.

While this study has focused on the CO2–water system, it is equally applicable
to other systems where the non-wetting phase is soluble in the wetting phase, for
example, the methane–brine system. Hydrocarbon migration takes place on similar
time scales to the processes described here, suggesting that Ostwald ripening due to
reservoir heterogeneity may play a role in basin-scale gas migration.

6.2. Trend of capillary pressure of a shrinking CO2 ganglion
The approximate solution and numerical simulation are developed with a monotonically
decreasing capillary pressure model by assuming that the residual CO2 always attaches
to the pore matrix during equilibration. It is likely that at some point, the CO2
ganglion will become smaller than the pore body, no longer being supported by the
pore walls. Once this occurs, the structure of the porous media no longer controls
the capillary pressure because the ganglion will become a spherical bubble, resulting
in an increase in curvature. At this point, as ripening proceeds, the capillary pressure
will progressively increase as the bubble shrinks and disappears. In figure 12 we
present a conceptual illustration of capillary pressure of a trapped ganglion including
ganglion detachment from the pore walls. A minimum capillary pressure could exist
near the saturation where detachment of ganglia may happen.

Some previous works have focused on exploring the impact on capillary pressure
by the residual portion of the non-wetting phase by pore-network modelling.
Conventionally, the capillary pressure curve constructed by experiments is only
between the wetting phase and the continuous portion of the non-wetting phase,
and the residual portion of the non-wetting phase is excluded from the measurement
(Bear 2013). McClure et al. (2016) showed that the capillary pressure within a porous
medium increases with an increasing number of ganglia and decreasing non-wetting
phase saturation near low non-wetting phase saturations, resulting from detachment
of non-wetting phase ganglia detachment from the pore walls. de Chalendar et al.
(2018) showed that the trend of capillary pressure of a single ganglion is opposite
before and after detachment. These works imply that the trend of capillary pressure
of the residual non-wetting phase could be altered due to ganglion detachment from
the pore walls when the non-wetting phase saturation is small.

Our mathematical model does not explicitly include this last stage because it will be
relevant only for scenarios where the non-wetting phase completely disappears from
one of the domains. Even so, the consequence of excluding it will be that Ostwald
ripening occurs faster than we predict in these late stages. In figure 13 we show three
possible equilibrium states considering the upward trend of capillary pressure curves at
low CO2 saturations. For this study, we assume that the initial condition for Ostwald
ripening is at the end of imbibition and that all of the CO2 ganglia are supported by
pore walls. The equilibrium state is determined by both capillary pressure and mass
conservation. Equilibrium state 1 corresponds to the case discussed in the approximate
solution that the capillary pressures of the two domains reach equilibrium without
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FIGURE 12. A conceptual description of a capillary pressure curve for a shrinking
ganglion due to Ostwald ripening. At the endpoint of the imbibition capillary pressure
curve, the ganglion is trapped in the pore space with its interface extended into the pore
throat. For regions where the CO2 saturation is decreasing, as Ostwald ripening progresses,
the interface of the ganglion retreats from the pore throat towards the pore body. At some
point, the ganglion may shrink and retreat fully into the pore body. Once the ganglion
separates from the pore wall, we assume that since the rock is water-wet, the curvature
corresponds to the radius of a spherical bubble and increases rapidly as the bubble shrinks
and eventually disappears. The precise nature of the capillary pressure curve at this time
is unknown, and the representation is provided here only for illustrative purposes. The
rising trend of capillary pressure after ganglion detachment are illustrated in de Chalendar
et al. (2018) and McClure et al. (2016).

any detachment. At equilibrium state 2, the capillary pressures reach equilibrium with
the capillary pressure of one side going over the minimum value. At equilibrium
state 3, the capillary pressure of the CO2-discharging domain increases rapidly after
detachment until separate-phase CO2 is depleted.

In figure 13 we also show the evolution of the remaining driving force for Ostwald
ripening during equilibration. At equilibrium state 2, it indicates that the ganglia in
one domain are no longer supported by pore walls, but it is still possible for the
capillary pressures of the two domains to approach the same value. Because the
diffusive flux of CO2 is always from the high capillary pressure domain to the low
capillary pressure domain, Ostwald ripening will still progress in the same direction
as long as the direction of the capillary pressure gradient remains the same. At
equilibrium state 3, after the capillary pressure of the high capillary pressure domain
passes the minimum value, the capillary pressure gradient progressively increases in
the same direction, which can accelerate diffusive transport between the two domains.
The gradient may keep increasing until all of the separate-phase CO2 is transported
to the low capillary pressure domain. Therefore, Ostwald ripening can still progress
in the same direction taking into consideration the detachment from the pore wall of
shrinking ganglia and even be faster than predicted by the approximate solution due
to increasing capillary pressure gradients. However, when and how the detachment
of ganglia happen by Ostwald ripening in real-rock systems and how much Ostwald
ripening can be accelerated is also an interesting research question to be explored
further.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

53
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.53


889 A14-22 Y. Li, C. Garing and S. M. Benson

Domain 1
Domain 2

0 0.5
Water saturation (–)

Initial condition

Equilibrium scenario 1 Equilibrium scenario 2 Equilibrium scenario 3

Water saturation (–) Water saturation (–) Water saturation (–)

Time (–) Time (–) Time (–)

Ca
pi

lla
ry

 p
re

ss
ur

e 
(P

a)

Ca
pi

lla
ry

 p
re

ss
ur

e 
(P

a)

F

1.0

500

1000

1500

2000

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

500

1

0

1

0

1

0

1000

1500

2000

FIGURE 13. Examples of possible equilibrium states of Ostwald ripening based on
capillary pressure curves with a rising trend near low CO2 saturation. The equilibrium
state is determined by both capillary pressure curves and CO2 mass conservation. Scenario
1: equilibrium at equal capillary pressure. Scenario 2: equilibrium at equal capillary
pressure with one domain passing the minimum capillary pressure. Scenario 3: all of the
separate-phase CO2 in one domain is transported to the other.

7. Conclusions
This study proposed and investigated a new mechanism for mass redistribution of

residually trapped supercritical CO2 within porous media with capillary heterogeneity.
A new conceptual model, numerical simulation, and a new approximate solution were
developed to demonstrate that Ostwald ripening, a pore-scale phenomenon, can result
in continuum-scale redistribution of trapped CO2. Increases in CO2 saturation could
potentially lead to remobilization of residually trapped CO2.

An analogous retardation factor is derived to illustrate that the characteristic time
for Ostwald ripening is of the order of 105 times slower than a single-phase diffusion
problem due to the existence of separate-phase CO2. An approximate solution for
predicting the time scale of the mass redistribution due to Ostwald ripening was
developed and validated through numerical simulation over a wide range of parameters
that covered typical conditions for a geological storage site. Results showed that for
millimetre-scale spatial domains, redistribution and capillary equilibration can occur
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on the time scale of months to years. For metre-scale systems, redistribution is very
slow, requiring 10 000 years and longer. Although CO2 redistribution by Ostwald
ripening is a fairly slow process and seems to have little impact at the reservoir
scale, at small spatial scales it can occur quickly. Understanding the implications of
this process on long-term plume evolution will require consideration of the complex
interplay of viscous, buoyancy and capillary forces, along with dissolution of the CO2

into reservoir brine due to convective mixing or regional groundwater flow.
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Appendix A

To solve the integration part of the approximate solution, Taylor series can be
applied to achieve a close estimation. The integration part of the approximate solution
is ∫ S∗CO2,1

Sinit
CO2,1

1
Pc2(SCO2,2)− Pc1(SCO2,1)

d(SCO2,1). (A 1)

Define

f (SCO2,1)=
1

Pc2(SCO2,2)− Pc1(SCO2,1)
. (A 2)

Capillary pressure is represented by

Pc1 = Pe1 + P01

(
1− Swi,1

SCO2,1
− 1
)−(1/λ1)

(A 3)

and

Pc2 = Pe2 + P02

(
1− Swi,2

SCO2,2
− 1
)−(1/λ2)

. (A 4)

The relationship of SCO2,1 and SCO2,2 can be acquired from (5.7) as follows:

SCO2,2 = aSCO2,1 + b. (A 5)

Here,

a=−
φ1

φ2
(A 6)

and

b=
φ1

φ2
Sinit

CO2,1 + Sinit
CO2,2. (A 7)
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Therefore, (A 2) can be written as

f (SCO2,1)=
1

Pe2 + P02

(
1− Swi,2

aSCO2,1 + b
− 1
)−(1/λ2)

− Pe1 − P01

(
1− Swi,1

SCO2,1
− 1
)−(1/λ1)

.

(A 8)
Writing (A 8) in the form of a Taylor series evaluated at S0, we obtain

f (SCO2,1)= f (S0)+ f ′(S0)(SCO2,1 − S0)+
f ′′(S0)

2
(SCO2,1 − S0)

2, (A 9)

where
S0 = 0.5(Sinit

CO2,1 + Seq
CO2,1). (A 10)

The term Seq
CO2,1 can be solved by equating the right-hand side of (A 3) and (A 4) and

combining (5.7).
Write out the three terms about f (S0):

f (S0) =
1

Pe2 + P02

(
1− Swi,2

aS0 + b
− 1
)−(1/λ2)

− Pe1 − P01

(
1− Swi,1

S0
− 1
)−(1/λ1)

, (A 11)

f ′(S0) = −[ f (S0)]
2

[
aP02(1− Swi,2)

λ2(aS0 + b)2

(
1− Swi,2

aS0 + b
− 1
)−(1/λ2)−1

−
P01(1− Swi,1)

λ1S2
0

(
1− Swi,1

S0
− 1
)−(1/λ1)−1

]
, (A 12)

f ′′(S0) =
2[ f ′(S0)]

2

f (S0)
− [ f (S0)]

2

[
−

2a2P02(1− Swi,2)

λ2(aS0 + b)3

(
1− Swi,2

aS0 + b
− 1
)−(1/λ2)−1

+
a2P02(1− Swi,2)

2(1+ λ2)

λ2
2(aS0 + b)4

(
1− Swi,2

aS0 + b
− 1
)−(1/λ2)−2

+
2P01(1− Swi,1)

λ1S3
0

(
1− Swi,1

S0
− 1
)−(1/λ1)−1

−
(1− Swi,1)

2P01(1+ λ1)

λ2
1S4

0

(
1− Swi,1

S0
− 1
)−(1/λ1)−2

]
. (A 13)

Therefore, the integration can be written in the following form:∫ S∗CO2,1

Sinit
CO2,1

1
Pc2(SCO2,2)− Pc1(SCO2,1)

d(SCO2,1)

=

∫ S∗CO2,1

Sinit
CO2,1

f (SCO2,1)d(SCO2,1)

=

[
f (S0)SCO2,1 + f ′(S0)

(
1
2

S2
CO2,1 − S0SCO2,1

)
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+
f ′′(S0)

2

(
1
3

S3
CO2,1 − S0S2

CO2,1 + S2
0SCO2,1

)] ∣∣∣∣S
∗

CO2,1

Sinit
CO2,1

=

[
f (S0)S∗CO2,1 + f ′(S0)

(
1
2

S∗2CO2,1 − S0S∗CO2,1

)
+

f ′′(S0)

2

(
1
3

S∗3CO2,1 − S0S∗2CO2,1 + S2
0S∗CO2,1

)]
−

[
f (S0)Sinit

CO2,1 + f ′(S0)

(
1
2

Sinit2
CO2,1 − S0Sinit

CO2,1

)
+

f ′′(S0)

2

(
1
3

Sinit3
CO2,1 − S0Sinit2

CO2,1 + S2
0Sinit

CO2,1

)]
. (A 14)

To summarize, the complete form of the approximate solution by Taylor series
evaluated at S0 = 0.5(Sinit

CO2,1 + Seq
CO2,1) is

t =

[
1

φ1(1− Sinit
CO2,1)

+
1

φ2(1− Sinit
CO2,2)

]
ρgφ1L2αPwHtangent

4ρwDwX0H0

×

{[
f (S0)S∗CO2,1 + f ′(S0)

(
1
2

S∗2CO2,1 − S0S∗CO2,1

)
+

f ′′(S0)

2

(
1
3

S∗3CO2,1 − S0S∗2CO2,1 + S2
0S∗CO2,1

)]
−

[
f (S0)Sinit

CO2,1 + f ′(S0)

(
1
2

Sinit2
CO2,1 − S0Sinit

CO2,1

)
+

f ′′(S0)

2

(
1
3

Sinit3
CO2,1 − S0Sinit2

CO2,1 + S2
0Sinit

CO2,1

)]}
, (A 15)

where f (S0), f ′(S0) and f ′′(S0) can be found using (A 11)–(A 13).
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