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Abstract

Ionising radiotherapy is a well-established, effective cancer treatment modality, whose efficacy
has improved with the application of newer technological modalities. However, patient out-
comes are governed and potentially limited by aspects of tumour biology that are associated
with radioresistance. Patients also still endure treatment-associated toxicities owed to the
action of ionising radiation in normoxic tissue adjacent to the tumour mass. Tumour hypoxia
is recognised as a key component of the tumour microenvironment and is well established
as leading to therapy resistance and poor prognosis. In this review, we outline the current
understanding of hypoxia-mediated radiotherapy resistance, before exploring targeting
tumour hypoxia for radiotherapy sensitisation to improve treatment outcomes and increase
the therapeutic window. This includes increasing oxygen availability in solid tumours, the
use of hypoxia-activated prodrugs, targeting of hypoxia-regulated or associated signalling
pathways, as well as the use of high-LET radiotherapy modalities. Ultimately, targeting
hypoxic radiobiology combined with precise radiotherapy delivery modalities and modelling
should be associated with improvement to patient outcomes.

Introduction

Ionising radiation is a type of high-energy electromagnetic wave that releases electrons from atoms
and molecules generating highly reactive free radicals which can damage genomic DNA and result
in cell death (Ref. 1). Radiotherapy is one of the primary therapeutic strategies for many cancer
types, either alone or in combination with surgery, chemotherapy, targeted therapy and/or
immunotherapy (Ref. 2). For example, the standard treatment of nasopharyngeal carcinoma is
radiotherapy, and early-stage laryngeal cancer patients are treated with radiotherapy as a primary
therapy, with advanced laryngeal cancers also sensitive to chemoradiation therapy (CRT) (Refs 3,
4). More recently, radiotherapy has been explored with newer cancer treatment modalities, such as
with immunotherapeutic agent pembrolizumab, which significantly increased responses in
patients with metastatic non-small-cell lung cancer (NSCLC) (Ref. 5).

Unfortunately, treatment resistance leads to poor outcomes for some patients. A key aspect of
tumour biology that affects ionising radiotherapy efficacy is the tumour microenvironment, in
particular tumour hypoxia, as the cellular responses to ionising radiation are dependent on
how well oxygenated a tissue is (Ref. 6). In fact, threefold higher radiation doses are required
in hypoxic conditions to achieve the same impact as in normoxic conditions, a factor noted as
the oxygen enhancement ratio (OER) (Ref. 7). Elevated hypoxic content in tumours has therefore
been shown to be a factor of poor prognosis and therapy resistance in many tumour types
(Refs 8–10). The oxygen levels at which significant radioresistance is observed (<0.13% O2) are
also known as radiobiological hypoxia (Ref. 11). Hypoxia is therefore considered a significant
challenge to ionising radiotherapy efficiency, so there is an expanding field of study looking at
exploring strategies to radiosensitise hypoxic cells. This involves strategies such as increasing oxy-
gen availability, hypoxia-activated prodrugs (HAPs) or targeted therapies for hypoxia-regulated
signalling. Interestingly, high-LET (linear energy transfer) radiotherapy modalities have been
shown to be less dependent on oxygen levels than low-LET ionising radiation (Refs 7, 12, 13).

The aim of this review is to discuss how hypoxic biology impacts radiotherapy response,
how hypoxic radiobiology can be explored therapeutically to avoid radiotherapy resistance
and how high-LET modalities might be an alternative approach to hypoxia-induced ionising
radiation resistance.

Hypoxia-mediated radiotherapy resistance

An overview of tumour hypoxia

In normal tissue the oxygen supply matches the metabolic requirements of the cells, whereas
in tumour tissue oxygen consumption increases significantly and exceeds the supply, resulting
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in a drop of normal oxygen levels (pO2) from about 20–80 mmHg
to hypoxic levels <5 mmHg, or even levels which can cause
increased radioresistance (<1–10 mmHg or 0.13–1.3% O2)
(Ref. 14). In particular, oxygen tensions of lower than 1 mmHg
(<0.13% O2) are associated with significant radiotherapy resist-
ance and are therefore called radiobiological hypoxia (Ref. 11).

Chronic hypoxia is caused by the long-term oxygen depletion,
which can be derived from increased distance from blood vessels
to the tissue, as well as permanent limitations in oxygen diffusion
(Ref. 15). Acute hypoxia occurs when a temporary disruption of
blood flow to the tumour mass occurs because of the severely
abnormal changes in the structure and function of tumour vascu-
latures, producing oxygen fluctuation in the tumour microenvir-
onment (Ref. 16). Because of this, solid tumours contain
regions of cycling, or intermittent, hypoxia. The levels of hypoxia
and proportion of the tumour that is hypoxic vary significantly
due to the disorganised vessels with intermittent blood flow,
which generate cyclic changes of oxygen concentrations, resulting
in a dynamic microenvironment between hypoxic and reoxyge-
nated states (Ref. 17).

Hypoxic adaptation is underpinned by dramatic changes in
gene expression patterns, and these are primarily regulated by
the hypoxia-inducible factors (HIFs) (Ref. 18). HIFs can transac-
tivate the expression of genes involved in key tumour-promoting
hallmarks, such as tumour angiogenesis, energy metabolism
adaptation, cell death and autophagy, cell cycle regulation, meta-
static spread (including the epithelial-mesenchymal transition),
and both chemo- and radio-therapy resistance (Ref. 19) (Fig. 1).
HIF consists of an oxygen-sensitive α subunit (HIF-α, which
includes three isoforms: HIF-1α, HIF-2α and HIF-3α), and a con-
stitutively expressed β subunit (HIF1-β). Under normoxic condi-
tions, HIF-α is hydroxylated by both prolyl hydroxylases (PHDs)
and factor inhibiting HIF (Ref. 20). Proline hydroxylation within
HIF-α’s oxygen-dependent degradation domain by PHDs allows
HIF-α to be recognised and bound by the von Hippel-Lindau
E3 ligase, resulting poly-ubiquitination and subsequent degrad-
ation by the proteasome (Ref. 21). However, under hypoxic con-
ditions the PHDs are inhibited due to the lack of oxygen as a
co-factor, leading to the rapid stabilisation of HIF-α protein levels
and increased interaction with its co-activators p300 and CREB
binding protein (Ref. 22). HIF-α then heterodimerises with
HIF1-β, and the heterodimeric transcription factor then binds
to hypoxia response elements located in target gene promoters
and transactivates these targeted genes (Fig. 1) (Ref. 23).

Hypoxia-mediated radiotherapy resistance

There are primarily two aspects by which hypoxia leads to radio-
therapy resistance based on the mechanism of action of ionising
radiation. As stated by the oxygen fixation hypothesis, during
treatment with ionising radiation DNA radicals are formed either
by direct ionisation or indirectly by interaction with free radicals
generated by water radiolysis (Ref. 24). Molecular oxygen rapidly
interacts with these indirect radiation-induced DNA radicals lead-
ing to the production of single-strand breaks and oxidised bases,
which can be resolved into lethal double-strand breaks (DSBs),
leading to cell death (Ref. 25). Therefore, in the absence of suffi-
cient oxygen this process is inhibited, and the amount of DNA
damage produced by radiation and its impact on cell viability is
reduced. Other mechanisms by which hypoxic biology decreases
ionising radiation efficacy include changes in reactive oxygen
species (ROS) levels, inflammation signalling and HIF-regulated
signalling such as induction of angiogenesis and other tumour
promoting pathways (Fig. 1) (Ref. 26). HIF-1α and HIF-2α
expression have been shown to have poor prognostic value for
response to radiotherapy or CRT (Refs 27, 28).

Counterintuitively, HIF-1α levels have been shown to increase
after ionising radiation treatment through a variety of molecular
mechanisms (Ref. 29). Importantly, hypoxia can also drive
increased genomic instability phenotypes through the clonal
loss of tumour suppressor p53, repression of the expression of
other tumour suppressive factors such as E2F1 as well as key
players of DNA repair pathways such as DSB repair (homologous
recombination (HR)) and mismatch repair, such as RAD51,
BRCA1, MLH1, amongst others (Refs 30–32). It is important to
note that these latter resistance mechanisms are characteristic
of, but not exclusive to, radiobiological hypoxia and are associated
with activation of DNA damage response (DDR) signalling and
DNA replication downregulation through decreased nucleotide
signalling (Refs 11, 33–35).

Increasing sensitisation to ionising radiation via increased
oxygen availability

There are several approaches to target hypoxia-mediated radiore-
sistance, and one of the longest established one is the direct or
indirect modulation of oxygen levels in the tumour tissue to
reduce hypoxic content and increase radiosensitisation. These
utilise three main broad approaches: increasing oxygen diffusion
to the tissue, reducing oxygen consumption or using oxygen-
mimetic molecules.

Increased oxygen diffusion

Hyperbaric oxygen (HBO) therapy has been used as a treatment
for late radiation tissue injury by increasing the availability of oxy-
gen in plasma, which improves oxygen tissue availability (Ref. 36).
A meta-analysis of several clinical trials to investigate the effect of
HBO as radiosensitisers in patients with squamous cell carcinoma
of head and neck showed a significant improvement in overall
radiation treatment response, as well as metastasis reduction
(Ref. 37). Radiotherapy after HBO breathing was found to be
radiosensitised in a study using experimental models (Ref. 38).
However, this technique is not cost-effective for broad clinical
use in later study (Ref. 37).

A phase II clinical trial investigated the effect of the combin-
ation of nicotinamide and carbogen (CON) on radiotherapy out-
come for patients with advanced bladder carcinoma (Ref. 39).
Nicotinamide is a vitamin modified to enhance blood flow in the
tumours and administered 2 h before radiotherapy while carbogen
refers to a gaseous mixture of 2% carbon dioxide and 98% oxygen
inhalant (Ref. 40). This study demonstrated improvement in overall
response of 50% for those administered with the CON combination
therapy, whilst radiotherapy alone only had a 38% overall response
(Ref. 39). A report from a phase III trial for laryngeal cancer also
reported positive outcome of accelerated radiotherapy combined
with carbon inhalation and nicotinamide compared to radiother-
apy alone with a 93% control rate seen in patients with hypoxic
tumours treated with the combination therapy (Ref. 41).

Other approaches that enhance oxygen diffusion for reversing
tumour hypoxia and improve radiotherapy are also under inves-
tigation. Trans sodium crocetinate (TSC) causes physical changes
in blood plasma which results in rapid oxygen diffusion from the
cell wall to the vascular wall (Ref. 42). TSC was combined with
temozolomide and radiotherapy on glioma cells and magnetic
resonance imaging (MRI) imaging obtained before and after
treatment showed a significant reduction in tumour size when
compared with those treated with temozolomide and radiother-
apy alone (Ref. 43). TSC is being developed as a radiosensitiser
for improving radiotherapy outcome in glioblastoma multiforme
(GBM), pancreatic cancer and brain metastases after a successful
phase II clinical trial was completed (Ref. 42).
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Oxygen transport agents are also being explored to meet the
challenges of hypoxia to radiotherapy. Preclinical investigation
of liposome-encapsulated haemoglobin was shown to effectively
reverse hypoxia in tumours (Ref. 44). Specifically, the results
showed a remarkable reduction of HIF-1α and improved radi-
ation therapy outcome, as tumour growth was significantly inhib-
ited (Ref. 44). OMX is a recent oxygen carrier developed to target
hypoxia and improve radiotherapy (Ref. 45). Preclinical studies
showed OMX reduced hypoxia significantly, enhancing T-cell
localisation, and increasing CD8 accumulation and other cyto-
toxic activity previously impaired by tumour hypoxia (Ref. 45).
Fluorocarbon-based agents, through their gas-dissolving and
chemically inert properties, can carry and diffuse oxygen at
high concentrations (Ref. 46). A phase II clinical trial
(NCT03862430) in GBM, evaluating the combination of radio-
therapy with NVX-108, a dodecafluoropentane-based perfluoro-
carbon emulsion, is currently recruiting (Ref. 47).

Decreased oxygen consumption

As well as increased oxygen delivery, suppressors of oxygen con-
sumption have also been explored as radiosensitiser agents.

Nitric oxide (NO) is a free radical that plays a vital role as a
vasodilator, as well as inhibitor of tissue oxygen consumption
(Ref. 48). The mechanism of NO in radiosensitisation is similar
to those of oxygen-induced oxidative stress by stabilising
radiation-induced DNA damage via the nitrosative stress path-
ways (Ref. 49). The radiosensitising effect of NO has been
shown both in vitro and in patients, including a phase II study
indicating that NO can palliate hypoxia-induced progression in
prostate cancer (Ref. 50).

More recently, the anti-microbial agent atovaquone was
found to rapidly decrease hypoxic content of tumours, and was
identified as a suppressor of oxygen consumption through a
high-throughput analysis of FDA-approved drugs (Ref. 51). One
clinical study found that atovaquone can increase tumour oxygen-
ation and suppress hypoxic gene expression, therefore improve
treatment outcomes for NSCLC patients (Ref. 52).

Finally, papaverine, another FDA-approved agent, has also
been shown as an ideal agent for radiosensitisation of hypoxic
tumours as it reduces mitochondrial oxygen consumption
(Ref. 53). This anti-spasmodic drug was shown to increase oxy-
genation in tumour and enhanced radiation response directly by
inhibiting mitochondrial metabolism with fewer side effects,
which makes it a potential clinical radiosensitiser (Refs 53, 54).

Oxygen mimetics as radiosensitisers

Oxygen mimetics, which are compounds developed with chem-
ical properties of molecular oxygen with a better diffusion ability
to low oxygen tissues, have also been explored for their radiosen-
sitising properties (Ref. 55). These include compounds such as
misonidazole and nimorazole, which have been developed to
mimic oxygen by promoting fixation of free radical damage
during radiation (Ref. 55). The use of misonidazole was halted
at trial in combination with radiotherapy for treatment of inop-
erable squamous cell carcinoma of lung cancer due to its high
toxicity, and a similar effect was observed in an investigation
for treatment of advanced uterine carcinoma (Refs 56, 57).
Finally, the NIMRAD phase III trial explored the use of nimor-
azole in combination with intensity-modulated radiotherapy
(IMRT) in head and neck squamous cell carcinoma (HNSCC)
(Ref. 58) and has been approved by the Centre for Clinical
Practice (Ref. 59).

Hypoxia-activated prodrugs as radiosensitisers

HAPs are compounds with high specificity for hypoxic tumours,
as these are genotoxic compounds which are inactive in the pres-
ence of oxygen but are selectively activated under hypoxic condi-
tions, and therefore can accurately target regions of tumour
hypoxia (Ref. 55). These HAPs have been identified and grouped
into five main types: nitro compounds, aromatic N-oxides, ali-
phatic N-oxides, quinones and molecularly targeted HAPs
(Ref. 60). Nitro compounds-based HAPs include Metronidazole,
PR-104A and TH-302, etc. The most representative

Fig. 1. Mechanisms for HIF-α-mediated radiotherapy resistance. This schematic illustrates the key mechanisms for HIF stabilisation in hypoxic conditions, and high-
lights key pathways up-regulated by HIF that contribute to hypoxia-mediated radiotherapy resistance. HIF, hypoxia-inducible factor; PHD, prolyl hydroxylases; FIH,
factor-inhibiting HIF; VHL, von Hippel–Lindau; OH, hydroxyl groups; CBP, CREB binding protein; HRE, hypoxia response elements.
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N-oxide-based HAPs are Tirapazamine (TPZ), AQ4N and
SN30000. Quinone-based HAPs, such as EO9 (Apaziquone),
and Mitomycin C (MMC) are the earliest developed HAPs
(Ref. 61). Despite promising preclinical data of classical HAPs,
limited clinical therapeutic efficacy has been shown in several
HAPs, which led to the development of novel molecularly tar-
geted HAPs in recent years, including CH-01 (hypoxia-activated
Chk1/Aurora A inhibitor), TH-4000 (hypoxia-activated tyrosine
kinase inhibitor) and CH-03 (hypoxia-activated KDAC inhibitor)
(Refs 62–64). However, none of these have yet been evaluated in
combination with radiotherapy. Details of HAPs being investi-
gated in clinical trials as possible radiosensitisers of hypoxic
cells are summarised in Table 1, with some examples detailed
below.

Evofosfamide (TH-302)

TH-302 is an inactive compound of bromo-isophosphoramide
which is released in hypoxic conditions and leads to alkylation
of DNA (Ref. 99). Interestingly, it has been shown that TH-302
in combination with radiotherapy enhances therapeutic outcomes
(Ref. 100). A further study also found that TH-302 has radiosen-
sitising effects when administered in combination with a VEGF-A
inhibitor in preclinical models of sarcoma, increasing DNA dam-
age and apoptosis and decreasing HIF-1α activity (Ref. 101).
Further studies combining TH-302 and radiotherapy in vivo
and in vitro reported a mild effect of treatment with TH-302
and a significant increase of apoptosis in hypoxic cells
(Ref. 102). However, a phase III clinical trial of TH-302 reported
non-significant benefits and high toxicity, and therefore it has not
been adopted clinically (Ref. 103). There was a phase I clinical
trial using TH-302 with chemoradiotherapy in oesophageal can-
cer (NCT02598687) (Ref. 104), however it was withdrawn as
phase II/III trials did not meet their primary endpoint, so further
development and testing of TH-302 is uncertain.

Tirapazamine

TPZ is an aromatic N-oxide which was first evaluated in 1986 and
has been studied for its greater toxicity in anoxia when compared
with aerobic conditions in vitro (Ref. 105). TPZ specificity for
hypoxic cells initially showed positive results in improving radio-
therapy outcomes by using gene-directed enzyme prodrug ther-
apy (GDEPT) in which hypoxia is a trigger for both enzyme
expression and drug metabolism (Ref. 106). Preclinical studies
in the early 90s had shown great promise. For example, a phase
I clinical trial of TPZ in combination with cisplatin and radiother-
apy in small-cell lung cancer leading to improved survival rate
among patients, and a phase II clinical trial carried out on
patients with locally advanced head and neck cancer reporting
improved 3-year survival (Refs 82, 107, 108). Unfortunately, a
later phase III clinical trial in locally advanced head and neck can-
cer showed no significant increase of patient survival (Ref. 109).

AQ4N

Banoxantrone (AQ4N) is a bioreductive HAP, which is biore-
duced in hypoxic cells by cytochrome P450s to the cytotoxin
AQ4 (Ref. 110). Study found that AQ4N can selectively kill hyp-
oxic cells via an inducible nitric oxide synthase-dependent mech-
anism when used in combination with radiation (Ref. 111).
Moreover, the use of AQ4N combined with radiotherapy and
Temozolomide in glioblastoma entered a phase II clinical trial
(NCT00394628), but no results have been published to date
(Ref. 112).

Mitomycin C

MMC is also a HAP that generates DNA-damaging species via
DNA cross-linking and has been shown to enhance toxicity
against hypoxic compared to normoxic cells (Ref. 60).
Preclinical study revealed that MMC could enhance radio
response and modulate hypoxic tumour microenvironment in
combination with radiotherapy in rectal cancer (Ref. 113).
Clinical trials that used MMC combination with radiation are
listed in Table 1. Combined therapy including 5-fluorouracil,
MMC and radiation has become current standard treatments of
anal cancers and bladder cancers. RTOG-87-04 study phase III
randomised trial suggested that despite greater toxicity of
MMC, the use of MMC can be beneficial, especially for those
patients with large primary tumours (Ref. 114). Long-term update
of US GI intergroup RTOG 98-11 phase III trial compares CRT,
replacing MMC with cisplatin due to the toxicity of MMC.
However, cisplatin-based therapy failed to improve disease-free-
survival compared with mitomycin-based therapy, therefore sug-
gested RT + FU5/MMC remains the preferred standard of care of
anal cancers (Refs 92, 93).

Targeting of hypoxia-mediated signalling reprogramming
as radiosensitising strategies

Targeting hypoxia-regulated signalling including and beyond dir-
ect HIF targeting in cancer has been explored as a therapeutic
approach to reduce its tumour-promoting characteristics, and
below we explore how targeting various hypoxia-regulated path-
ways can lead to improvement in radiotherapy responses (Fig. 2).

HIF inhibition as a radiosensitiser strategy

As mentioned earlier, HIF is a critical factor in adaptation to the
hypoxic microenvironment and is therefore an obvious molecular
target to overcome radioresistance of hypoxic tumour cells
(Ref. 115). Several compounds have been studied as inhibitors
of HIF-α transcription, translation, and protein stabilisation
(Ref. 116). Of these, some, such as SN-38 (the active metabolite
of irinotecan), alongside its well-established radiosensitiser effect
as a topoisomerase I inhibitor, can also lead to increased radiosen-
sitivity through inhibiting radiation-induced HIF-1α in colorectal
cancer (Ref. 117). T-type Ca2+ channel blockers, such as
Mibefradil, which can block HIF-1 activation by reducing mito-
chondrial ROS production and increase HIF-1α protein hydroxyl-
ation and degradation (Ref. 118), have also been studied in a
clinical trial using Mibefradil with hypofractionated irradiation
in recurrent GBM (Ref. 119), with results suggesting that
Mibefradil can be safely co-administered with RT. STAT3 plays
an important role in the response of tumour cells to radiotherapy,
and STAT3 inhibitors NSC74859 and Stattic have been found to
increase radiosensitivity by downregulating HIF-1α expression in
oesophageal cancer (Refs 120–122). YC-1, a NO-independent
activator of soluble guanylyl cyclase, was shown to enhance radio-
sensitivity across different types of cancer cells by inducing
HIF-1α protein degradation and hence inhibition of HIF-1α func-
tion (Refs 123–125). More recently, other novel small-molecule
inhibitors of HIF have been investigated. PX-478 decreases
HIF-1α levels by inhibiting HIF-1α translation, as well as inhibit-
ing de-ubiquitination leading to HIF-1α protein degradation
(Ref. 116). Palayoor et al. have shown a potential role for
PX-478 as a clinical radiation enhancer in prostate carcinoma
cells (Ref. 126). HIF-2α inhibitors, including PT2399, PT2977
and PT2385, are also showing promise as single agents in clear
cell renal cell carcinoma in phase II clinical trials, but their com-
bination with radiotherapy is not yet explored (Refs 127–129).

4 Chun Li et al.

https://doi.org/10.1017/erm.2022.14 Published online by Cambridge University Press

https://doi.org/10.1017/erm.2022.14


Targeting DNA damage response

Hypoxia can drive cancer progression and lead to radioresistance
through its impact on genomic integrity by inhibiting DNA repair
pathways (Ref. 130). As outlined previously radiation kills cancer
cells by damaging their DNA. DNA repair dysregulation provides
a promising opportunity to exploit this key vulnerability for over-
coming radioresistance, specifically through targeting DSBs repair
pathways (Ref. 131). This is linked with the concept of ‘synthetic
lethality’, which occurs when functional defects of complemen-
tary pathways can result in cell death, whereas the perturbation

of either pathway does not impact cell survival. Targeting one
of the pathways using small molecule inhibitors in cells with a
pre-existing defect in the complementary pathway (e.g., use of
PARP inhibitors (PARPi) in tumours defective for BRCA1/2)
can be very effective, so other such pathway combinations have
been explored (Refs 132–134). One of these is hypoxia-mediated
repression of DNA repair in ‘contextual synthetic lethality’
approaches, for example, through combination with PARPi
(Ref. 135). Finally, targeting of DDR key factors in combination
with radiotherapy has shown a lot of potential for overcoming

Table 1. Clinical trials evaluating combination of HAPs with radiotherapy

Drug name Cancer type ClinicalTrials.gov identifier
Clinical trial status

(recruiting/active/completed) References

Nitro compounds

Metronidazole Cervical cancer NCT01937650 Phase II/III (Ref. 65)

Misonidazole Head and neck cancer NCT00606294 Not applicable (Ref. 66)

Pimonidazole Oral tongue cancer NCT03181035 Phase I/II (Ref. 67)

Pimonidazole Rectal cancer NCT02157246 Not applicable (Ref. 68)

Etanidazole Breast cancer brain metastasis NCT01985971 Not applicable (Ref. 69)

Nimorazole HNSCC NCT01950689 Phase III (Ref. 70)

Nimorazole HNSCC NCT02661152 Phase III (Ref. 71)

Nimorazole HNSCC NCT01880359 Phase III (Ref. 72)

Nimorazole HNSCC NCT01733823 Phase I/II (Ref. 73)

Nimorazole OSCC NCT04124198 Not applicable (Ref. 74)

N-Oxides

Tirapazamine SCCHN NCT00002774 Phase II (Ref. 75)

Tirapazamine Lung cancer NCT00066742 Phase II (Ref. 76)

Tirapazamine Lung cancer NCT00033410 Phase I (Ref. 77)

Tirapazamine Head and neck cancer NCT00094081 Phase III (Ref. 78)

Tirapazamine Cervical cancer NCT00262821 Phase III (Ref. 79)

Tirapazamine Cervical cancer NCT00098995 Phase I (Ref. 80)

Tirapazamine HNSCC NCT00174837 Phase III (Ref. 81)

Tirapazamine Lung cancer NCT00006487 Phase I (Ref. 82)

AQ4N Glioblastoma multiforme NCT00394628 Phase I/II (Ref. 83)

Quinones

Mitomycin Nasopharyngeal carcinoma NCT00201396 Phase III (Ref. 84)

Mitomycin Pulmonary neoplasm NCT00128037 Phase II (Ref. 85)

Mitomycin Bladder cancer NCT00002490 Phase III (Ref. 86)

Mitomycin Bladder cancer NCT00024349 Phase III (Refs 87, 88)

Mitomycin Bladder cancer NCT00981656 Phase II (Ref. 89)

Mitomycin Head and neck cancer NCT00002507 Phase III (Ref. 90)

Mitomycin Anal cancer NCT00025090 Phase III (Ref. 91)

Mitomycin Anal cancer NCT00003596 Phase III (Refs 92, 93)

Mitomycin Anal cancer NCT01621217 Phase I (Ref. 94)

Mitomycin Anal cancer NCT01941966 Phase II (Ref. 95)

Mitomycin Anal cancer NCT02701088 Phase II (Ref. 96)

Mitomycin Anal cancer NCT00423293 Phase II (Ref. 97)

Porfiromycin Head and neck cancer NCT00003328 Phase III (Ref. 98)

Porfiromycin Head and neck cancer NCT00002507 Phase III (Ref. 90)

HNSCC, head and neck squamous cell carcinoma; OSCC, oropharyngeal squamous cell carcinoma; SCCHN, squamous neck carcinoma of the head and neck cancer.
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hypoxic radioresistance (Ref. 136). Details of DDR inhibitors
investigated in clinical trials as possible radiosensitisers are sum-
marised in Table 2, and examples of these strategies are detailed
below.

PARP1 inhibitors
PARPi, which can effectively prevent the repair of damaged DNA
by blocking PARP enzyme activity and PARylation reactions, are
the first clinically approved drugs based on the principle of syn-
thetic lethality (Ref. 174). BRCA1/2 are major components of
the HR pathway for DSB repair, and deficiency in BRCA1/2
genes leads to high susceptibility for breast and ovarian cancer
(Ref. 175). HR deficiency due to BRCA1/2 mutations leads to
an exquisite sensitivity to PARPi through synthetic lethality
between these two pathways, a phenomenon also described as
BRCAness (Ref. 176). Many clinical trials have been carried out
in various BRCA-mutated tumours that have evaluated the bene-
fits with the treatments of PARPi both as single agents and in
combination with radiotherapy (Ref. 177). Importantly, a study
from 2010 reported that HR-defective hypoxic cells selectively
died because of microenvironment-mediated ‘contextual synthetic
lethality’, where hypoxia-mediated repression of HR represented a
BRCAness-like phenotype, and also enhanced sensitivity to ionis-
ing radiation (Ref. 135). Other studies have also shown that the
combination of PARP1 inhibitor Olaparib with radiotherapy led
to radiosensitising effects in hypoxia in NSCLC through this con-
textual synthetic lethality effect (Ref. 178). Moreover, PARPi also
improves the radiotherapy responses, as well as the efficacy of
some chemotherapeutic agents, targeted therapy and immuno-
therapy (Ref. 179). This has led to a significant number of clinical
trials focused on the combination with PARP1i and radiation to
improve the response to radiotherapy (Table 2).

DNA-PK inhibitors
DNA DSBs generated by ionising radiation can also be repaired
through non-homologous end joining), a more error-prone repair
pathway than HR (Ref. 180). The KU heterodimers (KU70 and
KU80) recognise the DNA DSBs, then activate and recruit
DNA-PKcs to the DNA break sites. This complex formed at the
DSBs consisting of DNA, Ku70/80 and DNA-PKcs is referred
to as DNA-PK (Ref. 181). The expression and activity of
DNA-PK in cancers is correlated with the response to anticancer
therapy, including radiotherapy (Ref. 182). A study showed that
DNA-PKcs inhibition led to increased sensitivity of gastric cancer
cells to ionising radiation (Ref. 183). Moreover, another study also
found that DNA-PK inhibitor NU5455 may preferentially sensi-
tise chronically hypoxic tumour cells to radiotherapy in vivo
(Ref. 184). Another study showed that DNA-PKcs inhibition
potentially overcome hypoxia-induced radioresistance in NSCLC
by the combination of ionising radiation treatment with the
DNA-PK inhibitor M3814 (Ref. 185). To our knowledge,
M3814 is the only DNA-PK inhibitor currently in clinical devel-
opment (see Table 2).

ATM/ATR inhibitors
Ataxia-telangiectasia mutated (ATM) is one of the central kinases
of the DDR and has a critical role in cancer suppression and DNA
DSBs repair (Ref. 186). Like ATM, ataxia telangiectasia and Rad3
related (ATR) is also a central kinase involved in the DDR
(Ref. 187). Inhibition of ATM or ATR has been shown to sensitise
the cancer cells to radiation treatments. Moreover, ATR and ATM
have a role to play in hypoxia/re-oxygenation (Refs 188–190),
which led to the exploration of ATM/ATR inhibitor treatment
in overcoming hypoxia-mediated radioresistance in cancer.
Inhibition of ATM or ATR has been shown to be potential radio-
sensitisers under hypoxic condition in several studies. One study

Fig. 2. Targeting of hypoxia-mediated signalling reprogramming as radiosensitising strategies. This schematic indicates the key hypoxia-regulated or associated
signalling pathways targeted in radiosensitising approaches, as detailed in section ‘Targeting of hypoxia-mediated signalling reprogramming as radiosensitising
strategies’. RT, radiotherapy; HIF, hypoxia-inducible factor; RTK, receptor tyrosine kinases; DDR, DNA damage response; GLUT-1, glucose transporter 1; ATM, ataxia
telangiectasia mutated; ATR, ataxia telangiectasia and Rad3 related; CHK1, checkpoint kinase 1; PARP1, poly(ADP-ribose) polymerase.
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Table 2. Clinical trials evaluating the combination of DDR inhibitors and radiotherapy

Drug name Cancer type
ClinicalTrials.gov

identifier

Clinical trial status
(recruiting/active/

completed)
Strategies for combination

with radiotherapy References

PARP-1 inhibitors

Olaparib Inflammatory breast
carcinoma

NCT03598257 Phase II Radiation (Ref. 137)

Olaparib TNBC NCT03109080 Phase I Radiation (Ref. 138)

Olaparib GBM NCT03212742 Phase I/IIa IMRT, TMZ (Ref. 139)

Olaparib NSCLC, breast cancer,
HNSCC

NCT01562210,
NCT02227082,
NCT02229656

Phase I Radiation, cisplatin (Ref. 140)

Olaparib NSCLC NCT04380636 Phase III Radiation, etoposide, carboplatin,
cisplatin, Paclitaxel, pemetrexed,
durvalumab

(Ref. 141)

Olaparib Head and neck cancer NCT02308072 Phase I IMRT, cisplatin (Ref. 142)

Olaparib Prostate cancer NCT03317392 Phase I/II Radium Ra 223 dichloride (Ref. 143)

Olaparib Extensive-stage small-cell
lung cancer

NCT04728230 Phase I/II Radiation, carboplatin
durvalumab, etoposide

(Ref. 144)

Veliparib Peritoneal carcinomatosis NCT01264432 Phase I LDFWAR (Ref. 145)

Veliparib Brain metastases from
NSCLC

NCT01657799 phase II WBRT, placebo (Ref. 146)

Veliparib NSCLC NCT02412371 Phase I Radiation, carboplatin, paclitaxel (Ref. 147)

Veliparib Rectal cancer NCT01589419 phase I Radiation, capecitabine (Ref. 148)

Veliparib Head and neck cancer NCT01711541 Phase I/II Radiation, cisplatin, carboplatin,
fluorouracil, hydroxyurea

(Ref. 149)

Veliparib Cancer patients with
brain metastases

NCT00649207 Phase I WBRT (Ref. 150)

Veliparib Pancreatic cancer NCT01908478 Phase I Radiation, gemcitabine (Ref. 151)

Veliparib Breast cancer NCT01477489 Phase I Radiation (Ref. 152)

Veliparib GBM NCT01514201 Phase I/II 3D CRT, TMZ (Ref. 153)

Veliparib GBM NCT03581292 Phase II Radiation, TMZ

Veliparib Lung adenocarcinoma NCT01386385 Phase I/II 3D CRT, carboplatin, paclitaxel (Ref. 154)

Niraparib Prostate cancer NCT04194554 Phase I SBRT, leuprolide, abiraterone
acetate

(Ref. 155)

Niraparib Metastatic invasive
carcinoma of the cervix

NCT03644342 Phase I/II Radiation (Ref. 156)

Niraparib TNBC NCT03945721 Phase I Radiation (Ref. 157)

Niraparib Breast cancer NCT04837209 Phase II Radiation, dostarlimab

DNA PK inhibitors

M3814 Advanced solid tumours NCT02516813 Phase I Radiation, cisplatin (Ref. 158)

M3814 Rectal cancer NCT03770689 Phase I/II Radiation, capecitabine, placebo (Ref. 159)

M3814 Solid tumours NCT03724890 Phase I Radiation, avelumab (Ref. 160)

M3814 GBM NCT04555577 Phase I Radiation, TMZ (Ref. 161)

M3814 HNSCC NCT04533750 Phase I Radiation (Ref. 162)

ATM/ATR inhibitors

AZD1390 Brain cancer NCT03423628 Phase I Radiation (Ref. 163)

AZD6738 Solid tumours NCT02223923 Phase I Radiation (Ref. 164)

VX-970 HNSCC NCT02567422 Phase I Radiation, cisplatin (Ref. 165)

VX-970 NSCLC brain metastases NCT02589522 Phase I WBRT (Ref. 166)

VX-970 Oesophageal
adenocarcinoma
Squamous cell carcinoma
Solid tumour

NCT03641547 Phase I Radiation, cisplatin, capecitabine (Ref. 167)

(Continued )
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found ATM inhibition can increase the radiosensitising effect
under hypoxic conditions in NSCLC (Ref. 185). ATR inhibitor
VE-821 has reported to increase sensitivity of pancreatic cancer
cells to radiation and chemotherapy in pancreatic cancer under
both normoxic and hypoxic conditions (Refs 188, 191).
Another ATR inhibitor from the same chemical series as
VE-821, Berzosertib (formerly VE-822, M6620 and VX-970),
has also been shown to sensitise response to chemo/radiotherapy,
which could improve the treatment efficacy in oesophageal cancer
(Ref. 192). Clinical trials regarding combination of ATM or ATR
inhibitors with radiation are ongoing, such as ATM inhibitors
AZD1390 and AZD6738, and ATR inhibitor VX-970 (Table 2).
ATM and ATR target kinases CHK1 and CHK2 also represent
attractive targets to be combined with established cancer therap-
ies, including radiotherapy, but to date only CHK1 inhibitor
Prexasertib/LY2606368 combined with radiation has entered clin-
ical trial and suggest that this combination therapy may increase
clinical benefit (Refs 193, 194).

WEE1 kinase inhibitor
WEE1 kinase is a key regulator of the G2/M phase transition that
allows DNA repair before mitotic entry (Ref. 195). Amongst sev-
eral WEE1 inhibitors evaluated in combination with radiotherapy
(Table 2), combination of AZD1775 and ionising radiation has
shown significantly increased apoptosis in cervical cancer cells
(Ref. 196). Another study also highlighted the radiosensitised
effect of WEE1 kinase inhibitor AZD1775 through inducing
replication stress in hepatocellular carcinoma (Ref. 197).
Furthermore, another study investigated the impact of WEE1
inhibition using the MK-1775 on hypoxic cells in combination
with radiation, showing MK-1775 sensitised radiation under nor-
moxia, but not hypoxic conditions (Ref. 198).

Targeting cell metabolism

There are an increasing number of studies that conclude that
metabolic alterations in cancer are one of the major reasons con-
tributing to radioresistance (Ref. 199). The PI3K/AKT/mTOR is a
key signalling pathway that can stimulate glucose uptake, there-
fore controlling cell metabolism in cancer cells. The PI3K/AKT/
mTOR pathway is involved in hypoxia-ischemia signalling, and
HIF-1α is regulated by PI3K/Akt signalling pathway (Ref. 200).

PI3K inhibition by LY294002 radiosensitises human cervical can-
cer cell lines (Ref. 201). Studies have also found that PI3K/Akt/
mTOR pathway inhibitors (BEZ235 or PI103) enhance radiosen-
sitivity in radioresistant tumour cells such as prostate cancer cells
(Ref. 202). A dual PI3K and mTOR inhibition NVP-BEZ235 has
been shown to significantly reduce tumour hypoxia by normalis-
ing tumour vasculature (Ref. 203). PI3K/mTOR inhibitors
BEZ235 and BKM120 were shown to significantly reduce oxygen
consumption in cancer cell lines, with associated reduced mito-
chondrial respiration (Ref. 204). Several clinical studies have
now evaluated the efficacy of PI3K/Akt/mTOR inhibitors in com-
bination with radiotherapy, and these are summarised in Table 3.
Nelfinavir, which is AKT phosphorylation inhibitor, has entered
clinical trial phase III in cervical cancer (Ref. 205). Another
study using Nelfinavir with concurrent CT-RT is associated
with acceptable toxicity. Moreover, the results from metabolic
response and tumour response suggested the benefit of
Nelfinavir is promising in stage IIIA/IIIB NSCLC (Ref. 206).

Glucose transporter 1 (GLUT1) is an essential factor for
glucose metabolism and is also a canonical HIF target gene
(Ref. 225). Studies found increased GLUT1 levels in radioresistant
tumour cells, which indicates that GLUT1 expression may be used
as an indicator of the sensitivity to radiation and prognosis of
radiotherapy (Refs 226–228). Targeting GLUT1 and related sig-
nalling pathways may therefore represent an effective way to
improve radiotherapy efficacy. A small molecule inhibitor of
GLUT1, WZB117, can increase the sensitivity of radiation in
breast cancer cells (Ref. 229). Another study found that modulat-
ing the glucose metabolism sensitised glioblastoma cells to ionis-
ing radiation (Ref. 230). However, there are no GLUT1 inhibitors
combined with radiation entered in clinic trails yet.

Combined immunotherapy

During radiotherapy treatment, radiation not only damages can-
cer cells directly, but also activates an immune response
(Ref. 231). Meanwhile, hypoxia also plays a pivotal role in the
regulation of immunosuppressive molecules and participates in
the activation of immunosuppressive cells (Ref. 232). For example,
IL10 and TGFβ are increased under hypoxia, which induces the
differentiation of tumour-associated macrophages into M2
macrophages and therefore activates immune-suppressive

Table 2. (Continued.)

Drug name Cancer type
ClinicalTrials.gov

identifier

Clinical trial status
(recruiting/active/

completed)
Strategies for combination

with radiotherapy References

Elimusertib Head and neck cancer NCT04576091 Phase I Radiation (Ref. 168)

WEE1 inhibitors

AZD1775 Head and neck cancer ISRCTN76291951
NCT03028766

Phase I Radiation, cisplatin (Ref. 169)

AZD1775 Adenocarcinoma of the
pancreas

NCT02037230 Phase I/II Radiation, gemcitabine (Ref. 170)

AZD1775 Cervical, upper vaginal
and uterine cancers

NCT03345784 Phase I Radiation, cisplatin, adavosertib (Ref. 171)

AZD1775 Cervical cancer NCT01958658 Phase I Radiation, cisplatin (Ref. 171)

AZD1775 Head and neck cancer NCT02585973 Phase I Radiation, cisplatin (Ref. 172)

AZD1775 GBM NCT01849146,
NCT01922076

Phase I Radiation, TMZ (Ref. 173)

TNBC, triple negative breast cancer; GBM, glioblastoma; NSCLC, non-small-cell lung cancer; HNSCC, head and neck squamous cell carcinoma; IMRT, intensity-modulated radiotherapy; TMZ,
temozolomide; LDFWAR, low-dose fractionated whole abdominal radiation; WBRT, whole brain radiation therapy; 3D CRT, 3-dimensional conformal radiation therapy; SBRT, stereotactic body
radiotherapy.
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activities (Ref. 233). Hypoxia also regulates the differentiation and
activation of dendritic cells (Ref. 234). On the other hand, hyp-
oxia activates immunosuppressive cells, such as myeloid-derived
suppressor cells, regulatory T cells and decreased infiltration
and activation of CTCs, which suggests that targeting HIF in
the immune system could be beneficial for anti-tumour immune
responses (Ref. 235).

Radiotherapy has both pro-immunogenic and immunosup-
pressive effects on immune response in various levels. This
includes the induction of immunogenic cell death, promoting
the recruitment and function of T cells within the tumour micro-
environment, and improving the recognition and killing of cancer
cells by CD8+ CTLs (Ref. 236). This is key to the synergistic effect
of radiation with immune checkpoint inhibitors, antibodies tar-
geting inhibitory receptors on T cells, including cytotoxic T
lymphocyte antigen-4 (CTLA-4) and programmed death-1
(PD-1), and has become an optimal partner for immune check
point inhibitors (Ref. 237). In fact, several completed clinical trials
evaluated the efficacy of combining immunotherapy approaches
using immune checkpoint inhibitors with radiotherapy, and the
completed clinical trials are summarised in Table 4.

Furthermore, studies also found that immunosuppressive
macrophages were recruited by radiation, which induced upregula-
tion of CSF-1. Depletion of these macrophages by using anti-CSF
antibody (aCSF) significantly delays tumour regrowth following
radiation. Moreover, the addition of an anti-PD-L1 antibody to

aCSF resulted in improved tumour suppression and even regression
in a highly resistant murine pancreatic cancer model (Ref. 265);
therefore, macrophage depletion may play a role in immune check-
point blockade-resistant tumours. Ultimately, as suggested by
Eckert et al., as hypoxia mediates radioresistance and immune
escape, the combination of immune checkpoint inhibition and
radiotherapy might be a promising strategy to improve outcome
in tumours with high hypoxic content (Ref. 266).

IMRT combination with radiosensitiser approaches

IMRT is a radiotherapy modality that delivers highly conformal
dose distributions (Ref. 267). It is designed by inverse optimisa-
tion algorithms, with the following inputs: the dose required to
the ‘tumour’ to gain control of the disease; and constraints or
dose limitations for proximal tissues and ‘organs at risk’. The
optimisation process is controlled by cost functions, these essen-
tially compare dose distributions achieved by a set of x-ray beams,
to the desired outcome; they then guide modulation of each beam
in a systematic manner until a solution close to that originally
specified is obtained. In simple terms the described process results
in a set of beams, each consisting of a number of segments whose
individual dose patterns superpose to create exquisite dose distri-
butions that acknowledge the 3D nature of tumours and the dis-
crete hypoxic and normoxic regions present in tumour masses
(Ref. 268). Commonly, the degrees of freedom available to the

Table 3. Clinical trials evaluating the combination of PI3K/AKT/mTOR inhibitors and radiotherapy

Drug name Cancer types
ClinicalTrials.gov

identifier

Clinical trial status
(recruiting/active/

completed) Combination strategy References

GDC-0084 Brain metastases
leptomeningeal metastasis

NCT04192981 Phase I WBRT (Ref. 207)

GDC-0084 Brain and central nervous
system tumours

NCT03696355 Phase I Radiation (Ref. 208)

GDC-0084 Glioma NCT05009992 Phase II Radiation, ONC201,
panobinostat

(Ref. 209)

BKM120 NSCLC NCT02128724 Phase I Radiation (Ref. 203)

BKM120 HNSCC NCT02113878 Phase I IMRT, cisplatin (Ref. 210)

Nelfinavir Cervical cancer NCT03256916 Phase III Radiation, cisplatin (Ref. 205)

Nelfinavir Locally advanced pancreatic
cancer

NCT03256916 Phase I Radiation, cisplatin,
gemcitabine

(Ref. 211)

Nelfinavir NSCLC NCT03256916 Phase I Chemoradiotherapy (Ref. 206)

Nelfinavir locally advanced rectal
cancer

NCT03256916 Phase I Chemoradiotherapy (Ref. 212)

Nelfinavir Cervical cancer NCT01485731 Phase I Radiation, cisplatin (Ref. 213)

Nelfinavir GMB NCT00694837 Phase I Radiation (Ref. 214)

Nelfinavir Oligometastases NCT01728779 Phase II SBRT (Ref. 215)

Nelfinavir Pancreatic cancer NCT01068327 Phase I Radiation (Ref. 216)

BYL719 HNSCC NCT02537223 Phase I IMRT, cisplatin (Ref. 217)

XL765 GMB NCT00704080 Phase I Radiation, TMZ (Ref. 218)

Alpelisib Meningioma NCT03631953 Phase I MRI, trametinib (Ref. 219)

Everolimus Cervical cancer NCT01217177 Phase I Radiation (Ref. 220)

Everolimus Prostate cancer NCT01548807 Phase I Radiation (Ref. 221)

Rapamycin Rectum cancer NCT00409994 Phase I/II Radiation (Ref. 222)

Temsirolimus NSCLC NCT00796796 Phase I Radiation (Refs 223, 224)

GBM, glioblastoma; NSCLC, non-small-cell lung cancer; HNSCC, head and neck squamous cell carcinoma; TMZ, temozolomide; WBRT, whole brain radiation therapy; SBRT, stereotactic body
radiotherapy; IMRT, intensity-modulated radiotherapy.
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optimiser is increased by using arc-based treatment beams rather
than a discrete set of fixed directions. IMRT has had a clear
impact on the success of modern radiotherapy strategies.
However, given it typically is implemented with high-energy
x-rays which are low-LET radiation, further developments consid-
ering strategy modification related to hypoxia management may be
limited, see section ‘High-LET modalities as alternatives to oxygen-
dependent low-LET ionising radiation’.

Combining precise delivery via IMRT with radiosensitiser
approaches such as DDR inhibitors (section ‘Targeting DNA
damage response’) and immunotherapy (section ‘Combined
immunotherapy’) has the potential to improve patient outcomes.
Furthermore, nanotechnology has potential to provide a new
dimension to this strategy with metallic nanomaterials being
developed as possible hypoxic radiosensitisers (Ref. 269). Gold

nanoparticles (GNPs), for example, are gaining attention due to
gold’s ability to readily donate electrons and thereby promote
the production of ROS, even in low oxygen environments. In a
study of colon cancer, CT26 cells were incubated in hypoxia
both with and without GNPs prior to radiotherapy application.
Significantly improved responses were observed in the GNP
group, suggesting dual IMRT-GNP therapeutics could improve
the relative biological effectiveness (RBE) and OER of low-LET
modalities compared to x-ray application alone (Ref. 270).

High-LET modalities as alternatives to oxygen-dependent
low-LET ionising radiation

LET is the energy loss of a radioactive particle per unit of distance
travelled and in radiotherapy, a measure of the amount of energy

Table 4. Clinical trials evaluating the combination of immunotherapy therapeutics and radiotherapy

Drug name Cancer types
ClinicalTrials.gov

identifier
Clinical trial
(completed) Combination with RT References

Anti-PD-1/PD-L1

SHR-1210 Oesophageal cancer NCT03187314 Phase I Radiation (Ref. 238)

SHR-1210 Oesophageal cancer NCT03222440 Not applicable Radiation (Ref. 239)

Nivolumab NSCLC NCT02434081 Phase II Radiation (Ref. 240)

Nivolumab Small-cell lung cancer NCT03325816 Phase I/II Radiation (Ref. 241)

Nivolumab Hepatocellular carcinoma NCT03380130 Phase II SIRT (Ref. 242)

Nivolumab Lung cancer NCT03044626 Phase II Radiation (Ref. 243)

Pembrolizumab Renal cell carcinoma NCT02855203 Phase I/II SABR (Ref. 244)

Pembrolizumab Head and neck cancer NCT02759575 Phase I/II Radiation, cisplatin (Ref. 245)

Pembrolizumab Follicular lymphoma NCT02677155 Phase II Radiation (Ref. 246)

Pembrolizumab Metastatic cancers NCT02303990 Phase I Radiation (Ref. 247)

Pembrolizumab Oligometastatic breast
neoplasia

NCT02303366 Phase I SABR (Ref. 248)

Pembrolizumab Oesophageal cancer NCT02642809 Phase I Radiation (Ref. 249)

Pembrolizumab Renal cell cancer NCT02599779 Phase II SBRT (Ref. 250)

Nivolumab/
Pembrolizumab

Lung cancer NCT03224871 Phase I Radiation, intralesional
IL-2

(Ref. 251)

AMP-224 Colorectal cancer NCT02298946 Phase I SBRT,
cyclophosphamide

(Ref. 252)

Avelumab NSCLC NCT03158883 Phase I SABR (Ref. 253)

Avelumab GBM NCT02968940 Phase II HFRT (Ref. 254)

Cemiplimab Advanced malignancies NCT02383212 Phase I Radiation (Refs 255,
256)

anti-CTLA-4

Ipilimumab NSCLC NCT02221739 Phase I/II Radiation (Ref. 257)

Ipilimumab Lymphoma NCT02254772 Phase I/II Radiation, SD-101 (Ref. 258)

Ipilimumab Melanoma NCT01449279 Phase II Radiation (Ref. 259)

Ipilimumab Melanoma NCT02406183 Phase I SBRT (Ref. 260)

Ipilimumab Melanoma, brain metastases NCT02115139 Phase II Radiation (Ref. 261)

Ipilimumab Cervical cancer NCT01711515 Phase I Radiation, cisplatin (Ref. 262)

Tremelimumab Pancreatic cancer NCT02311361 Phase I/II SBRT, durvalumab (Ref. 263)

Tremelimumab Recurrent small cell lung
carcinoma

NCT02701400 Phase II SBRT, durvalumab (Ref. 264)

GBM, glioblastoma; NSCLC, non-small-cell lung cancer; IMRT, intensity-modulated radiotherapy; TMZ, temozolomide; LDFWAR, low-dose fractionated whole abdominal radiation; WBRT,
whole brain radiation therapy; 3D CRT, 3-dimensional conformal radiation therapy; SBRT, stereotactic body radiotherapy, SIRT, selective internal radiation therapy; SABR, stereotactic ablative
radiotherapy; SBRT, stereotactic body radiation therapy; HFRT, hypofractionated radiation therapy.
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transferred from the radiation source to the patient. High-LET
radiation sources include alpha particles, with high mass and
positive charge, and low-energy neutrons which have no charge
and are approximately ¼ mass of an alpha particle (Ref. 271).
Low-LET radiation sources, most commonly x-rays or gamma-
rays, are photons having no mass or charge and wavelengths
below 10−8 m (Ref. 272). High-LET particles deposit their energy
within a short distance from the radiation source, following a dis-
crete pathway and causing significant cellular disruption localised
to a smaller area close to the target (Ref. 273). Low-LET waves
however penetrate tissues more readily and are widely scattered as
they transverse through the patient, causing less intense damage
to a larger area of tissue (Ref. 273).

The radiobiology of high-LET RT modalities

Tumours with oxygen-deficient areas experience increased radio-
resistance termed the OER, a comparison of the dose of radiation
needed to cause the same damage in normoxic verses hypoxic
tissue environments. Experimentally, the OER is inversely
proportional to LET suggesting a potential clinical advantage of
high-LET radiotherapy compared to low-LET irradiation
(Ref. 274). RBE (relative biological effectiveness) is a comparison
of biological efficacy of one type of ionising radiation compared to
another (such as DNA damage and apoptosis levels), and indi-
cates the dose of different ionisation sources that are needed to
produce the same biological effect (Ref. 272). High LET radiation
has an increased biological effectiveness compared to photons of
low LET, causing more extensive and clustered DNA damage
(Ref. 275). Specifically, application of high-LET radiotherapy
causes closely interspaced DSBs leading to high local concentra-
tions of repair proteins and perturbed DNA damage owed to its
discrete pattern of energy deposition compared to low-LET
X-ray irradiation (Fig. 3) (Ref. 276). Contemporary proton par-
ticle therapy utilises scanning beam technology which facilitates
intensity modulated proton therapy, wherein the benefits afforded
by intensity modulation and high-LET delivery are combined
(Ref. 277).

FLASH

FLASH radiotherapy is a treatment method that decreases the
damage caused to the normal tissue (tissue sparing) whilst main-
taining a tumour response compared with conventional low dose
rate radiotherapy (Refs 280, 281). The FLASH technique involves
application of a single, ultra-high dose of radiation over a short
time period. When compared to conventional radiotherapy in
vitro, FLASH radiotherapy caused significantly less DNA damage
to normal tissue than conventional radiation. The mechanisms
underpinning the tissue sparing effect of FLASH are hypothesised
to be diverse, including rapid radiochemical depletion of oxygen
leading to transient hypoxia in normal tissue, radical interaction
or inhibition of activation of genes that drive inflammation and
proliferation of tumours (Ref. 282). In the oxygen depletion/
transient hypoxia hypothesis, normal tissue with physiological
oxygen levels would experience rapid oxygen depletion after
FLASH, leading to transient radioresistance which would in
turn would lead to decreased damage and ultimately a tissue spar-
ing effect. Further investigation on post irradiation effect showed
that FLASH halted repopulation, whilst significantly reducing
radio-induced senescence (Ref. 283). Importantly, FLASH radio-
therapy has increased RBE when delivered in high-LET modalities
harnessing a proton beam radiation source compared to low-LET
x-ray sources (Ref. 284). Experiments to validate its efficacy in
hypoxia however suggest FLASH radiotherapy has a high OER
in vitro, with tissue oxygen concentrations above 4.4% needed

for the technique to match the efficacy of conventional RT as hyp-
oxic regions lack the oxygen availability to support the rapid oxy-
gen consumption occurring in local tissues during FLASH
therapy (Ref. 285). The mechanism and biological nature of the
FLASH effect is complex, but it is expected this will be an area
of increased interest in the radiobiology field.

Dose painting

Positron emission tomography (PET) and MRI are functional,
non-invasive imaging modalities utilised to identify hypoxic tis-
sue regions in patient tumours (Ref. 286). Such imaging allows
clinicians to define areas likely to be resistant to radiotherapy,
such as areas of tumour hypoxia. Therefore, strategic delivery of
higher ionising doses to hypoxic areas while reducing the dose
delivered to more oxygenated regions thereby limiting
dose-related side effects, a process also known as dose painting
(Refs 287, 288).

In a study of 12 patients with locally advanced HNSCC,
hypoxia-specific tracer 18F-Fluoroazomycin arabinoside was
harnessed alongside PET technology to assess the capabilities of
hypoxia-guided dose painting. FAZA accumulation successfully
identified hypoxic voxels in 80% of the cohort, while hypoxic vol-
ume made up to 54% of the patients’ total tumour masses.
Subsequently, 86 Gy doses were delivered to hypoxic voxels
while a 70 Gy mean dose was administered across other regions
and results revealed that dose escalation had no impact on
adjoining healthy tissues (Ref. 282). Another dose painting
study involving 10 HNSCC patients harnessed hypoxic tracer
18F-Fluoromisonidazole in combination with PET to identify
and image chronic hypoxic voxels. Post imaging, one sub-group
received 35 fraction schedules of 2 Gy irradiation (70 Gy total)
homogenously while a second sub-group received an escalated
dose of 2.28 Gy to hypoxic regions (79.8 Gy total). Comparison
of the two treatment plans demonstrated dose escalation to hyp-
oxic regions can be delivered safely and efficaciously, without any
increased delivery to at-risk organs (Ref. 283). Therefore, the lit-
erature suggests that combining dose-painting methodologies
with high-LET radiation could therefore increase the benefit of
hypoxia mapping as patients could benefit from the improved
OER and RBE that high-LET therapies provide, accompanied
by increased precision of application, allowing potent radiation
doses to be delivered with minimal damage to healthy cells.
However, a caveat of this approach is that it is based on a plan
prior to treatment. A course of radiotherapy is delivered over a
period of 1 and 7 weeks and oxygen level distribution can change
in response to the treatment, thus impacting on the efficacy of this
approach.

Concluding thoughts and future directions

Radiotherapy remains one of the most effective non-invasive
treatments for solid tumours, but the impact of tumour biology
on response of tumour cells to radiation remains a fundamental
limitation to what radiotherapy can ultimately achieve.
Challenges associated with radiotherapy response include inher-
ent radioresistance of cancer cells, lack of discrimination between
normal tissue and tumour cells, and, pertinent to this review,
tumour hypoxia-mediated radioresistance. State-of-the-art dual
treatment modalities for cancer patients have previously relied
upon radiotherapy accompanied by surgery, chemotherapy and
more recently, immunotherapy. However, these combinations
have been unable to abolish treatment-resistant hypoxic regions
often resulting in poor survival rates and disease recurrence.
Furthermore, radiotherapy technology (instrumentation and soft-
ware) and delivery has improved significantly over last 15 years,
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but has potentially encountered an era of diminishing returns,
where increased accuracy in radiotherapy delivery may not sub-
stantially improve outcomes alone.

We suggest that hypoxia targeting in radiotherapy treatment
strategies should encapsulate the mainstream treatment strategy
for cancer, especially solid tumours, with experimental and clin-
ical evidence suggesting some of these strategies even carry the
benefit of reduced off-target effects. Of particular interest are
treatment plans that strategically exploit the hypoxic tumour
microenvironment by targeting hypoxia-mediated radioresistance
signalling, such as HIF inhibition and targeting DDR, as well as
employment of HAPs. However, further studies using accurate
evaluation of hypoxic content of tumours are needed to validate
their efficacy in combination with radiotherapy and advance
such strategies towards the clinic.

Clinical validation of existing hypoxia-targeted radiosensitisers
should therefore continue to be a priority area in radiotherapy
research, alongside prioritising treatment metrics that include
hypoxic indices of tumours, capitalising on the disease-specific,
druggable targets in the hypoxic microenvironment. This should
include evaluating combination approaches of radiotherapy with
relevant hypoxia signalling targeting small molecule inhibitors
(such as HIF and DDR inhibitors) as well as immunotherapy.
These strategies should be also combined with current radiother-
apy delivery modalities, including developing the use of hypoxia
content scores in increasing the effectiveness of fractionated
radiotherapy strategies using machine-learning in in silico model-
ling. It will also involve a shift towards high-LET radiotherapeu-
tics over low-LET options to provide relatively immediate benefits
to the cancer patient group.

Ultimately, the use of these various strategies targeting hypoxic
radiobiology, combined with cutting-edge precise radiotherapy deliv-
ery and modelling, should lead to improvement in patient outcomes.
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