

Corrections to "Value sets of sparse polynomials"

Igor E. Shparlinski[®] and José Felipe Voloch[®]

Abstract. We give a corrected version of our previous lower bound on the value set of binomials (Canad. Math. Bull., v.63, 2020, 187–196). The other results are not affected.

1 Introduction

The value set of a polynomial $f(X) \in \mathbb{F}_q[X]$ over a finite field \mathbb{F}_q of q elements is the set $\mathcal{V}(f) = \{f(a) : a \in \mathbb{F}_q\}$ and we define $V(f) = \#\mathcal{V}(f)$.

In the case of binomials $f(X) = X + aX^n \in \mathbb{F}_p[X]$ the bound of [ShVo18, Theorem 3.5] asserts that

$$V(f) \ge \max\{p/d, d, e, p/e\},\$$

where

(1.1)
$$d = \gcd(n, p-1)$$
 and $e = \gcd(n-1, p-1)$.

Unfortunately, the proof contains some wrong calculations, and in particular, the bound $V(f) \ge p/d$ is not correctly justified. In fact, it is easy to see that this bound is wrong. For example, for $f(X) = X - X^n$ for d = 1, this bound implies V(f) = p, while we have f(0) = f(1) = 0 and thus $V(f) \le p - 1$.

Here, we formulate and prove a corrected version.

Theorem 1.1 Let $f(X) = X + aX^n \in \mathbb{F}_p[X]$, 1 < n < p, and let d and e be as in (1.1). Then

$$V(f) \ge \max\{d, (p-1)/(e+1), e+1\}.$$

Proof Note, that for distinct *d*th roots of unity, that is, for *u* with $u^d = 1$, the values f(u) = u + a are pairwise distinct. Thus $V(f) \ge d$.

We now consider only the values $x \in \mathbb{F}_p^*$. The equation

(1.2)
$$f(x) = f(y), \qquad x, y \in \mathbb{F}_p^*,$$

Received by the editors July 27, 2021; revised October 6, 2021; accepted October 7, 2021. Published online on Cambridge Core November 2, 2021.

AMS subject classification: 11T06, 14G15.

Keywords: Sparse polynomials, value set, rational points on curves.

I. E. Shparlinski and J. Felipe Voloch

becomes, with y = tx, $t \in \mathbb{F}_p^*$, the same as

$$x + ax^n = tx + at^n x^n, \qquad t, x \in \mathbb{F}_p^*,$$

or

(1.3)
$$1 + ax^{n-1} = t + at^n x^{n-1}, \qquad t, x \in \mathbb{F}_p^*,$$

If t = 1, then there are p - 1 possible values of x satisfying (1.3).

For other p - 2 values of t, if $t^n = 1$, the equation (1.3) has no solution whereas if $t^n \neq 1$, it defines a unique value of x^{n-1} , which leads to e possible value of x. Hence, the number of solutions to the equation (1.3), and thus equation (1.2) as well, is p - 1 + e(p - 2), which is bounded by (e + 1)(p - 1).

By the Cauchy inequality,

$$(p-1)^{2} = \left(\sum_{\lambda \in \mathbb{F}_{p}} \#\{x \in \mathbb{F}_{p}^{*} : f(x) = \lambda\}\right)^{2}$$

$$\leq V^{*}(f) \sum_{\lambda \in \mathbb{F}_{p}} \left(\#\{x \in \mathbb{F}_{p}^{*} : f(x) = \lambda\}\right)^{2},$$

since the sum over λ is supported on $V^*(f)$ terms, where $V^*(f)$ is the number of distinct values of f(x) with $x \in \mathbb{F}_p^*$. Hence,

$$(p-1)^2 \le V^*(f) # \{ (x, y) \in \mathbb{F}_p^* \times \mathbb{F}_p^* : f(x) = f(y) \} \\ \le V^*(f)(e+1)(p-1).$$

Therefore,

$$V(f) \ge V^*(f) \ge (p-1)/(e+1).$$

Furthermore, we now fix a nonzero *e*th power *c* with $1 + ac \neq 0$. Clearly for *e* distinct *e*th roots of *c*, that is, for *u* with $u^e = c$ the values f(u) = u(1 + ac) are pairwise distinct, and we can also add f(0) = 0. Thus $V(f) \ge e + 1$.

The result now follows.

We now immediately obtain:

Corollary 1.2 If
$$f(X) = X + aX^n \in \mathbb{F}_p[X]$$
, $1 < n < p$, then $V(f) \ge \sqrt{p-1}$.

Acknowledgment The authors would like to thank Michael Zieve for pointing out some gaps in the original version of [ShVo18, Theorem 3.5].

References

[ShVo18] I. Shparlinski and J. F. Voloch, Value sets of sparse polynomials. Canad. Math. Bull. 63(2020), 187–196.

https://doi.org/10.4153/S0008439521000928 Published online by Cambridge University Press

Corrections to "Value sets of sparse polynomials"

School of Mathematics and Statistics, University of New South Wales Sydney, NSW 2052, Australia e-mail: igor.shparlinski@unsw.edu.au

School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand e-mail: felipe.voloch@canterbury.ac.nz