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We investigate a non-autonomous ratio-dependent predator{prey system, whose
autonomous versions have been analysed by several authors. For the general
non-autonomous case, we address such properties as positive invariance, permanence,
non-persistence and the globally asymptotic stability for the system. For the periodic
and almost-periodic cases, we obtain conditions for existence, uniqueness and stability
of a positive periodic solution, and a positive almost-periodic solution, respectively.

1. Introduction

The traditional Lotka{Volterra-type predator{prey model with Michaelis{Menten
or Holling type-II functional response has received great attention from both the-
oretical and mathematical biologists, and has been well studied. The model is
described by the following system of ordinary di¬erential equations

x0 = x[a ¡ bx] ¡ cy
x

m + x
; y0 = ¡ dy + fy

x

m + x
; (1.1)

where x(t) and y(t) stand for the densities of the prey and the predator, respectively,
a, c, d and f are the prey intrinsic growth rate, capture rate, death rate of the
predator and the conversion rate, respectively, a=b gives the carrying capacity of the
prey and m is the half saturation constant. Here, the functional response x=(m +x)
is prey dependent only.

Recently, models with such a prey-dependent-only response function have been
facing challenges from biology and physiology communities (see, for example, [1{
5,11,12]). Based on growing biological and physiological evidence, some biologists
have argued that, in many situations, especially when predators have to search for
food (and therefore have to share or compete for food), the functional response
in a prey{predator model should be ratio dependent, which can be roughly stated
as that the per capita predator growth rate should be a function of the ratio of
prey to predator abundance. This has been strongly supported by numerous ­ eld
and laboratory experiments and observations. Starting from this argument and the
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traditional prey-dependent-only model (1.1), Arditi and Ginzburg [2] ­ rst proposed
the following ratio-dependent predator{prey model:

x0 = x[a ¡ bx] ¡ cxy

my + x
; y0 = y

·
¡ d +

fx

my + x

¸
: (1.2)

Note that (1.2) is a result of replacing the prey-dependent functional response
x=(m + x) in (1.1) by a ratio-dependent response (x=y)=(m + x=y). For detailed
justi­ cations of (1.2) and its merits versus (1.1), see [2,8,17]. For the mathematical
aspect, since Arditi and Ginzburg [2], system (1.2) has been studied by several
authors and much richer dynamics have been obtained (see, for example, [7, 9, 13{
16,18]).

Ratio-dependent models have not yet been well studied, in the sense that most
results are for models with constant environment. This means that the models have
been assumed to be autonomous, that is, all biological or environmental parameters
have been assumed to be constant in time. However, this is rarely the case in real
life, as many biological and environmental parameters do vary in time (e.g. are
naturally subject to seasonal ®uctuations). When this is taken into account, a model
must be non-autonomous, which is, of course, more di¯ cult to analyse in general.
But, in doing so, one can and should also take advantage of the properties of those
varying parameters. For example, one may assume that the parameters are periodic
or almost periodic for seasonal reasons.

In this paper, we will incorporate the varying property of the parameters into
the model and consider the following non-autonomous version of (1.2),

x0 = x[a(t) ¡ b(t)x] ¡ c(t)xy

m(t)y + x
; y0 = y

·
¡ d(t) +

f (t)x

m(t)y + x

¸
; (1.3)

where all the variables and parameters have the same biological meanings as in (1.2),
except that the parameters are now time dependent. In x 2, we will address some
basic problems for (1.3), such as positive invariance, permanence, non-persistence,
extinction, dissipativity and globally asymptotic stability. Section 3 is devoted to
the case when all parameters are periodic of the same period, and the main concern
of this section is to establish criteria for the existence of a unique positive periodic
solution of system (1.3) that is globally asymptotically stable. Section 4 is for the
case when all parameters are almost periodic, and in this section we provide suf-
­ cient conditions for the existence and globally asymptotic stability of a unique
positive almost-periodic solution of system (1.3). The methods used in this paper
will be comparison theorems, coincidence degree theory and Lyapunov functions.

2. General case

In this section, we present some preliminary results including boundedness of solu-
tions, permanence, non-persistence and the globally asymptotic stability of sys-
tem (1.3). In the following discussion, we always assume that a(t), b(t), c(t), d(t),
m(t) and f (t) are all continuous and bounded above and below by positive con-
stants.
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Let R2
+ := f(x; y) 2 R2 j x > 0; y > 0g. For a bounded continuous function g(t)

on R, we use the following notation:

g u := sup
t2 R

g(t); gl := inf
t2 R

g(t):

Lemma 2.1. Both the non-negative and positive cones of R2 are positively invariant
for system (1.3).

Proof. Note that system (1.3) is equivalent to

x(t) = x(t0) exp

½Z t

t0

·
a(s) ¡ b(s)x(s) ¡ c(s)y(s)

m(s)y(s) + x(s)

¸
ds

¾
;

y(t) = y(t0) exp

½Z t

t0

·
¡ d(s) +

f(s)x(s)

m(s)y(s) + x(s)

¸
ds

¾
:

The assertion of the lemma follows immediately for all t > t0. This completes the
proof.

In the remainder of this paper, for biological reasons, we only consider solutions
(x(t); y(t)) with x(t0) > 0 and y(t0) > 0.

Definition 2.2. The solution of system (1.3) is said to be ultimately bounded if
there exist B > 0 such that, for every solution (x(t); y(t)) of (1.3), there exists
T > 0 such that k(x(t); y(t))k 6 B for all t > t0 + T , where B is independent of
the particular solution, while T may depend on the solution.

Definition 2.3. System (1.3) is said to be permanent if there exist positive con-
stants ¯ , ¢, with 0 < ¯ < ¢, such that

min
n

lim
t ! + 1

inf x(t); lim
t ! + 1

inf y(t)
o

> ¯ ;

max
n

lim
t ! + 1

sup x(t); lim
t ! + 1

sup y(t)
o

6 ¢

for all solutions of (1.3) with positive initial values. System (1.3) is said to be
non-persistent if there is a positive solution (x(t); y(t)) of (1.3) satisfying

min
n

lim
t ! + 1

inf x(t); lim
t ! + 1

inf y(t)
o

= 0:

Theorem 2.4. If f l > d u ; mlal > c u , then the set ¡ " de¯ned by

¡ " := f(x; y) 2 R2 j m"
1 6 x 6 M "

1 ; m"
2 6 y 6 M "

2 g (2.1)

is positively invariant with respect to system (1.3), where

M "
1 :=

a u

bl
+ "; M "

2 :=
(f u ¡ dl)M "

1

dlml
;

m"
1 :=

mlal ¡ c u

mlb u
¡ "; m"

2 :=
(f l ¡ du )m"

1

m u d u
;

9
>>=

>>;
(2.2)

and " > 0 is su± ciently small so that m"
1 > 0.
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Proof. Let (x(t); y(t)) be the solution of (1.3) through (x(t0); y(t0)), with

m"
1 6 x(t0) 6 M "

1 and m"
2 6 y(t0) 6 M "

2 :

From the prey equation in (1.3) and the positivity of the solutions of (1.3), it follows
that

x0(t) 6 x(t)[a u ¡ blx(t)] 6 blx(t)

·
a u

bl
+" ¡ x(t)

¸
= blx(t)[M "

1 ¡ x(t)]; t > t0: (2.3)

A standard comparison argument shows that

0 < x(t0) 6 M "
1 ) x(t) 6 M "

1 ; t > t0;

which, together with the predator equation in (1.3), produces

y0(t) 6 y(t)

·
¡ dl +

f u M"
1

mly(t) + M "
1

¸
=

mldly(t)

mly(t) + M "
1

[M "
2 ¡ y(t)]; t > t0; (2.4)

and hence
0 < y(t0) 6 M "

2 ) y(t) 6 M "
2 ; t > t0:

Similarly, the prey equation of system (1.3) also yields

x0(t) > x(t)

·
al ¡ b u x(t) ¡ c u y(t)

mly(t) + x(t)

¸

> x(t)

·
al ¡ b u x(t) ¡ c u

ml

¸

= bu x(t)

·
mlal ¡ c u

mlb u
¡ x(t)

¸

> bu x(t)[m"
1 ¡ x(t)]; t > t0; (2.5)

and therefore
x(t0) > m"

1 ) x(t) > m"
1; t > t0:

Moreover, by the predator equation of system (1.3), we have

y0(t) > y(t)

·
¡ d u +

f lx(t)

mu y(t) + x(t)

¸

> y(t)

·
¡ d u +

f lm"
1

mu y(t) + m"
1

¸

=
mu du y(t)

mu y(t) + m"
1

[m"
2 ¡ y(t)]; t > t0; (2.6)

which implies
y(t0) > m"

2 ) y(t) > m"
2; t > t0:

Thus ¡ " is positively invariant for (1.3), and the proof is completed.

Lemma 2.5. Let (x(t); y(t)) be a solution of system (1.3) with x(t0) > 0 and
y(t0) > 0. Then we have limt! + 1 sup x(t) 6 M 0

1 . Moreover, if mlal > c u , then
limt! + 1 inf x(t) > m0

1.
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Proof. Noting that (2.3) and (2.5) are valid, the conclusion follows from a standard
comparison arguments directly.

For the predator population, we can also have some estimates.

Lemma 2.6. If f l > du , mlal > c u , then

lim
t! + 1

inf y(t) > m0
2; lim

t ! + 1
sup y(t) 6 M 0

2 :

Proof. Since limt ! + 1 sup x(t) 6 M 0
1 , for any su¯ cient small " > 0, there is some

t1 > t0 such that, for t > t1,

x(t) < M 0
1 + ":

Then, from the predator equation of system (1.3), it follows that

y0(t) 6 y(t)

·
¡ dl +

f u M "
1

mly(t) + M "
1

¸
=

mldly(t)

mly(t) + M "
1

·
(f u ¡ dl)M "

1

mldl
¡ y(t)

¸

for t > t1. Hence, by using the comparison theorem of ordinary di¬erential equations
and the arbitrariness of ", we have

lim
t! + 1

sup y(t) 6 M0
2 :

By a similar argument, we can easily show that

lim
t! + 1

inf y(t) > m0
2:

This completes the proof.

Lemmas 2.5 and 2.6 immediately lead to the following.

Theorem 2.7. If f l > d u , mlal > c u , then system (1.3) is permanent.

From the proofs of lemmas 2.5 and 2.6, one can actually easily obtain the ultimate
boundedness of ¡ " with " > 0 su¯ ciently small, as stated in the following theorem.

Theorem 2.8. If f l > du , mlal > c u , then the set ¡ " with " > 0 de¯ned by (2.1)
is an ultimately bounded region of system (1.3).

The following theorem gives conditions under which (1.3) is non-persistent.

Theorem 2.9. If f u < dl or cl=mu > a u + du , then system (1.3) is not persistent.

Proof. If f u < dl, then, by the predator equation of (1.3), it is not di¯ cult to show
that

y0(t) 6 y(t)[ ¡ dl + f u ];

which implies that limt! + 1 y(t) = 0.
If cl=mu > a u + du , then there exists an ¬ > 0 such that

cl

m u + ¬
= a u + d u :
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Let ¯ = x(t0)=y(t0) < ¬ , we claim that

x(t)

y(t)
< ¬ for all t > t0 and lim

t! + 1
x(t) = 0:

Otherwise, there exists a ­ rst time t1 such that

x(t1)

y(t1)
= ¬ and

x(t)

y(t)
< ¬ for all t 2 [t0; t1):

Then, for any t 2 [t0; t1], we have

x0(t) 6 x

·
a u ¡ cl

m u + x(t)=y(t)

¸
6 x

·
a u ¡ cl

mu + ¬

¸
= ¡ du x(t);

which implies that

x(t) 6 x(t0) expf¡ d u (t ¡ t0)g: (2.7)

However, for all t > t0, we have

y0 > ¡ du y(t):

Then

y(t) > y(t0) expf¡ d u (t ¡ t0)g;

which, together with (2.7), shows that

x(t)

y(t)
6 x(t0)

y(t0)
= ¯ < ¬ for all t 2 [t0; t1]:

This is a contradiction to the existence of t1, which proves the claim. This, in turn,
implies that

x(t) 6 x(t0) expf¡ du (t ¡ t0)g for all t > t0;

and hence

lim
t! + 1

x(t) = 0:

This completes the proof.

Theorem 2.10. If cl=mu > a u +d u , then there exists a positive solution (x(t); y(t))
of (1.3) satisfying limt ! + 1 (x(t); y(t)) = (0; 0).

Proof. If f u 6 dl, then the conclusion directly follows from the previous argu-
ments that led to theorem 2.9. In the rest of the proof, we assume that f u > dl.
Let ¬ = cl=(a u + d u ) ¡ m u and let (x(t); y(t)) be the solution of system (1.3) with
x(t0)=y(t0) < ¬ . Then, by the proof of theorem 2.9, we know that

x(t)

y(t)
< ¬ for all t > t0 and lim

t! + 1
x(t) = 0:

Next, we show limt! + 1 y(t) = 0. Since y(t) is positive and bounded, we have

0 6 lim
t! + 1

inf y(t) 6 lim
t! + 1

sup y(t) =: s < +1:
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So we only need to show s = 0. Assume s > 0. Since limt ! + 1 x(t) = 0, there exists
a t1 such that

x(t) <
mldls

2(f u ¡ dl)
for all t > t1:

On the other hand, by the de­ nition of s > 0, there must exist a t2 > t1 such that

y(t2) > 1
2s and y0(t2) > 0:

However, y0(t2) > 0 implies that

d(t2)m(t2)y(t2) < x(t2)(f (t2) ¡ d(t2)) 6 x(t2)(f u ¡ dl);

and hence

x(t2) >
d(t2)m(t2)y(t2)

f u ¡ dl
> mldls

2(f u ¡ dl)
;

which is a contradiction. Thus we must have s = 0. This completes the proof.

Remark 2.11. The above results generalize the corresponding results obtained by
Kuang and Beretta [16] for the autonomous system (1.2). Note also that the ­ rst
case in theorem 2.8 and the invariance property in theorem 2.4 were not explored
in [16].

Definition 2.12. A bounded non-negative solution (x̂(t); ŷ(t)) of (1.3) is said to
be globally asymptotically stable (or globally attractive) if, for any other solution
(x(t); y(t))T of (1.3) with positive initial values, the following holds:

lim
t ! + 1

(jx(t) ¡ x̂(t)j + jy(t) ¡ ŷ(t)j) = 0:

Remark 2.13. In general, if the above property holds for any two solutions with
positive initial values, then we say system (1.3) is globally asymptotically stable.
One can easily show that if system (1.3) has a bounded positive solution that is
globally asymptotically stable, then system (1.3) is globally asymptotically stable,
and vice versa.

The following lemma is from [6] and will be employed in establishing the globally
asymptotic stability of (1.3).

Lemma 2.14. Let h be a real number and f be a non-negative function de¯ned
on [h; +1) such that f is integrable on [h; +1) and is uniformly continuous on
[h; +1). Then limt! + 1 f (t) = 0.

Theorem 2.15. Let (x̂(t); ŷ(t)) be a bounded positive solution of system (1.3). If
f l > d u , mlal > c u and

inf
t2 R

½
b(t) ¡ [c(t) + m(t)f(t)]ŷ(t)

[m(t)m"
2 + m"

1][m(t)ŷ(t) + x̂(t)]

¾
> 0; inf

t 2 R
fm(t)f (t) ¡ c(t)g > 0;

(2.8)
where m"

i , M"
i , i = 1; 2, are de¯ned in (2.2), then (x̂(t); ŷ(t)) is globally asymptot-

ically stable.

https://doi.org/10.1017/S0308210500002304 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500002304


104 M. Fan, Q. Wang and X. Zou

Proof. Let (x(t); y(t))T be any solution of (1.3) with positive initial value. Since ¡ "

is an ultimately bounded region of (1.3) (theorem 2.4), there exists a T1 > 0 such
that (x(t); y(t)) 2 ¡ " and (x̂(t); ŷ(t)) 2 ¡ " for all t > t0 + T1.

Consider a Lyapunov function de­ ned by

V (t) = j lnfx(t)g ¡ lnfx̂(t)gj + j lnfy(t)g ¡ lnfŷ(t)gj; t > t0: (2.9)

A direct calculation of the right derivative D + V (t) of V (t) along the solutions
of (1.3) produces

D + V (t) = sgnfx(t) ¡ x̂(t)g

£
·
¡ b(t)[x(t) ¡ x̂(t)] ¡

µ
c(t)y(t)

m(t)y(t) + x(t)
¡ c(t)ŷ(t)

m(t)ŷ(t) + x̂(t)

¶¸

+ sgnfy(t) ¡ ŷ(t)g
·

f (t)x(t)

m(t)y(t)x(t)
¡ f (t)x̂(t)

m(t)ŷ(t) + x̂(t)

¸

= ¡ b(t)jx(t) ¡ x̂(t)j

¡ sgnfx(t) ¡ x̂(t)g c(t)[x̂(t)y(t) ¡ x(t)ŷ(t)]

[m(t)y(t) + x(t)][m(t)ŷ(t) + x̂(t)]

+ sgnfy(t) ¡ ŷ(t)g f (t)m(t)[x(t)ŷ(t) ¡ x̂(t)y(t)]

[m(t)y(t) + x(t)][m(t)ŷ(t) + x̂(t)]

= ¡ b(t)jx(t) ¡ x̂(t)j

¡ sgnfx(t) ¡ x̂(t)gc(t)x̂(t)[y(t) ¡ ŷ(t)] + c(t)ŷ(t)[x̂(t) ¡ x(t)]

[m(t)y(t) + x(t)][m(t)ŷ(t) + x̂(t)]

+ sgnfy(t) ¡ ŷ(t)g

£ m(t)f (t)ŷ(t)[x(t) ¡ x̂(t)] + m(t)f (t)x̂(t)[ŷ(t) ¡ y(t)]

[m(t)y(t) + x(t)][m(t)ŷ(t) + x̂(t)]

6 ¡
·
b(t) ¡ [c(t) + m(t)f (t)]ŷ(t)

[m(t)y(t) + x(t)][m(t)ŷ(t) + x̂(t)]

¸
jx(t) ¡ x̂(t)j

+
(c(t) ¡ m(t)f (t))x̂(t)

[m(t)ŷ(t) + x(t)][m(t)ŷ(t) + x̂(t)]
jy(t) ¡ ŷ(t)j

6 ¡
·
b(t) ¡ [c(t) + m(t)f (t)]ŷ(t)

[m(t)M "
2 + M "

1 ][m(t)ŷ(t) + x̂(t)]

¸
jx(t) ¡ x̂(t)j

+
(c(t) ¡ m(t)f (t))x̂(t)

[m(t)y(t) + x(t)][m(t)ŷ(t) + x̂(t)]
jy(t) ¡ ŷ(t)j;

t > t0 + T1:
(2.10)

From (2.8), it follows that there exists a positive constant · > 0 such that

D + V (t) 6 ¡ · [jx(t) ¡ x̂(t)j + jy(t) ¡ ŷ(t)j]; t > t0 + T1: (2.11)

Integrating on both sides of (2.11) from t0 + T1 to t produces

V (t) + ·

Z t

t0 + T1

[jx(s) ¡ x̂(s)j + jy(s) ¡ ŷ(s)j] ds 6 V (t0 + T1) < +1; t > t0 + T1:
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Then
Z t

t0 + T1

[jx(s) ¡ x̂(s)j + jy(s) ¡ ŷ(s)j] ds 6 · ¡1V (t0 + T1) < +1; t > t0 + T1;

and hence jx(t) ¡ x̂(t)j + jy(t) ¡ ŷ(t)j 2 L1([t0 + T1; +1)).
The boundedness of x̂(t) and ŷ(t) and the ultimate boundedness of x(t) and y(t)

imply that x(t), y(t), x̂(t) and ŷ(t) all have bounded derivatives for t > t0+T1 (from
the equations satis­ ed by them). Then it follows that jx(t) ¡ x̂(t)j + jy(t) ¡ ŷ(t)j is
uniformly continuous on [t0 + T1; +1). By lemma 2.14, we have

lim
t ! + 1

(jx(t) ¡ x̂(t)j + jy(t) ¡ ŷ(t)j) = 0:

This completes the proof.

Corollary 2.16. Let (x̂(t); ŷ(t)) be a bounded positive solution of system (1.3). If
f l > d u , mlal > c u and one of the following conditions holds,

inf
t 2 R

½
b(t) ¡ (c(t) + m(t)f (t))M "

2

(m(t)m"
2 + m"

1)2

¾
> 0; inf

t 2 R
ff (t)m(t) ¡ c(t)g > 0;

inf
t2 R

½
b(t) ¡ c(t)ŷ(t) + m(t)f(t)M"

2

[m(t)m"
2 + m"

1][m(t)ŷ(t) + x̂(t)]

¾
> 0;

inf
t2 R

fm(t)f (t)m"
1 ¡ c(t)x̂(t)g > 0;

inf
t2 R

½
b(t) ¡ c(t)M "

2 + m(t)f (t)ŷ(t)

[m(t)m"
2 + m"

1][m(t)ŷ(t) + x̂(t)]

¾
> 0;

inf
t 2 R

fm(t)f(t)x̂(t) ¡ c(t)M"
1 g > 0;

inf
t2 R

½
b(t) ¡ [c(t) + m(t)f (t)]M"

2

[m(t)m"
2 + m"

1][m(t)ŷ(t) + x̂(t)]

¾
> 0; inf

t2 R
fm(t)f (t) ¡ c(t)g > 0;

where m"
i , M "

i , i = 1; 2, are de¯ned by (2.2), then (x̂(t); ŷ(t)) is globally asymptot-
ically stable.

3. Periodic case

In this section, we will con­ ne ourselves to the case when the parameters in sys-
tem (1.3) are periodic of some common period. The assumption of periodicity of
the parameters is a way of incorporating the periodicity of the environment. The
periodic oscillation of the parameters seems reasonable in view of seasonal factors,
e.g. mating habits, availability of food, weather conditions, harvesting and hunt-
ing, etc. A very basic and important problem in the study of a population-growth
model with a periodic environment is the global existence and stability of positive
periodic solution, which plays a similar role as a globally stable equilibrium does
in an autonomous model. Thus it is reasonable to seek conditions under which the
resulting periodic non-autonomous system would have a positive periodic solution
that is globally asymptotically stable.

In the sequel, we will always assume that the parameters in system (1.3) are
periodic in t of period ! > 0 and will study the existence and stability of a positive
periodic solution to system (1.3).
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Lemma 3.1 (Brouwer ­ xed-point theorem). Let ¼ be a continuous operator that
maps a closed bounded convex subset ·« » Rn into itself. Then ·« contains at least
one ¯xed point of the operator ¼ , i.e. there exists an x¤ 2 ·« such that ¼ (x ¤ ) = x ¤ .

Theorem 3.2. If f l > d u , mlal > c u , then (1.3) has at least one positive periodic
solution of period !, say (x ¤ (t); y ¤ (t)), which lies in ¡ ", i.e. m"

1 6 x ¤ (t) 6 M "
1 ,

m"
2 6 y ¤ (t) 6 M "

2 , where m"
i ; M "

i , i = 1; 2, are de¯ned in (2.1).

Proof. De­ ne a shift operator, also known as a Poincaŕe mapping ¼ : R2 ! R2, by

¼ ((x0; y0)) = (x(!; t0; (x0; y0)); y(!; t0; (x0; y0))); (x0; y0) 2 R2;

where (x(t; t0; (x0; y0)); y(t; t0; (x0; y0))) denotes the solution of (1.3) through the
point (t0; (x0; y0)). Theorem 2.8 tells us that the set ¡ " de­ ned by (2.3) is positive
invariant with respect to system (1.3), and hence the operator ¼ de­ ned above maps
¡ " into itself, i.e. ¼ ( ¡ ") » ¡ ". Since the solution of (1.3) is continuous with respect
to the initial value, the operator ¼ is continuous. It is not di¯ cult to show that ¡ "

is a bounded closed convex set in R2. By lemma 3.1, ¼ has at least one ­ xed point
in ¡ ", i.e. there exists a (x ¤ ; y ¤ ) 2 ¡ " such that

(x ¤ ; y ¤ ) = (x(!; t0; (x ¤ ; y ¤ )); y(!; t0; (x ¤ ; y ¤ ))):

Therefore, there exists at least one positive periodic solution, say (x ¤ (t); y ¤ (t)), and
the invariance of ¡ " assures that (x ¤ (t); y ¤ (t)) 2 ¡ ". This completes the proof.

The conditions in theorem 3.2 are given in terms of the supremum and in­ mum
of the parameters. Next, we will employ an alternative approach, that is, a continu-
ation theorem in coincidence degree theory, to establish some criteria for the same
problem but in terms of the averages of the related parameters over an interval of
the common period. To this end, we need some preparation as below.

Let X, Z be normed vector spaces, L : Dom L » X ! Z be a linear mapping and
N : X ! Z be a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dim Ker L = codim Im L < +1 and Im L is closed in Z.
If L is a Fredholm mapping of index zero and there exist continuous projectors
P : X ! X and Q : Z ! Z such that Im P = Ker L, Im L = Ker Q = Im(I ¡ Q), it
follows that Lj Dom L\Ker P : (I ¡ P )X ! Im L is invertible. We denote the inverse
of that map by KP . If « is an open bounded subset of X, the mapping N will be
called L-compact on ·« if QN( ·« ) is bounded and KP (I ¡ Q)N : ·« ! X is compact.
Since Im Q is isomorphic to Ker L, there exists an isomorphism J : Im Q ! Ker L.
The following lemma is from [10].

Lemma 3.3 (continuation theorem). Let L be a Fredholm mapping of index zero
and N be L-compact on ·« . Suppose that the following hold.

(a) For each ¶ 2 (0; 1), every solution x of Lx = ¶ Nx is such that x 62 @« .

(b) QNx 6= 0 for each x 2 @« \ Ker L and the Brouwer degree

degfJQN; « \ Ker L; 0g 6= 0:

Then the operator equation Lx = Nx has at least one solution lying in Dom L \ ·« .
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For a continuous and periodic function g(t) with period !, denote by ·g the average
of g(t) over an interval of length !, i.e.

·g :=
1

!

Z !

0

g(t) dt:

Then we have the following lemma.

Lemma 3.4. If ·f > ·d, ·a > (c=m), then the system of algebraic equations

·a ¡ ·bv1 ¡ 1

!

Z !

0

c(t)v2

m(t)v2 + v1
dt = 0; ·d ¡ 1

!

Z !

0

f (t)v1

m(t)v2 + v1
dt = 0 (3.1)

has a unique solution (v ¤
1 ; v ¤

2) ¤ 2 R2 with v ¤
i > 0.

Proof. Consider the function

f (u) = ·d ¡ 1

!

Z !

0

f (t)

m(t)u + 1
dt; u > 0:

One can easily see that

f (0) = ·d ¡ ·f < 0; lim
u! + 1

f (u) = ·d > 0:

Then, from the zero point theorem and the monotonicity of f (u), it follows that
there exists a unique u¤ > 0 such that f (u ¤ ) = 0.

Now we can claim that v ¤
2 = u ¤ v ¤

1 , if (v ¤
1 ; v ¤

2) is a solution of (3.1). Substitute
v ¤

2 = u ¤ v ¤
1 into the ­ rst equation of (3.1) and simplify. We have

v ¤
1 =

1
·b

µ
·a ¡ 1

!

Z !

0

c(t)u ¤

m(t)u ¤ + 1
dt

¶

> 1
·b

µ
·a ¡ 1

!

Z !

0

c(t)u¤

m(t)u ¤ dt

¶

=
1
·b

µ
·a ¡

µ
c

m

¶¶
> 0

and

v ¤
2 = u ¤ v ¤

1 > 0:

This completes the proof.

Theorem 3.5. If ·f > ·d and ·a > (c=m), then system (1.3) has at least one positive
!-periodic solution, say (x ¤ (t); y ¤ (t)), and there exist positive constants ¬ i > m"

i ,
0 < ­ i 6 M "

i , i = 1; 2, such that

¬ 1 6 x ¤ (t) 6 ­ 1; ¬ 2 6 y ¤ (t) 6 ­ 2:

Proof. Making the change of variables

x(t) = expf~x(t)g; y(t) = expf~y(t)g;
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system (1.3) is reformulated as

~x0(t) = a(t) ¡ b(t) expf~x(t)g ¡ c(t) expf~y(t)g
m(t) expf~y(t)g + expf~x(t)g

;

~y0(t) = ¡ d(t) +
f (t) expf~x(t)g

m(t) expf~y(t)g + expf~x(t)g :

9
>>=

>>;
(3.2)

Let

X = Z = f(~x; ~y)T 2 C(R; R2) j ~x(t + !) = ~x(t); ~y(t + !) = ~y(t)g

and

k(~x; ~y)k = max
t 2 [0;!]

j~x(t)j + max
t 2 [0;!]

j~y(t)j; (~x; ~y) 2 X (or Z):

Then X , Z are both Banach spaces when they are endowed with the above norm
k ¢ k.

Let

N

·
~x

~y

¸
=

·
N1(t)

N2(t)

¸
=

2

664

a(t) ¡ b(t) expf~x(t)g ¡ c(t) expf~y(t)g
m(t) expf~y(t)g + expf~x(t)g

¡ d(t) +
f (t) expf~x(t)g

m(t) expf~y(t)g + expf~x(t)g

3

775

and

L

·
~x

~y

¸
=

·
~x0

~y0

¸
; P

·
~x

~y

¸
= Q

·
~x

~y

¸
=

2

664

1

!

Z !

0

~x(t) dt

1

!

Z !

0

~y(t) dt

3

775 ;

·
~x

~y

¸
2 X:

Then

Ker L = f(~x; ~y) 2 X j (~x; ~y) = (h1; h2) 2 R2g;

Im L =

½
(~x; ~y) 2 Z

¯̄
¯̄

Z !

0

~x(t) dt = 0;

Z !

0

~y(t) dt = 0

¾

and
dim Ker L = 2 = codim Im L:

Since Im L is closed in Z, L is a Fredholm mapping of index zero. It is easy to show
that P , Q are continuous projectors such that

Im P = Ker L; Im L = Ker Q = Im(I ¡ Q):

Furthermore, the generalized inverse (to L) KP : Im L ! Dom L \Ker P exists and
is given by

KP

·
~x

~y

¸
=

2

6664

Z t

0

~x(s) ds ¡ 1

!

Z !

0

Z t

0

~x(s) dsdt

Z t

0

~y(s) ds ¡ 1

!

Z !

0

Z t

0

~y(s) dsdt

3

7775 :
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Thus

QN

·
~x

~y

¸
=

2

664

1

!

Z !

0

·
a(t) ¡ b(t) expf~x(t)g ¡ c(t) expf~y(t)g

m(t) expf~y(t)g + expf~x(t)g

¸
dt

1

!

Z !

0

·
¡ d(t) +

f(t) expf~x(t)g
m(t) expf~y(t)g + expf~x(t)g

¸
dt

3

775

and

KP (I ¡ Q)N

·
~x

~y

¸

=

2

6664

Z t

0

N1(s) ds ¡ 1

!

Z !

0

Z t

0

N1(s) dsdt ¡
µ

t

!
¡ 1

2

¶ Z !

0

N(t) dt

Z t

0

N2(s) ds ¡ 1

!

Z !

0

Z t

0

N2(s) dsdt ¡
µ

t

!
¡ 1

2

¶ Z !

0

N2(t) dt

3

7775 :

Obviously, QN and KP (I ¡ Q)N are continuous. Using the Arzela{Ascoli theorem,
it is not di¯ cult to show that KP (I ¡ Q)N ( ·« ) is compact for any open bounded
set « » X. Moreover, QN( ·« ) is bounded. Thus N is L-compact on ·« with any
open bounded set « » X .

Now we reach the position to search for an appropriate open bounded subset
« for the application of the continuation theorem. Corresponding to the operator
equation L~x = ¶ N ~x, ¶ 2 (0; 1), we have

~x0(t) = ¶

·
a(t) ¡ b(t) expf~x(t)g ¡ c(t) expf~y(t)g

m(t) expf~y(t)g + expf~x(t)g

¸
;

~y0(t) = ¶

·
¡ d(t) +

f (t) expf~x(t)g
m(t) expf~y(t)g + expf~x(t)g

¸
:

9
>>=

>>;
(3.3)

Suppose that (~x(t); ~y(t)) 2 X is an arbitrary solution of system (3.2) for a certain
¶ 2 (0; 1). Integrating on both sides of (3.3) over the interval [0; !], we obtain

·a! =

Z !

0

·
b(t) expf~x(t)g +

c(t) expf~y(t)g
m(t) expf~y(t)g + expf~x(t)g

¸
dt;

·d! =

Z !

0

f (t) expf~x(t)g
m(t) expf~y(t)g + expf~x(t)g dt:

9
>>=

>>;
(3.4)

It follows from (3.3) and (3.4) that

Z !

0

j~x0(t)j dt 6 ¶

·Z !

0

a(t) dt +

Z !

0

b(t) expf~x(t)g dt

+

Z !

0

c(t) expf~y(t)g
m(t) expf~y(t)g + expf~x(t)g

dt

¸

< 2·a!;
Z !

0

j~y0(t)j dt 6 ¶

·Z !

0

d(t) dt +

Z !

0

f(t) expf~x(t)g
m(t) expf~y(t)g + expf~x(t)g dt

¸

< 2 ·d!:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(3.5)
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Since (~x(t); ~y(t)) 2 X , there exist ¹ i; ² i 2 [0; !], i = 1; 2, such that

~x( ¹ 1) = min
t2 [0;!]

~x(t); ~x( ² 1) = max
t2 [0;!]

~x(t);

~y( ¹ 2) = min
t2 [0;!]

~y(t); ~y( ² 2) = max
t2 [0;!]

~y(t):

9
>=

>;
(3.6)

From the ­ rst equation of (3.4) and (3.6), we obtain

·a! >
Z !

0

b(t) expf~x( ¹ 1)g dt = ·b! expf~x( ¹ 1)g;

which reduces to

~x( ¹ 1) 6 ln

½
·a
·b

¾
;

and hence

~x(t) 6 ~x( ¹ 1) +

Z !

0

j~x0(t)j dt 6 ln

½
·a
·b

¾
+ 2·a! := H1: (3.7)

On the other hand, from the ­ rst equation of (3.4) and (3.6), we also have

·a! 6
Z !

0

·
b(t) expf~x( ² 1)g +

c(t)

m(t)

¸
dt =

µ
c

m

¶
! + ·b! expf~x( ² 1)g:

Then

~x( ² 1) > ln

½
·a ¡ (c=m)

·b

¾
:

Therefore,

~x(t) > ~x( ² 1) ¡
Z !

0

j~x0(t)j dt > ln

½
·a ¡ (c=m)

·b

¾
¡ 2·a! := H2;

which, together with (3.7), leads to

max
t 2 [0;!]

j~x(t)j 6 maxfjH1j; jH2jg := B1:

From the second equation of (3.4) and (3.6), we obtain

·d! 6
Z !

0

f (t) expf~x(t)g
m(t) expf~y(t)g dt

6
Z !

0

f (t) expf~x(t)g
m(t) expf~y( ¹ 2)g

dt

=
1

expf~y( ¹ 2)g
·a
·b

µ
f

m

¶
expf2·a!g!:

Then

~y( ¹ 2) 6 ln

½
·a
·b ·d

µ
f

m

¶¾
+ 2·a!:

Consequently,

~y(t) 6 ~y( ¹ 2) +

Z !

0

j~y0(t)j dt 6 ln

½
·a
·b ·d

µ
f

m

¶¾
+ 2(·a + ·d)! := H3: (3.8)
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The second equation of (3.4) also produces

·d! =

Z !

0

f (t) expf~x(t)g
m(t) expf~y(t)g + expf~x(t)g

dt

>
Z !

0

f (t) expf~x(t)g
m u expf~y( ² 2)g + expf~x(t)g

dt

>
Z !

0

f (t)[(·a ¡ (c=m))=·b] expf¡ 2·a!g
m u expf~y( ² 2)g + [(·a ¡ (c=m))=·b] expf¡ 2·a!g

dt:

Then it follows that

~y( ² 2) > ln

½
( ·f ¡ ·d)(·a ¡ (c=m))

mu ·b ·d

¾
¡ 2·a!;

and hence

~y(t) > ~y( ² 2) ¡
Z !

0

j~y0(t)j dt > ln

½
( ·f ¡ ·d)(·a ¡ (c=m))

mu ·b ·d

¾
¡ 2(·a + ·d)! := H4;

which, together with (3.8), leads to

max
t 2 [0;!]

j~y(t)j 6 maxfjH3j; jH4jg := B2:

Clearly, B1 and B2 are independent of ¶ . Take B = B1 + B2 + B3, where B3 > 0
is taken su¯ ciently large such that k(lnfv ¤

1g; lnfv ¤
2g)k = j lnfv ¤

1gj + j lnfv ¤
2gj < B3,

where (v ¤
1 ; v ¤

2) is the unique solution of (3.1) with v ¤
1 > 0, v ¤

2 > 0.
Let « = f(~x; ~y)T 2 X j k(~x; ~y)k < Bg. Then it is clear that « veri­ es require-

ment (a) of lemma 3.3. When (~x; ~y) 2 @« \ Ker L = @« \ R2, (~x; ~y) is a constant
vector in R2 with k(~x; ~y)k = j~xj + j~yj = B. Then

QN

·
~x

~y

¸
=

2

664

·a ¡ ·b expf~xg ¡ 1

!

Z !

0

c(t) expf~yg
m(t) expf~yg + expf~xg dt

¡ ·d +
1

!

Z !

0

f (t) expf~xg
m(t) expf~yg + expf~xg dt

3

775 6=
·
0

0

¸
:

Moreover, direct calculation produces

deg(JQN; « \ Ker L; 0) = sgn

½
·b

!

Z !

0

m(t)f (t)v ¤
1

(m(t)v ¤
2 + v ¤

1)2
dt

¾
6= 0;

where deg(¢; ¢; ¢) is the Brouwer degree and J is the identity mapping, since Im Q =
Ker L. By now we have proved that « veri­ es all requirements of lemma 3.3. Then

L

·
~x

~y

¸
= N

·
~x

~y

¸

has at least one solution in DomL \ ·« , i.e. system (3.2) has at least one !-periodic
solution in Dom L \ ·« , say (~x¤ (t); ~y ¤ (t))T. Set

x ¤ (t) = expf~x ¤ (t)g; y ¤ (t) = expf~y ¤ (t)g:
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Then (x ¤ (t); y ¤ (t))T is an !-periodic solution of system (1.3) with strictly positive
components. The existence of positive constants ¬ 1, ¬ 2, ­ 1, ­ 2 directly follows from
corollary 2.16 and the above discussion. This completes the proof.

Note that f l > d u , mlal > c u imply that ·f > ·d, ·a > (c=m). Together with theo-
rem 2.15, it is not di¯ cult to show the following.

Corollary 3.6. Let all the assumptions in theorem 2.15 hold. Then system (1.3)
has a unique positive !-periodic solution, which is globally asymptotical ly stable.

Remark 3.7. If all the parameters in system (1.3) are positive constants, then (1.3)
is the system considered in [16], and the assumptions in theorems 3.2 and 3.5 both
reduce to f > d, ma > c, which ensure that system (1.1) has a unique positive
equilibrium E ¤ = (x ¤ ; y ¤ ), where

x¤ =
cd + f (ma ¡ c)

bmf
=

cd

bmf
+ m1; y ¤ =

f ¡ d

dm
x ¤ :

Assumption (2.8) in theorem 2.7 guarantees that E ¤ is globally asymptotically
stable. In addition, in [16], Kuang and Beretta have proved that system (1.1)
has no non-trivial positive periodic solutions. Now we can conclude that when
system (1.3) reduces to (1.1) (as ! ! 0), the positive periodic solution claimed
above degenerated to a trivial positive periodic solution, i.e. the positive equilib-
rium E ¤ = (x ¤ ; y ¤ ).

Remark 3.8. Theorems 3.2 and 3.5 tell us that system (1.3) admits one positive
periodic solution, provided that the (average) growth rate of prey is greater than
the (average) consumption rate of prey and the (average) conversion rate that the
prey provide for conversion into predator birth is greater than the (average) death
rate of predator.

The following theorem explores the boundary periodic solution of (1.3).

Theorem 3.9. System (1.3) always has a periodic solution (x ¤ (t); 0), where

x¤ (t) =

µ
exp

½Z !

0

a(s) ds

¾
¡ 1

¶µZ t + !

t

b(s) exp

½
¡

Z t

s

a( ½ ) d ½

¾
ds

¶¡1

: (3.9)

Moreover, if

d(t) ¡ c(t)

m(t)
¡ f(t) > 0 for t 2 [0; !];

then (x¤ (t); 0) is globally asymptotical ly stable, i.e. (x ¤ (t); 0) attracts all the solu-
tions of (1.3) with positive initial values.

Proof. One can easily show that (x ¤ (t); 0) is a solution of system (1.3) and x ¤ (t +
!) = x ¤ (t), i.e. (x ¤ (t); 0) is a periodic solution of (1.3). Let (x(t); y(t)) be any
solution of (1.3) with x(t0) > 0 and y(t0) > 0. In order to show that (x¤ (t); 0) is
globally asymptotically stable, we only need to prove that

lim
t! + 1

jx(t) ¡ x ¤ (t)j = 0;
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since, from the predator equation in (1.3) and the assumption that d(t) ¡ c(t)=m(t) ¡
f (t) > 0 for t 2 [0; !], one can easily derive that limt ! + 1 y(t) = 0.

Consider the Lyapunov function de­ ned by

V (t) = j lnfx(t)g ¡ lnfx ¤ (t)gj + j lnfy(t)gj; t > t0:

Calculating the upper-right derivative of V (t) along the solution of (1.2) produces

D + V (t) 6 ¡ b(t)jx(t) ¡ x ¤ (t)j +
c(t)y

m(t)y + x
¡ d(t) +

f (t)x

m(t)y + x

6 ¡ b(t)jx(t) ¡ x ¤ (t)j +
c(t)

m(t)
¡ d(t) + f (t)

6 ¡ b(t)jx(t) ¡ x ¤ (t)j
6 ¡ bljx(t) ¡ x ¤ (t)j; t > t0;

The rest of the proof is exactly the same as that carried out in theorem 2.15, and
hence we omit the details here.

Corollary 3.10. The logistic equation with periodic coe± cients

x0 = x[a(t) ¡ b(t)x]

has a unique positive periodic solution x¤ (t), which is globally asymptotical ly stable,
and x ¤ (t) is given by (3.9).

The next result shows that the condition ·f > ·d in theorem 3.5 is a necessary one.

Theorem 3.11. If system (1.3) admits a positive !-periodic solution (x ¤ (t); y ¤ (t)),
then ·f > ·d.

The conclusion follows directly from the predator equation in (1.3) and the peri-
odicity of y ¤ (t).

Remark 3.12. Theorems 3.5 and 3.11 raise an interesting but challenging problem:
is the condition ·a > (c=m) also necessary? We leave this as an open problem.

4. Almost-periodic case

In some situations, the varying parameters a(t), b(t), c(t), d(t), f(t) and m(t)
in (1.3) may not all be periodic, but fall into a more general class, i.e. the class
of almost-periodic functions. For the de­ nition and properties of almost-periodic
functions, we refer to [19]. In this section, we consider such a situation and are
concerned with the existence, uniqueness and stability of positive almost-periodic
solution of (1.3). Throughout this section, in addition to the assumptions in x 2,
we further assume that a(t), b(t), c(t), d(t), f (t) and m(t) are all almost periodic.
Thus all the theorems in x 2 remain valid.

Let

x(t) = expf~x(t)g; y(t) = expf~y(t)g:
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Then system (1.3) becomes

~x0(t) = a(t) ¡ b(t) expf~x(t)g ¡ c(t) expf~y(t)g
m(t) expf~y(t)g + expf~x(t)g ;

~y0(t) = ¡ d(t) +
f (t) expf~x(t)g

m(t) expf~y(t)g + expf~x(t)g
:

9
>>=

>>;
(4.1)

By theorem 2.8, it is not di¯ cult to prove the following result.

Theorem 4.1. If f l > d u , mlal > c u , then the set

¡ ¤
" := f(x; y) 2 R2 j lnfm"

1g 6 x 6 lnfM "
1 g; lnfm"

2g 6 y 6 lnfM "
2 gg

is a positively invariant and ultimately bounded region of system (4.1), where m"
i ,

M "
i , i = 1; 2, are de¯ned in (2.2).

In order to prove the main result of this section, we shall ­ rst introduce a useful
lemma. Consider the ordinary di¬erential equation

x0 = f(t; x); f (t; x) 2 C(R £ D; Rn); (4.2)

where D is an open set in Rn and f (t; x) is almost periodic in t uniformly with
respect to x 2 D.

In order to discuss the existence of an almost-periodic solution of (4.2), we con-
sider the product system of (4.2),

x0 = f(t; x); y0 = f (t; y): (4.3)

Lemma 4.2 (cf. theorem 19.1 of [19]). Suppose that there exists a Lyapunov func-
tion V (t; x; y) de¯ned on [0; +1) £ D £ D that satis¯es the following conditions.

(i) ¬ (kx ¡ yk) 6 V (t; x; y) 6 ­ (kx ¡ yk), where ¬ ( ® ) and ­ ( ® ) are continuous,
increasing and positive-de¯nite.

(ii) jV (t; x1; y1) ¡ V (t; x2; y2)j 6 Kfkx1 ¡ x2k + ky1 ¡ y2kg, where K > 0 is a
constant.

(iii) V 0
(4:3)(t; x; y) 6 ¡ · V (jx ¡ yj), where · > 0 is a constant.

Moreover, suppose that system (4.2) has a solution that remains in a compact set
S » D for all t > t0 > 0. Then system (4.2) has a unique almost-periodic solution
in S, which is uniformly asymptotically stable in D.

Theorem 4.3. If f l > d u , mlal > c u and

inf
t 2 R

½
b(t) +

(c(t) ¡ f (t)m(t))M "
2

(m(t)m"
2 + m"

1)2

¾
> 0; inf

t 2 R
ff (t)m(t) ¡ c(t)g > 0; (4.4)

where m"
i , M "

i , i = 1; 2, are de¯ned in (2:2), then system (1.3) has a unique positive
almost-periodic solution, which is globally asymptotical ly stable, and, especially, is
uniformly globally asymptotically stable in ¡ ".
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Proof. For (x; y)T 2 Int R2
+ , we de­ ne k(x; y)Tk = x + y. In order to prove that

system (1.3) has a unique positive almost-periodic solution, which is uniformly
asymptotically stable in ¡ , it is equivalent to show that system (4.1) has a unique
almost-periodic solution to be uniformly asymptotically stable in ¡ ¤

" .
Consider the product system of (4.1),

~x0
1(t) = a(t) ¡ b(t) expf~x1(t)g ¡ c(t) expf~y1(t)g

m(t) expf~y1(t)g + expf~x1(t)g
;

~y0
1(t) = ¡ d(t) +

f(t) expf~x1(t)g
m(t) expf~y1(t)g + expf~x1(t)g :

~x0
2(t) = a(t) ¡ b(t) expf~x2(t)g ¡ c(t) expf~y2(t)g

m(t) expf~y2(t)g + expf~x2(t)g ;

~y0
2(t) = ¡ d(t) +

f(t) expf~x2(t)g
m(t) expf~y2(t)g + expf~x2(t)g

:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(4.5)

Now we de­ ne a Lyapunov function on [0; +1) £ ¡ ¤
" £ ¡ ¤

" as follows:

V (t; ~x1; ~y1; ~x2; ~y2) = j~x1(t) ¡ ~x2(t)j + j~y1(t) ¡ ~y2(t)j:

Then condition (i) of lemma 4.2 is satis­ ed for ¬ ( ® ) = ­ ( ® ) = ® for ® > 0. In
addition,

jV (t; ~x1; ~y1; ~x2; ~y2) ¡ V (t; ~x3; ~y3; ~x4; ~y4)j
= j(j~x1(t) ¡ ~x2(t)j + j~y1(t) ¡ ~y2(t)j) ¡ (j~x3(t) ¡ ~x4(t)j + j~y3(t) ¡ ~y4(t)j)j
6 j~x1(t) ¡ ~x3(t)j + j~y1(t) ¡ ~y3(t)j + j~x2(t) ¡ ~x4(t)j + j~y2(t) ¡ ~y4(t)j
6 k(~x1(t); ~y1(t)) ¡ (~x3(t); ~y3(t))k + k(~x2(t); ~y2(t)) ¡ (~x4(t); ~y4(t))k; (4.6)

which shows that condition (ii) of lemma 4.2 is also satis­ ed.
Let (~xi(t); ~yi(t))

T, i = 1; 2, be any two solutions of (4.1) de­ ned on [0; +1) £
¡ ¤

" £ ¡ ¤
" .

Calculating the right derivative D + V (t) of V (t) along the solutions of (4.1), we
have

D + V (t)

=

·
¡ b(t)(expf~x1(t)g ¡ expf~x2(t)g)

¡
µ

c(t) expf~y1(t)g
m(t) expf~y1(t)g + expf~x1(t)g

¡ c(t) expf~y2(t)g
m(t) expf~y2(t)g + expf~x2(t)g

¶¸
sgn(~x1(t) ¡ ~x2(t))

+

·
f(t) expf~x1(t)g

m(t) expf~y1(t)g + expf~x1(t)g

¡ f (t) expf~x2(t)g
m(t) expf~y2(t)g + expf~x2(t)g

¸
sgn(~y1(t) ¡ ~y2(t))
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=

·
¡ b(t)(expf~x1(t)g ¡ expf~x2(t)g)

¡
µ

c(t)(expf~x2(t) + ~y1(t)g ¡ expf~x1(t) + ~y2(t)g)

(m(t) expf~y1(t)g + expf~x1(t)g)(m(t) expf~y2(t)g + expf~x2(t)g)

¶¸

£ sgn(~x1(t) ¡ ~x2(t))

+

·
f (t)m(t)(expf~x1(t) + ~y2(t)g ¡ expf~x2(t) + ~y1(t)g)

(m(t) expf~y1(t)g + expf~x1(t)g)(m(t) expf~y2(t)g + expf~x2(t)g)

¸

£ sgn(~y1(t) ¡ ~y2(t))

6 ¡ b(t)j expf~x1(t)g ¡ expf~x2(t)gj

+
c(t) expf~x2(t)g

(m(t) expf~y1(t)g + expf~x1(t)g)(m(t) expf~y2(t)g + expf~x2(t)g)

£ j expf~y1(t)g ¡ expf~y2(t)gj

¡ c(t) expf~y2(t)g
(m(t) expf~y1(t)g + expf~x1(t)g)(m(t) expf~y2(t)g + expf~x2(t)g)

£ j expf~x1(t)g ¡ expf~x2(t)gj

+
f (t)m(t) expf~y2(t)g

(m(t) expf~y1(t)g + expf~x1(t)g)(m(t) expf~y2(t)g + expf~x2(t)g)

£ j expf~x1(t)g ¡ expf~x2(t)gj

¡ f(t)m(t) expf~x2(t)g
(m(t) expf~y1(t)g + expf~x1(t)g)(m(t) expf~y2(t)g + expf~x2(t)g)

£ j expf~y1(t)g ¡ expf~y2(t)gj

=

·
¡ b(t) +

(f (t)m(t) ¡ c(t)) expf~y2(t)g
(m(t) expf~y1(t)g + expf~x1(t)g)(m(t) expf~y2(t)g + expf~x2(t)g)

¸

£ j expf~x1(t)g ¡ expf~x2(t)gj

+
(c(t) ¡ f(t)m(t)) expf~x2(t)g

(m(t) expf~y1(t)g + expf~x1(t)g)(m(t) expf~y2(t)g + expf~x2(t)g)

£ j expf~y1(t)g ¡ expf~y2(t)gj

6
·
¡ b(t) +

(f(t)m(t) ¡ c(t))M "
2

(m(t)m"
2 + m"

1)2

¸
j expf~x1(t)g ¡ expf~x2(t)gj

+
(c(t) ¡ f (t)m(t))m"

1

(m(t)M "
2 + M "

1 )2
j expf~y1(t)g ¡ expf~y2(t)gj:

Note that

expf~x1(t)g ¡ expf~x2(t)g = expf¹ (t)g(~x1(t) ¡ ~x2(t));

expf~y1(t)g ¡ expf~y2(t)g = expf² (t)g(~y1(t) ¡ ~y2(t));

)

(4.7)

where ¹ (t) lies between ~x1(t) and ~x2(t), while ² (t) lies between ~y1(t) and ~y2(t).
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Then we have

D + V (t) 6 ¡
·
b(t) ¡ (f(t)m(t) ¡ c(t))M "

2

(m(t)m"
2 + m"

1)2

¸
m"

1j~x1(t) ¡ ~x2(t)j

¡ (f (t)m(t) ¡ c(t))m"
1

(m(t)M"
2 + M "

1 )2
m"

2j~y1(t) ¡ ~y2(t)j

6 ¡ · (j~x1(t) ¡ ~x2(t)j + j~y1(t) ¡ ~y2(t)j)
= ¡ · k(~x1(t); ~y1(t)) ¡ (~x2(t); ~y2(t))k; (4.8)

where

· = min

½
inf
t 2 R

½·
b(t) ¡ (f (t)m(t) ¡ c(t))M "

2

(m(t)m"
2 + m"

1)2

¸
m"

1

¾

and

inf
t2 R

½
(f (t)m(t) ¡ c(t))m"

1

(m(t)M2 + M1)2
m"

2

¾¾
> 0:

Hence condition (iii) of lemma 4.2 is veri­ ed as well. Therefore, by theorem 4.1
and lemma 4.2, it follows that system (4.1) has a unique almost-periodic solution
in ¡ ¤

" , say (~x ¤ (t); ~y ¤ (t))T, which is uniformly asymptotically stable in ¡ ¤
" . Hence

system (1.3) has a unique positive almost-periodic solution (x¤ (t); y ¤ (t))T in ¡ ¤
" ,

which is uniformly asymptotically stable in ¡ ¤
" . By corollary 2.16, we have that

(x ¤ (t); y ¤ (t))T is globally asymptotically stable. This completes the proof.
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